
ON BUNDLE CLOSURES OF MATRIX PENCILS AND MATRIX
POLYNOMIALS
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Abstract. Bundles of matrix polynomials are sets of matrix polynomials with the same size
and grade and the same eigenstructure up to the specific values of the eigenvalues. It is known that
the closure of the bundle of a pencil L (namely, a matrix polynomial of grade 1), denoted by B(L),
is the union of B(L) itself with a finite number of other bundles. The first main contribution of this
paper is to prove that the dimension of each of these bundles is strictly smaller than the dimension
of B(L). The second main contribution is to prove that also the closure of the bundle of a matrix
polynomial of grade larger than 1 is the union of the bundle itself with a finite number of other
bundles of smaller dimension. To get these results we obtain a formula for the (co)dimension of the
bundle of a matrix pencil in terms of the Weyr characteristics of the partial multiplicities of the
eigenvalues and of the (left and right) minimal indices, and we provide a characterization for the
inclusion relationship between the closures of two bundles of matrix polynomials of the same size
and grade.
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1. Introduction. Let d be a non-negative integer. The set of m × n complex
matrix polynomials of grade d, or, equivalently, of degree at most d, is the set whose
elements are of the form

(1.1) P (λ) = A0 + λA1 + · · ·+ λdAd,

where A0, . . . , Ad ∈ Cm×n are complex m×n matrices, and Ad is allowed to be equal
to zero and λ is a complex scalar variable. The largest index k such that Ak ̸= 0 in
(1.1) is the degree of P (λ). The degree of the identically zero matrix polynomial, i.e.,
that with A0 = A1 = · · · = Ad = 0 is defined to be −∞. Matrix polynomials with
grade d = 1 are called matrix pencils (or just “pencils” for short). Observe that the
set of m× n complex matrix polynomials of grade d is a vector space over C.

The eigenstructure of matrix polynomials plays a relevant role in many of the
applied problems where these polynomials arise [33, 34, 38]. The subset of the vector
space of m × n complex matrix polynomials of grade d formed by the matrix poly-
nomials having the same eigenstructure form an orbit, and if the distinct eigenvalues
are not fixed, then they form a bundle instead (see Section 2 for more details on these
notions). The number of different bundles in the vector space ofm×n complex matrix
polynomials with grade d is finite, and this space is, then, equal to the finite union of
these bundles. The analysis of the inclusion relationships between the closures of or-
bits and bundles of matrix pencils and matrix polynomials has been a topic of research
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since, at least, the 1980’s, and follows a previous line of research for n×nmatrices that
had contributions by eminent mathematicians, like V. I. Arnold [1]. These inclusion
relationships allow us to describe the set of m × n matrix pencils or matrix polyno-
mials with grade d from a theoretical and a topological point of view, which makes
the topic to be interesting by itself. Besides, it also has implications in the numerical
computation of the eigenstructure of matrix pencils and matrix polynomials, as we
are going to see. Actually, this topic is closely connected to the spectral perturbation
theory of matrix pencils and matrix polynomials since, if a matrix polynomial, say
Q, belongs to the closure of the bundle of another matrix polynomial, say P (and
Q does not belong to the bundle of P ), then, in every neighborhood of Q, there are
matrix polynomials with the same eigenstructure as P (up to the specific values of
the distinct eigenvalues), which is different to the one of Q. So, an arbitrarily small
perturbation of Q can lead to a matrix polynomial with a different eigenstructure,
namely that of P .

Let us summarize the most relevant contributions so far in the topic of describing
the inclusion relationships between orbit and bundle closures of general matrix pencils
and matrix polynomials:

• Pokrzywa obtained in [36] a characterization for the inclusion relationships
between orbit closures of matrix pencils, that was later reformulated in [2] in
terms of majorizations of the Weyr characteristics of the eigenstructure of the
corresponding pencils (see Section 2 for more information on these notions,
and Theorem 4.1 for this characterization). A recent new proof of Pokrzywa’s
result can be found in [28].

• The most comprehensive work so far regarding the description of the geometry
of the set of m×n matrix pencils from the point of view of orbits and bundles
is contained in [25] and [26]. In these papers, a characterization of the covering
between orbit and bundle closures is presented (covering refers to an orbit or
bundle closure which is included in another one and there is no any other orbit
or bundle closure in between). This allows us to obtain the complete Hasse
diagram of the inclusion relation between closures of either orbits or bundles
of matrix pencils (the so-called complete stratification). As a consequence of
the analysis carried out in these papers, the authors propose, in the second
one, an improvement of an algorithm for computing the eigenstructure of
m× n matrix pencils, namely the GUPTRI algorithm introduced in [14] and
[15], that takes into account the stratification of orbit and bundle closures.

• The works [25] and [26] led to a series of contributions that aimed to develop a
software tool to obtain and display the stratification of sets of matrix pencils.
A relevant output produced by this line of research is the Java-based tool
Stratigraph, that displays the complete stratification of orbits and bundles
of n × n matrices (under similarity) and m × n matrix pencils (under strict
equivalence) for small to moderate values of m and n (see, for instance, [27]).

• The recent work [21] contains a description of the inclusion relationships of
orbit and bundle closures of matrix polynomials with grade larger than 1 by
means of the corresponding ones for pencils using some particular lineariza-
tions (namely, matrix pencils associated with matrix polynomials of grade
larger than 1 which allow to easily recover the eigenstructure of the matrix
polynomials). It is an extension of the earlier work [31], where the stratifica-
tion of the set of full rank matrix polynomials was described.

We want to emphasize that one of the reasons why the previous references dealt first
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with matrix pencils is due to the fact that the orbit of a pencil is an orbit in the
standard sense (namely, the orbit of an element of a given set under the action of a
group), whereas for matrix polynomials this is no longer the case (see Section 2 for
more details).

Nowadays, there is still an active area of research devoted to describing the in-
clusion relationships between the closures of orbits and bundles of matrix pencils and
matrix polynomials which are structured. By “structured” we mean those matrix pen-
cils and matrix polynomials whose coefficient matrices enjoy some symmetries which
are of interest from the point of view of applications [33], since they typically come
from symmetries associated to the physical systems that are modeled by the matrix
polynomials in these applications. In particular, the complete stratification of skew-
symmetric pencils and skew-symmetric matrix polynomials (1.1) of odd grade larger
than 1 (namely, A⊤

i = −Ai, for all 0 ≤ i ≤ d, where (·)⊤ denotes the transpose) have
been provided in [22] and [17], respectively.

Another current research topic related to this paper is to identify the generic
eigenstructures (namely, those such that the closures of the corresponding bundles
contain all the pencils or matrix polynomials with the required properties) of ma-
trix pencils and matrix polynomials with bounded rank, for general and structured
matrix pencils and matrix polynomials of grade larger than 1. More precisely, the
generic eigenstructures of matrix pencils with bounded rank were provided in [8],
and the generic eigenstructures of matrix polynomials with grade larger than 1 and
bounded rank have been given more recently in [18]. For structured matrix pencils
with bounded rank, like symmetric (namely, A⊤

i = Ai), Hermitian (namely, A∗
i = Ai,

where (·)∗ denotes the conjugate transpose), ⊤-palindromic (namely, A⊤
i = Ad−i),

⊤-anti-palindromic (namely A⊤
i = −Ad−i), ⊤-even (namely A⊤

i = Ai for i even and
A⊤
i = −A⊤

i for i odd), and ⊤-odd (namely, A⊤
i = −Ai for i even and A⊤

i = Ai for i
odd), the generic eigenstructures have been identified in [4], [7], and [3] respectively.
For symmetric matrix polynomials with bounded rank and odd grade, the generic
eigenstructures have been also described in [5], while skew-symmetric matrix polyno-
mials with bounded rank are covered in [6, 19] for any grade. However, in this work
we only consider general (non-structured and not of bounded rank) matrix pencils
and matrix polynomials.

The results about stratifications previously mentioned and published in [17, 21, 22,
25, 26] describe the complete inclusion relationships between the closures of orbits and
bundles of the corresponding sets of matrix pencils and matrix polynomials. From
a geometrical point of view, the notion of “stratification” refers to prove that the
corresponding set of matrix pencils or matrix polynomials is “a stratified manifold”.
Quoting [26, p. 670], “a stratified manifold is the union of nonintersecting manifolds
whose closure is the finite union of itself with strata of smaller dimensions”. In
the framework of matrix pencils and matrix polynomials considered in this paper,
the strata can either be the orbits or the bundles. In the case of orbits of matrix
pencils under strict equivalence, general results [30, Proposition, p. 60] about orbits
of elements under the action of groups guarantee that those orbits in the closure of a
given orbit O(L) which are different from O(L) have indeed strictly lower dimension
than O(L). However, for bundles of matrix pencils and matrix polynomials such a
result about closures and dimensions is not explicitly proved in the literature. To fill
this gap is the main goal of this paper.

Let P be an m×n matrix polynomial of grade d and let B(P ) be the bundle of P ,
namely the set of m× n matrix polynomials of grade d with the same eigenstructure
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as P , up to the specific values of the distinct eigenvalues. It has been recently proved
in [10, Theorem 16] that for d = 1, i.e., for matrix pencils, the closure of B(L) is the
finite union of B(L) itself together with other bundles, but it remained as an open
problem to prove that the dimension of these other bundles is strictly smaller than
the dimension of B(L) (see [10, Section 5]). In addition, for matrix polynomials P of
grade larger than 1, it remains as an open problem to prove that the closure of B(P )
is the finite union of B(P ) itself together with other bundles, and also that these other
bundles have dimensions strictly smaller than B(P ).

The main contributions of this paper, within the previous framework, are the
following:

• To prove that for any pencil L the closure of B(L) is the finite union of B(L)
together with other bundles with strictly smaller dimension (Theorem 4.3).
This was mentioned as an open problem in [10, Section 5].

• To prove that for any matrix polynomial P of grade larger than 1 the closure
of B(P ) is the finite union of B(P ) together with other bundles with strictly
smaller dimension (Theorem 4.7).

We also provide a new formula for the codimension of the orbit of a matrix pencil
L in terms of the Weyr characteristics of the eigenstructure of L (Proposition 3.1),
which is key to prove Theorem 4.3. We also provide a characterization for a matrix
polynomial of grade larger than 1 to belong to the closure of the bundle of another
matrix polynomial of the same size and grade (Theorem 4.6), which extends the
characterization for pencils provided in [10, Th. 12] and solves another open problem
posed in [10, Section 5].

The rest of the paper is organized as follows. In Section 2 we recall the notation
and basic notions, together with some elementary results, that are used throughout
the paper. In Section 3 we present the formula for the codimension of the orbit of a
matrix pencil L in terms of the Weyr characteristics of the eigenstructure of L. Section
4 is devoted to present the main results of this paper. More precisely, in Section 4.1
we prove that the dimension of any bundle in the closure of B(L), other than B(L), is
strictly smaller than the dimension of B(L), whereas Section 4.2 is devoted to prove
that the closure of B(P ), with P being a matrix polynomial of grade larger than 1,
is the finite union of B(P ) together with other bundles of strictly smaller dimension.
Finally, in Section 5 we summarize the main contributions of the paper and discuss
some lines of possible future research related with these contributions.

2. Basic notions and notation. We use the following notation throughout the
paper: In stands for the n × n identity matrix, Cm×n stands for the set of m × n
matrices with complex entries, and C = C ∪ {∞}.

For brevity, and when there is no risk of confusion, we often omit the reference
to the variable λ in the matrix polynomial P (λ) and we just write P . For matrix
polynomials of arbitrary grade we use the letters P and Q, whereas for matrix pencils
we use L andM instead. All the matrix pencils and matrix polynomials considered in
this paper have complex coefficients. The normal rank, or simply the rank, of a matrix
polynomial P (λ) is denoted as rankP and is the size of the largest non-identically zero
minor of P (λ). A matrix polynomial P (λ) is regular if is square and detP (λ) ̸≡ 0.
Otherwise P (λ) is singular.

Two matrix polynomials P (λ) and Q(λ) are said to be strictly equivalent if there
are two (constant) invertible matrices R and S such that Q(λ) = RP (λ)S.

The eigenstructure of a matrix polynomial P of grade d consists of the set of left
and right minimal indices, together with the partial multiplicities associated to the
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finite and infinite eigenvalues (for the definition of these notions see, for instance, [12]
and recall that the definition of the infinite eigenvalue depends on the grade d). We
use the notation Λ(P ) for the spectrum of P (namely, the set of distinct eigenvalues,
possibly including the infinite one).

The eigenstructure and the strict equivalence are related notions for matrix pen-
cils. More precisely, two matrix pencils L and M are strictly equivalent if and only
if they have the same eigenstructure, which is encoded in the so-called Kronecker
Canonical Form (KCF) [29, Ch. XII, §5, Th. 5]. In particular, the partial multiplici-
ties are associated to Jordan blocks corresponding to eigenvalues in the KCF (there is
a block of size s× s with eigenvalue λ for each partial multiplicity s corresponding to
λ), whereas right (respectively, left) minimal indices are associated to right (respec-
tively, left) singular blocks with size r × (r + 1) (respectively, (ℓ + 1) × ℓ), where r
(resp., ℓ) is the corresponding right (resp., left) minimal index.

The left and the right minimal indices of an m × n matrix polynomial P form
lists on nonnegative integers, while, for each eigenvalue of P , its partial multiplicities
form a list of positive integers, and these lists are known as the Segre characteristics.
If µ ∈ C is not an eigenvalue of P , we say that P has not partial multiplicities
at µ. Instead of working with the Segre characteristics, we deal with the so-called
Weyr characteristics, which are the conjugate lists (see, for instance, [35] and [37] for
a more comprehensive analysis of the Weyr characteristic, and its relation with the
Segre characteristic, in the case of matrices instead of matrix pencils). More precisely:

• r(P ) := (r0(P ), r1(P ), . . .) is the Weyr characteristic of right minimal indices
of P , where ri(P ) is the number of right minimal indices of P which are
greater than or equal to i;

• ℓ(P ) := (ℓ0(P ), ℓ1(P ), . . .) is the Weyr characteristic of the left minimal in-
dices of P , where ℓi(P ) is the number of left minimal indices of P which are
greater than or equal to i; and

• W (µ, P ) := (W1(µ, P ),W2(µ, P ), . . .) is the Weyr characteristic of the partial
multiplicities of P at µ ∈ C, where Wi(µ, P ) is the number of partial multi-
plicities of P associated with µ which are greater than or equal to i. Observe
that the terms of W (µ, P ) are all equal to zero if and only if µ is not an
eigenvalue of P .

Note that all three lists r(P ), ℓ(P ), and W (µ, P ) have a finite number of nonzero
elements. We can, therefore, consider them either as finite lists, after removing all
zero terms, or as infinite lists all whose terms are zero from a certain index on. We will
use the following two equalities rankP + r0(P ) = n and rankP + ℓ0(P ) = m, which
follow from the rank-nullity theorem. Observe that a matrix polynomial is regular if
and only if it has no minimal indices, neither left nor right.

Some majorizations of the previous Weyr characteristics are key in a relevant
part of this work. We recall that the list (a1, a2, . . .), where a1 ≥ a2 ≥ · · · , majorizes
the list (b1, b2, . . .), where b1 ≥ b2 ≥ · · · , denoted by (b1, b2, . . .) ≺ (a1, a2, . . .), if∑j
i=1 bi ≤

∑j
i=1 ai, for all j ≥ 1.

We need the following notions, that have been used in previous references (see,
for instance, [10, 11, 12, 18]).

• CP denotes the first Frobenius companion linearization of the matrix polyno-
mial of grade d, P (λ) =

∑d
i=0 λ

iAi, with Ai ∈ Cm×n, for 0 ≤ i ≤ d (see, for
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instance, [12, §5.1]), that is

CP (λ) := λ


Ad

In
. . .

In

+


Ad−1 Ad−2 · · · A0

−In 0 · · · 0
. . .

. . .
...

0 −In 0

 .
We will refer to these pencils as “companion pencils” for short.
It is worth to emphasize that there is a one-to-one correspondence between
the eigenstructure of P , considered as a matrix polynomial of grade d, and
that of CP , considered as a matrix pencil, namely, as a polynomial of grade 1
(see, for instance, [12, Th. 5.3]). More precisely:

– Both P and CP have the same eigenvalues (finite and infinite), with the
same partial multiplicities.

– If ε1 ≤ · · · ≤ εp are the right minimal indices of P , then ε1 + d − 1 ≤
· · · ≤ εp + d− 1 are the right minimal indices of CP .

– If η1 ≤ · · · ≤ ηq are the left minimal indices of P , then η1 ≤ · · · ≤ ηq are
the left minimal indices of CP .

• POLm×n
d denotes the set of matrix polynomials of size m× n and grade d.

• GSYLm×n
d denotes the set of matrix pencils of the form CP , with P ∈

POLm×n
d (this is the so-called generalized Sylvester space in [18]).

• The orbit of P ∈ POLm×n
d , denoted by O(P ), is the set of m × n matrix

polynomials of grade d having exactly the same eigenstructure as P . In the
case of a pencil L, its orbit, O(L), is the set of matrix pencils which are
strictly equivalent to L, so, in this case, it coincides with the standard notion
of orbit of an element of a set (the set of matrix pencils) under the action
of a group (namely, GLm(C)×GLn(C), where GLn(C) denotes the group of
n× n invertible matrices with complex entries), that is

GLm(C)×GLn(C)× POLm×n
1 → POLm×n

1

(P,Q,A+ λB) 7→ P (A+ λB)Q
.

For matrix polynomials of grade larger than 1, this is not the case anymore,
since there are matrix polynomials of the same size and grade having the
same eigenstructure but not being strictly equivalent (see, for instance, [12,
p. 277]).

• For P ∈ POLm×n
d , the Sylvester orbit of CP is defined in [18] as Osyl(CP ) :=

O(CP ) ∩GSYLm×n
d . Namely, Osyl(CP ) contains all pencils which are strictly

equivalent to CP and which are companion pencils of some m × n matrix
polynomial of grade d.

• The bundle of P ∈ POLm×n
d , denoted by B(P ), is the set of m × n matrix

polynomials of grade d having exactly the same eigenstructure as P , up to
the specific values of the distinct eigenvalues, i.e., as long as those eigenvalues
which are distinct in P remain distinct in P̃ ∈ B(P ).

• For P ∈ POLm×n
d , the Sylvester bundle of CP is defined in [10] as Bsyl(CP ) :=

B(CP ) ∩ GSYLm×n
d . Namely, Bsyl(CP ) is the set of matrix pencils in B(CP )

which are companion pencils for some m× n matrix polynomial of grade d.
We also note the following definition, which extends Definition 1 in [10] from matrix
pencils to matrix polynomials.

Definition 2.1. Let P ∈ POLm×n
d with distinct eigenvalues µ1, . . . , µs, and let
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ψ : C → C be a map. Then, ψc(P ) ∈ POLm×n
d is any matrix polynomial satisfying

the following three properties:
• r(ψc(P )) = r(P ),
• ℓ(ψc(P )) = ℓ(P ), and
• W (µ, ψc(P )) =

⋃
µi∈ψ−1(µ)W (µi, P ), for all µ ∈ C.

In [10] it is said that a pencil ψc(L), as in Definition 2.1, is obtained from L after
coalescing some eigenvalues of L. Recall, see [10], that the union of Weyr character-
istics above is carried out with repetition of entries.

As it is emphasized in [10, Remark 2], if P ̸= 0, there are infinitely many matrix
polynomials ψc(P ) as in Definition 2.1, but all of them have the same eigenstructure
and, so, they are all in the same orbit. Moreover, note that the equality

(2.1) O(ψc(CP )) = O(Cψc(P ))

follows immediately from the relation between the eigenstructures of ψc(P ) and Cψc(P ).

If P ∈ POLm×n
d , then O(P ) and B(P ) denote the closure of, respectively, the orbit

and the bundle of P in the Euclidean topology of POLm×n
d identified with C(d+1)mn.

Let us recall the following map introduced in [18],

(2.2)
f : POLm×n

d → GSYLm×n
d

P 7→ CP ,

which is a homeomorphism (in fact, a bijective isometry, see [18, p. 218]) satisfying

(2.3) f−1(Osyl(CP )) = O(P )

(or, equivalently, f(O(P )) = Osyl(CP )), for any P ∈ POLm×n
d , which is equivalent to

say that Osyl(CP ) is the set of all companion pencils of matrix polynomials in POLm×n
d

having the same eigenstructure as P . This follows immediately from the one-to-one
correspondence between the eigenstructures of P and CP mentioned before. Moreover,
since f is a homeomorphism,

(2.4) f−1(Osyl(CP )) = O(P )

(see [18, Lemma 2.4]). The identities (2.3) and (2.4) can be extended to bundles.
More precisely, f−1(Bsyl(CP )) = B(P ), which is, again, an immediate consequence
of the one-to-one correspondence between the eigenstructures of P and CP , and this
identity implies, because f is a homeomorphism, that

(2.5) f−1(Bsyl(CP )) = B(P )

(see also [5, p. 1047], where the corresponding identities for symmetric matrix poly-
nomials of odd grade and symmetric companion forms are presented). The identity
(2.5) immediately implies that

(2.6) B(P ) ⊆ B(Q) if and only if Bsyl(CP ) ⊆ Bsyl(CQ)

(the corresponding equivalence for symmetric matrix polynomials of odd grade and
symmetric companion forms is also presented in [5, p. 1047]).

The following lemma is the counterpart of Lemma 3.1 in [18] for bundles instead
of orbits, and also the one of Lemma 6.2 in [5] for unstructured matrix polynomials
instead of symmetric ones.
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Lemma 2.2. Let P (λ) be an m× n matrix polynomial with grade d. Then

Bsyl(CP ) = B(CP ) ∩GSYLm×n
d .

Proof. Since the closure of the intersection of two sets is always included in the
intersection of the closures of both sets, the inclusion Bsyl(CP ) ⊆ B(CP ) ∩GSYLm×n

d

follows (take into account that GSYLm×n
d is closed).

Let us now prove the reverse inclusion, so let L ∈ B(CP ) ∩ GSYLm×n
d . As L ∈

GSYLm×n
d , it must be L = CP̃ , for some m×n matrix polynomial P̃ of grade d. Since

L ∈ B(CP ), there is a sequence of pencils {Li}i∈N, with Li ∈ B(CP ), for all i ∈ N,
that converges to L = CP̃ . By Theorem 2.5 in [18], for Li close enough to CP̃ , the
pencil Li is strictly equivalent to a companion pencil CPi

which is also close to CP̃ ,
namely the sequence {CPi}i∈N converges to CP̃ . Since CPi ∈ B(CP ), we conclude that

L = CP̃ ∈ B(CP ) ∩GSYLm×n
d , and we are done.

Also, for f being the map in (2.2),

(2.7) f(B(P )) = Bsyl(CP ) = B(CP ) ∩GSYLm×n
d ,

where the first identity is equivalent to (2.5), and the second one is Lemma 2.2.
The following lemma is the generalization of Lemma 11 in [10] from matrix pencils

to matrix polynomials of grade larger than 1.
Lemma 2.3. Let P,Q ∈ POLm×n

d . Then P ∈ B(Q) if and only if B(P ) ⊆ B(Q).
Proof. The inclusion B(P ) ⊆ B(Q) immediately implies P ∈ B(Q), since P ∈

B(P ) ⊆ B(P ).
If P ∈ B(Q), from (2.7) we get CP = f(P ) ∈ f(B(Q)) = Bsyl(CQ) = B(CQ) ∩

GSYLm×n
d . In particular, CP ∈ B(CQ), so [10, Lemma 11] implies that B(CP ) ⊆ B(CQ),

and this in turn implies Bsyl(CP ) ⊆ Bsyl(CQ), by Lemma 2.2. Now, by (2.5), we get

B(P ) = f−1(Bsyl(CP )) ⊆ f−1(Bsyl(CQ)) = B(Q), and this concludes the proof.
It is known that O(L), with L being an m × n matrix pencil, is a differentiable

manifold (see, for instance, [16]), so its dimension is the dimension as a differentiable
manifold (namely, the dimension of the tangent space). Its codimension is the codi-
mension when considered as a manifold in the space of m× n matrix pencils, namely
codimO(L) = 2mn− dimO(L). For a matrix polynomial P ∈ POLm×n

d , instead, the
codimension of O(P ) is defined as the codimension of Osyl(CP ) in the set GSYLm×n

d .
It is known [21, Lemma 1] that

(2.8) codimOsyl(CP ) = codimO(CP )

(note that the first codimension in (2.8) refers to the codimension in the space
GSYLm×n

d of all companion pencils of m× n matrix polynomials of grade d, whereas
the second one refers to the codimension in the whole space of m×n matrix pencils).

As for bundles, we follow the definition of codimension provided in previous ref-
erences, like, for instance, [21, p. 443], namely

(2.9) codimB(P ) = codimO(P )−#Λ(P ),

for any P ∈ POLm×n
d . Therefore

(2.10)
codim Bsyl(CP ) = codim Osyl(CP )−#Λ(CP )

= codim O(P )−#Λ(P )
= codim B(P ).
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1 3 5 7

1 3 5 7

1 3 5 7 9

Wi(µ)

qi(µ)

Fig. 3.1. Ferrers diagram for an eigenvalue µ with partial multiplicities 4, 3, 3, 3, and 1, so
q(µ) = (4, 3, 3, 3, 1) and W (µ) = (5, 4, 4, 1).

3. Formula for the codimension of the orbit in terms of Weyr charac-
teristics. A formula for the codimension of the orbit of a matrix pencil L is provided
in [16] in terms of the minimal indices and the partial multiplicities of L. Here we
provide an alternative formula using the Weyr characteristics.

Proposition 3.1. Let L(λ) be an m× n matrix pencil with distinct eigenvalues
λ1, . . . , λp ∈ C. Then

(3.1)

codim O(L) = ℓ0(L)n+ r0(L)m−
∞∑
i=0

ri(L)ri+1(L)

−
∞∑
i=0

ℓi(L)ℓi+1(L) +

p∑
k=1

∞∑
i=1

Wi(λk, L)
2.

Proof. The calculation of the codimension of the orbit of a pencil in [16] is
divided in 5 parts. We will translate each of them separately in terms of the Weyr
characteristics. For brevity, we remove in this proof the reference to the pencil L
in the Weyr characteristics, and write ri, ℓi, and Wi(µ) instead of ri(L), ℓi(L), and
Wi(µ,L), respectively.

1. Codimension of the Jordan structure.
Let q1(µ) ≥ q2(µ) ≥ q3(µ) ≥ · · · denote the sizes of the Jordan blocks in the

KCF of L corresponding to µ ∈ C. Then, the Segre characteristic of µ is the list
q(µ) = (q1(µ), q2(µ), q3(µ), . . .). The codimension of the Jordan structure of L is
expressed in [16] as

(3.2)
∑

µ∈Λ(L)

∞∑
i=1

(2i− 1)qi(µ).

For each µ let us consider the Ferrers diagram, i.e. a set of weighted cells organized
in columns, where the ith column has height qi(µ) and the weight of each cell in this
column is equal to 2i − 1 (see Figure 3.1). Then the sum of all weights in a given
column is equal to (2i− 1)qi(µ). Therefore, the sum of all weights in the diagram is
q1(µ) + 3q2(µ) + 5q3(µ) + · · ·

Now, note that the length of the ith row is Wi(µ). Thus, if we compute the
sum of all weights in the diagram row-wise (namely, adding up first the weights in
all cells in each row and then adding up the resulting numbers for all rows), we get
W1(µ)

2+W2(µ)
2+ · · · Therefore, the total codimension of the Jordan structure (3.2)

is equal to

(3.3)

p∑
k=1

∞∑
i=1

Wi(λk)
2.
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⇝

a1 + 1

1

1

⇝
1

2

⇝ . . . ⇝
1

4

Fig. 3.2. Ferrers diagram for right minimal indices 4, 3, 3, 3, and 1, including the zero row,
so a = (4, 3, 3, 3, 1) and r = (5, 5, 4, 4, 1) and weights obtained in the last column.

2. Codimension of the right singular blocks.
Let a1 ≥ a2 ≥ · · · denote the right minimal indices of L. The Segre character-

istic of the right minimal indices of L is the list a = (a1, a2, . . .). The codimension
corresponding to the right minimal indices was expressed in [16] as

(3.4)
∑
aj>ak

(aj − ak − 1).

We consider a similar Ferrers diagram as in the previous case but with the height of
the ith column equal to ai+1 for taking into account that some minimal indices may
be equal to zero. In this case, no weights are assigned to the cells of the initial Ferrers
diagram (see the leftmost diagram in Figure 3.2). Observe that the number of cells
of the ith row (counting upwards and starting with the zero row at the bottom) is
ri, where r = (r0, r1, . . .) is the Weyr characteristic of the right minimal indices of L.
Next, each ith row of this initial diagram except the top one is completed with r0− ri
“fake” cells.

Our goal is to fill these “fake” cells with weights that sum up the quantity in
(3.4). We emphasize that no weights will be assigned to the cells of the original
Ferrers diagram in this process. For this purpose, we initially assign a zero weight to
each “fake” cell. Then, we start with the index a1 and consider all the other indices
ak such that a1 − ak − 1 > 0. For each of such index ak, we add +1 to the weights of
the “fake” cells in the kth column located in rows ak+1, ak+2, . . . , a1−1. At the end
of this first step, the sum of the weights of all the “fake” cells is

∑
a1>ak

(a1 − ak − 1)
(see the second diagram in the first row of the example of Figure 3.2).

Next, we consider the index a2 and all the other indices ak such that a2−ak−1 > 0
and, for each of them, we repeat the process of adding +1 to the weights of the “fake”
cells in the kth column located in rows ak + 1, ak + 2, . . . , a2 − 1. At the end of this
second step the sum of the weights of all the “fake” cells is

∑
a1>ak

(a1 − ak − 1) +∑
a2>ak

(a2 − ak − 1) (see the third diagram in the first row of the example of Figure
3.2). We repeat this process with all the remaining indices a3, a4, . . ., except with the
last one. At the end of the process, the sum of all the weights of the “fake” cells is
precisely (3.4) (see the diagram in the second row of the example of Figure 3.2).

10



Moreover, observe that, when the whole process is over, each cell of the r0 − ri
“fake” cells in the ith row of the diagram has received a weight +1 from each minimal
index strictly larger than i and, thus, it has a weight equal to ri+1. Therefore, if
the weights of the “fake” cells are summed up by rows, we get that (3.4) is equal to∑∞
i=1 (r0 − ri)ri+1, which can be rewritten as

(3.5) r0

∞∑
i=0

ri −
∞∑
i=0

riri+1 − r20.

3. Codimension of the left singular blocks.
The codimension due to the left minimal indices provided in [16] is the same as (3.4)
if a1 ≥ a2 ≥ · · · correspond to the left minimal indices instead. Proceeding in the
same way as for the right minimal indices, we get that the codimension corresponding
to this part of the eigenstructure is equal to

(3.6) ℓ0

∞∑
i=0

ℓi −
∞∑
i=0

ℓiℓi+1 − ℓ20.

4. Codimension due to interaction of the Jordan structure with the singular blocks.
The codimension of this part provided in [16] is

(size of the Jordan structure) · (number of singular blocks),

which can be rewritten as

(3.7) (r0 + ℓ0) ·
p∑
k=1

∞∑
i=1

Wi(λk).

5. Codimension due to interactions between left and right singular blocks.
Let a1 ≥ a2 ≥ a3 ≥ · · · and b1 ≥ b2 ≥ b3 ≥ · · · denote, respectively, the right and left
minimal indices of L. The term of the codimension corresponding to the interactions
between left and right minimal indices obtained in [16] is equal to

∑
aj ,bk

(aj+bk+2),
that can be rewritten as

(3.8)

∑
bk

∑
aj

(aj + bk + 2) =
∑
bk

(
bkr0 + 2r0 +

∞∑
i=1

ri

)

=
∑
bk

(
(bk + 1)r0 +

∞∑
i=0

ri

)
= ℓ0

∞∑
i=0

ri + r0

∞∑
i=0

ℓi,

where, to get the first identity, we have used that
∑∞
i=1 ai =

∑∞
i=1 ri and, to get the

last one, we use that
∑∞
i=1 bi =

∑∞
i=1 ℓi.

Summing together the expressions from (3.5), (3.6), (3.7), and (3.8) we get
(3.9)

(r0 + ℓ0)

( ∞∑
i=0

ri +

∞∑
i=0

ℓi +
∑
k

∞∑
i=1

Wi(λk)

)
− r20 − ℓ20 −

∞∑
i=0

riri+1 −
∞∑
i=0

ℓiℓi+1

= (r0 + ℓ0)(n+ ℓ0)− r20 − ℓ20 −
∞∑
i=0

riri+1 −
∞∑
i=0

ℓiℓi+1.
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Note that

(r0+ℓ0)(n+ℓ0)−r20−ℓ20 = n(r0+ℓ0)+r0(ℓ0−r0) = n(r0+ℓ0)+r0(m−n) = nℓ0+mr0,

since ℓ0 − r0 = m − n, because the rank of L is equal to both m − ℓ0 and n − r0.
Replacing this in (3.9) and adding up (3.3) we get (3.1).

The advantage of (3.1) against the formula provided in [16] is that (3.1) explicitly
shows the contribution of each term from the Weyr characteristics of the left and right
minimal indices and the partial multiplicities of L in the codimension of the orbit.

The formula (3.1) can be found in [35, Prop. 3.2.2] for the orbit of a matrix under
similarity, which is a particular case of the orbit of a pencil under strict equivalence.
In this case, only the term (3.3) appears. Actually, a similar proof of the identity
between (3.2) and (3.3) to the one provided here can be found in [35, pp. 106–107].

4. Main results. This section contains two different kinds of results. More
precisely, in Section 4.1 we deal with the dimension of bundles of matrix pencils,
whereas Section 4.2 deals with the closure of bundles of matrix polynomials of grade
larger than 1.

4.1. Dimension inequalities for bundles of matrix pencils. The following
result, stated in [2] (based on [36]), is key to prove the main result of this section
(Theorem 4.3).

Theorem 4.1. If L and M are two matrix pencils of the same size and h :=
rankL− rankM ≥ 0, then M ∈ O(L) if and only if the following three majorizations
hold:

(a) (r0(M), r1(M), . . .) ≺ (r0(L), r1(L), . . .) + (h, h, . . .);
(b) (ℓ0(M), ℓ1(M), . . .) ≺ (ℓ0(L), ℓ1(L), . . .) + (h, h, . . .);
(c) (W1(λ, L),W2(λ, L), . . .) ≺ (W1(λ,M),W2(λ,M), . . .)+(h, h, . . .), for all λ ∈

C.
We also use Lemma 4.2 to prove Theorem 4.3. We emphasize that Lemma 4.2 is

the key technical result of this section and that its proof requires considerable effort.
Lemma 4.2. If L and M are two m × n pencils such that M ∈ O(L), then

dim B(M) ≤ dim B(L). Moreover, the inequality is strict if and only if M ̸∈ O(L).
Proof. Let M ∈ O(L) and set h := rank L − rank M . It must be h ⩾ 0, by the

lower semicontinuity of the rank (see, for instance, [2, p. 283]).
In this situation, the majorization relations in Theorem 4.1 hold. Additionally,

as L and M are of size m× n,

(4.1)

n =
∑

λk∈Λ(L)

∞∑
i=1

Wi(λk, L) +

∞∑
i=0

ri(L) +

∞∑
i=0

ℓi(L)− ℓ0(L)

=
∑

λk∈Λ(M)

∞∑
i=1

Wi(λk,M) +

∞∑
i=0

ri(M) +

∞∑
i=0

ℓi(M)− ℓ0(M).

By (2.9) and (3.1) the codimension of the corresponding bundles are

codim B(L) = ℓ0(L)n+ r0(L)m−
∞∑
i=0

ri(L)ri+1(L)−
∞∑
i=0

ℓi(L)ℓi+1(L)

+
∑

λk∈Λ(L)

∞∑
i=1

Wi(λk, L)
2 −#Λ(L)
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and

codim B(M) = ℓ0(M)n+ r0(M)m−
∞∑
i=0

ri(M)ri+1(M)−
∞∑
i=0

ℓi(M)ℓi+1(M)

+
∑

λk∈Λ(M)

∞∑
i=1

Wi(λk,M)2 −#Λ(M).

Our aim is to show that codim B(M) ≥ codim B(L), and that codim B(L) = codim B(M)
if and only if M ∈ O(L). With respect to the equality of codimensions, note that
the definition of bundle implies that if M ∈ O(L), then B(L) = B(M) and, so, their
codimensions are equal to each other. Therefore, we need to prove that forM ∈ O(L)
the smallest codim B(M) is attained only if M ∈ O(L). For this purpose, let us
assume that the pencil M is such that

(4.2) codim B(M) = min{codim B(R) : R ∈ O(L)}.

We carry out the proof in three steps.
Step 1. Let us prove that, if µ ∈ Λ(M) \ Λ(L), then there is only one Jordan

block in the KCF of M corresponding to µ and it has size 1× 1, namely W (µ,M) =
(1, 0, 0, . . .).

By contradiction, let us assume that there is an eigenvalue µ ∈ Λ(M) \Λ(L) such
that W1(µ,M) > 1 or W2(µ,M) > 0. Then

(4.3)

∞∑
i=1

Wi(µ,M)2 ≥
∞∑
i=1

Wi(µ,M) > 1.

Let M̃ be a pencil whose KCF is the same as the KCF of M except for the
Jordan blocks corresponding to the eigenvalue µ. Instead, the KCF of M̃ has s :=∑∞
i=1Wi(µ,M) new different (simple) eigenvalues, λ1, . . . , λs, namely W (λk, M̃) =

(1, 0, . . .), for i = 1, . . . , s, which do not belong to Λ(L) ∪ Λ(M). In particular,

(4.4) #Λ(M)−#Λ(M̃) = 1− s.

Since µ, λk ̸∈ Λ(L) and rank M̃ = rankM , the pencil M̃ satisfies (a)-(c) in Theo-

rem 4.1, so M̃ ∈ O(L). However, from Proposition 3.1

codim B(M̃)− codim B(M) =

∞∑
i=1

s∑
k=1

Wi(λk, M̃)2 −#Λ(M̃)

−

( ∞∑
i=1

Wi(µ,M)2 −#Λ(M)

)
= s−

∞∑
i=1

Wi(µ,M)2 +#Λ(M)−#Λ(M̃)

= s−
∞∑
i=1

Wi(µ,M)2 + 1− s

= 1−
∞∑
i=1

Wi(µ,M)2 < 0,

where to get the third identity we have used (4.4) and for the last inequality we have
used (4.3). This contradicts (4.2).
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Step 2. Let us prove that Λ(M) ⊆ Λ(L). For this, we consider two cases: h = 0
and h ̸= 0.

Case h = 0: In this case, condition (c) in Theorem 4.1 implies W1(λ, L) ≤
W1(λ,M), for any λ ∈ Λ(L). Thus, Λ(L) ⊆ Λ(M).

Assume first that M is regular with size n × n. Then L is regular with size
n× n as well. Moreover, condition (c) in Theorem 4.1 implies that

∑∞
i=1Wi(λ, L) ≤∑∞

i=1Wi(λ,M), for any λ ∈ Λ(L). This, combined with Λ(L) ⊆ Λ(M), implies that

n =
∑

λ∈Λ(L)

∞∑
i=1

Wi(λ, L) ≤
∑

λ∈Λ(L)

∞∑
i=1

Wi(λ,M) ≤
∑

λ∈Λ(M)

∞∑
i=1

Wi(λ,M) = n.

Thus, all the inequalities above are equalities, which implies Λ(L) = Λ(M).

Now, let us assume that M is a singular pencil. Again, by (c) in Theorem 4.1,
the inequality

∞∑
i=1

Wi(λ, L) ≤
∞∑
i=1

Wi(λ,M)

is satisfied for each λ ∈ C. Next, we proceed by contradiction and assume that there
exists µ ∈ Λ(M) \ Λ(L), which, by Step 1, satisfies W (µ,M) = (1, 0, . . .) and, so,

∞∑
i=1

Wi(µ,L) = 0 < 1 =

∞∑
i=1

Wi(µ,M).

Combining the two inequalities above with Λ(L) ⊆ Λ(M), we conclude that

∑
λ∈Λ(L)

∞∑
i=1

Wi(λ, L) <
∑

λ∈Λ(M)

∞∑
i=1

Wi(λ,M).

Thus, by (4.1) and ℓ0(M)− ℓ0(L) = h = 0, it must be

∞∑
i=0

ri(M) <

∞∑
i=0

ri(L) or

∞∑
i=0

ℓi(M) <

∞∑
i=0

ℓi(L)

(or both). Without loss of generality we can assume that the first inequality holds,
namely

(4.5)

∞∑
i=0

ri(M) <

∞∑
i=0

ri(L)

(otherwise, we proceed in a similar way with the other inequality).

The inequality (4.5) implies r0(L) > 0 and, then, the identity r0(M) − r0(L) =
h = 0 implies that r0(M) > 0 as well, so the KCF of M has right singular blocks.

Now, let us consider a pencil M̂ whose KCF is the same as the one of M except
for the following: instead of one of the largest right singular blocks (with size, say,
α× (α+1)) together with the 1× 1 Jordan block corresponding to µ ∈ Λ(M) \Λ(L)
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in the KCF of M , the KCF of M̂ has a right singular block of size (α+ 1)× (α+ 2)

(which is the largest right singular block in the KCF of M̂). In particular,

#Λ(M)−#Λ(M̂) = 1,(4.6)

Wi(λ,M) =Wi(λ, M̂), for all λ ̸= µ and for all i,(4.7)

W (µ, M̂) = (0, 0, . . .),(4.8)

ri(M) = ri(M̂), for 0 ≤ i ≤ α,(4.9)

rα+1(M) = 0, rα+1(M̂) = 1,(4.10)

ℓi(M) = ℓi(M̂), for all i.(4.11)

Conditions (4.6)–(4.11), together with Proposition 3.1 and (2.9), imply

codim B(M̂)−codim B(M) = −rα(M̂)−#Λ(M̂)−W1(µ,M)2+#Λ(M) = −rα(M̂) < 0.

Now, let us check that conditions (a)-(c) in Theorem 4.1 hold for M̂ instead of
M . Condition (b) holds because of (4.11) and the fact that M ∈ O(L) (note that

h = 0 both for M and M̂ , since rankM = rank M̂). Condition (c) holds because of
(4.7)–(4.8), together with the fact that M ∈ O(L) and µ ̸∈ Λ(L) (again, we use that

h = 0 for M and M̂).

It remains to prove that condition (a) in Theorem 4.1 also holds for M̂ instead
of M . By condition (4.5), either rα+1(L) > 0 or r0(M) + · · · + rα(M) < r0(L) +
· · · + rα(L). In both cases, r0(M) + · · · + rj(M) ≤ r0(L) + · · · + rj(L), for all 0 ≤
j ≤ α (recall that M ∈ O(L), so condition (a) in Theorem 4.1 is satisfied), and

r0(M) + · · ·+ rα(M) + 1 ≤ r0(L) + · · · + rα(L) + rα+1(L), and this implies r(M̂) =
(r0(M), r1(M), . . . , rα(M), 1, 0, . . .) ≺ r(L), as wanted.

Therefore, M̂ ∈ O(L) and codim B(M̂) < codim B(M), which is in contradiction
with (4.2). Thus, there does not exist any µ ∈ Λ(M) \Λ(L) and, since Λ(L) ⊆ Λ(M),
we get that Λ(L) = Λ(M) also holds for singular pencils M when h = 0.

Case h > 0: We proceed again by contradiction and assume that there exists
some µ ∈ Λ(M) \ Λ(L). Since r0(M) = r0(L) + h > r0(L), the pencil M has right

singular blocks. Then, we can construct a pencil M̂ as in the precedent case, which
satisfies conditions (4.6)–4.11 and codim B(M̂) < codim B(M) as before. To check

that M̂ ∈ O(L) we only need to show that (a) in Theorem 4.1 is satisfied with M̂
instead of M , since it is straightforward to see that conditions (b) and (c) hold taking

into account that h has the same value for M and M̂ because rankM = rank M̂ . For
this, note that, from (a) in Theorem 4.1 (with L and M),

r0(M) + · · ·+ rj(M) ≤ (r0(L) + h) + (r1(L) + h) + · · ·+ (rj(L) + h),

for all 0 ≤ j ≤ α, and

r0(M) + · · ·+ rα(M) + 1 ≤ r0(M) + r1(M) + · · ·+ rα(M) + h
≤ (r0(L) + h) + (r1(L) + h) + · · ·+ (rα(L) + h)

+(rα+1(L) + h),

and this implies, together with (4.9)–(4.10) again, that r(M̂) = (r0(M), . . . , rα(M), 1, 0, . . .) ≺
r(L) + (h, h, . . .).
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Therefore, M̂ ∈ O(L) and this contradicts (4.2) again. So, Λ(M) ⊆ Λ(L) and the
proof of Step 2 ends.

Step 3. We are going to see that it must be M ∈ O(L).
For this, we proceed by contradiction and assume that M ∈ O(L) \ O(L). From

the Proposition in p. 60 of [30], dim O(M) < dim O(L). Therefore, from (2.9),

codim B(M) = 2mn−dim O(M)−#Λ(M) > 2mn−dim O(L)−#Λ(L) = codim B(L),

where we have used that #Λ(M) ≤ #Λ(L), by Step 2.
Since this is in contradiction with (4.2), it must be M ∈ O(L).
Summarizing, we have proved that the smallest codim B(M), for M ∈ O(L), is

realized only for M ∈ O(L). For such a pencil M , we have O(M) = O(L), thus
dimB(M) = dimB(L). Therefore dimB(M) ≤ dimB(L), for all M ∈ O(L) and
dimB(M) < dimB(L) if and only if M ∈ O(L) \ O(L), as claimed.

Now we are in the position of proving the main result in this section, which
completes Theorem 16 in [10] with the strict inequality of the dimensions of the
involved bundles.

Theorem 4.3. Let L be an m × n pencil. Then, there is a finite number of
different m×n pencils, L1, L2, . . . , Lp (with, say, L1 = L), satisfying B(Li)∩B(Lj) =
∅, for i ̸= j, and such that

(4.12) B(L) =
p⋃
i=1

B(Li).

Moreover, B(Li) is strictly included in B(L) and dimB(Li) < dimB(L), for i ̸= 1.
Proof. The existence of the decomposition (4.12) is proven in [10, Th. 16] together

with the conditions that B(Li) is strictly included in B(L) for i ̸= 1, and B(Li) ̸=
B(Lj) for i ̸= j. Note that the latter inequality is equivalent to B(Li)∩B(Lj) = ∅ by
the definition of bundle. It remains to prove that dimB(Li) < dimB(L), for i > 1.

Let us fix an index i > 1. From the characterization of the closure of a pencil
bundle given in [10, Th. 9] we conclude that there exists a map ψ : C → C such that
Li ∈ O(ψc(L)). There are two possible cases, that we analyze separately.

Case 1: ψ is one-to-one over Λ(L). In this case, it must be Li ∈ O(ψc(L)) \
O(ψc(L)), since otherwise B(Li) = B(ψc(L)) = B(L). Then, we conclude from Lemma
4.2 that dimB(Li) < dimB(ψc(L)) = dimB(L).

Case 2: ψ is not one-to-one over Λ(L). Note first that dimO(L) = dimO(ψc(L)).
Indeed, the Weyr characteristics of the left and right minimal indices of L coincide,
respectively, with those of ψc(L). Moreover, the sets of all nonzero elements in the
union of the Weyr characteristics of all eigenvalues (counted with their multiplicities)
of L and ψc(L) are equal to each other as well. This is because the Weyr charac-
teristics of the eigenvalues of ψc(L) that have coalesced are the union of the Weyr
characteristics of the corresponding eigenvalues in L (see Definition 2.1). Thus the
identity dimO(L) = dimO(ψc(L)) follows from Proposition 3.1. Moreover, since
ψ is not one-to-one over Λ(L), the number of different eigenvalues of L is greater
than that of ψc(L). Therefore, dimB(ψc(L)) < dimB(L). Since, by Lemma 4.2,
dimB(Li) ≤ dimB(ψc(L)), we conclude that dimB(Li) < dimB(L).

4.2. Bundle closures of matrix polynomials of grade larger than 1. The
first main result of this part is Theorem 4.6, which extends Theorem 12 in [10], valid
only for matrix pencils. We include here this result for completeness and for the ease
of reading.
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Theorem 4.4. ([10, Th. 12]). Let L and M be two matrix pencils of the same
size. Then B(M) ⊆ B(L) if and only if M ∈ O(ψc(L)), for some map ψ : C → C.

The following technical lemma will be key to prove Theorem 4.6.

Lemma 4.5. Let P,Q ∈ POLm×n
d . Then, Bsyl(CP ) ⊆ Bsyl(CQ) if and only if

CP ∈ Osyl(Cψc(Q)), for some map ψ : C → C.
Proof. Let us first assume that Bsyl(CP ) ⊆ Bsyl(CQ). Since CP ∈ Bsyl(CP ), we

get that CP ∈ Bsyl(CQ) = B(CQ) ∩ GSYLm×n
d , by Lemma 2.2. Thus, CP ∈ B(CQ).

Combining Lemma 2.3 and Theorem 4.4, we get CP ∈ O(ψc(CQ)), for some map
ψ : C → C. This implies, using (2.1), that CP ∈ O(Cψc(Q)) and, since CP ∈ GSYLm×n

d ,

CP ∈ O(Cψc(Q))∩GSYLm×n
d = Osyl(Cψc(Q)), where the last equality follows from [18,

Lemma 3.1].

Now, let us assume that CP ∈ Osyl(Cψc(Q)). Again by [18, Lemma 3.1], this

implies CP ∈ O(Cψc(Q)) ∩ GSYLm×n
d . Thus, CP ∈ O(Cψc(Q)) = O(ψc(CQ)), where

the last equality follows from (2.1). Theorem 4.4 implies B(CP ) ⊆ B(CQ). Therefore,
B(CP )∩GSYLm×n

d ⊆ B(CQ)∩GSYLm×n
d and, by Lemma 2.2, Bsyl(CP ) ⊆ Bsyl(CQ).

Now we are in the position to prove the first main result of this part.

Theorem 4.6. Let P,Q ∈ POLm×n
d . Then, B(P ) ⊆ B(Q) if and only if P ∈

O(ψc(Q)), for some map ψ : C → C.
Proof. By (2.6), B(P ) ⊆ B(Q) is equivalent to Bsyl(CP ) ⊆ Bsyl(CQ) and, by

Lemma 4.5, this is in turn equivalent to CP ∈ Osyl(Cψc(Q)), for some map ψ : C →
C. Applying the homeomorphism (2.2), this is also equivalent to P = f−1(CP ) ∈
f−1(Osyl(Cψc(Q))). But, by (2.4), f−1(Osyl(Cψc(Q))) = O(ψc(Q)), and this proves the
statement.

In plain words, what Theorem 4.6, combined with Lemma 2.3, says is that a
matrix polynomial P is in the closure of the bundle of another matrix polynomial Q if
and only if P belongs to the closure of the orbit of a matrix polynomial obtained from
Q after coalescing some eigenvalues. Therefore, the rules for the inclusion between
bundle closures of matrix polynomials in POLm×n

d are those for the inclusion between
orbit closures plus coalescence of eigenvalues.

Rules for the relation of “covering” (namely, inclusion without any intermediate
orbit or bundle closure) between closures have been provided in [21] for both orbits (in
[21, Th. 8]) and bundles (in [21, Th. 10]) of matrix polynomials. Applying recursively
these rules, we could obtain the rules for the inclusion of closures of either orbits or
bundles of matrix polynomials, but it is not obvious how to obtain Theorem 4.6 from
this approach.

The second main result in this part is Theorem 4.7, which is the extension of
Theorem 4.3 from matrix pencils to matrix polynomials of arbitrary grade.

Theorem 4.7. Let P (λ) be an m× n matrix polynomial of grade d. Then, there
is a finite number of different m×n matrix polynomials of grade d, P1(λ), P2(λ), . . . ,
Pℓ(λ) (with, say, P1 = P ), satisfying B(Pi) ∩ B(Pj) = ∅, for i ̸= j, and such that

(4.13) B(P ) =
ℓ⋃
i=1

B(Pi).

Moreover, B(Pi) is strictly included in B(P ) and dimB(Pi) < dimB(P ), for i ̸= 1.

Proof. By Theorem 4.3, which is the particular case of the statement for matrix
pencils, B(CP ) is the union of a finite number of bundles of matrix pencils with the
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same size as CP , including CP itself, namely

(4.14) B(CP ) =
s⋃
i=1

B(Li),

with, say, L1 = CP and, by Theorem 4.3,

(4.15) B(Li) & B(CP ),

for i ̸= 1. This strict inclusion will be used later.
Replacing (4.14) in (2.7) we obtain

(4.16) f(B(P )) =

(
s⋃
i=1

B(Li)

)
∩GSYLm×n

d =

s⋃
i=1

(
B(Li) ∩GSYLm×n

d

)
.

Now, for each 1 ≤ i ≤ s such that B(Li) ∩ GSYLm×n
d is not empty, there is at least

one companion pencil, say CPi , for some Pi ∈ POLm×n
d , such that CPi ∈ B(Li), so

B(Li) = B(CPi). Note that there is at least one such index, namely i = 1, since
L1 = CP . Therefore, we may assume that the first ℓ bundles B(Li) in (4.16), for some
1 ≤ ℓ ≤ s, are of the form B(CPi

). Then (4.16) becomes

f(B(P )) =
ℓ⋃
i=1

(
B(CPi) ∩GSYLm×n

d

)
=

ℓ⋃
i=1

Bsyl(CPi).

This is equivalent to

B(P ) = f−1

(
ℓ⋃
i=1

Bsyl(CPi)

)
=

ℓ⋃
i=1

f−1(Bsyl(CPi)) =

ℓ⋃
i=1

B(Pi),

and this concludes the proof of (4.13).
Let us note that, by Lemma 2.3,

B(Pi) ⊆ B(P ), for all i = 1, . . . , ℓ.

To prove that B(Pi) is strictly included in B(P ), for i ̸= 1, assume, by contradiction,
that B(P ) = B(Pi), for some i ̸= 1. This implies that f(B(P )) = f(B(Pi)), namely
B(CP ) ∩GSYLm×n

d = B(CPi
) ∩GSYLm×n

d , by (2.7). Since CP ∈ B(CP ) ∩GSYLm×n
d ,

this implies that CP ∈ B(CPi
)∩GSYLm×n

d , so, in particular, CP ∈ B(CPi
). Now, by [10,

Lemma 11] (or, by Lemma 2.3 applied to pencils), we conclude that B(CP ) ⊆ B(CPi
),

which is a contradiction with (4.15).
It remains to prove that dimB(Pi) < dimB(P ) for i ̸= 1. By Theorem 4.3,

dimB(CPi) < dimB(CP ), for i ̸= 1, namely codim B(CP ) < codim B(CPi). Addition-
ally, from (2.9), (2.8), and (2.10), we get

codim B(CP ) = codim O(CP )−#Λ(CP )
= codim Osyl(CP )−#Λ(CP )
= codim Bsyl(CP ) = codim B(P ).

Similarly, codim B(CPi
) = codim B(Pi), so we conclude that codim B(P ) < codim B(Pi),

namely dimB(Pi) < dimB(P ), as wanted.
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We conclude this section with an example that illustrates results on closures of
bundles.

Example 1. Let us consider the set of 2×2 quadratic matrix polynomials (namely
m = n = d = 2). This set is the union of 19 bundles, which are indicated in Table 4.1.
These bundles can be obtained from Theorem 3.3 in [13], that provides necessary and
sufficient conditions for given lists to be realizable as the Weyr characteristics of the
left and right minimal indices and of the partial mutliplicities of a matrix polynomial
of a given rank and grade. In the first three columns of the table we indicate the Weyr
characteristics of the right, left, and partial multiplicities of each matrix polynomial
belonging to the corresponding bundle, and in the fourth column we display one matrix
polynomial in the bundle. Finally, in the last column we show the codimension of the
bundle, according to (2.9), (2.8), and (3.1). We have arranged them in non-decreasing
order of the codimension.

From Table 4.1 and Theorem 4.6 we can identify all inclusion relationships between
the closures of bundles. For instance, according to Theorem 4.6 (recall also Lemma
2.3), P9 ∈ B(P3), because P9 ∈ O(ψc(P3)), with ψ : C → C being such that µ :=
ψ(µ1) = ψ(µ2), for µ1 ̸= µ2. Note that W (µ, ψc(P3)) = W (µ1, P3) ∪W (µ2, P3) =
(1, 1, 1, 1), so actually P9 ∈ O(ψc(P3)). Another way to see that P9 ∈ B(P3) is
by finding a sequence of pencils in B(P3) that converges to a pencil in B(P9). For
instance, we may consider the sequence{

Qn :=

[
(λ− µ1)

2 1
0 (λ− µ1)(λ− µ1 + 1/n)

]}
n∈N

,

so that Qn ∈ B(P3), for all n ∈ N, and Qn converges to P9 as n→ ∞.
Similarly, P3 ∈ B(P2), since W (µ1, P3) = (1, 1, 1) = W (µ1, P2) ∪ W (µ3, P2)

(we omit the argument through the appropriate map ψ). Again, we can easily find a
sequence of pencils in B(P2) converging to P3, namely{

Rn :=

[
(λ− µ1)

2 1
0 (λ− µ1 + 1/n)(λ− µ3)

]}
n∈N

.

To see that Rn ∈ B(P2), for all n ∈ N (except, perhaps at most for one value of n if
µ3 = µ1 − 1/n for one n), note that detRn = (λ − µ1)

2(λ − µ1 + 1/n)(λ − µ3) and
the gcd of all 1× 1 minors of Rn is 1, so W (µ1, Rn) = (1, 1) and W (µ1 − 1/n,Rn) =
W (µ3, Rn) = (1).

Note also that, according to Theorem 4.6, also P8 ∈ B(P2), since (1, 1) ≺ (2). In
this case, we can also find a sequence in B(P2) which converges to P8, namely:{

Sn :=

[
(λ− µ1)(λ− µ2) 1/n

0 (λ− µ1)(λ− µ3)

]}
n∈N

.

To see that Sn ∈ B(P2), for all n ∈ N, we can argue as in the previous case, namely
detSn = (λ − µ1)

2(λ − µ2)(λ − µ3) and the gcd of all 1 × 1 minors of Sn is 1, so
W (µ1, Sn) = (1, 1) and W (µ2, Sn) =W (µ3, Sn) = (1).

However, P8 ̸∈ B(P3), since there is no way to coalesce eigenvalues in P3 and
apply the majorization rules (a)–(c) in Theorem 4.1.

5. Conclusions and open questions. It is known that the closure of a bundle
of a matrix pencil L is the finite union of the bundle of L together with other bundles.
We have proved that the dimension of each of these other bundles is strictly smaller
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r ℓ W P Codim

(0) (0) (1); (1); (1); (1)
P1 =

[
(λ− µ1)(λ− µ2) 0

0 (λ− µ3)(λ− µ4)

]
µi ̸= µj , (i ̸= j)

0

(0) (0) (1, 1); (1); (1)
P2 =

[
(λ− µ1)2 0

0 (λ− µ2)(λ− µ3)

]
µi ̸= µj , (i ̸= j)

1

(0) (0) (1, 1, 1); (1)
P3 =

[
(λ− µ1)2 1

0 (λ− µ1)(λ− µ2)

]
µ1 ̸= µ2

2

(0) (0) (1, 1); (1, 1) P4 =

[
(λ− µ1)2 0

0 (λ− µ2)2

]
µ1 ̸= µ2

2

(1) (1, 1, 1) (0) P5 =

[
1 0
λ2 0

]
2

(1, 1) (1, 1) (0) P6 =

[
1 λ
λ λ2

]
2

(1, 1, 1) (1) (0) P7 =

[
1 λ2

0 0

]
2

(0) (0) (2); (1); (1)
P8 =

[
(λ− µ1)(λ− µ2) 0

0 (λ− µ1)(λ− µ3)

]
µi ̸= µj , (i ̸= j)

3

(0) (0) (1, 1, 1, 1) P9 =

[
(λ− µ)2 1

0 (λ− µ)2

]
3

(1) (1, 1) (1) P10 =

[
(λ− µ) 0
(λ− µ)2 0

]
3

(1, 1) (1) (1) P11 =

[
λ− µ (λ− µ)2

0 0

]
3

(1) (1) (1); (1)
P12 =

[
(λ− µ1)(λ− µ2) 0

0 0

]
µ1 ̸= µ2

4

(0) (0) (2, 1); (1)
P13 =

[
(λ− µ1)2 0

0 (λ− µ1)(λ− µ2)

]
µ1 ̸= µ2

4

(0) (0) (1, 1); (2)
P14 =

[
(λ− µ1)(λ− µ2) λ− µ2

0 (λ− µ1)(λ− µ2)

]
µ1 ̸= µ2

4

(0) (0) (2, 1, 1) P15 =

[
(λ− µ)2 λ− µ

0 (λ− µ)2

]
5

(1) (1) (1, 1) P16 =

[
(λ− µ)2 0

0 0

]
5

(0) (0) (2); (2)
P17 =

[
(λ− µ1)(λ− µ2) 0

0 (λ− µ1)(λ− µ2)

]
µ1 ̸= µ2

6

(0) (0) (2, 2) P18 =

[
(λ− µ)2 0

0 (λ− µ)2

]
7

(2) (2) (0) P19 =

[
0 0
0 0

]
8

Table 4.1
All bundles of 2 × 2 quadratic matrix polynomials.

than the dimension of the bundle of L. We have also proved that the closure of
the bundle of any matrix polynomial P of grade larger than 1 is the finite union of
the bundle of P together with other bundles of strictly smaller dimension. We have
also provided a new formula for the codimension of the orbit of a matrix pencil L
in terms of the Weyr characteristics of the right and left minimal indices and of the
partial multiplicities of L, and we have provided a characterization for a given matrix
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polynomial of grade larger than 1 to belong to the closure of the bundle of another one,
a result that extends the one for matrix pencils provided in [10]. The extension of these
results to the case of structured matrix pencils and matrix polynomials [33] remains
completely open and is a source of (likely hard) open problems in this context. We also
mention that codimension counts of several related problems have recently attracted
the attention of different researchers (see, for instance, [9, 20, 23, 24, 32]). Some of
these codimension counts end up in quite complicated expressions written in terms
of the Segre characteristics of the involved invariants. Another natural continuation
of our work is to investigate the extent to which the use of the corresponding Weyr
characteristics may lead to relevant simplifications as in the case of Proposition 3.1.
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[31] S. Johansson, B. Kågström, and P. Van Dooren, Stratification of full rank polynomial

matrices, Linear Algebra Appl., 439 (2013), pp. 1062–1090.
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