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Abstract. In this paper we show how to construct diagonal scalings for arbitrary matrix pencils
λB − A, in which both A and B are complex matrices (square or nonsquare). The goal of such
diagonal scalings is to “balance” in some sense the row and column norms of the pencil. We see
that the problem of scaling a matrix pencil is equivalent to the problem of scaling the row and
column sums of a particular nonnegative matrix. However, it is known that there exist square and
nonsquare nonnegative matrices that can not be scaled arbitrarily. To address this issue, we consider
an approximate embedded problem, in which the corresponding nonnegative matrix is square and
can always be scaled. The new scaling methods are then based on the Sinkhorn–Knopp algorithm for
scaling a square nonnegative matrix with total support to be doubly stochastic or on a variant of
it. In addition, using results of U. G. Rothblum and H. Schneider (1989), we give simple sufficient
conditions on the zero pattern for the existence of diagonal scalings of square nonnegative matrices to
have any prescribed common vector for the row and column sums. We illustrate numerically that the
new scaling techniques for pencils improve the accuracy of the computation of their eigenvalues.
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1. Introduction. The problem of scaling an entrywise nonnegative m×n matrix
A with diagonal transformations and prespecified vectors r and c for the row and
column sums, respectively, consists of finding a matrix of the form S = DℓADr, where
Dℓ ∈ Rm×m and Dr ∈ Rn×n are diagonal matrices having positive diagonal elements,
and such that

(1.1) S1n = r and 1T
mS = cT ,

where 1i := [1, . . . , 1]T ∈ Ri for i = n,m [3, 18]. When r = 1m and c = 1n the scaled
matrix S is neccessarily square and is said to be doubly stochastic, i.e., its row and
column sums are all equal to 1.

The related problem of scaling the rows and columns of a complex square matrix A
(not necessarily nonnegative) using real and positive diagonal similarity transformations
in order to compute more accurate eigenvalues, is a well established technique to
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improve the sensitivity of the eigenvalue problem of the matrix A [16]. This is
known as balancing the matrix A. In exact arithmetic, it amounts to minimizing the
Frobenius norm of the scaled matrix D−1AD, where D ranges over all non-singular
real diagonal matrices, which is equivalent to minimizing the departure from normality
of D−1AD [12]. Since the eigenvalues of normal matrices have condition numbers
equal to 1, such scaling very often improves the sensitivity of eigenvalues. The method
for computing the optimal scaling is a very simple cyclic procedure where at each
step only a single diagonal element of D is updated. This method is implemented
in MATLAB [21] as a default option of the eigenvalue computation problem, which
indicates that its effectiveness is well accepted. For improving the accuracy of the
eigenvalues computed in floating point arithmetic, it is essential that the diagonal
elements of D are integer powers of 2, because in this way the scaling does not produce
any rounding errors and the eigenvalues are preserved exactly under such a scaling
transformation. Otherwise, the rounding errors inherent to constructing D−1AD
would spoil any potential improvement in the accuracy of the computed eigenvalues.
As explained in [16], the restriction to diagonal matrices D whose entries are integer
powers of 2 allows for a relaxed stopping criterion of the cyclic procedure for computing
D and implies that the related minimization problem is only approximately solved.

The idea of performing positive diagonal scalings in order to improve the accuracy
of computed eigenvalues was also extended to the generalized eigenvalue problem of a
regular pencil λB − A. In this case, the nonsingular diagonal matrices multiplying
the pencil on the left and on the right are different. In [23], Ward describes a scaling
technique which aims at making the pencil entries have magnitudes as close to unity
as possible. In [12], Lemonnier and Van Dooren propose a diagonal scaling that in
exact arithmetic minimizes the Frobenius norm of the pencils over all positive diagonal
scalings with fixed determinant. This improves very often the conditioning of the
eigenvalues, since the solution of such minimization problem over general nonsingular
transformations is a so-called standardized normal pencil, which is a pencil whose
eigenvalues all have a condition number in the chordal metric that is smaller than or
equal to

√
2. The method of Ward is the one that LAPACK [1] proposes as built-in

option for scaling a regular pencil, but it was pointed out in [12] that the method
of Lemonnier-Van Dooren outperforms that of Ward in terms of the accuracy of
the computed eigenvalues, especially when the pencil has entries of strongly varying
magnitudes. The experiments in Section 6 will further confirm the superiority of the
method in [12] for a wide variety of pencils of different sizes and types. As in the case
of balancing matrices, it is essential that the entries of the diagonal scaling matrices
are integer powers of 2 in order to improve the accuracy of the computed eigenvalues
in floating point arithmetic. Currently, MATLAB does not offer any built-in option
for scaling pencils. We will see in Section 3 that the method in [12] is equivalent to
scaling a particular nonnegative matrix to a multiple of a doubly stochastic matrix,
which motivates us to revise briefly the literature on this and other related problems.

There is a vast literature on diagonal scaling of nonnegative matrices for getting
a matrix with prescribed row and column sums. The origin of these problems goes
back at least until the beginning of the XX century [10, 25] and originates in the area
of optimal transport [17], though it has applications in many other areas [7]. See [7,
Section 3.1] and [17, Remark 4.5] for historical remarks on these problems. Relevant
classical references from the point of view of matrix analysis include [3, 11, 18, 19],
among many others. Despite this vast literature, several issues are still open for
improvement, such as a good understanding of the convergence of related algorithms
for sparse matrices and simple conditions on the zero pattern of the matrix for existence
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and unicity of a solution for special cases, specially in the case of rectangular matrices
[7]. The most relevant papers on diagonal scalings that are related to this paper are,
in chronological order, those of Sinkhorn-Knopp [19], Krupp [11], Rothblum-Schneider
[18] and Knight [8], which is why we quote theorems from those papers.

In this paper we show that there exists a link between the problem of scaling
a regular square pencil and that of scaling a square nonnegative matrix to become
doubly stochastic. This implies that the scaling is essentially unique and bounded if
and only if the corresponding nonnegative matrix satisfies certain conditions, namely
total support and full indecomposability. Moreover, in that situation, the scaling can be
found through the well-known Sinkhorn-Knopp algorithm [8, 19]. We then show how
to extend this to singular or nonsquare pencils, which, to the best of our knowledge,
has not been considered yet in the literature. For that, we introduce a regularization
term into the original problem which ensures existence of a solution of an approximate
problem with bounded diagonal scalings Dℓ and Dr. In addition, the regularization
term can be considered in both square or nonsquare cases.

These ideas are connected to the results in [18] about scaling arbitrary nonnegative
matrices (square or rectangular) with prespecified row and column sums, which can
be obtained using a Sinkhorn-Knopp-like algorithm, but many other optimization
methods have been proposed in the literature [7, 17]. We build on these ideas to further
improve the technique of Lemonnier and Van Dooren by introducing the regularization
term as an additional cost. This regularization ensures the existence and boundedness
of our scaling, but it also ensures essential unicity of the scaling.

The paper is organized as follows. In Section 2, we give some basic notions about
scaling pencils, scaling nonnegative matrices and the Sinkhorn-Knopp-like algorithm.
In Sections 3 and 4, we study the diagonal scaling problem for square and nonsquare
pencils, respectively. In Section 3, we will also recall the necessary and sufficient
conditions for a square nonnegative matrix to become doubly stochastic under diagonal
scalings, and we give simple sufficient conditions based on the zero pattern of the
matrix for the existence of diagonal scalings having any prespecified common vector
for the row and column sums. These results will be useful in Section 5. In that section,
we develop a new scaling technique for generalized eigenvalue problems and show
that it can be applied to any pencil, regular or singular, square or rectangular. For
that, we introduce a regularization term into the original problem which guarantees
existence, unicity and boundedness of the scaling. In addition, in Subsection 5.1,
we consider a modified version of the new scaling technique that is often better for
scaling nonsquare pencils. In Section 6 we then illustrate the improved accuracy of the
computed eigenvalues using several numerical examples. More numerical examples can
be found in the supplementary materials accompanying this paper, linked from the
main article webpage. In particular, there we describe a real world example where the
proposed scaling techniques allow us to get a dramatic improvement in the conditioning
of the resulting generalized eigenvalue problem. In the last Section 7 we give some
concluding remarks.

2. Preliminaries: Scaling arbitrary pencils and nonnegative matrices.
The standard techniques for computing eigenvalues of complex pencils of matrices
guarantee that the backward errors corresponding to the computed spectrum are
essentially bounded by the norm of the coefficients of the pencil, times the machine
precision of the computer used. But one can improve this bound by reducing the
norms of the coefficients without affecting the spectrum. This is where balancing using
diagonal scaling comes in. We emphasize that the diagonal entries of such scalings
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must be integer powers of 2 in order to avoid rounding errors that would destroy any
potential improvement in accuracy that such scalings might achieve.

Two types of scalings can be applied to a complex pencil λB −A.
The first one is a change of variable λ̂ := dλλ to make sure that the scaled matrices

A and B/dλ have approximately the same norm. This can be done without introducing
rounding errors, by taking dλ equal to an integer power of 2. The staircase [22] and
the QZ [15] algorithms work independently on both matrices and this scaling can
be restored afterwards, again without introducing any additional errors. One could
therefore argue that this scaling is irrelevant for these algorithms, but we will see that
it affects the second scaling procedure we will discuss. Therefore we will assume in
the sequel that both matrices A and B are of comparable norms, and that no such
variable scaling needs to be applied.

The second scaling is based on multiplication on the left and on the right by
positive diagonal matrices Dℓ and Dr, respectively, that are chosen to “balance” in
some sense the row and column norms of the complex matrices Ã := DℓADr and
B̃ := DℓBDr. We will see that balancing the row and column norms of Ã and B̃ is
equivalent to performing two-sided diagonal scalings to a particular real entrywise
nonnegative matrix M . Therefore, we recall in the sequel some results on this problem.

The first result we revise appears in [18, Theorem 2, (a)-(b)] and is the next one.

Theorem 2.1. Given a real nonnegative matrix M ∈ Rm×n and vectors r ∈ Rm×1

and c ∈ Rn×1 with strictly positive entries satisfying 1T
mr = cT1n, there exist positive

diagonal matrices DM,ℓ and DM,r such that

(2.1) DM,ℓMDM,r1n = r and 1T
mDM,ℓMDM,r = cT

if and only if there exists a nonnegative matrix S with the same zero pattern as M
such that S1n = r and 1T

mS = cT .

This is a nontrivial existence result that in a less general form appeared in [13]. To
tackle the problem of finding the scaled matrix, one can perform a Sinkhorn-Knopp-like
algorithm by alternatively normalizing the row and column sums of M as follows:

Algorithm 1 (Sinkhorn-Knopp-like algorithm for nonnegative M ∈ Rm×n)
Initialize: DM,ℓ = Im and DM,r = In

(1) Multiply each row i of M and of DM,ℓ by
ri∑
j mij

to obtain an updated

matrix M with row sums r and an updated matrix DM,ℓ.

(2) Multiply each column j of the updated M and of DM,r by
cj∑
i mij

to obtain

an updated matrix M with column sums c and an updated matrix DM,r.
(3) If the row sums of the matrix M obtained in step (2) are far from r, repeat

steps (1) and (2) with such M until an adequate stopping criterion is satisfied.

We give a MATLAB code of Algorithm 1 in Appendix A. This algorithm appeared as
early as in [25] and [10] and, according to [7, Section 3.1], it has been rediscovered
several times in the literature and has received different names as, for instance, the
Kruithof’s projection method (see [11]) or the RAS method. In this paper, we call it
the Sinkhorn-Knopp-like algorithm, because if r = c = 1n and M is square, then it
collapses to the famous Sinkhorn-Knopp algorithm for scaling a nonnegative matrix to
a doubly stochastic matrix [19]. If the Sinkhorn-Knopp-like algorithm converges, i.e.,
M converges and the diagonal matrices of the iteration converge to positive bounded
diagonal matrices, the limit will be the scaled matrix DM,ℓMDM,r in Theorem 2.1.
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The cost of one iteration of Algorithm 1, i.e., the combination of one step (1) and
one step (2), is 4mn+m+ n flops, where the term m+ n comes from updating DM,ℓ

and DM,r. A marginally more efficient algorithm that updates M implicitly can be
found in [17, p. 64] (see also [8, p. 262] for the case r = c = 1n). The cost of one
iteration of this implicit algorithm is 4mn flops. However, this implicit algorithm
requires an overhead cost of 2mn flops for constructing the final scaled matrix, which
may be larger than (m + n) times the number of iterations for large m and n. All
these costs are much smaller if M is a sparse matrix.

Another important result is that there exists at most one solution for the diagonal
scaling problem in (2.1) for any prescribed vectors r and c. This is stated in the
following Theorem 2.2, which is a partial result of what is proven in [18, Theorem 4].

Theorem 2.2. Let M ∈ Rm×n be a nonnegative matrix and let r ∈ Rm×1 and
c ∈ Rn×1 be strictly positive vectors satisfying 1T

mr = cT1n. Then there exists at most
one two-sided scaled matrix S = DM,ℓMDM,r with row sums S1n = r and column
sums 1T

mS = cT , where DM,ℓ and DM,r are positive diagonal matrices.

A less general version of Theorem 2.2 appeared in [13] and the general case is implicit
in [14]. We emphasize that, although S is unique when it exists, the matrices DM,ℓ

and DM,r are not necessarily unique. We refer the reader to [18, Theorem 4] for a
description of all matrices DM,ℓ and DM,r that satisfy S = DM,ℓMDM,r.

A surprising and useful result is that the Sinkhorn-Knopp-like algorithm converges
if and only if the scaling problem (2.1) has solution. This was proved in general in
[11] and for square nonnegative matrices and r = c = 1n in [19], i.e., for the doubly
stochastic case (see also [7, Theorem 4.1]). Next, we state this important result.

Theorem 2.3. Under the assumptions in Theorem 2.2, there exist diagonal ma-
trices DM,ℓ and DM,r with positive main diagonals such that (2.1) is satisfied if and
only if the Sinkhorn-Knopp-like algorithm converges.

Thus, the Sinkhorn-Knopp-like algorithm gives a reliable numerical procedure to
check for scalability. Unfortunately, the Sinkhorn-Knopp-like algorithm can be very
slow, in particular for sparse matrices, and other faster algorithms have been developed
in the literature (see [7, Section 7], [17, Section 4.3] and the references therein).
However, we emphasize that for the main purpose of this paper, i.e., improving the
accuracy of computed eigenvalues of pencils, we have always found that the Sinkhorn-
Knopp-like algorithm is fast enough and that the cost of its application is much
smaller than the cost of computing the eigenvalues. The reason is that, in this case,
the diagonal entries of the scalings DM,ℓ and DM,r to be applied to the pencil must
be integer powers of 2 which allows to use a very relaxed stopping criterion in the
Sinkhorn-Knopp-like algorithm. We will discuss this issue in depth in Section 6.

One can find necessary and sufficient non-algorithmic conditions for the scaled
matrix to exist in [18, Theorem 2], [3, Theorem 2.1] and [7, Theorem 4.1]. However,
these conditions depend on nontrivial properties that must be satisfied by the vectors
r and c, as those we state in Lemma 3.7. In general, necessary and sufficient conditions
depending only on the zero pattern of M are not known. A remarkable exception to
this comment is the doubly stochastic scaling problem r = c = 1n for square matrices,
where such a condition is provided by the total support of the matrix (see Section 3).
In the next section, we will present new simple sufficient conditions depending only on
the zero pattern for diagonal scalings to exist with prescribed common vector for the
row and column sums in the case of balancing square pencils and matrices.
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3. Scaling square pencils and related problems. Let us first look at the
case of square pencils. In [12, page 259], positive diagonal matrices Dℓ and Dr are
chosen to equilibrate the row and column norms of a complex n × n regular pencil
λB −A, by imposing

(3.1) ∥colj(Ã)∥22 + ∥colj(B̃)∥22 = ∥rowi(Ã)∥22 + ∥rowi(B̃)∥22 = γ2, for i, j = 1, . . . , n,

for some constant γ resulting from the balancing, where Ã := DℓADr and B̃ := DℓBDr,
and ∥ · ∥2 denotes the standard Euclidean norm of a vector [5]. A pencil satisfying
these conditions was called balanced and an algorithm was presented in [12] to compute
a scaling to balance a regular pencil λB − A. It was shown that this amounts to
solving the following norm minimization problem

(3.2) inf
detDℓ. detDr=1

∥Dℓ(λB −A)Dr∥2F ,

using the so-called Frobenius norm of a pencil: ∥λB −A∥2F := ∥B∥2F + ∥A∥2F , where
∥A∥F and ∥B∥F are the matrix Frobenius norms of A and B [5]. Moreover, the
following result was proven in [12].

Theorem 3.1. The minimization problem

(3.3) inf
detTℓ. detTr=1

∥Tℓ(λB −A)Tr∥2F ,

where Tℓ and Tr are arbitrary nonsingular matrices, has a so-called standardized
normal pencil λB̂ − Â as solution, satisfying

Uℓ(λB̂ − Â)Ur = λΛB − ΛA, U∗
ℓ Uℓ = U∗

rUr = In, |ΛB |2 + |ΛA|2 = γ2In,

where ΛB and ΛA are diagonal. If the eigenvalues of the regular pencil λB − A are
distinct, then Tℓ and Tr have a bounded solution and the infimum is a minimum;
otherwise they may be unbounded.

As shown in [12], the standardized normal pencils have eigenvalues with condition
number bounded by

√
2. Thus, performing the same minimization over the diagonal

scalings is likely to improve the sensitivity of the eigenvalue computation. Moreover,
if the transformation matrices are bounded, the eigenstructure of the regular pencil is
preserved. But the positive diagonal scalings that achieve the balancing in [12] are
not unique, and they may not exist or may be unbounded. In order to analyze this
further we relate this problem to that of scaling a real nonnegative square matrix by
two-sided scalings to a doubly stochastic matrix. Algorithm 1 with r = c = 1n solves
this problem. Its analysis can be found in [19, 8]. The link between both problems is
the following. Let us define the nonnegative matrices

(3.4) M := |A|◦2 + |B|◦2, and M̃ := |Ã|◦2 + |B̃|◦2

where |X| indicates the element-wise absolute value of the matrix X, where X◦2

indicates the elementwise square of the matrix X, and where Dℓ and Dr satisfy the
balancing equations (3.1). Then the scaled matrix M̃ = D2

ℓMD2
r satisfies

M̃1n = D2
ℓ (|A|◦2 + |B|◦2)D2

r1n = γ21n, 1T
nM̃ = 1T

nD
2
ℓ (|A|◦2 + |B|◦2)D2

r = γ21T
n

which implies that M̃/γ2 is doubly stochastic and that the two-sided scaling for the
nonnegative matrix M satisfies

M̃/γ2 = DM,ℓMDM,r, where DM,ℓ := D2
ℓ/γ, DM,r := D2

r/γ.
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The only difference is that for balancing, we impose a scalar constraint detDℓ ·detDr =
1, which is why the resulting row and column norms are equal to γ2 rather than 1.
In fact, the algorithm proposed in [12] was to alternately normalizing the rows and
columns of M to 1 (rather than γ), and that is precisely the algorithm of Sinkhorn-
Knopp. This connection was not established in [12]. It follows from this that the
unicity or boundedness of the scalings are equivalent for the two problems.

We recall in Theorem 3.4 the results given for two-sided scaling in [19] for square
nonnegative matrices M ∈ Rn×n in order for the corresponding matrix to become
doubly stochastic. Before stating Theorem 3.4, we introduce the notions of total
support and full indecomposability, that will be used.

Definition 3.2. The sequence m1,σ(1),m2,σ(2), · · · ,mn,σ(n), where σ is a permu-
tation of {1, 2, · · · , n}, is called a diagonal of M ∈ Rn×n. A nonnegative matrix
M ∈ Rn×n has total support if every positive element of M lies on a positive diagonal.

Definition 3.3. A nonnegative matrix M ∈ Rn×n is fully indecomposable if there
do not exist permutation matrices Pℓ and Pr such that PℓMPr can be partitioned as

PℓMPr =

[
M11 M12

0 M22

]
,

where M11 and M22 are square matrices.

It was proved in [2] that a fully indecomposable matrix has total support.

Theorem 3.4. (Sinkhorn-Knopp) If M ∈ Rn×n is a nonnegative matrix then a
necessary and sufficient condition that there exists a doubly stochastic matrix S of the
form S = DM,ℓMDM,r, where DM,ℓ and DM,r are positive diagonal matrices, is that
M has total support. If S exists, then it is unique. DM,ℓ and DM,r are also unique up
to a nonnegative scalar multiple if and only if M is fully indecomposable.

The doubly stochastic matrix S can be obtained by applying Algorithm 1 with
r = c = 1n, which is the Sinkhorn-Knopp algorithm. As a consequence of Theorems
2.3 and 3.4, a necessary and sufficient condition that the Sinkhorn-Knopp algorithm
applied to M will converge to a doubly stochastic limit of the form DM,ℓMDM,r is
that M has total support [8, 19].

We recall in Theorem 3.5 the particular case of a symmetric and fully indecom-
posable matrix M , which will be important in the new scaling method of Section 5.

Theorem 3.5. [8, Lemma 4.1] If M ∈ Rn×n is a symmetric nonnegative and
fully indecomposable matrix then there exists a unique diagonal matrix D with positive
main diagonal such that DMD is doubly stochastic.

Remark 3.6. When M is fully indecomposable, the solution set for the diagonal
scalings is S := {(DM,ℓ/c, cDM,r) : c > 0}, for a given solution (DM,ℓ, DM,r). To
guarantee unicity for a solution in S, one can consider a unique “normalized” scaling
pair (DM,ℓ, DM,r). For instance, by imposing that the solution satisfies detDM,ℓ =
detDM,r or max

i=1,...,n
{dℓi} = max

i=1,...,n
{dri }, where dℓi and dri are the diagonal entries of

DM,ℓ and DM,r, respectively. Then the pair (DM,ℓ, DM,r) is unique in S. When M is
symmetric, then these normalizations imply that DM,ℓ = DM,r. In summary, one can
always perform a normalization in order to obtain unicity for the diagonal scalings.

For the general scaling problem in Theorem 2.2, with arbitrary prespecified row
and column sums, sufficient conditions on M for the scaling to exist as simple as those
in Theorem 3.4, which are based only on the zero pattern of M , are not known, to the
best of our knowledge. This motivated us to develop the results in the next subsection.
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3.1. Diagonal scalings of square nonnegative matrices with prescribed
common vector for the row and column sums. We now derive simple sufficient
conditions on the zero pattern for the existence of a diagonal scaling of a square matrix
M by considering not only 1n but any prescribed common vector v for the row and
column sums. The conditions are a simple corollary of Lemma 3.7, which is a partial
result of [18, Theorem 2]. In what follows, the support of a matrix A ∈ Rm×n, denoted
by supp(A), is defined as the set {(i, j) | aij ̸= 0, i = 1, · · · ,m, and j = 1, · · · , n}.

Lemma 3.7. Let M ∈ Rm×n be a nonnegative matrix and let r ∈ Rm×1 and
c ∈ Rn×1 be strictly positive vectors such that 1T

mr = cT1n. Then there exists a scaled
matrix S = DM,ℓMDM,r with row sums S1n = r and column sums 1T

mS = cT , where
DM,ℓ and DM,r are diagonal matrices with positive main diagonals, if and only if there
exist no pair of vectors (u, v) ∈ Rm × Rn for which

(a) ui + vj ≤ 0 for each pair (i, j) ∈ supp(M),
(b) rTu = cT v = 0, and
(c) ui0 + vj0 < 0 for some pair (i0, j0) ∈ supp(M).

Theorem 3.8. Let M ∈ Rn×n be a nonnegative matrix with (i, i) ∈ supp(M) for
all i = 1, . . . , n and supp(M) = supp(MT ). Let v ∈ Rn×1 be a strictly positive vector.
Then there exists a scaled matrix S = DM,ℓMDM,r with S1n = v and 1T

nS = vT ,
where DM,ℓ and DM,r are positive diagonal matrices. Moreover, S is unique and is the
limit of the Sinkhorn-Knopp-like algorithm. If, in addition, M is fully indecomposable
then DM,ℓ and DM,r are unique up to a nonnegative scalar multiple and, if M = MT ,
then there exists a unique positive diagonal matrix D such that S = DMD.

Proof. Consider a matrix M as in the statement. By contradiction, let us assume
that there exists no scaled matrix S with S1n = v and 1T

nS = vT . Then, by Lemma
3.7, there exists a pair of vectors (x, y) ∈ Rn × Rn for which

(a) xi + yj ≤ 0 for each pair (i, j) ∈ supp(M),
(b) vTx = vT y = 0, and
(c) xi0 + yj0 < 0 for some pair (i0, j0) ∈ supp(M).

Condition (b) implies that

(3.5) v1(x1 + y1) + · · ·+ vn(xn + yn) = 0.

In addition, since (i, i) ∈ supp(M) for all i = 1, . . . , n, condition (a) implies that
xi + yi ≤ 0 for all i = 1, . . . , n. It then follows from (3.5) that xi + yi = 0 for all
i = 1, . . . , n since vi > 0. Moreover, by (c), there exists (i0, j0) ∈ supp(M) such that
xi0 + yj0 < 0. Taking into account that xi + yi = 0 for all i = 1, . . . , n we have that

(3.6) (xi0 + yi0) + (xj0 + yj0) = 0.

From (3.6) and xi0 + yj0 < 0, we obtain that xj0 + yi0 > 0. Therefore, by (a),
(j0, i0) ̸∈ supp(M), which is a contradiction since (i0, j0) ∈ supp(M) = supp(MT ).

The uniqueness of S is a consequence of Theorem 2.2, and it is the limit of the
Sinkhorn-Knopp-like algorithm by Theorem 2.3. If M is fully indecomposable its
bipartite graph is connected [4, Theorem 1.3.7] and, thus, it is chainable [6, Theorem
1.2] (see [6] or [18] for the definition of “chainable”). Then, by [18, Theorem 4],
DM,ℓ and DM,r are also unique up to a nonnegative scalar multiple. Finally, if, in
this situation, M = MT , then transposing both sides of DM,ℓMDM,r1n = v and of
1T
nDM,ℓMDM,r = vT implies 1T

nDM,rMDM,ℓ = vT and DM,rMDM,ℓ1n = v, which
combined with the uniqueness of DM,ℓ and DM,r up to an scalar multiple, implies that
DM,r = αDM,ℓ for some α > 0, and D =

√
αDM,ℓ is the unique nonnegative diagonal

matrix satisfying S = DMD.
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If M satisfies the conditions in Theorem 3.8, the scaled matrix S can be computed
by using the Sinkhorn-Knopp-like algorithm in Appendix A with r = c = v.

In Section 5, we will present new cost functions for our minimization problem (3.2)
to make sure that it always has a unique and bounded solution. This new approach
will be based on the results presented in this section combined with regularization
techniques. In addition, this new approach will be applied to arbitrary pencils (square
or nonsquare). First, we study in Section 4 the unregularized nonsquare case.

4. Scaling nonsquare pencils and related problems. In the square case, we
scaled the pencil so that its row norms and column norms were equal as in (3.1). This
is not possible for m×n rectangular pencils since the numbers of rows and columns are
different. Instead, one can try to balance λB −A by achieving the following equalities

∥colj(Ã)∥22 + ∥colj(B̃)∥22 = γ2
ℓ , for j = 1, . . . , n, and

∥rowi(Ã)∥22 + ∥rowi(B̃)∥22 = γ2
r , for i = 1, . . . ,m,

(4.1)

where Ã := DℓADr and B̃ := DℓBDr and ∥λB̃ − Ã∥2F = nγ2
ℓ = mγ2

r . For the
nonsquare case, we also define the nonnegative matrices

(4.2) M := |A|◦2 + |B|◦2, and M̃ := |Ã|◦2 + |B̃|◦2.

The scaling problem discussed in this section is a special case of the general scaling
problem in Theorem 2.2, where we choose r = γ2

r1m and c = γ2
ℓ1n.

We now show that there is an optimization problem whose first order optimality
conditions correspond to the equalities in (4.1).

Theorem 4.1. The following minimization problem over the set of positive diago-
nal matrices Dℓ = diag(dℓ1 , . . . , dℓm) and Dr = diag(dr1 , . . . , drn) :

inf
detD2

ℓ=cℓ,detD2
r=cr

(∥DℓADr∥2F + ∥DℓBDr∥2F )

has the balancing equations (4.1) as first order optimality conditions.

Proof. If one makes the change of variables for the elements of Dℓ and Dr as follows
d2ℓi = exp(ui), d

2
rj = exp(vj), and notes that mij := |aij |2 + |bij |2, then the above

minimization is equivalent to a convex minimization problem with linear constraints :

(4.3) inf

m∑
i=1

n∑
j=1

mij exp(ui + vj), subject to

m∑
i=1

ui = ln cℓ,

n∑
j=1

vj = ln cr.

The corresponding unconstrained problem with Lagrange multipliers Γℓ and Γr, is

inf

m∑
i=1

n∑
j=1

mij exp(ui + vj) + Γℓ(ln cℓ −
m∑
i=1

ui) + Γr(ln cr −
n∑

j=1

vj).

The first order conditions of optimality are the equality constraints of (4.3) and the
equations

(4.4)

n∑
j=1

d2ℓimijd
2
rj = Γℓ,

m∑
i=1

d2ℓimijd
2
rj = Γr,

which express exactly that the row norms of M̃ := D2
ℓMD2

r are equal to each other
and that its column norms are equal to each other. Since the Lagrange multipliers
Γℓ and Γr are clearly nonnegative, we can can write them as γ2

ℓ := Γℓ and γ2
r := Γr,

which completes the proof.
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Unfortunately, the optimization problem in Theorem 4.1 does not always have
a solution. If there exists solution, it can be obtained by a sequence of alternating
scalings D2

ℓ and D2
r that make the rows of D2

ℓ (MD2
r) have equal sum γ2

r , and then the
columns of (D2

ℓM)D2
r have equal sum γ2

ℓ , while maintaining the constraints detD2
ℓ = cℓ,

detD2
r = cr in the accumulated diagonal transformations, which determine the values

of γ2
r and γ2

ℓ . The cyclic alternation of row and column scalings, then amounts to
coordinate descent applied to the minimization. This algorithm thus continues to
decrease the cost function as long as the equalities (4.4) are not met. This is very
similar to the Sinkhorn-Knopp-like Algorithm 1 applied to M with r = γ2

r1m and
c = γ2

ℓ1n. Since the exact values of γ2
r and γ2

ℓ are of no interest, in practice one can
simply apply Algorithm 1 to M with r = n1m and c = m1n, which converges if and
only if the corresponding scaling problem has solution, according to Theorem 2.3.

5. The regularized scaling method for pencils. The facts that for a non-
square pencil the doubly stochastic scaling can not be applied anymore, that even for
square pencils the corresponding matrix M may not have total support and that the
optimization problem in Theorem 4.1 does not always have solution can be by-passed
by introducing a regularization term which will ensure an essentially unique bounded
solution for Dℓ and Dr. The cost is that we will obtain a solution of an approximate
problem. But, with the new approach, we will always find such a solution.

Given two complex matrices A, B of size m × n, we consider the following
constrained minimization problem over the set of positive diagonal matrices Dℓ =
diag(dℓ1 , . . . , dℓm) and Dr = diag(dr1 , . . . , drn) :

(5.1) inf
detD2

ℓ detD2
r=c

2(∥DℓADr∥2F + ∥DℓBDr∥2F ) + α2

(
1

m2
∥Dℓ∥4F +

1

n2
∥Dr∥4F

)
,

for some real number c > 0 and a regularization parameter α. If we denote again the
matrix M := |A|◦2 + |B|◦2, then we can rewrite this as follows:

(5.2) inf
detD2

ℓ detD2
r=c

1T
m+n

[
α2

m2D
2
ℓ1m1T

mD2
ℓ D2

ℓMD2
r

D2
rM

TD2
ℓ

α2

n2D
2
r1n1

T
nD

2
r

]
1m+n,

which suggests that there may be a link to doubly stochastic scaling. Indeed, let us
consider the two-sided scaling problem M̃α := Dℓ,rMαDℓ,r, where

Dℓ,r :=

[
Dℓ 0
0 Dr

]
,

subject to detD2
ℓ detD

2
r = detD2

ℓ,r = c, and

(5.3) M◦2
α =

[
α2

m21m1T
m M

MT α2

n2 1n1
T
n

]
.

Notice that both diagonal blocks in Mα have Frobenius norm α. We prove in Theorem
5.2 that the optimization problem (5.1) can be solved by the Sinkhorn–Knopp algorithm
in a unique way. We will need the following auxiliary Lemma 5.1 in our proof.

Lemma 5.1. Let M◦2
α be the nonnegative matrix in (5.3) with α ̸= 0. Then M◦2

α

has total support. Moreover, if M ̸= 0 then M◦2
α is fully indecomposable.

Proof. See Appendix B.
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Theorem 5.2. Let A and B be m × n complex matrices and α, c > 0 be real
numbers. Let us consider the constrained minimization problem (5.1) over the set
{(Dℓ, Dr) : Dℓ := diag(δℓ1 , . . . , δℓm), Dr := diag(δr1 , . . . , δrn), δℓi > 0, δrj > 0}. Then
the following statements hold:

a) The optimization problem (5.1) is equivalent to the optimization problem (5.2).
b) The optimization problem (5.1) is equivalent to the optimization problem

inf
detD2

ℓ detD2
r=c

∥∥∥∥[ Dℓ 0
0 Dr

]
Mα

[
Dℓ 0
0 Dr

]∥∥∥∥2
F

,

where M◦2
α is given in (5.3).

c) There exists a unique solution (D̃ℓ, D̃r) of (5.1). Moreover, (D̃ℓ, D̃r) is
bounded and makes the matrix[

D̃2
ℓ 0

0 D̃2
r

]
M◦2

α

[
D̃2

ℓ 0

0 D̃2
r

]
a scalar multiple of a doubly stochastic matrix. Therefore, (D̃ℓ, D̃r) can be
computed, up to a scalar multiple, by applying the algorithm in Appendix A to
M◦2

α with r = c = 1m+n.

Proof. We have already seen parts a) and b) in this section because the optimization
problem in b) is just (5.2). Then we only need to prove c). We make the change of
variables δ2ℓi = exp(ui) and δ2rj = exp(vj) for the elements of Dℓ and Dr, respectively.
Then the optimization problem (5.1) is equivalent to the optimization problem:

inf 2

m∑
i=1

n∑
j=1

mij exp(ui + vj) + α2

 1

m2

(
m∑
i=1

exp(ui)

)2

+
1

n2

 n∑
j=1

exp(vj)

2
 ,

subject to

m∑
i=1

ui +

n∑
j=1

vj = ln c.

(5.4)

The corresponding unconstrained problem with Lagrange multiplier Γ is:

inf 2

m∑
i=1

n∑
j=1

mij exp(ui + vj) + α2

 1

m2

(
m∑
i=1

exp(ui)

)2

+
1

n2

 n∑
j=1

exp(vj)

2


+ Γ

ln c−
m∑
i=1

ui −
n∑

j=1

vj

 .

(5.5)

The first order conditions of optimality are the equality constraint of (5.4) and

α2

m2
d2ℓi

m∑
i=1

d2ℓi +

n∑
j=1

d2ℓimijd
2
rj =

Γ

2
, and

α2

n2
d2rj

n∑
j=1

d2rj +

m∑
i=1

d2ℓimijd
2
rj =

Γ

2
,

for i = 1, . . . ,m and j = 1, . . . , n, respectively, which express that the row sum and
the column sum of [

D2
ℓ 0
0 D2

r

]
M◦2

α

[
D2

ℓ 0
0 D2

r

]
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are equal to
Γ

2
. By Lemma 5.1, we know that M◦2

α is fully indecomposable. Then, by

Theorem 3.4, there exists a unique and bounded scaling (Eℓ, Er) that makes[
E2

ℓ 0
0 E2

r

]
M◦2

α

[
E2

ℓ 0
0 E2

r

]
doubly stochastic. Assume that detE2

ℓ detE
2
r = k. We define D̃ℓ :=

(
c
k

) 1
2(m+n) Eℓ and

D̃r :=
(
c
k

) 1
2(m+n) Er. Then det D̃2

ℓ det D̃
2
r = c and (D̃ℓ, D̃r) is the solution of (5.1). We

can again redefine γ2 := Γ/2 since this quantity is nonnegative.

For completeness, we include the following result, which is a direct corollary of
the proof of Theorem 5.2.

Theorem 5.3. Let A and B be m × n complex matrices and α, c > 0 be real
numbers. Then the constrained minimization problem

inf
detD2

ℓ detD2
r=c

2(∥DℓADr∥2F + ∥DℓBDr∥2F ) + α2

(
1

m2
∥Dℓ∥4F +

1

n2
∥Dr∥4F

)
,

over the set {(Dℓ, Dr) : Dℓ := diag(δℓ1 , . . . , δℓm), Dr := diag(δr1 , . . . , δrn), δℓi >
0, δrj > 0} has a unique and bounded solution. Moreover, it satisfies the equations:

∥colj(Ã)∥22 + ∥colj(B̃)∥22 +
α2

n2
δ2rj∥Dr∥2F = γ2, for j = 1, . . . , n, and

∥rowi(Ã)∥22 + ∥rowi(B̃)∥22 +
α2

m2
δ2ℓi∥Dℓ∥2F = γ2, for i = 1, . . . ,m,

for some nonzero scalar γ, where Ã := DℓADr and B̃ := DℓBDr.

Remark 5.4. We know that the row sums and the column sums of the matrix in
Theorem 5.2-c) are equal to each other. The quantity of such row and column sums is
the scalar γ2 appearing in Theorem 5.3.

In Example 5.6, we will illustrate the effect of choosing different values for the
regularization parameter α in (5.3) in order to make the row and column sums of
D2

ℓMD2
r as equal as possible for a square matrix M (corresponding to a pencil λB−A)

which does not have total support and, thus, cannot be scaled to a multiple of a doubly
stochastic matrix. For measuring the quality of the obtained approximate scaling in
this and other examples considered in this paper, we introduce the following definition.

Definition 5.5. Let M ∈ Rm×n be a real nonnegative matrix, let r(M) ∈ Rm×1

and c(M) ∈ Rn×1 be, respectively, the vectors of row sums and column sums of M ,
denote by ri(M) and ci(M) their i-th entries, and assume ri(M) > 0 and cj(M) > 0
for all i, j. Then, the quality-factor of the homogeneous scaling of M is defined as

(5.6) qS(M) := max

{
maxi ri(M)

mini ri(M)
,
maxi ci(M)

mini ci(M)

}
.

The row sums of M are all equal and the column sums of M are all equal if and only
if qS(M) = 1. The closer to one qS(M) is, the better balanced the matrix M is.

Example 5.6. We consider the regular pencil

(5.7) λB1 −A1 :=

 1 λ 0
λ 0 0
0 0 1

 , with M1 = |A1|◦2 + |B1|◦2 =

 1 1 0
1 0 0
0 0 1

 .
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M1 has no total support and, thus, the Sinkhorn-Knopp algorithm does not converge.
In our experiment, the algorithm in Appendix A applied to M1 with r = c = 13 and
tol= 10−3 does not converge after 1000 steps. In contrast, the same algorithm applied
to the matrix M◦2

α in (5.3) with r = c = 16 and tol= 10−3 for α = 1, 0.5, 0.1 converges

and produces scaled matrices M̃α = D2
ℓMD2

r which are approximately doubly stochastic
up to a scalar multiple. The results are shown in Table 1, where the last column shows
the 2-norm condition numbers of D2

ℓ ≈ D2
r and steps denotes the number of steps until

convergence, with each step comprising one right and one left diagonal scaling.

Table 1
Results of the regularization applied to the matrix M1 in (5.7) with tol= 10−3. The quality

factors qS should be compared with qS(M1) = 2

α steps qS diag(D2
ℓ ) ≈ diag(D2

r) κ(D2
ℓ ) ≈ κ(D2

r)
1 11 1.38 0.485 , 1.29 , 0.864 2.66
0.5 24 1.19 0.395 , 2.05 , 0.952 5.19
0.1 124 1.04 0.187 , 5.15 , 0.970 27.5

A smaller α yields a better equilibration for the row and column sums as measured by
qS (to be compared with qS(M1) = 2), but at the cost of a worse conditioning of the
scaling matrices D2

ℓ , D
2
r and of a slower convergence. The latter is to be expected since

for α = 0 the scaling to a multiple of a double stochastic matrix does not exist for M1.
Finally, we show the results obtained when the algorithm in Appendix A is applied

directly to M1 with r = c = 13, i.e., without any regularization, but with the very
relaxed stopping criterion tol= 1, which will be used in all the numerical experiments
for improving the accuracy of eigenvalues in Section 6 and in the supplementary
materials accompanying this paper. In this case the algorithm converges in only 3
steps and the results are shown in Table 2, where α = 0 indicates that the problem
has not been regularized (though the matrix M◦2

α is not used at all). We will use this
convention in other numerical examples and tests. The motivation for computing this

Table 2
Results of the unregularized Sinkhorn-Knopp algorithm applied to the matrix M1 in (5.7) with

tol= 1. The quality factor qS should be compared with qS(M1) = 2

α steps qS diag(D2
ℓ ) diag(D2

r) κ(D2
ℓ ) κ(D2

r)
0 3 1.33 0.350, 2.45 , 0.765 0.408, 2.45, 1.31 7 6

rough tol= 1 approximate solution will be explained in Section 6 and is related to
the fact that for the purpose of improving the accuracy of the eigenvalues of λB −A
computed in floating point arithmetic it is essential the entries of the diagonal scaling
matrices Dℓ and Dr to be integer powers of 2. Thus, it makes no sense to compute
very precise scaling matrices Dℓ and Dr, since their entries will be later rounded to
their nearest integer powers of 2 and, thus, a relaxed stopping criterion can be used.
We remark here three natural facts that will be further discussed in Section 6 and that
are confirmed by the numerical experiments in Section 6 and in the supplementary
materials: tol= 1 very often has a regularization effect, speeds up considerably the
convergence and yields a reasonably “well balanced” matrix. Observe that a large tol

implies that the row sums and column sums of the matrix obtained after applying the
Sinkhorn-Knopp algorithm are not necessarily too close to be equal to each other. Thus,
it is natural that the algorithm may run successfully and produce a reasonable output
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for matrices that cannot be exactly scaled to a multiple of a doubly stochastic matrix.
This is the situation illustrated in Table 2.

Remark 5.7. The choice of the regularization parameter α has to be guided by
the equilibrium one wants to achieve between the “quality” of the balancing, the
boundedness/conditioning of the diagonal scaling matrices and the speed of convergence.
This depends on the applied problem to be solved. For improving the accuracy of
computed eigenvalues, we do not need to consider a very small value of α, since it
is enough to get a reasonably “well balanced” matrix M , because the entries of the
diagonal scaling matrices have to be later rounded to their nearest integer powers
of two. Moreover, the use of the relaxed stopping criterion tol= 1 makes it often
unnecessary the use of the regularization, even in cases where there is no exact solution
of the scaling problem. Thus, for the eigenvalue problem, we recommend to start
always by using the un-regularized method and if it does not converge in a small
number of steps (say n/10 for large n) to change to the regularized method with
a value of α ≲ 0.5maxij

√
Mij . In contrast, in other type of problems where it is

important to get always a very “well balanced matrix” and a relaxed stopping criterion
is not adequate or neccessary, a recommendable option might be to always use the
regularization with a small value of α, especially when M is sparse, since it guarantees
the existence of a solution. This will increase the complexity of the Sinkhorn-Knopp
algorithm each step by a factor 4 since the matrix sizes are doubled. In difficult
cases, this might be very slow and the regularized problem and the Sinkhorn-Knopp
algorithm should be combined with faster algorithms (see [7, 17]).

Remark 5.8. One could also have considered for the regularization the cost function

inf
detD2

ℓ detD2
r=c

2(∥DℓADr∥2F + ∥DℓBDr∥2F ) + α2
(
∥D2

ℓ∥2F + ∥D2
r∥2F

)
,

which would correspond to the matrix

M◦2
α :=

[
α2Im M
MT α2In

]
.

This matrix has total support for α > 0. However, it is not necessarily fully indecom-
posable (assume for instance that M has a zero row or column) and, therefore, we can
not guarantee the essential uniqueness of the scaling matrices Dℓ and Dr.

5.1. The regularized method with prescribed nonhomogeneous common
vector for the row and column sums. In the nonsquare case, we know from
the discussions of Section 4 that making the column and row sums of M̃ = D2

ℓMD2
r

become equal can not be achieved exactly, where M is the matrix in (4.2). In this case,
we can use the regularized method in Theorem 5.2−c) in order to obtain a scaling

that balances M̃ approximately. We have used this approach on many problems and
have obtained pretty satisfactory results. However, since by using this method we
always obtain a scalar multiple of a doubly stochastic matrix as solution for M◦2

α ,
this method considers in some sense the rows and columns of M in the same way,
which is not natural in the rectangular case. Thus, one possible strategy for improving
this approach is not to request that M◦2

α is scaled to be a scalar multiple of a doubly
stochastic matrix but to impose a modified scaling with prescribed common vector

(5.8) v :=

[
n1m

m1n

]
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for the row and column sums. The new regularized method is then described by :

(5.9)

[
D2

ℓ 0
0 D2

r

]
M◦2

α

[
D2

ℓ 0
0 D2

r

] [
1m

1n

]
= v

and

(5.10)
[
1T
m 1T

n

] [ D2
ℓ 0
0 D2

r

]
M◦2

α

[
D2

ℓ 0
0 D2

r

]
= vT .

Notice that the matrix M◦2
α satisfies the hypotheses in Theorem 3.8 if α ≠ 0, i.e.,

supp(M◦2
α ) = supp((M◦2

α )T ) and (i, i) ∈ supp(M◦2
α ) for all i = 1, · · · , n+m. Then, for

α ̸= 0, there always exists a solution for this modified scaling problem. Moreover, since
M◦2

α is fully indecomposable when M ̸= 0, by Lemma 5.1, and is symmetric, there
exists a unique and bounded diagonal scaling matrix diag(D2

ℓ , D
2
r) solving the problem

(5.9)-(5.10), again by Theorem 3.8. It can be computed by the Sinkhorn-Knopp-like
algorithm in Appendix A with r = c = v, as it converges to the unique solution by
Theorem 3.8. In our experience, this approach very often improves, for rectangular
matrices M , the approach in Theorem 5.2−c) (corresponding to apply to M◦2

α the
algorithm in Appendix A with r = c = 1m+n) in terms of the number of steps until
convergence and the quality of the scaling of the obtained matrix.

When α = 0, the scaling problem (5.9)-(5.10) reduces to the problem in Section 4.
Then, for very small α, the regularized scaling with prescribed row and column sums
v tends to the scaling problem in Section 4, which does not always have a solution.

In the rectangular case, simple necessary and sufficient conditions on the zero
pattern of M for the scaling technique in Section 4 (i.e., the algorithm in Appendix A
applied to M with r = n1m and c = m1n) to converge are not known (see [7, 17]). In
contrast, the regularized method with the matrix M◦2

α and prescribed common vector
v in (5.8) always has a solution for rectangular pencils, and we have checked in many
examples that it produces satisfactory results, even when the unregularized problem
has solution. Therefore, this new regularized method is always an available option for
scaling a rectangular M .

We now consider an example of a rectangular pencil whose matrix M cannot be
scaled to have equal row sums and equal column sums, but we use the regularized
method with prescribed common vector (5.8) to obtain an approximate scaling.

Example 5.9. We consider the nonsquare pencil

(5.11) λB −A =

[
λ 1 1
0 0 λ

]
, with M = |A|◦2 + |B|◦2 =

[
1 1 1
0 0 1

]
.

It is easy to check that M can not be scaled with prescribed vectors r := [3, 3]T , for
the row sums, and c := [2, 2, 2]T , for the column sums. Therefore, the algorithm in
Section 4, i.e., the algorithm in Appendix A with this r and c, does not converge for
this matrix. We have run it with tol= 10−3 and with tol= 1 and has not converged
in any of these cases (which shows that tol= 1 does not always yield convergence).
More precisely, we have run this algorithm until 104 steps and it gets stuck, alternating
periodically between the following two matrices

M∞,1 =

[
1.5 1.5 4.9407e− 324
0 0 3

]
and M∞,2 =

[
2 2 4.9407e− 324
0 0 2

]
.

Observe that the quality-factors for the homogeneous scalings of the three matrices
above are qS(M) = 3 and qS(M∞,1) = qS(M∞,2) = 2, which means that although the
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un-regularized method does not converge, it has progressed towards a better scaling.
Then, we use the regularized approach with different values of α and prescribed common
vector v := [3, 3, 2, 2, 2]T for the row and column sums of M◦2

α , i.e., the algorithm in
Appendix A applied to M◦2

α with r = c = v and tol= 10−3. The results are shown in
Table 3, where we observe that the regularization yields, even for rather large values
of α, a significant improvement in the scaling with a moderate number of steps and
well-conditioned Dℓ and Dr. In our experiment, qS reaches quickly a limit value of 1.5
as α → 0 with the following corresponding limiting scaled matrix for α = 10−10:

Mα→0 =

[
1.5 1.5 1.0301e− 20
0 0 2

]
.

Table 3
Results of the regularized method applied to the matrix M in (5.11) with v := [3, 3, 2, 2, 2]T and

tol= 10−3 in all cases. The quality factors qS should be compared with qS(M) = 3

α steps qS κ(D2
ℓ ) κ(D2

r)
0.5 14 1.6441 10.39 8.0413
10−1 20 1.5073 198.27 148.92
10−2 29 1.5001 19422 14566
10−4 45 1.5 1.9416e+08 1.4562e+08
10−10 93 1.5 1.9416e+20 1.4562e+20

We end this section by looking at the effect of the two sided scaling on the
sensitivity of the underlying eigenvalue problem. In the case of regular pencils, we
argued [12] (see also the discussion in Section 3) that the minimization problem
infdetTℓ detTr=1 ∥Tℓ(λB−A)Tr∥2F , over the arbitrary nonsingular matrix pairs (Tℓ, Tr),
yielded nearly optimal sensitivity for the generalized eigenvalues of the pencil. But
since the eigenvalue problem for a singular pencil is known to be ill-conditioned, this
may not make sense anymore. Nevertheless, if we constrain the transformations to be
bounded, then the Kronecker structure can not change anymore, and it then makes
sense to talk about the sensitivity of the eigenvalues again. In the numerical examples
in the supplementary materials accompanying this paper, we show that the scaling
also improves the sensitivity of the eigenvalues of the regular part of a singular pencil.

6. Numerical examples. In this section and in the supplementary materials,
we verify in many numerical tests that the scaling procedures described in Sections
3, 4 and 5 indeed improve the accuracy of computed eigenvalues of arbitrary pencils
with a much smaller cost than computing the eigenvalues by the QZ or staircase
algorithms [15, 22]. The tests were performed in MATLAB R2019a. In Subsection
6.1, we focus on the computational cost of the scaling procedures, which is much
smaller than the cost of computing the eigenvalues as a consequence of the use of
the relaxed stopping criterion tol= 1 in the algorithm in Appendix A. In Subsection
6.2, we compare the accuracy of the computed eigenvalues of regular pencils without
scaling and after the scaling described in Section 3. Moreover, we also compare the
results with those corresponding to the scaling method of Ward [23], which is the
only method implemented in LAPACK for scaling regular pencils1. This comparison

1Neither MATLAB nor LAPACK [1] include built-in functions or routines for computing eigen-
values of singular pencils.
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was already performed in [12] but only for 10× 10 regular pencils. Our experiments
confirm that the method in Section 3, i.e., that in [12], outperforms Ward’s method,
which has a very poor behavior for certain pencils. In the supplementary materials,
we perform similar tests on square singular pencils applying either the unregularized
scaling in Section 3 or, if necessary, the regularized one in Section 5 and extract similar
conclusions. In the supplementary materials, we also perform tests on rectangular
pencils applying either the unregularized scaling in Section 4 or, if necessary, the
regularized one in Subsection 5.1, which improve significantly the accuracy of the
computed eigenvalues. Finally, we include in the supplementary materials a test on a
real-world regular pencil appearing in a polynomial eigenvalue problem.

6.1. The stopping criterion tol= 1, computational cost and regulariza-
tion. Given a complex m× n pencil λB −A, all the scaling procedures described in
this paper start by constructing the nonnegative matrix M := |A|◦2 + |B|◦2. Then,
the unregularized methods in Sections 3 and 4 apply the algorithm in Appendix A to
M with r = n1m and c = m1n, which in the square case means r = c = n1n. On the
other hand, the regularized methods in Section 5 apply the algorithm in Appendix A to
the nonnegative matrix M◦2

α in (5.3) with r = c = (2n)12n, when m = n, or r = c = v
in the rectangular case, where v is the vector in (5.8). In both, the unregularized

and the regularized methods, one obtains a scaled matrix M̃ = D2
ℓMD2

r , together
with the diagonal matrices D2

ℓ , D
2
r . Then, the scaling process of the pencil finishes in

exact arithmetic by computing Dℓ, Dr, Ã = DℓADr and B̃ = DℓBDr, with the aim
of computing the eigenvalues of λB̃ − Ã via some numerical algorithm. However, in
real practice this must be applied in a computer and, then, there are rounding errors
in the computation of Ã = DℓADr and B̃ = DℓBDr. This implies that the pencils
λB −A and λB̃ − Ã are not exactly strictly equivalent to each other and, in the case
Dℓ and Dr are ill conditioned, as often happens in practice, their eigenvalues may be
very different to each other and the process would not be useful for improving the
accuracy of computed eigenvalues. In the spirit of the classical reference [16] (see also
[12, 23]), we can circumvent this difficulty if once Dℓ and Dr have been computed, we
replace their diagonal entries by their nearest integer powers of 2 to get new Dℓ and
Dr. With these new approximate diagonal scalings, Ã = DℓADr and B̃ = DℓBDr are
computed exactly in floating point arithmetic and λB −A and λB̃ − Ã have exactly
the same eigenvalues. Of course, in this way, we do not obtain the same scaled pencil
as in exact arithmetic, but it is expected that the obtained one is good enough for
improving the accuracy of the computed eigenvalues.

The discussion above indicates that for eigenvalue computations, it is not needed
to apply the algorithm in Appendix A to either M or M◦2

α with a stringent stopping
criterion, because we will replace anyway the entries of Dℓ and Dr by their nearest
integer powers of 2. The stopping criterion of the algorithm in Appendix A applied to
M used for the updating scaling Dℓ,up and Dr,up in the iterative procedure is

max

{
1− 1

κ(D2
ℓ,up)

, 1− 1

κ(D2
r,up)

}
<

tol

2

in terms of the spectral condition numbers of D2
ℓ,up and D2

r,up. This is equivalent to

max
{
κ(D2

ℓ,up) , κ(D
2
r,up)

}
< 1 +

tol

2− tol
.

Thus, tol= 1 implies that the algorithm stops when both Dℓ,up and Dr,up have a
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condition number smaller than
√
2. Since we are approximating the final scaling

matrices to integer powers of 2, this is a safe stopping criterion for practical purposes.
We will use tol= 1 in all the experiments in Subsection 6.2 and in the supplemen-

tary materials. In this subsection, we will present some numerical tests that illustrate
the impact of tol= 1 on the reduction of the number of steps that the algorithm in
Appendix A needs for convergence and on the regularization of the problem. In all
the tables for the experiments, “steps” denotes the number of steps until convergence,
where one step includes one right and one left diagonal scaling. Moreover, qS(Morig)
denotes the quality-factor defined in (5.6) for the original matrix M = |A|◦2 + |B|◦2

and qS(Mscal) the one of the scaled matrix2 M̃ = D2
ℓMD2

r . The ideal goal of all our

scalings procedures is to make the row sums of M̃ as equal as possible and its column
sums as equal as possible as well, i.e, to get qS(Mscal) ≈ 1. We know that this is not
always possible in exact arithmetic and, even when it is possible in exact arithmetic,
the use of entries that are integer powers of 2 in Dℓ and Dr prevents to get such a goal.
Thus, the practical goal is to get that qS(Mscal) is much closer to 1 than qS(Morig).

In our first test, we chose pencils of dimension n×n with n = 400, 800, 1200, 1600,
2000 and with elements that were generated using MATLAB’s randn function elevated
to power 20, yielding matrices M with row and column sums strongly unbalanced.
For each size n, we ran the algorithm in Appendix A with r = c = n1n on ten random
pencils and averaged the different tested magnitudes, both with tol= 1 and tol= 10−3

and, in both cases, approximating Dℓ and Dr by their nearest integer powers of 2.
The results are shown in Table 4. In this test, regularization is not needed because the
random generation used for A and B imply that the entries of M are almost always
different from zero and, thus, M has total support. Observe, that tol= 1 yields a
much faster convergence and similar values of qS(Mscal) than tol= 10−3, which is
very slow on this highly unbalanced matrices. Moreover, the number of required steps
does not grow with the dimension of the pencils. Observe that in this experiment
qS(Morig) remains essentially constant for all dimensions, which seems to be connected
to the fact that the number of steps also remains essentially constant. Since each step
of the scaling procedure costs O(n2) flops, while the cost of computing the eigenvalues
of an n× n pencil with the QZ algorithm is 30n3 flops [5, Section 7.7], we conclude
that for the matrices in this test the computational cost of the scaling procedure with
tol= 1 is much smaller than the cost of computing the eigenvalues.

Our second test is organized in the same way as that in Table 4, but the generated
matrices A and B are sparse, with only around 1 % of their entries different from
zero. They are generated as described in the caption of Table 5. The sparsity of the
corresponding M matrices imply that they may have not often total support. In fact,
the algorithm in Appendix A with r = c = n1n gets stuck after 75000 steps and does
not progress towards convergence for any of the matrices M generated in this test
with tol= 10−6. This hints that a regularization would be needed in exact arithmetic
for these pencils. However, the unregularized algorithm has always converged rather
quickly with tol= 1, yielding, moreover, very satisfactory scalings as measured by
qS(Mscal). The results are shown in Table 5. This test is just one example of a
natural phenomenon that we have observed, namely, that the use of tol= 1 has very
often a regularization effect that makes it unnecessary to use, for computing accurate
eigenvalues of pencils, the regularization techniques in Section 5. We announced this

2We emphasize that in all the experiments in Section 6 and in the supplementary materials, the

matrix M̃ is computed as M̃ = |DℓADr|◦2 + |DℓBDr|◦2, where the diagonal matrices Dℓ and Dr

are the ones whose diagonal entries are integer powers of 2.
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Table 4
Numerical test illustrating that the use of tol= 1 decreases very much the number of steps

without affecting to the quality of the scaling of the achieved scaled matrix M̃ nor to the condition
numbers of Dℓ and Dr. The algorithm in Appendix A with r = c = n1n has been applied to the
matrices M of exactly the same set of n× n pencils generated in MATLAB as A=randn(n,n).ˆ (20)
and B=randn(n,n).ˆ (20), one time with tol= 1 and another time with tol= 10−3. No regularization
is used, which is indicated with α = 0

tol= 1 and α = 0

n qS(Morig) qS(Mscal) κ(Dℓ) κ(Dr) steps

400 1.94e+10 1.24e+01 2.76e+03 4.30e+04 9.8
800 4.90e+09 1.37e+01 2.46e+03 2.54e+04 10
1200 1.12e+10 1.35e+01 2.97e+03 1.35e+04 10.9
1600 2.79e+09 1.37e+01 2.56e+03 1.23e+04 10.7
2000 4.07e+09 1.42e+01 2.00e+03 1.37e+04 10.8

tol= 10−3 and α = 0

n qS(Morig) qS(Mscal) κ(Dℓ) κ(Dr) steps

400 1.94e+10 1.18e+01 1.11e+04 1.64e+04 1367.5
800 4.90e+09 1.20e+01 5.53e+03 8.70e+03 1616
1200 1.12e+10 1.26e+01 7.17e+03 7.27e+03 1470.7
1600 2.79e+09 1.27e+01 6.14e+03 4.30e+03 1323.3
2000 4.07e+09 1.27e+01 5.32e+03 5.94e+03 1382.4

phenomenon in Example 5.6, but we have observed it in many other cases where the
matrix M does not have total support. The explanation of this phenomenon is that
with tol= 1 the algorithm stops in the first step for which the column sums differ by
a factor no larger than 2 and the next row sums also differ by a factor no larger than
2, and this may happen in many cases for which the scaling to a doubly stochastic
matrix does not exist. Observe that the convergence in Table 5 is slower than in Table
4. As we discuss below, this is due to the fact that the values of qS(Morig) are larger,
but also to the larger sparsity.

Table 5
Numerical test illustrating that the use of tol= 1 has often a regularizing effect. The algorithm

in Appendix A with r = c = n1n has been applied to the matrices M of n × n pencils generated
in MATLAB as A=eye(n) +sprandn(n,n,0.01).ˆ (20) and B=eye(n) + sprandn(n,n,0.01).ˆ (20)
with tol= 1, and the results are shown in the table. In contrast, the same algorithm applied to the
same set of pencils with tol= 10−6 does not converge for any of the generated matrices. The same
happens if the power 20 is replaced by 10.

tol= 1 and α = 0

n qS(Morig) qS(Mscal) κ(Dℓ) κ(Dr) steps

400 2.58e+22 1.33e+01 9.19e+16 1.27e+17 40.5
800 3.29e+24 1.40e+01 2.72e+14 3.74e+15 33.9
1200 9.25e+25 1.47e+01 2.89e+11 2.97e+13 27.8
1600 2.31e+26 1.51e+01 2.34e+11 1.11e+12 28.4
2000 3.76e+22 1.51e+01 2.34e+10 1.61e+11 26

Our third test is organized as the previous ones. The test pencils are in this case
random permutations of square block diagonal pencils with rectangular diagonal blocks.
They are generated as described in the caption of Table 6. None of the corresponding
M matrices has total support. The key difference with respect to the tests in Tables 4
and 5 is that in this case the algorithm in Appendix A with tol= 1 and r = c = n1n
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applied to the matrices M never converges in 2000 steps, i.e., tol= 1 does not have a
quick regularizing effect for these pencils. Thus, we use the regularized algorithm. The
results are shown in Table 6. Note that although the values for qS(Mscal) are much
better than those of qS(Morig), they are far from 1. Moreover, the values of qS(Mscal)
do not improve by decreasing α. Despite these facts, we will see in some experiments
done in the supplementary materials on similar pencils, that the regularized scaling
has significant positive effects on the accuracy of the computed eigenvalues.

Table 6
Numerical test illustrating pencils where regularization with tol= 1 is used. The algorithm

in Appendix A with r = c = n1n applied to the matrices M of n × n pencils generated in MAT-
LAB as random permutations of A = blkdiag(randn(n1,n2).ˆ (20) , randn(n2,n1).ˆ (20)) and B

= blkdiag(randn(n1,n2).ˆ (20) , randn(n2,n1).ˆ (20)) with n1 = n/5 and n2 = n - n1 does not
converge in 2000 steps with tol= 1. The same happens if the exponent 20 is replaced by 10 or 5. In
contrast, the algorithm in Appendix A with r = c = (2n)12n applied to the matrices M◦2

α in (5.3)
with tol= 1 and α = 0.5, 10−4 converges and the results are shown below. We have checked that
the use of smaller values of α does not improve the quality of the achieved scaling, but worsens the
condition numbers of Dℓ and Dr and increases the number of steps until convergence

tol= 1 and α = 0.5

n qS(Morig) qS(Mscal) κ(Dℓ) κ(Dr) steps

200 1.59e+15 1.75e+09 3.74e+12 3.30e+12 32.8
400 2.14e+14 4.93e+07 1.94e+13 6.77e+13 34.5
600 9.30e+13 6.64e+06 1.37e+14 5.63e+13 33.6
800 1.20e+13 3.45e+06 1.20e+14 1.13e+14 33.0
1000 4.72e+12 4.57e+06 1.48e+14 1.41e+14 34.0

tol= 1 and α = 10−4

n qS(Morig) qS(Mscal) κ(Dℓ) κ(Dr) steps

200 1.59e+15 1.83e+09 2.25e+16 1.46e+16 39.5
400 2.14e+14 5.42e+07 9.01e+16 5.22e+17 41.0
600 9.30e+13 4.97e+06 6.20e+17 2.59e+17 40.0
800 1.20e+13 3.72e+06 5.04e+17 4.76e+17 39.1
1000 4.72e+12 5.20e+06 7.21e+17 5.76e+17 40.1

We finish this subsection with two additional tests. The first one is described in
Table 7 and is as the one in Table 4 but with starting matrices M that are less strongly
unbalanced as measured by qS(Morig). This leads to a much faster convergence than
in Table 4, as it is naturally expected. The comparison of Tables 4 and 7 shows that
the number of steps until converges grows with the unbalancing of the M matrices
but, also, that is independent of the dimension of the matrices. The last test is
described in Table 8 and is as the one in Table 5 but with sparse starting matrices
M that are less strongly unbalanced, which lead again to a much faster convergence,
independent, more or less, of the dimension of the matrices. The comparison of Table
4 (for tol= 1), for dense pencils, and of Table 8, for sparse pencils, is interesting
because both show similar values of qS(Morig) but the convergence is slower in the
sparse case. This illustrates that for tol= 1, the well-known effect that sparsity slows
down the convergence of the Sinkhorn-Knopp algorithm also holds [8].

As a summary of the results in this subsection, we emphasize that, even for pencils
leading to extremely unbalanced matrices M , the computational cost of the scaling
procedures proposed in this paper with the stopping criterion tol= 1 is much smaller
than the cost of computing the eigenvalues.
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Table 7
Numerical test equal to that in Table 4 for tol= 1 except for the fact that the n× n pencils are

generated in MATLAB as A=randn(n,n).ˆ (10) and B=randn(n,n).ˆ (10). The use of the exponent
10 instead of 20 in the generation of the test matrices implies that the original matrices M are better
equilibrated than those in Table 4, as indicated by the values of qS(Morig), which, in turns, implies a
faster convergence in approximately half of the steps

tol= 1 and α = 0

n qS(Morig) qS(Mscal) κ(Dℓ) κ(Dr) steps

400 4.04e+04 1.11e+01 3.84e+01 8.64e+01 5.1
800 1.75e+04 1.07e+01 2.72e+01 6.40e+01 5.0
1200 1.78e+04 1.12e+01 2.24e+01 5.12e+01 5.1
1600 1.37e+04 1.13e+01 2.72e+01 4.80e+01 4.8
2000 1.42e+04 1.15e+01 2.40e+01 5.12e+01 5.0

Table 8
Numerical test equal to that in Table 5 except for the fact that the n× n pencils are generated

in MATLAB as A=eye(n) + sprandn(n,n,0.01).ˆ (10) and B=eye(n) + sprandn(n,n,0.01).ˆ (10).
The use of the exponent 10 instead of 20 in the generation of the test matrices implies that the original
matrices M are better equilibrated than those in Table 5, as indicated by the values of qS(Morig),
which, in turns, implies a faster convergence in approximately half of the steps

tol= 1 and α = 0

n qS(Morig) qS(Mscal) κ(Dℓ) κ(Dr) steps

400 8.87e+10 1.31e+01 1.96e+08 1.85e+08 20.6
800 1.04e+12 1.38e+01 8.07e+06 1.93e+07 17.1
1200 3.96e+12 1.41e+01 3.87e+05 3.04e+06 14.3
1600 3.39e+12 1.42e+01 3.28e+05 5.24e+05 14.5
2000 1.12e+11 1.54e+01 8.19e+04 2.29e+05 13.1

6.2. Examples on the accuracy of computed eigenvalues of regular
pencils. In this section, we discuss numerical tests for three families of regular pencils.
In each of these families, we generated random diagonalizable n× n regular pencils
λB − A for which their “exact” eigenvalues λi were known. Then, we applied the
QZ-algorithm [15] in MATLAB to such pencils, to the scaled pencils Dℓ(λB −A)Dr

obtained by applying the algorithm in Appendix A with r = c = n1n and tol= 1 to
M = |A|◦2 + |B|◦2, and to the pencils balanced by Ward’s method [23]. In all cases,
we constrained the diagonal elements of the diagonal scaling matrices to be integer
powers of two. Since MATLAB does not have a built-in function implementing Ward’s
method, we used the one in [24]. For each generated pencil, we compared the “exact”
eigenvalues λi of the pencil with the eigenvalues λ̃i computed via the three options
above. For the comparison of the eigenvalues, we used their chordal distances [20]

ci := χ(λi, λ̃i) :=
|λi − λ̃i|√

1 + |λi|2
√
1 + |λ̃i|2

.

We compared the quantities c := ∥[c1, . . . , cn]∥2 for the original pencil (λB−A) (corig),
for the balanced pencil Dℓ(λB − A)Dr constructed by applying the algorithm in
Appendix A to M (cbal) and for the pencil balanced by Ward’s method (cward). The
regularization techniques of Section 5 were not used in this section since the algorithm
in Appendix A applied to M with tol= 1 always converged in a very small number
of steps, as can be seen in the tables. In fact, we have not found any regular pencil
where the algorithm in Appendix A with r = c = n1n and tol= 1 applied to M does
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not converge in a small number of steps, even considering very sparse pencils and
particular nonrandom pencils whose associated matrices M do not have total support.

In the first family of tests of this subsection, we generated 500 × 500 random
diagonalizable pencils of the form Tℓ(λΛB − ΛA)Tr where (λΛB − ΛA) is in standard
normal form [12], i.e., ΛA and ΛB are diagonal, and |ΛA|2+ |ΛB |2 = In. The condition
number of the random square nonsingular matrices Tℓ and Tr was controlled by taking
the kth power of normally distributed random numbers rij as their elements. A larger
power k typically yields a larger condition number. The obtained results are shown in
Table 9, where each row corresponds to a value of k taken in increasing order from
k = 1 : 5 : 41 in MATLAB notation. This experiment shows that the scaling in Section
3 based on the algorithm in Appendix A does improve the accuracy of the computed
eigenvalues with respect to the original pencil and to the pencil scaled by Ward’s
method, especially when the pencil corresponds to badly conditioned transformations
Tℓ and Tr. Moreover, the algorithm in Appendix A converged in a very small number
of steps and produced a very well scaled matrix M̃ .

Table 9
Eigenvalue accuracy of the QZ-algorithm for regular 500× 500 pencils: for the original pencil,

for the pencil balanced by applying the algorithm in Appendix A with r = c = n1n and tol= 1 to
M = |A|◦2 + |B|◦2, and for the pencil balanced by Ward’s method. The improvement in the scaling
of M produced by the algorithm in Appendix A is also shown in terms of qS(Morig) and qS(Mscal)
(see (5.6)), as well as the number of its steps until convergence

κ(Tℓ) κ(Tr) corig cbal cward cbal/corig cbal/cward

2.45e+03 1.03e+03 7.42e-13 7.42e-13 7.19e-13 1.00e+00 1.03e+00
4.11e+03 4.20e+03 5.29e-13 4.25e-13 4.61e-13 8.03e-01 9.22e-01
2.01e+05 5.26e+04 1.59e-11 4.89e-12 5.33e-12 3.08e-01 9.17e-01
4.25e+07 3.87e+06 9.94e-10 1.92e-11 2.28e-10 1.93e-02 8.39e-02
4.55e+08 2.83e+07 2.09e-08 1.07e-10 2.07e-09 5.13e-03 5.20e-02
7.47e+10 2.62e+10 1.19e-05 5.67e-08 8.97e-06 4.76e-03 6.31e-03
9.18e+11 7.91e+11 2.57e-03 1.96e-05 1.16e-03 7.63e-03 1.69e-02
5.31e+14 1.29e+14 4.80e-01 3.44e-06 7.40e-03 7.18e-06 4.65e-04
9.66e+16 5.23e+14 1.33e-01 2.20e-03 2.09e-01 1.65e-02 1.05e-02

qS(Morig) qS(Mscal) steps

1.62e+00 1.62e+00 1
4.25e+03 5.73e+00 4
1.11e+06 9.03e+00 5
9.32e+09 1.16e+01 9
6.12e+11 1.01e+01 12
7.54e+16 9.97e+00 14
5.57e+18 1.18e+01 17
5.15e+24 1.07e+01 23
3.53e+26 1.35e+01 21

It is well known that Ward’s method can severely deteriorate the accuracy of the
computed eigenvalues of some pencils [9, Ch. 2, Sect. 4.2], [12]. In the second family
of tests of this subsection, we generated a family of 500× 500 pencils where Ward’s
method led to computed eigenvalues with large errors but the method in Section 3
performed very well in accuracy and convergence rate. We have not been able to
generate pencils with the opposite behavior. The pencils were generated as follows:
(1) a random 500 × 500 matrix T was constructed with the MATLAB command
randn; (2) small entries were created in T with T (1, 2 : 500) = 10−kT (1, 2 : 500) and



DIAGONAL SCALINGS FOR THE EIGENSTRUCTURE OF ARBITRARY PENCILS 23

T (4 : 500, 3) = 10−kT (4 : 500, 3); (3) A = TD, with D a random diagonal matrix of
integer positive numbers, and B = T . The eigenvalues of λB − A are the diagonal
entries of D. The results are in Table 10, where each row corresponds to a value of k.

Table 10
Eigenvalue accuracy of the QZ-algorithm for regular 500× 500 pencils for which Ward’s method

deteriorates the precision of computed eigenvalues: for the original pencil, for the pencil balanced
by applying the algorithm in Appendix A with r = c = n1n and tol= 1 to M , and for the pencil
balanced by Ward’s method

k corig cbal cward cbal/corig cbal/cward cward/corig
1 2.61e-13 3.40e-15 8.87e-15 1.31e-02 3.84e-01 3.40e-02
3 1.48e-13 7.59e-15 1.91e-14 5.14e-02 3.98e-01 1.29e-01
5 4.13e-13 8.72e-15 4.56e-09 2.11e-02 1.91e-06 1.10e+04
7 7.16e-14 2.27e-15 3.47e-02 3.17e-02 6.54e-14 4.84e+11
9 3.90e-13 3.01e-15 1.05e+00 7.72e-03 2.87e-15 2.69e+12
11 1.34e-13 7.99e-15 1.08e+00 5.96e-02 7.38e-15 8.08e+12

qS(Morig) qS(Mscal) steps

5.11e+04 4.02e+00 2
1.16e+05 4.33e+00 3
1.43e+05 4.33e+00 3
6.40e+03 4.50e+00 3
1.47e+05 4.73e+00 3
1.37e+05 4.74e+00 3

In the experiments presented so far in this subsection, the scaling method in
Section 3 always improved significantly the accuracy of the computed eigenvalues.
However, there are pencils where the improvement is much larger. This is illustrated in
the last test of this subsection. The pencils were constructed as those in the experiment
of Table 9, i.e., Tℓ(λΛB −ΛA)Tr, but with different Tℓ and Tr. In this case, Tℓ = D1Qℓ

and Tr = QrD2, with Qℓ and Qr random orthogonal matrices and D1 and D2 random
diagonal matrices with condition numbers 10k and geometrically distributed singular
values, constructed with the command gallery(’randsvd’,...) of MATLAB. The
results are shown in Table 11 for 1000× 1000 pencils and k = 1, 10, 19 (each value for
each row of the table). Ward’s method also yields very accurate eigenvalues.

Table 11
Eigenvalue accuracy of the QZ-algorithm for regular 1000× 1000 pencils for which the method

based on the algorithm in Appendix A applied to M and Ward’s method work both very well

corig cbal cward cbal/corig cbal/cward qS(Morig) qS(Mscal) steps

5.27e-14 5.33e-14 5.17e-14 1.01e+00 1.03e+00 1.12e+02 4.13e+00 2
4.47e-06 5.23e-14 5.77e-14 1.17e-08 9.05e-01 1.65e+20 4.21e+00 3
1.33e+01 6.49e-14 6.41e-14 4.86e-15 1.01e+00 1.53e+38 4.13e+00 3

As a consequence of the results in this subsection, we emphasize again that the
scaling method in Section 3, i.e., that in [12], often contributes to improve the accuracy
of computed eigenvalues of regular pencils significantly and outperforms the method
of Ward [23], which is the only one available so far in LAPACK [1].

7. Concluding remarks. In this paper, we developed new scaling techniques that
apply to both regular and singular pencils. The techniques are based on applying the
Sinkhorn-Knopp-like algorithm to certain nonnegative matrices easily constructed from
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the matrix coefficients of the pencil, and that depend on whether the scaling problem
needs to be regularized or not. The regularization guarantees to get always a unique
and bounded solution. Extensive numerical experiments confirm that the proposed
techniques very often improve significantly the accuracy of computed eigenvalues of
arbitrary pencils and outperform earlier methods for scaling regular pencils. Finally,
the algorithms computing these scalings have a computational cost that is much smaller
than the cost of the subsequent generalized eigenvalue problem as a consequence of
using in the Sinkhorn-Knopp-like algorithm a proper stopping criterion compatible
with computing diagonal scalings whose diagonal entries are integer powers of 2.

Appendix A : Sinkhorn-Knopp-like algorithm MATLAB code with
prescribed row sums and column sums.
function [Md,dleft,dright] = rowcolsums(M,r,c,maxiter,tol)

%

% Md:=diag(dleft)*M*diag(dright)

%

% has column sums equal to a positive row vector c and

% row sums equal to a positive column vector r where sum(c)=sum(r)

%

% M and Md are nonnegative matrices, maxiter is the maximum number

% of allowed iterations and tol determines the stopping criterion

%

[m,n]=size(M);

% Scale the matrix to have total sum(sum(M))=sum(c)=sum(r);

sumcr=sum(c);sumM=sum(sum(M));Md=M*sumcr/sumM;

dleft=ones(m,1)*sqrt(sumcr/sumM);dright=ones(1,n)*sqrt(sumcr/sumM);

% Scale left and right to make row and column sums equal to r and c

for i=1:maxiter;

dr=sum(Md,1)./c;Md=Md./dr;er=min(dr)/max(dr);dright=dright./dr;

dl=sum(Md,2)./r;Md=dl.\Md;el=min(dl)/max(dl);dleft=dleft./dl;

if max([1-er , 1-el]) < tol/2, break; end

end

% Finally scale the two scalings to have equal maxima

scaled=sqrt(max(dright)/max(dleft));

dleft=dleft*scaled;dright=dright’/scaled;

end

Appendix B : Proof of Lemma 5.1. M◦2
α has total support for all α ̸= 0

since every nonzero element is an element of a positive diagonal. To see that M◦2
α is

fully indecomposable, we apply [4, Theorem 1.3.7]. This theorem states that a square
matrix with total support is fully indecomposable if and only if its bipartite graph is
connected. Then we consider the bipartite graph of M◦2

α , denoted by BG(M◦2
α ). We

assume without lost of generality that m1n is a nonzero element of M := [mij ]. Then
we consider the matrix

N :=


α2

m2 1m1Tm
0 m1n

0 0
0 0

m1n 0
α2

n2 1n1
T
n

 .

Notice that BG(N) is a sub-graph of BG(M◦2
α ). Moreover, if {u1, u2, . . . , um+n} and

{v1, v2, . . . , vm+n} are the sets of vertices associated with the rows and columns of N,
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respectively, then BG(N) is of the form

where the left and right groups of solid edges are each bicliques (and hence connected)
and where the two dashed edges correspond to the element m1n. This proves that
BG(N) is connected, since the dashed edges make a connection between two connected
components. Therefore, BG(M◦2

α ) is connected and M◦2
α is fully indecomposable.
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