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Abstract. Least squares problems minx ‖b−Ax‖2 where the matrixA ∈ Cm×n (m ≥ n) has some particular
structure arise frequently in applications. Polynomial data fitting is a well-known instance of problems that yield
highly structured matrices A, but many other examples exist. Very often, structured matrices have huge condition
numbers κ2(A) = ‖A‖2 ‖A†‖2 (hereA† denotes the Moore-Penrose pseudo-inverse ofA) and, therefore, standard
algorithms fail to compute accurate minimum 2-norm solutions of least squares problems. In this work, we introduce
a framework that allows us to compute minimum 2-norm solutions of many classes of structured least squares
problems accurately, i.e., with errors ‖x̂0 − x0‖2/‖x0‖2 = O(u), where u is the unit roundoff, independently of
the magnitude of κ2(A) for most vectors b. The cost of these accurate computations is O(n2m) flops, i.e., roughly
the same cost as standard algorithms for least squares problems. The approach in this work relies in computing first
an accurate rank-revealing decomposition ofA, an idea that has been widely used in the last decades to compute, for
structured ill-conditioned matrices, singular value decompositions, eigenvalues and eigenvectors in the Hermitian
case, and solutions of linear systems with high relative accuracy. In order to prove that accurate solutions are
computed, it is needed to develop a multiplicative perturbation theory of least squares problems and Moore-Penrose
pseudo-inverses. The results and algorithms presented in this paper are valid in the case of both full rank and rank
deficient problems and also in the case of underdetermined linear systems (m < n). Among other types of matrices,
the new method applies to rectangular Cauchy, Vandermonde, and graded matrices and detailed numerical tests for
these matrices are presented.
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1. Introduction. Matrices with particular structures arise frequently in theory and ap-
plications [38, 39]. As a consequence, the design and analysis of special algorithms for
performing structured matrix computations is a classical area of Numerical Linear Algebra
that attracts the attention of many researchers. Special algorithms for solving structured lin-
ear systems of equations or structured eigenvalue problems are included in many standard
references [14, 24, 28, 32, 45], but special algorithms for solving structured least squares
problems do not appear so often in the literature. The goal of special algorithms is to ex-
ploit the structure of the problem to increase the speed of computations, and/or to decrease
storage requirements, and/or to improve the accuracy of the solutions in comparison with
standard algorithms. On this latter goal, let us mention that special algorithms for solving
structured linear systems of equations more accurately than standard methods have been de-
veloped from the early days of Numerical Linear Algebra [4] and many papers have been
published on this topic since then (see the references in [18, 28]). The development of ac-
curate algorithms for structured eigenvalue problems is much more recent, since it started in
early 90’s with the celebrated paper [10] and has also received considerable attention (see,
for instance, [2, 9, 13, 17, 19, 20, 21, 23, 31, 43, 47] among many other references). The
present paper focuses on a part of “Accurate Numerical Linear Algebra” for which there are
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not many references available in the literature: algorithms for solving structured least squares
problems minx ‖b − Ax‖2, where A ∈ Cm×n and b ∈ Cm×1, with much more accuracy
than the one provided by standard algorithms and roughly with the same computational cost,
that is, O(n2m) flops. We only know reference [35] on this topic, which focuses on a very
particular class of least squares problems.

The standard method for solving full column-rank least squares (LS) problems minx ‖b−
Ax‖2 is via the QR factorization computed with the Householder algorithm [28, Chapters 19
and 20]. This method is backward stable, that is, the computed solution x̂0 is the exact so-
lution of a LS problem minx ‖(b + ∆b) − (A + ∆A)x‖2, where ‖∆b‖2 ≤ c umn ‖b‖2,
‖∆A‖2 ≤ c umn3/2 ‖A‖2, u is the unit roundoff of the computer, and c denotes a small
integer constant [28, Theorem 20.3]. Backward error results of the same type hold for other
methods of solution of LS problems based on orthogonal decompositions as, for instance, the
singular value decomposition (SVD)∗. This strong backward error result, together with clas-
sical normwise perturbation theory of LS problems [46, Theorem 5.1] (see also [3, Theorem
1.4.6, p. 30]), implies the following forward error bound in the computed solution x̂0 with
respect the exact solution x0

(1.1)
‖x̂0 − x0‖2
‖x0‖2

≤ (c umn3/2)

(
κ2(A) +

‖A†‖2‖b‖2
‖x0‖2

+ κ2(A)2
‖b−Ax0‖2
‖A‖2 ‖x0‖2

)
,

where A† is the Moore-Penrose pseudo-inverse of A, ‖A‖2 denotes the spectral norm of A,
and κ2(A) = ‖A‖2 ‖A†‖2 is the spectral condition number of A. The bound in (1.1) is
larger than uκ2(A) (in fact, it can be much larger under certain conditions) and, so, (1.1)
does not guarantee any digit of accuracy in the computed solution if κ2(A) & 1/u, that is,
if A is ill-conditioned with respect to the inverse of the unit roundoff. Unfortunately, many
types of structured matrices arising in applications are extremely ill-conditioned and standard
algorithms for LS problems may compute solutions with huge relative errors. Two famous
examples are Vandermonde matrices, which arise in polynomial data fitting, and Cauchy
matrices [28, Chapters 22 and 28].

Our goal in this work is to present a numerical framework for the solution of LS problems
and to prove rigorously that it allows us to compute for many classes of structured matrices
solutions with guaranteed error bounds much smaller than the one in (1.1). The framework we
introduce relies on the concept of rank-revealing decomposition (RRD), originally introduced
in [9] for computing the SVD with high relative accuracy -see also [28, Sec 9.12]. An RRD
of A ∈ Cm×n is a factorization A = XDY , where X ∈ Cm×r, D = diag(d1, d2, . . . , dr) ∈
Cr×r is diagonal and nonsingular, and Y ∈ Cr×n, rank (X) = rank (Y ) = r, and X and
Y are well conditioned. Note that this means that the rank of A is r, and that if A is ill
conditioned, then the diagonal factor D is also ill conditioned. We propose to compute the
minimum 2-norm solution of minx ‖b−Ax‖2 in two main stages:

1. First stage. Compute an RRD of A = XDY , accurately in the sense of [9] (we
revise the precise meaning of “accuracy” in this context in Definition 2.3).

2. Second stage. It has three steps: (1) compute the unique solution x1 of minx ‖b −
Xx‖2 via Householder QR factorization; (2) compute the solution x2 of the linear
system Dx2 = x1 as x2(i) = x1(i)/di, i = 1 : r; and (3) compute the min-
imum 2-norm solution x0 of the underdetermined linear system Y x = x2 using

∗It should be noted that the backward error in A committed by solving LS problems via the Householder QR
factorization is columnwise, i.e., ‖∆A(:, j)‖2 ≤ c umn ‖A(:, j)‖2 for j = 1 : n (MATLAB notation), and,
therefore, it is stronger than the one mentioned above. However, this columwise bound does not hold for the solution
via the SVD, since orthogonal transformations are applied to A from both sides.
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the Q method [28, Chapter 21]. The vector x0 is the minimum 2-norm solution of
minx ‖b−Ax‖2.

The intuition behind why this procedure computes accurate solutions, even for extremely ill
conditioned matrices A, is that each entry of x2 is computed with a relative error less than u,
that is, the ill conditioned linear system Dx2 = x1 is solved very accurately, together with
the fact that minx ‖b−Xx‖2 and Y x = x2 are also solved accurately because X and Y are
well conditioned. We will prove in Section 6 that the relative error for the minimum 2-norm
solution x̂0 computed by the proposed procedure is

(1.2)
‖x̂0 − x0‖2
‖x0‖2

≤ u f(m,n)

(
κ2(Y ) + κ2(X)

‖A†‖2 ‖b‖2
‖x0‖2

)
,

where f(m,n) is a modestly growing function of m and n. Note first that (1.2) improves
(1.1), because X and Y are well conditioned and, so, the only potentially large factor in (1.2)
is ‖A†‖2 ‖b‖2/‖x0‖2, which also appears in (1.1). But the really important point on the bound
(1.2) is that if A is fixed, then ‖A†‖2 ‖b‖2/‖x0‖2 is small for most right-hand sides b, even
for very ill conditioned matrices A. This fact is well-known if A is square and nonsingular
(see [1, 7] and [18, Section 3.2]) and, as we will explain in Subsection 4.1, it also holds for
general matrices in two senses: for most vectors b that are everywhere in the space, and for
most vectors b with a fixed value of the relative residual ‖Ax0 − b‖2/‖b‖2 not too close to 1.
In this paper the sentence “for most vectors b” may be understood in any of these two senses.

The framework and the results discussed above resemble those presented in [18] for com-
puting accurate solutions of structured linear systems Ax = b with A nonsingular. However,
not surprisingly, the analysis for LS problems is much more complicated and requires com-
pletely different techniques for developing the new multiplicative perturbation theory that is
needed to prove the error bound in (1.2). In addition, the results and algorithms we present
are fully general, since they remain valid both for full rank and rank defective matrices A,
and, although we focus mainly on LS problems, they can be also applied to solve accurately
underdetermined linear systems.

The computation of an accurate RRD A = XDY is the difficult part in the framework
proposed above. For almost any matrix A ∈ Cm×n an RRD (potentially inaccurate) can be
computed by applying standard Gaussian elimination with complete pivoting (GECP) to get,
barring permutations, an LDU factorization, where X = L ∈ Cm×r is unit lower trapezoidal
(notation from [28, p. 355]), D ∈ Cr×r is diagonal and nonsingular, and Y = U ∈ Cr×n
is unit upper trapezoidal [9, 28]. Other option is to use the Householder QR algorithm with
column-pivoting and take X = Q, D = diag(R), and Y = D−1R, barring permutations.
Very rarely, GECP or QR with column-pivoting fail to produce well conditioned X and Y
factors, but then other pivoting strategies that guarantee well conditioned factors are available
in [25, 37, 40]. However neither standard GECP nor QR with column-pivoting are accurate
for ill conditioned matrices and, nowadays, RRDs with guaranteed accuracy can be com-
puted only for particular classes of structured matrices through special implementations of
GECP that exploit carefully the structure to obtain accurate factors and, in the case of graded
matrices, also through Householder QR factorization with complete pivoting [27].

Fortunately, as a by-product of the intense research performed in the last two decades on
computing SVDs with high relative accuracy, there are algorithms to compute accurate RRDs
of many classes of m× n structured matrices in O(mn2) operations. These classes include:
Cauchy matrices, diagonally scaled Cauchy matrices, Vandermonde matrices, and some “re-
lated unit-displacement-rank” matrices [8]; graded matrices (that is, matrices of the form
S1BS2 with B well conditioned and S1 and S2 diagonal) [9, 27]; acyclic matrices (which
include bidiagonal matrices), total signed compound matrices, diagonally scaled totally uni-
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modular matrices [9]; diagonally dominant M-matrices [11, 41]; polynomial Vandermonde
matrices involving orthonormal polynomials [12]; and diagonally dominant matrices [16, 47].
In addition, for certain real symmetric structured matrices, it is possible to compute accurate
RRDs that preserve the symmetry. These symmetric matrices include: symmetric positive
definite matrices SHS, with H well conditioned and S diagonal [13, 36]; and symmetric
Cauchy, symmetric diagonally scaled Cauchy, and symmetric Vandermonde matrices [15].
Most of the algorithms cited in this paragraph determine exactly the rank of rank-deficient
matrices and for all classes of matrices listed in this paragraph, the framework introduced in
this paper solves LS problems with relative errors bounded as in (1.2). This error bound is
O(u f(m,n)) for most right-hand sides independently of the traditional condition number of
the matrices and so guarantees accurate solutions.

The paper is organized as follows. We introduce in Section 2 the basic notations, con-
cepts, and results that will be used throughout the paper. Section 3 studies the variation of the
Moore-Penrose pseudo-inverse under multiplicative perturbations and, based on these results,
Section 4 presents multiplicative perturbation bounds for LS problems. As a consequence,
we get in Section 5 perturbation bounds for LS problems whose coefficient matrix is given
as an RRD under perturbations of the factors. Section 6 presents a new algorithm for solving
accurately LS problems via RRDs and the corresponding backward and forward error anal-
yses. The accuracy of this algorithm is checked in practice via extensive numerical tests in
Section 7. Finally, conclusions and lines of future work are discussed in Section 8.

2. Preliminaries and basic concepts. Since we consider LS problems, we will use
the most natural norms for these problems: the Euclidean vector norm, i.e., given x =

[x1, . . . , xn]T ∈ Cn, ‖x‖2 :=
(
|x1|2 + · · ·+ |xn|2

)1/2
, and for matrices A ∈ Cm×n the

corresponding subordinate matrix norm ‖A‖2 := max‖x‖2=1 ‖Ax‖2, that is called the spec-
tral or 2-norm of A. In Subsection 3.1, we will also use arbitrary (normalized) unitarily
invariant matrix norms [44, Chapter II. Sec. 3], that will be denoted by ‖ · ‖. The symbol
In stands for the n × n identity matrix, but we will use simply I if the size is clear from
the context, and A∗ denotes the conjugate-transpose of A. We will use MATLAB notation
for submatrices: A(i : j, :) indicates the submatrix of A consisting of rows i through j and
A(:, k : l) indicates the submatrix ofA consisting of columns k through l. GivenA ∈ Cm×n,
with m ≥ n, its singular values are denoted as σ1(A) ≥ · · · ≥ σn(A) ≥ 0.

Lemma 2.1 will be needed to derive some perturbation bounds.
LEMMA 2.1. Let B,C ∈ Cm×n, let S ⊆ Cm andW ⊆ Cn be vector subspaces, and

let PS ∈ Cm×m and PW ∈ Cn×n be the orthogonal projectors onto S andW , respectively.
Then the following statements hold:

(a) ‖PSB + (I − PS)C‖2 ≤
√
‖B‖22 + ‖C‖22 .

(b) ‖BPW + C(I − PW)‖2 ≤
√
‖B‖22 + ‖C‖22 .

Proof. Part (a). Let x ∈ Cn with ‖x‖2 = 1. Since the vectors PSBx and (I − PS)Cx
are orthogonal, then ‖(PSB + (I − PS)C)x‖22 = ‖PSBx‖22 + ‖(I − PS)Cx‖22 ≤ ‖Bx‖22 +
‖Cx‖22 ≤ ‖B‖22 + ‖C‖22 and

‖PSB + (I − PS)C‖2 = max
‖x‖2=1

‖(PSB + (I − PS)C)x‖2 ≤
√
‖B‖22 + ‖C‖22 .

Part (b) follows from part (a) applied to the conjugate-transpose matrix and the fact that
for any matrix ‖A‖2 = ‖A∗‖2.

In Sections 5 and 6, we will need the entrywise absolute value of a matrix. Given a matrix
G ∈ Cm×n with entries gij , we denote by |G| the matrix with entries |gij |. Expressions like
|G| ≤ |B|, where B ∈ Cm×n, mean |gij | ≤ |bij | for 1 ≤ i ≤ m, 1 ≤ j ≤ n.
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The Moore-Penrose pseudo-inverse of A ∈ Cm×n plays a key role in this work. It is
defined to be the unique matrix Z ∈ Cn×m such that

(2.1) (i) AZA = A, (ii) ZAZ = Z, (iii) (AZ)∗ = AZ, (iv) (ZA)∗ = ZA,

or, equivalently, such that

(2.2) AZ = PA and ZA = PZ ,

where PA and PZ stand for the orthogonal projectors onto the column spaces of A and Z, re-
spectively. The equivalence of the four conditions in (2.1) and the two conditions in (2.2) can
be easily established and can be found at [6, Theorem 1.1.1]. We will denote by A† ∈ Cn×m
the Moore-Penrose pseudo-inverse of A ∈ Cm×n. Recall that if A ∈ Cn×n is nonsingular,
then A† = A−1. Recall also that the SVD of A allows us to get an expression for A† and to
prove many of its properties [44, Chapter 3]. R(A) will denote the column space of A and
N (A) its null space. It is easy to see thatR(A∗) = R(A†), so, according to (2.2), PA = AA†

and PA∗ = PA† = A†A are the orthogonal projectors ontoR(A) andR(A∗), respectively.
We state without proof in Lemma 2.2 some well-known properties of the Moore-Penrose

pseudo-inverse that will be needed throughout the paper. The proofs can be found in [6].
LEMMA 2.2.
(a) If A has full row rank, then A† = A∗(AA∗)−1 and AA† = I .
(b) If A has full column rank, then A† = (A∗A)−1A∗ and A†A = I .
(c) Let F ∈ Cm×r and G ∈ Cr×n. If rank (F ) = rank (G) = r, then (FG)† = G†F †.

The minimum 2-norm solution of the LS problem minx∈Cn ‖b − Ax‖2 is x0 = A† b
and the minimum 2-norm solution of an underdetermined linear system Ax = b is also given
by x0 = A† b. If A = XDY ∈ Cm×n is an RRD of A, then two successive applications
of Lemma 2.2-(c) imply that A† = Y †D−1X† and the minimum 2-norm solution of LS
problems or underdetermined linear systems is x0 = Y †D−1X† b.

Following [9], next we define the precise meaning of an accurate computed RRD of a
matrix A. We add, with respect [9], the condition (2.5) that guarantees that the computed and
exact “well conditioned” factors X and Y have condition numbers of similar magnitude.

DEFINITION 2.3. Let A = XDY be an RRD of A ∈ Cm×n, where X ∈ Cm×r, D =
diag(d1, . . . , dr) ∈ Cr×r, and Y ∈ Cr×n, and let X̂ ∈ Cm×r, D̂ = diag(d̂1, . . . , d̂r) ∈
Cr×r, and Ŷ ∈ Cr×n be the factors computed by a certain algorithm in a computer with
unit roundoff u. We say that the factorization X̂D̂Ŷ has been accurately computed, or is an
accurate RRD, if

‖X̂ −X‖2
‖X‖2

≤ u p(m,n),
‖Ŷ − Y ‖2
‖Y ‖2

≤ u p(m,n), and(2.3)

|d̂i − di|
|di|

≤ u p(m,n), i = 1 : r,(2.4)

where p(m,n) is a modestly growing function of m and n, i.e., a function bounded by a low
degree polynomial in m and n, such that

(2.5) max{κ2(X) , κ2(Y )} u p(m,n) < 1/2 .
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For example, the algorithm to compute an RRD of anm×n (m ≥ n) real Cauchy matrix
presented† in [8, Section 4] computes the factors with an entrywise relative error bounded by
9nu/(1− 9nu).

Let us discuss briefly, the role of condition (2.5). According to Weyl perturbation the-
orem [44], the differences between the ordered singular values of X and X̂ are bounded
as follows |σi(X̂) − σi(X)| ≤ ‖X̂ − X‖2 ≤ u p(m,n) ‖X‖2, for i = 1 : r. There-
fore, |σi(X̂) − σi(X)|/σi(X) ≤ u p(m,n)κ2(X), for i = 1 : r. A similar discussion
holds for Y and Ŷ . As a consequence, condition (2.5) implies rank (X) = rank (X̂) = r,
rank (Y ) = rank (Ŷ ) = r, and

(2.6)
κ2(X)

3
≤ κ2(X̂) ≤ 3κ2(X) and

κ2(Y )

3
≤ κ2(Ŷ ) ≤ 3κ2(Y ) .

Equation (2.6) will allow us to use either κ2(X) and κ2(Y ), or κ2(X̂) and κ2(Ŷ ) in the
rounding error bounds obtained in Section 6 at the cost of modifying somewhat the constants
involved in the bounds.

In the rounding error analysis of Section 6 we will use the conventional error model for
floating point arithmetic [28, Section 2.2]

fl(a� b) = (a� b)(1 + δ),

where a and b are real floating point numbers, � ∈ {+,−,×, /}, and |δ| ≤ u. Recall
that this model also holds for complex floating point numbers if u is replaced by a slightly
larger constant, see [28, Section 3.6]. In addition, we will assume that neither overflow nor
underflow occurs.

3. Multiplicative perturbation results for the Moore-Penrose pseudo-inverse. In
this section and in Section 4, we consider a multiplicative perturbation of a general ma-
trix A ∈ Cm×n, that is, a matrix Ã = (I + E)A(I + F ), where (I + E) ∈ Cm×m
and (I + F ) ∈ Cn×n are nonsingular matrices. The final goal is to bound, in Section 4,
‖x̃0 − x0‖2/‖x0‖2, where x0 and x̃0 are the minimum 2-norm solutions of the LS problems
minx∈Cn ‖Ax − b‖2 and minx∈Cn ‖Ãx − b̃‖2, respectively. This goal is achieved via the
main theorem in this section, Theorem 3.2, where we obtain two expressions for Ã† in terms
of A†, (I + E)−1, and (I + F )−1. We use the expressions of Ã† to develop in Subsection
3.1 bounds for ‖Ã†−A†‖/‖A†‖ in any unitarily invariant norm and in the 2-norm. Although
these bounds are not needed for our final purpose, we emphasize that the development of per-
turbation bounds for the Moore-Penrose pseudo-inverse is a classical topic in Matrix Analysis
(see [46] and [44, Chapter 3, Sec. 3]) that has attracted the attention of many researchers. We
show that the results in Subsection 3.1 are superior than those presented in [5], which are of
a different nature and are obtained through a different approach. Multiplicative perturbation
theory of matrices has received considerable attention in the literature in the context of ac-
curate computations of eigenvalues and singular values [22, 29, 30, 33, 34] and also in the
context of accurate solution of linear systems of equations [18, Lemma 3.1] but, as far as we
know, it has not been studied yet in the context of accurate solution of LS problems.

Lemma 3.1 is a technical result that is used in the proof of Theorem 3.2.
LEMMA 3.1. Let A ∈ Cm×n and Ã = (I + E)A(I + F ) ∈ Cm×n, where (I + E) ∈

Cm×m and (I + F ) ∈ Cn×n are nonsingular matrices. Then the following equalities hold:
(a) PA(I + E∗)(I − PÃ) = 0.

†The algorithm presented in [8, Section 4] covers only the square case m = n, but it is immediate to modify it
for rectangular Cauchy matrices. This point will be further discussed in Section 7.
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(b) (I − PÃ∗)(I + F ∗)PA∗ = 0.
Proof. (a) SinceR(Ã) = R((I+E)A) then (I−PÃ)(I+E)A = 0. Thus, (I−PÃ)(I+

E)AA† = (I − PÃ)(I + E)PA = 0, which is equivalent to PA(I + E∗)(I − PÃ) = 0.
(b) Apply (a) to Ã∗ = (I +F ∗)A∗(I +E∗) and conjugate and transpose the equality.

Next, we state the main result in this section, which is valid both for full rank and rank
deficient matrices and for perturbations of any magnitude.

THEOREM 3.2. Let A ∈ Cm×n and Ã = (I +E)A(I + F ) ∈ Cm×n, where (I +E) ∈
Cm×m and (I + F ) ∈ Cn×n are nonsingular matrices. Then

(3.1) Ã† = PÃ∗(I + F )−1A†(I + E)−1PÃ

and

(3.2) Ã† =
(
I + (I − PÃ∗)F

∗ − PÃ∗ F̂
)
A†
(
I + E∗(I − PÃ)− ÊPÃ

)
,

where Ê = (I + E)−1E and F̂ = (I + F )−1F .
Proof. We prove first (3.1). To this purpose, we define Z := PÃ∗(I + F )−1A†(I +

E)−1PÃ to be the right hand side of (3.1). We will prove that Z satisfies the conditions (2.2)
with A replaced by Ã. Recall that PÃ∗ = Ã†Ã and PÃ = ÃÃ†. Then

ÃZ = Ã(I + F )−1A†(I + E)−1PÃ = (I + E)AA†(I + E)−1PÃ

= (I + E)AA†(I + E)−1ÃÃ† = (I + E)AA†A(I + F )Ã† = ÃÃ† = PÃ.

In a similar way,

ZÃ = PÃ∗(I + F )−1A†(I + E)−1Ã = PÃ∗(I + F )−1A†A(I + F )

= Ã†Ã(I + F )−1A†A(I + F ) = Ã†(I + E)AA†A(I + F ) = Ã†Ã = PÃ∗ .(3.3)

The equality (3.3) implies R(Ã∗) ⊆ R(Z) and the definition of Z implies R(Z) ⊆ R(Ã∗).
Thus, R(Z) = R(Ã∗) and equation (3.3) implies ZÃ = PZ . Therefore, conditions (2.2) for
Ã hold, Z = Ã† and (3.1) is proved.

Next, we use (3.1) to prove (3.2). First, we write (I+E)−1 = I− (I+E)−1E = I− Ê
and (I + F )−1 = I − (I + F )−1F = I − F̂ . Substituting these expressions in (3.1), we get

(3.4) Ã† = PÃ∗(I − F̂ )A†(I − Ê)PÃ = PÃ∗(PA∗ − F̂ )A†(PA − Ê)PÃ.

From Lemma 3.1-(a) it follows that PA(I + E∗(I − PÃ)) = PAPÃ. Analogously, from
Lemma 3.1-(b), ((I − PÃ∗)F

∗ + I)PA∗ = PÃ∗PA∗ . Finally, substitute these relations in
(3.4), use A†PA = A† and PA∗A† = A†, and get (3.2).

If m = n and A is nonsingular, then PÃ = PÃ∗ = In, and (3.1) and (3.2) just become
Ã−1 = (I + F )−1A−1(I + E)−1. If A has full column rank, then Ã has also full column
rank, PÃ∗ = In, (3.1) simplifies to Ã† = (I + F )−1A†(I + E)−1PÃ, and (3.2) to Ã† =(
I − F̂

)
A†
(
I + E∗(I − PÃ)− ÊPÃ

)
. Finally, if A has full row rank, then Ã has also

full row rank, PÃ = Im, (3.1) simplifies to Ã† = PÃ∗(I + F )−1A†(I + E)−1, and (3.2) to

Ã† =
(
I + (I − PÃ∗)F

∗ − PÃ∗ F̂
)
A†
(
I − Ê

)
.

We emphasize that expression (3.2) ensures that under “small" multiplicative perturba-
tions of A, i.e., small E and F , we obtain “small" multiplicative perturbations of A†.
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The assumptions of Theorem 3.2 guarantee that rank (A) = rank (Ã). This has sim-
plified considerably the analysis of the variation of the Moore-Penrose pseudo-inverse with
respect general “additive” perturbations Ã = A+ ∆A [44, 46]. In addition, Theorem 3.3 im-
plies that if the mild condition max{‖E‖2, ‖F‖2} < 1 holds, then Ã = (I +E)A(I + F ) is
an acute perturbation of A (see the original definition in [46, Definition 7.2] and also in [44,
Ch. III, Definition 3.2]). It is well known that acute perturbations introduce simplifications
even for additive perturbations Ã = A + ∆A. The bounds in Theorem 3.3 will be used in
Section 4.

THEOREM 3.3. Let A ∈ Cm×n and Ã = (I +E)A(I + F ) ∈ Cm×n, where (I +E) ∈
Cm×m and (I + F ) ∈ Cn×n are nonsingular matrices, and let PN (A) and PN (Ã) be the

orthogonal projectors onto the null spaces of A and Ã, respectively. Then:
(a) ‖PÃ − PA‖2 = ‖PÃ(I − PA)‖2 = ‖PA(I − PÃ)‖2 ≤ ‖E‖2.
(b) ‖PÃ∗ − PA∗‖2 = ‖PÃ∗(I − PA∗)‖2 = ‖PA∗(I − PÃ∗)‖2 ≤ ‖F‖2.
(c) ‖PN (Ã) − PN (A)‖2 ≤ ‖F‖2.

Proof. Part (a). The subspaces R(A) and R(Ã) have the same dimension. Thus, from
[44, Ch. I, Theorem 5.5], ‖PÃ −PA‖2 = ‖PÃ(I −PA)‖2 = ‖PA(I −PÃ)‖2. Moreover, by
Lemma 3.1-(a), ‖PA(I − PÃ)‖2 = ‖ − PAE∗(I − PÃ)‖2 ≤ ‖E∗‖2 = ‖E‖2.

Part (b) follows from applying part (a) to Ã∗ = (I + F ∗)A∗(I + E∗). Finally, part (c)
follows from part (b), PN (A) = I − PA∗ , and PN (Ã) = I − PÃ∗ .

Corollary 3.4 presents an expression for Ã† − A† that follows directly from (3.2). This
will be used in Subsection 3.1 and, more important, in Theorem 4.1.

COROLLARY 3.4. Let A ∈ Cm×n and Ã = (I + E)A(I + F ) ∈ Cm×n, where
(I +E) ∈ Cm×m and (I +F ) ∈ Cn×n are nonsingular matrices, and let Ê = (I +E)−1E

and F̂ = (I + F )−1F . Then

(3.5) Ã† −A† = A†ΘE + ΘFA
† + ΘFA

†ΘE ,

where

(3.6) ΘE = E∗(I − PÃ)− ÊPÃ and ΘF = (I − PÃ∗)F
∗ − PÃ∗ F̂ .

3.1. Mutiplicative perturbation bounds for the Moore-Penrose pseudo-inverse. As
explained in the first paragraph of Section 3, the results in this subsection are not used else-
where in the rest of the paper. The main goal in this subsection is to present bounds for
‖Ã†−A†‖/‖A†‖. We assume A 6= 0, since otherwise the problem is trivial. The main result
is Theorem 3.5.

THEOREM 3.5. Let A ∈ Cm×n and Ã = (I +E)A(I + F ) ∈ Cm×n, where (I +E) ∈
Cm×m and (I + F ) ∈ Cn×n are nonsingular matrices, and let Ê = (I + E)−1E and
F̂ = (I + F )−1F . Let us denote by ‖ · ‖ a normalized unitarily invariant norm and by ‖ · ‖2
the spectral norm. Then the following bounds hold:

(a)
‖Ã† −A†‖

min{‖A†‖2, ‖Ã†‖2}
≤ ‖E‖+‖Ê‖+‖F‖+‖F̂‖+

(
‖E‖+ ‖Ê‖

) (
‖F‖+ ‖F̂‖

)
.

(b)
‖Ã† −A†‖2
‖A†‖2

≤
√
‖E‖22 + ‖F‖22 +

(
‖Ê‖2 + ‖F̂‖2 + ‖Ê‖2 ‖F̂‖2

)2
, and

‖Ã† −A†‖2
‖Ã†‖2

≤
√
‖Ê‖22 + ‖F̂‖22 + (‖E‖2 + ‖F‖2 + ‖E‖2 ‖F‖2)

2
.
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Proof. Part (a). The bound for ‖Ã† − A†‖/‖A†‖2 follows directly from (3.5), just
by taking into account that for any matrices B and C, ‖BC‖ ≤ ‖B‖2‖C‖ and ‖BC‖ ≤
‖B‖‖C‖2 [44, p. 80]. The bound for ‖Ã† − A†‖/‖Ã†‖2 follows from the one for ‖Ã† −
A†‖/‖A†‖2 by exchanging the roles of A and Ã, i.e., by considering A a multiplicative
perturbation of Ã as A = (I + E)−1Ã(I + F )−1 = (I − Ê)Ã(I − F̂ ), which amounts to
interchanging in the bounds ‖E‖, ‖F‖ by ‖Ê‖, ‖F̂‖, respectively, and vice versa.

Part (b). First note that from (3.6), Lemma 3.1-(b), and PA∗ = A†A, we get

(I + ΘF )A†A = (I + (I − PÃ∗)F
∗ − PÃ∗ F̂ )PA∗

= PA∗ + (I − PÃ∗)F
∗PA∗ − PÃ∗ F̂PA∗

= PA∗ − (I − PÃ∗)PA∗ − PÃ∗ F̂PA∗

= PÃ∗(I − F̂ )PA∗ ,

and, if we multiply by A† on the right the previous equation, then we obtain

(3.7) (I + ΘF )A† = PÃ∗(I − F̂ )A† .

In a similar way, but using Lemma 3.1-(a), we get

(3.8) A† (I + ΘE) = A†(I − Ê)PÃ .

Next, we use (3.5), (3.7)-(3.8), and (3.6) to prove

Ã† −A† = (I + ΘF )A†ΘE + ΘFA
†

= PÃ∗(I − F̂ )A†ΘE + ΘFA
†

= PÃ∗
[
(I − F̂ )A†ΘE − F̂A†

]
+ (I − PÃ∗)F

∗A†

= PÃ∗
[
A†ΘE − F̂A†(I + ΘE)

]
+ (I − PÃ∗)F

∗A†

= PÃ∗
[
A†E∗(I − PÃ)−A†ÊPÃ − F̂A

†(I − Ê)PÃ

]
+ (I − PÃ∗)F

∗A† .(3.9)

It remains to apply Lemma 2.1 to (3.9) and get

‖Ã† −A†‖22 ≤ ‖A†E∗(I − PÃ)− [A†Ê + F̂A†(I − Ê)]PÃ‖
2
2 + ‖F ∗A†‖22

≤ ‖A†E∗‖22 + ‖A†Ê + F̂A†(I − Ê)‖22 + ‖F‖22 ‖A†‖22
≤ ‖A†‖22

(
‖E‖22 + ‖F‖22 + (‖Ê‖2 + ‖F̂‖2 + ‖Ê‖2 ‖F̂‖2)2

)
,

which gives the bound for ‖Ã† − A†‖2/‖A†‖2 in part (b). From here, the bound for ‖Ã† −
A†‖2/‖Ã†‖2 follows by exchanging the roles of A and Ã as we did in the proof of part (a).

REMARK 3.6. We highlight the following points on Theorem 3.5.
(a) The bounds in Theorem 3.5 improve significatively the classical bounds for the rel-

ative variation of the Moore-Penrose pseudo-inverse under general additive pertur-
bations Ã = A + ∆A (see [46, Theorem 4.1] or the rearrangement in [44, Ch. III,
Corollary 3.10]). The crucial point is that the bounds in Theorem 3.5 do not depend
on κ2(A), while the classical bounds do.
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(b) The bound in part (a) of Theorem 3.5 has the advantage that is valid for any normal-
ized unitarily invariant norm, but when it is particularized to ‖ · ‖2, then the bound
in part (b) is always sharper than the one in part (a), since

√
x2 + y2 ≤ x + y, for

x ≥ 0, y ≥ 0 real numbers, and√
‖E‖22 + ‖F‖22 +

(
‖Ê‖2 + ‖F̂‖2 + ‖Ê‖2 ‖F̂‖2

)2
≤

≤
√
‖E‖22 + ‖F‖22 + ‖Ê‖2 + ‖F̂‖2 + ‖Ê‖2 ‖F̂‖2

≤ ‖E‖2 + ‖Ê‖2 + ‖F‖2 + ‖F̂‖2 + (‖E‖2 + ‖Ê‖2) (‖F‖2 + ‖F̂‖2) .

(c) If A has full row rank, then Ã has also full row rank and PÃ = Im. Thus, ΘE

in (3.6) simplifies to ΘE = −Ê and all the terms containing ‖E‖ or ‖E‖2 in the
bounds of Theorem 3.5 vanish (but one should keep ‖Ê‖ and ‖Ê‖2).

(d) If A has full column rank, then Ã has also full column rank and PÃ∗ = In. Thus,
ΘF in (3.6) simplifies to ΘF = −F̂ and all the terms containing ‖F‖ or ‖F‖2 in
the bounds of Theorem 3.5 vanish (but one should keep ‖F̂‖ and ‖F̂‖2).

(e) If we restrict in Theorem 3.5 the magnitude of the perturbations to be max{‖E‖2,
‖F‖2} < 1, a condition that in fact guarantees that (I +E) and (I +F ) are nonsin-
gular, then standard matrix norm inequalities [24] imply

(3.10) ‖Ê‖2 ≤
‖E‖2

1− ‖E‖2
and ‖F̂‖2 ≤

‖F‖2
1− ‖F‖2

.

These inequalities can be used in part (b) of Theorem 3.5 to obtain bounds that are
easily computable in terms of ‖E‖2 and ‖F‖2.

(g) Finally, again with the additional restriction max{‖E‖2, ‖F‖2} < 1, Theorem 3.5
can be completed with

‖A†‖2
(1 + ‖E‖2)(1 + ‖F‖2)

≤ ‖Ã†‖2 ≤
‖A†‖2

(1− ‖E‖2)(1− ‖F‖2)
.

The rightmost inequality follows from (3.1), which implies ‖Ã†‖2 ≤ ‖(I+F )−1‖2
‖A†‖2 ‖(I + E)−1‖2. For the leftmost inequality: consider A as a multiplicative
perturbation of Ã, i.e., A = (I+E)−1Ã(I+F )−1, and apply (3.1) with the roles of
A and Ã exchanged to get A† = PA∗(I + F )Ã†(I +E)PA. This implies ‖A†‖2 ≤
(1 + ‖F‖2)‖Ã†‖2(1 + ‖E‖2).

Recently multiplicative perturbation bounds for the Moore-Penrose pseudo-inverse have
been presented in [5, Section 4]. The bounds in [5] are not based on expressions for Ã† as
those in Theorem 3.2, they are obtained following a different approach. In the rest of this
section we compare the bounds in Theorem 3.5 with those in [5]. In the notation of Theorem
3.5, the following two multiplicative bounds‡ are presented in [5, Theorems 4.1 and 4.2]:

‖Ã† −A†‖
max{‖A†‖2, ‖Ã†‖2}

≤ ‖E‖+ ‖Ê‖+ ‖F‖+ ‖F̂‖ ,(3.11)

‖Ã† −A†‖2
max{‖A†‖2, ‖Ã†‖2}

≤
√

3

2

√
‖E‖22 + ‖Ê‖22 + ‖F‖22 + ‖F̂‖22 .(3.12)

‡The bound (3.12) is presented in [5] for the class of unitarily invariant norms called Q-norms, which includes,
among others, the spectral and the Frobenius norms.
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To begin with note that the presence of max{‖A†‖2, ‖Ã†‖2} makes difficult to compare in
general (3.11)-(3.12) with the bounds in Theorem 3.5. For instance, if ‖A†‖2 = ‖Ã†‖2, then
the bound in (3.11) is obviously sharper than the one in Theorem 3.5-(a), but if ‖A†‖2 �
‖Ã†‖2, then (3.11) does not give any information on ‖Ã† − A†‖/‖A†‖2, while Theorem
3.5-(a) does. However, as we discuss next, the bounds in Theorem 3.5 are superior than
(3.11)-(3.12) both to first order and in terms of wider applicability.

If we consider tiny perturbations and neglect second order terms, then we can replace
both max{‖A†‖2, ‖Ã†‖2} and min{‖A†‖2, ‖Ã†‖2}, simply by ‖A†‖2, which allows us to
make comparisons easier. Theorem 3.5-(a) and (3.11) give both the same bound to first
order, that is, ‖Ã† − A†‖/‖A†‖2 ≤ 2(‖E‖ + ‖F‖). However, to first order, the right-
hand side of (3.12) is Ξ =

√
3
√
‖E‖22 + ‖F‖22 and the bound in Theorem 3.5-(b) is Γb =√

‖E‖22 + ‖F‖22 + (‖E‖2 + ‖F‖2)2. To compare Γb and Ξ, use that (x+ y)2 ≤ 2(x2 + y2),
for x ≥ 0, y ≥ 0 real numbers. Thus

Γb ≤
√

3 ‖E‖22 + 3 ‖F‖22 = Ξ,

which implies that, to first order, the bound in Theorem 3.5-(b) is always sharper than (3.12).
For sufficiently large perturbations, the presence of max{‖A†‖2, ‖Ã†‖2} makes (3.11)-

(3.12) unapplicable in certain situations, since one of the standard goals of perturbation theory
is to bound ‖Ã†−A†‖ without knowing Ã† and having only some bounds on the norms of the
perturbations E and F . Let us illustrate this point with an example. LetA = [1 0; 0 1; 0 0] ∈
C3×2 (we have used MATLAB notation for matrices), E = diag(−4/5,−4/5,−4/5), and
F = diag(−4/5,−4/5). An easy computation shows that

‖Ã† −A†‖2
‖A†‖2

= 24,
‖Ã† −A†‖2
‖Ã†‖2

= 0.96

‖E‖2 = 0.8, ‖F‖2 = 0.8, ‖Ê‖2 = 4, ‖F̂‖2 = 4,

which give: 9.6 for the bound in (3.11); 32.64 for the bound in Theorem 3.5-(a); 7.07 for
the bound in (3.12); 24.03 for the 1st bound in Theorem 3.5-(b); and 6.084 for the 2nd
bound in Theorem 3.5-(b). So, in this example, (3.11)-(3.12) fail in getting a bound on
‖Ã† − A†‖2/‖A†‖2, while the bounds in Theorem 3.5 give sharp estimates (in particular
those in Theorem 3.5-(b)).

4. Multiplicative perturbation results for least squares problems. In this section we
consider the LS problem

(4.1) min
x∈Cn

‖Ax− b‖2, A ∈ Cm×n, b ∈ Cm,

and the multiplicatively perturbed LS problem

(4.2) min
x∈Cn

‖Ãx− b̃‖2, Ã = (I + E)A(I + F ) ∈ Cm×n, b̃ = b+ h ∈ Cm ,

where (I + E) ∈ Cm×m and (I + F ) ∈ Cn×n are nonsingular matrices. We are interested
in finding an upper bound for the relative variation ‖x̃0 − x0‖2/‖x0‖2, where x0 = A†b and
x̃0 = Ã†b̃ are the minimum 2-norm solutions of (4.1) and (4.2), respectively. We will also
examine the variation of the associated residuals r = b − Ax0 and r̃ = b̃ − Ãx̃0. Theorem
4.1 is the main result in this section.

THEOREM 4.1. Let x0 and x̃0 be the minimum 2-norm solutions of (4.1) and (4.2),
respectively, and let r = b − Ax0 and r̃ = b̃ − Ãx̃0 be the corresponding residuals. Let
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Ê = (I + E)−1E and F̂ = (I + F )−1F , define αE :=

√
‖E‖22 + ‖Ê‖22 and αF :=√

‖F‖22 + ‖F̂‖22, and assume that ‖h‖2 ≤ ε‖b‖2. Then the following two bounds hold

‖x̃0 − x0‖2 ≤ αF ‖x0‖2 + [αE (1 + αF ) (1 + ε) + ε (1 + αF ) ] ‖A†‖2 ‖b‖2 ,(4.3)

‖r̃ − r‖2 ≤ ‖b‖2
√

(ε+ ‖E‖2)
2

+ ‖E‖22 .(4.4)

Proof. Let us prove first (4.3). The proof is based on Corollary 3.4 that implies:

x̃0 − x0 = Ã†(b+ h)−A†b

=
(
Ã† −A†

)
(b+ h) +A†h

=
(
A†ΘE + ΘF A

† + ΘF A
†ΘE

)
(b+ h) +A†h

=
(
A†ΘE + ΘF A

†ΘE

)
(b+ h) + ΘF x0 + ΘF A

†h+A†h .

Apply norm inequalities and get

‖x̃0−x0‖2 ≤ ‖ΘF ‖2‖x0‖2 + [‖ΘE‖2 (1 + ‖ΘF ‖2) (1 + ε) + ε (1 + ‖ΘF ‖2)] ‖A†‖2 ‖b‖2 .

Now, (4.3) follows from Lemma 2.1 that implies ‖ΘE‖2 ≤ αE and ‖ΘF ‖2 ≤ αF .
Next, we prove (4.4). First, observe that

r̃ − r = h− Ã x̃0 +Ax0

= h− ÃÃ† b̃+Ax0

= (I − ÃÃ†)h+Ax0 − ÃÃ† b

= (I − ÃÃ†)h+Ax0 − ÃÃ† (r +Ax0)

= (I − ÃÃ†) (h+Ax0)− ÃÃ† r .(4.5)

Note that the summands in (4.5) are orthogonal vectors, since PÃ = ÃÃ†, use Ax0 = PAb
and r = (I − PA)b, recall Theorem 3.3, and get (4.4) as follows

‖r̃ − r‖22 = ‖(I − PÃ) (h+ PAb)‖22 + ‖PÃ (I − PA)b‖22
≤
(
‖h‖2 + ‖(I − PÃ)PAb‖2

)2
+ ‖PÃ (I − PA)b‖22

≤ (ε‖b‖2 + ‖E‖2‖b‖2)
2

+ ‖E‖22 ‖b‖22 .

The bound (4.3) simplifies if A has full row or full column rank in the way explained in
parts (d) and (e) of Remark 3.6. If A has full row rank, then r̃ = r = 0 and ‖r̃ − r‖2 = 0.

The bounds in Theorem 4.1 improve significatively the classical bounds for the relative
variation of minimum 2-norm solutions and residuals of LS problems under general addi-
tive perturbations Ã = A + ∆A [46, Theorem 5.1]. For the purpose of comparison, let us
state these classical perturbation bounds as they are stated in [3, Theorem 1.4.6] in the case
rank (A) = rank (Ã) and η := κ2(A) ‖∆A‖2/‖A‖2 < 1. Let x̃0 be the minimum 2-norm
solution of the LS problem minx∈Cn ‖(b+ ∆b)− (A+ ∆A)x‖2 and x0 be the minimum 2-
norm solution of minx∈Cn ‖b−Ax‖2, and let r̃ := (b+∆b)−(A+∆A)x̃0 and r := b−Ax0.



Multiplicative perturbation theory and accurate solution of least squares problems 13

Then, assuming x0 6= 0 and defining εA := ‖∆A‖2/‖A‖2 and εb := ‖∆b‖2/‖b‖2, a minor
variation of [3, Theorem 1.4.6] states that

‖x̃0 − x0‖2
‖x0‖2

≤ 1

1− η

(
2κ2(A) εA +

‖A†‖2 ‖b‖2
‖x0‖2

εb + κ2(A)2
‖r‖2

‖A‖2 ‖x0‖2
εA

)
,(4.6)

‖r̃ − r‖2
‖b‖2

≤
(
‖A‖2‖x0‖2
‖b‖2

εA + εb + κ2(A)
‖r‖2
‖b‖2

εA

)
.(4.7)

In (4.7), it is convenient to bear in mind that (‖A‖2‖x0‖2)/‖b‖2 ≤ κ2(A) and ‖r‖2 ≤ ‖b‖2.
Next, observe that the bound for ‖r̃− r‖2/‖b‖2 in (4.7) includes terms that can be very large
even if εA and εb are very tiny. This happens if κ2(A) is large and ‖r‖2 6= 0 is not very
small. In contrast, if ‖E‖2 and ε are tiny, then the bound for ‖r̃− r‖2/‖b‖2 that follows from
(4.4) is always tiny. With respect to the bounds for ‖x̃0 − x0‖2/‖x0‖2: the bound in (4.6)
amplifies the perturbations in the data at least by a factor κ2(A) and the amplification can
be much larger under certain conditions. In addition, (4.6) includes the amplification factor
‖A†‖2 ‖b‖2/‖x0‖2, which is the only potentially large factor in the bound that follows from
(4.3). We will show in Subsection 4.1 that ‖A†‖2 ‖b‖2/‖x0‖2 is a moderate number except
for very particular choices of b. Therefore, (4.3) always improves (4.6) and, if ‖E‖2, ‖F‖2,
and ε are tiny, then (4.3) produces tiny bounds for ‖x̃0 − x0‖2/‖x0‖2 for almost all b.

The bounds in Theorem 4.1 cannot be directly applied due to the presence of Ê and F̂ .
Corollary 4.2 overcomes this shortcoming by restricting the magnitude of the perturbations
and by using (3.10). Corollary 4.2 follows directly from Theorem 4.1 and is stated in a way
that is convenient for its use in Section 5.

COROLLARY 4.2. With the same notation and hypotheses that in Theorem 4.1, assume
in addition that ‖E‖2 ≤ µ < 1 and ‖F‖2 ≤ ν < 1, x0 6= 0, and b 6= 0. Define

(4.8) θµ := µ

√
1 +

1

(1− µ)2
and θν := ν

√
1 +

1

(1− ν)2
.

Then the following bounds hold:

‖x̃0 − x0‖2
‖x0‖2

≤ θν + [θµ(1 + θν)(1 + ε) + ε(1 + θν)]
‖A†‖2‖b‖2
‖x0‖2

,(4.9)

‖r̃ − r‖2
‖b‖2

≤
√

(ε+ µ)2 + µ2 .(4.10)

The bound (4.9) yields to first order in ε, µ, ν

‖x̃0 − x0‖2
‖x0‖2

≤
√

2 ν +
(
ε+
√

2µ
) ‖A†‖2‖b‖2
‖x0‖2

+ h.o.t ,(4.11)

where h.o.t stands for “higher order terms” in ε, µ, ν.

We will prove in Subsection 4.2 that, to first order, the perturbation bound for ‖x̃0 −
x0‖2/‖x0‖2 that follows from Theorem 4.1 is optimal, i.e., it can be attained modulo a mod-
erate constant. In this context, it is interesting to observe that another approach to get multi-
plicative perturbation bounds for LS problems is via Theorem 3.5 as follows: we know that
x̃0 − x0 =

(
Ã† −A†

)
(b + h) + A†h, thus ‖x̃0 − x0‖2 ≤ ‖Ã† − A†‖2(‖b‖2 + ‖h‖2) +

‖A†‖2‖h‖2, and this can be combined with Theorem 3.5-(b) and ‖h‖2 ≤ ε‖b‖2 to get a bound
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for ‖x̃0−x0‖2/‖x0‖2. The bound so obtained (let us call it ΓLP ) includes in all its terms the
factor ‖A†‖2 ‖b‖2/‖x0‖2. This is in contrast with the bound coming from (4.3) (let us call it
ΓLS) which has a term that is simply αF (see also the terms θν in (4.9) or

√
2 ν in (4.11)).

Thus, ΓLP is much larger than ΓLS if max{‖E‖2, ε} � ‖F‖2 and ‖A†‖2‖b‖2/‖x0‖2 is
large (this is easily checked to first order). In addition, it may be proved to first order that
ΓLS ≤ 2 ΓLP always, and ΓLS ≤ ΓLP if ‖A†‖2‖b‖2/‖x0‖2 ≥ 2. So, we can conclude that
the approach in Theorem 4.1 is better than the use of Theorem 3.5.

Finally, observe that all the results in this section, as well as those in Section 3, are valid
for any values of m and n, that is, both if m ≥ n or if m < n. Thus, they are valid also for
multiplicative perturbations of solutions of underdetermined linear systems.

4.1. Why is the factor ‖A†‖2 ‖b‖2/‖x0‖2 usually small?. This section is related to
[18, Section 3.2], which considered the same problem for a nonsingular matrix A. Although
the fact that A ∈ Cm×n is rectangular forces nontrivial modifications, the main conclusions
remain the same. Theorem 4.1 and Corollary 4.2 prove that the sensitivity of the minimum
2-norm solution x0 = A†b of a LS problem under multiplicative perturbations is governed
by ‖A†‖2 ‖b‖2/‖x0‖2. This quantity is well known because it is the condition number for
LS problems when only the right-hand side b of minx∈Cn ‖Ax − b‖2 is perturbed. More
precisely, it is easy to prove that if x0 = A†b, then

‖A†‖2 ‖b‖2
‖x0‖2

= lim
ε→0

sup

{
‖x̃0 − x0‖2
ε‖x0‖2

: x̃0 = A† (b+ h), ‖h‖2 ≤ ε ‖b‖2
}
.

Thus Theorem 4.1 essentially proves that multiplicative perturbations have an effect on the
minimum 2-norm solution of LS problems similar to perturbing only the right-hand side b.

Note that 1 ≤ ‖A†‖2‖b‖2/‖x0‖2, but, in general, ‖A†‖2‖b‖2/‖x0‖2 � κ2(A), in con-
trast to the case when A is nonsingular§ [18, Section 3.2]. Nevertheless, (4.6) shows that

κLS(A, b) :=

(
2κ2(A) +

‖A†‖2 ‖b‖2
‖x0‖2

+ κ2(A)2
‖r‖2

‖A‖2 ‖x0‖2

)
can be considered as a condition number for LS problems under additive tiny normwise per-
turbations of A and b (in fact, it is proved in [46, Section 6] that the bound (4.6) is approxi-
mately attained to first order in the perturbations), and ‖A†‖2 ‖b‖2/‖x0‖2 ≤ κLS(A, b). But
the first key point in this section is to show that ifA is fixed, then ‖A†‖2 ‖b‖2/‖x0‖2 is a mod-
erate number for most vectors b, even if κ2(A) � 1, and so κLS(A, b) � 1, which implies
that ‖A†‖2 ‖b‖2/‖x0‖2 � κLS(A, b) for most ill-conditioned LS problems whose coefficient
matrix is A. However, this is not enough for our purposes, because if rank(A) < m, then
for most vectors b the acute angle θ(b,R(A)) between b and the column space of A is not
small, which is equivalent to say that the relative residual ‖Ax0−b‖2/‖b‖2 = sin θ(b,R(A))
is not small. But, very often in practice LS problems have small relative residuals, since the
problems correspond to inconsistent linear systems Ax ≈ b that are close to be consistent.
Therefore, the second key point in this section is if A is fixed to consider all vectors b such
that Υ = θ(b,R(A)) < π/2 is also fixed, and then to show that for most of these vectors b
the factor ‖A†‖2 ‖b‖2/‖x0‖2 is a moderate number much smaller than κLS(A, b) whenever
A is very ill-conditioned.

To explain the properties mentioned above, assume rank (A) = r and let A = UΣV ∗

be the SVD of A, where U ∈ Cm×r and V ∈ Cn×r have orthonormal columns, Σ =

§IfA is nonsingular or, more general, ifAx0 = b, then ‖A†‖2 ‖b‖2/‖x0‖2 ≤ κ2(A). However, considerA =
[1 0; 0 1; 0 0] ∈ C3×2 and b = [η; 0; 1] ∈ C3×1. In this case x0 = [η; 0] ∈ C2×1 and ‖A†‖2 ‖b‖2/‖x0‖2 =√
|η|2 + 1/|η| which tends to∞ if η → 0 while κ2(A) = 1.
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diag(σ1, . . . , σr) ∈ Cr×r , and σ1 ≥ · · · ≥ σr > 0. Observe that ‖x0‖2 = ‖A†b‖2 =
‖Σ−1U∗b‖2 ≥ |u∗rb|/σr and

(4.12)
‖A†‖2 ‖b‖2
‖x0‖2

=
‖b‖2

σr‖x0‖2
≤ ‖b‖2
|u∗rb|

=
1

cos θ(ur, b)
,

where ur is the last column of U and θ(ur, b) is the acute angle between ur and b. Note that
the bound on ‖A†‖2 ‖b‖2/‖x0‖2 in (4.12) may be large only if b is “almost” orthogonal to ur.
For example, if A is an extremely ill conditioned fixed matrix (think that κ2(A) = 101000 to
be concrete) and b is considered as a random vector whose direction is uniformly distributed
in the whole space, then the probability that 0 ≤ θ(ur, b) ≤ π/2−10−6 is approximately 1−
10−6. Note that the condition 0 ≤ θ(ur, b) ≤ π/2−10−6 implies ‖A†‖2 ‖b‖2/‖x0‖2 . 106,
which is a moderate number compared to 101000. In particular, if the perturbation parameters
µ, ν, and ε in Corollary 4.2 are 10−16, then ‖A†‖2‖b‖2/‖x0‖2 . 106 provides a very good
bound for the variation of the minimum 2-norm solution of the LS problem. Even more, it
is possible that ‖A†‖2‖b‖2/‖x0‖2 is moderate although cos θ(ur, b) ≈ 0. This can be seen
by extending from nonsingular to general matrices the original result by Chan and Foulser in
[7, Theorem 1]. We do not present this easy generalization here and refer the reader to the
discussion in [18, Section 3.2].

In the argument above, the random vector b may be everywhere in the space. Next, we
consider vectors b such that Υ = θ(b,R(A)) < π/2 is kept constant. Let us describe all
these vectors as follows: let y ∈ Cr be any vector and let U⊥ ∈ Cm×(m−r) be such that
[U U⊥ ] ∈ Cm×m is unitary. Then chose any z ∈ Cm−r such that ‖z‖2 = ‖y‖2 tan Υ,
and define b = Uy + U⊥z. It is obvious that Υ = θ(b,R(A)), because R(U) = R(A). In
addition, from (4.12), it can be easily proved that these vectors b satisfy

(4.13)
‖A†‖2 ‖b‖2
‖x0‖2

=
‖b‖2

σr‖x0‖2
≤ ‖b‖2
|u∗rb|

=

√
1 + tan2 Υ

cos θ(er, y)
=

1

(cos Υ) · (cos θ(er, y) )
,

where er is the rth column of Ir. The bound in (4.13) is a “geometrical” quantity that does
not depend on κ2(A) and that, assuming that Υ is not very close to π/2, is a moderate number
for most vectors y, i.e., for most vectors¶ b such that Υ = θ(b,R(A)).

Finally, we discuss an interesting relationship of the factor ‖A†‖2‖b‖2/‖x0‖2 with the
term of κLS(A, b) that depends on κ2(A)2. Note that this term can be upper bounded as
follows

(4.14) Φ := κ2(A)2
‖r‖2

‖A‖2 ‖x0‖2
= κ2(A)

‖A†‖2 ‖r‖2
‖x0‖2

≤ κ2(A)
‖A†‖2 ‖b‖2
‖x0‖2

.

According to our discussion in this subsection ‖A†‖2‖b‖2/‖x0‖2 is a moderate number for
most vectors b. Therefore, Φ is upper bounded by a moderate number times κ2(A) for most
vectors b and, as a consequence, κ2(A)2 only affects the sensitivity of LS problems in very
particular situations. In addition, Φ can be written as follows

(4.15)
(
κ2(A)

‖A†‖2 ‖b‖2
‖x0‖2

)
‖r‖2
‖b‖2

= Φ ,

¶It seems possible to give a rigorous probabilistic meaning to the loose sentences “for most vectors b” that we
have used in this section and throughout the paper. A possible strategy would be to consider random vectors whose
entries follow uniform distributions in symmetric intervals and to develop results in the spirit of those in [42, Section
3]. This would likely lead to some extra

√
m factor in the bounds. Due to the length of the paper, we postpone the

investigation of these topics.
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which implies that for large enough relative residuals (think, for instance, in ‖r‖2/‖b‖2 ≥
10−3) and very ill conditioned matrices A, we have ‖A†‖2‖b‖2/‖x0‖2 � Φ ≤ κLS(A, b),
even if ‖A†‖2‖b‖2/‖x0‖2 is large.

4.2. The condition number under multiplicative perturbations of LS problems. In
this subsection we prove that ‖A†‖2‖b‖2/‖x0‖2 is essentially, i.e., up to a moderate constant,
the condition number under multiplicative perturbations of LS problems. The reader should
notice that, for simplicity, we consider in our definition of condition number that the left and
right mulplicative perturbations and the relative variation of b all have the same order.

THEOREM 4.3. Let us use the same notation and assumptions as in Corollary 4.2 with
the parameters µ, ν, and ε set equal to η, and let us define the condition number

κ
(M)
LS (A, b) := lim

η→0
sup

{
‖x̃0 − x0‖2
η ‖x0‖2

: x̃0 = [(I + E)A(I + F )]† (b+ h),

‖E‖2 ≤ η, ‖F‖2 ≤ η, ‖h‖2 ≤ η‖b‖2
}
.

Then

(4.16)
1

1 + 2
√

2
κ
(M)
LS (A, b) ≤ ‖A

†‖2 ‖b‖2
‖x0‖2

≤ κ(M)
LS (A, b) .

Proof. From (4.11) and 1 ≤ ‖A†‖2 ‖b‖2/‖x0‖2, we get

‖x̃0 − x0‖2
η ‖x0‖2

≤
√

2 +
(

1 +
√

2
) ‖A†‖2‖b‖2
‖x0‖2

+O(η) ≤
(

1 + 2
√

2
) ‖A†‖2‖b‖2
‖x0‖2

+O(η) ,

which implies the left inequality in (4.16). To prove the right inequality choose a perturbation
such that E = 0, F = 0, and h = ηw, where ‖w‖2 = ‖b‖2 and ‖A†w‖2 = ‖A†‖2‖w‖2.
For this perturbation ‖x̃0 − x0‖2/‖x0‖2 = ‖A†h‖2/‖x0‖2 = η ‖A†‖2‖b‖2/‖x0‖2. So, the
“sup” appearing in the definition of κ(M)

LS (A, b) implies ‖A†‖2‖b‖2/‖x0‖2 ≤ κ(M)
LS (A, b).

4.3. Multiplicative perturbation bounds for other solutions of LS problems. Bounds
for the variation of solutions different from the minimum 2-norm solution are easily obtained
from Theorem 4.1 and Theorem 3.3-(c) and are a minor modification of (4.3). Since the
residual of a LS problem is the same for all its solutions, it is not needed to consider again
perturbation bounds for the residuals.

THEOREM 4.4. If y ∈ Cn is a solution of the LS problem (4.1), then there exists a
solution ỹ ∈ Cn of the LS problem (4.2) such that

‖ỹ − y‖2 ≤ (αF + ‖F‖2) ‖y‖2 + [αE (1 + αF ) (1 + ε) + ε (1 + αF ) ] ‖A†‖2 ‖b‖2 ,

where αE , αF , and ε are defined as in the statement of Theorem 4.1.
Proof. Given y, there exists a vector z ∈ Cn such that y = x0 + PN (A)z, where x0 is

the minimum 2-norm solution of (4.1). Recall also that ‖y‖22 = ‖x0‖22 + ‖PN (A)z‖22 and, so,
‖PN (A)z‖2 ≤ ‖y‖2. Let us choose the following solution of (4.2), ỹ = x̃0 + PN (Ã)PN (A)z,
where x̃0 is the minimum 2-norm solution of (4.2). Therefore

‖ỹ − y‖2 ≤ ‖x̃0 − x0‖2 + ‖(PN (Ã) − PN (A))PN (A)z‖2 ≤ ‖x̃0 − x0‖2 + ‖F‖2‖y‖2 ,

where we have used Theorem 3.3-(c). Now, use (4.3) and ‖x0‖2 ≤ ‖y‖2 and get the result.
Note that the relative variation ‖ỹ−y‖2/‖y‖2 is governed by max{1, ‖A†‖2‖b‖2/‖y‖2},

which is smaller than or equal to ‖A†‖2 ‖b‖2/‖x0‖2. Therefore, the minimum 2-norm solu-
tion is the most sensitive of the solutions under multiplicative perturbations.
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5. Perturbation of least squares problems through factors. As explained in the In-
troduction, we present in Section 6 an accurate algorithm, Algorithm 6.1, for the solution
of LS problems minx∈Cn ‖b − Ax‖2 that makes use of an accurate RRD XDY of A. The
error analysis of Algorithm 6.1 is presented in Theorem 6.2 and it shows that the computed
solution is the exact solution of a LS problem corresponding to an RRD with nearby factors
(X + ∆X)(D + ∆D)(Y + ∆Y ), where the perturbations are normwise for the well condi-
tioned factors X and Y , and componentwise for the diagonal and potentially ill-conditioned
factor D. Therefore, we need to develop perturbation bounds for the solution of LS problems
whose coefficient matrix is given as an RRD under perturbations of the factors. This is done
in Theorem 5.1, whose proof relies on the key idea of writing the perturbations in the factors
as a multiplicative perturbation of the whole matrix.

Let us recall that, according to Lemma 2.2-(c), if A = XDY is an RRD of A, then A† =
Y †D−1X†. Consequently, the minimum 2-norm solution of the LS problem minx∈Cn ‖b −
XDY x‖2 is x0 = Y †D−1X†b.

THEOREM 5.1. Let X ∈ Cm×r, D ∈ Cr×r, and Y ∈ Cr×n be such that rank (X) =
rank (Y ) = r and D is diagonal and nonsingular, and let b ∈ Cm. Let x0 be the minimum
2-norm solution of minx∈Cn ‖b − XDY x‖2, and x̃0 be the minimum 2-norm solution of
minx∈Cn ‖(b+ h)− (X + δX)(D+ δD)(Y + δY )x‖2, where ‖δX‖2 ≤ α‖X‖2, ‖δY ‖2 ≤
β‖Y ‖2, |δD| ≤ ρ|D|, and ‖h‖2 ≤ ε‖b‖2. Let r = b −XDY x0 and r̃ = (b + h) − (X +
δX)(D + δD)(Y + δY ) x̃0. Assume that

(5.1) µ := ακ2(X) < 1 and ν := [β + ρ(1 + β)]κ2(Y ) < 1,

and define for these parameters θµ and θν as in (4.8). Then, the bound (4.9) holds with A†

replaced by Y †D−1X†, the bound (4.10) holds, and to first order in α, β, ρ, and ε

(5.2)
‖x̃0 − x0‖2
‖x0‖2

≤
√

2 (β+ ρ)κ2(Y ) +
(
ε+
√

2ακ2(X)
) ‖Y †D−1X†‖2‖b‖2

‖x0‖2
+h.o.t.

Proof. Let us call A = XDY and Ã = (X + δX)(D + δD)(Y + δY ). Let us write Ã
as a multiplicative perturbation of A as follows

Ã = (I + δXX†)XD (I +D−1 δD)Y (I + Y †δY )

= (I + δXX†)XDY (I + Y †D−1 δD Y ) (I + Y †δY )

=: (I + E)A(I + F ),

where E = δXX† and F = Y †δY + Y †D−1 δD Y + Y †D−1 δD δY . Next, taking into
account that ‖δDD−1‖2 ≤ ρ, we get

‖E‖2 ≤ ακ2(X) = µ < 1, ‖F‖2 ≤ [β + ρ(1 + β)]κ2(Y ) = ν < 1,

and Theorem 5.1 follows immediately from Corollary 4.2.

Since the factors X and Y of an RRD are well conditioned, we see from (5.2) that
the sensitivity with respect perturbations of the factors of the minimum 2-norm solution of
the LS problem minx∈Cn ‖b − XDY x‖2 is again controlled by ‖A†‖2‖b‖2/‖x0‖2, where
A = XDY , which is a moderate number for most b (see Subsection 4.1). Note that Theorem
5.1 is valid both if m ≥ n or if m < n, i.e., for LS problems or for undertermined linear
systems, since Corollary 4.2 is valid in both cases.
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6. Algorithm and error analysis. We present in this section Algorithm 6.1 for solv-
ing a LS problem minx∈Cn ‖b − Ax‖2 and we prove that it computes the minimum 2-norm
solution with relative error bounded by O(u) ‖A†‖2 ‖b‖2/‖x0‖2, which is simply O(u) for
most vectors b according to the discussion in Subsection 4.1. The first step of the algo-
rithm computes an accurate RRD of A = XDY ∈ Cm×n in the sense of Definition 2.3,
something that is possible for many classes of structured matrices as we have discussed
in the Introduction. Next steps of Algorithm 6.1 are based on the fact that according to
Lemma 2.2-(c) the minimum 2-norm solution is x0 = Y †(D−1(X†b)) and the following
observations: (1) x1 = X†b is the unique solution of the full column rank LS problem
minx∈Cr ‖b − X x‖2; (2) x2 = D−1(X†b) is the unique solution of the linear system
Dx = x1; and (3) Y †(D−1(X†b)) is the minimum 2-norm solution of the full row rank
underdetermined linear system Y x = x2. Observe that this procedure is valid both if m ≥ n
and if m < n. Therefore, in the latter case and if rank (A) = m, the procedure solves
accurately the underdetermined linear system Ax = b.

The minimum 2-norm solution x0 of the underdetermined system Y x = x2 is computed
via the Q-method described in [28, Sec. 21.1] and that we recall here briefly. The idea is to
compute first via the Householder QR algorithm a thin QR factorization of Y ∗ = WRY ∈
Cn×r, where W ∈ Cn×r satisfies W ∗W = Ir and RY ∈ Cr×r is upper triangular and
nonsingular. Thus Y = R∗YW

∗ ∈ Cr×n, and Lemma 2.2-(c) implies Y † = (W ∗)† (R∗Y )† =
W R−∗Y , where R−∗Y denotes the inverse of R∗Y . Finally, x0 = W (R−∗Y x2) and R−∗Y x2 is
computed by solving the triangular system R∗Y x = x2 by forward substitution. In practice,
it is important to note that the factor W is not required explicitly, we just need the ability of
multiplying W times a vector, and this can be done by multiplying the sequence of n × n
Householder reflectors involved in the QR factorization of Y ∗ times [(R−∗Y x2)∗, 0]∗ ∈ Cn.

We are now in position of stating Algorithm 6.1.

ALGORITHM 6.1. (Accurate solution of LS problems via RRD)
Input: A ∈ Cm×n, b ∈ Cm
Output: x0 minimum 2-norm solution of minx∈Cn ‖b−Ax‖2

Step 1: Compute an accurate RRD of A = XDY in the sense of Definition 2.3,
where X ∈ Cm×r, D ∈ Cr×r is diagonal, Y ∈ Cr×n, and
rank (A) = rank (X) = rank (Y ) = rank (D) = r.

Step 2: Compute the unique solution x1 of minx∈Cr ‖b−X x‖2 using the
Householder QR factorization of X .

Step 3: Compute the unique solution x2 of the diagonal linear system Dx = x1 as
x2(i) = x1(i)/dii, i = 1, . . . , r.

Step 4: Compute the minimum 2-norm solution x0 of Y x = x2 using the Q method,
i.e., via Householder QR factorization of Y ∗.

The computational cost of Step 1 of Algorithm 6.1 depends on the specific type of ma-
trices and on the specific algorithm used among those mentioned in the Introduction. Anyway
all these algorithms cost O(mn2) flops if m ≥ n and O(m2n) flops if m < n. The leading
terms of the costs of Steps 2, 3, and 4 are 2r2(m − r/3), r, and 2r2(n − r/3) flops,
respectively. Since r ≤ min{m,n}, the total cost of Algorithm 6.1 isO(mn2) flops ifm ≥ n
and O(m2n) flops if m < n.

The backward rounding errors committed by Algorithm 6.1 are analyzed in Theorem 6.2.
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We will use the following notation introduced in [28, Secs. 3.1 and 3.4]

(6.1) γn :=
nu

1− nu
and γ̃n :=

cnu

1− cnu
,

where c denotes a small integer constant whose exact value is not essential in the analy-
sis. Before stating and proving Theorem 6.2, let us comment the need and the meaning
of the assumptions used in the theorem. First, we assume that the factors X̂ , D̂, Ŷ com-
puted in Step 1 in floating point arithmetic satisfy (2.3), (2.4), and (2.5), which imply
rank (X) = rank (X̂) = r, rank (D) = rank (D̂) = r, rank (Y ) = rank (Ŷ ) = r, and
(2.6). Therefore, we can use κ2(X) and κ2(Y ) in the errors of Steps 2 and 4 instead
of κ2(X̂) and κ2(Ŷ ) at the cost of not paying attention to the exact values of the numeri-
cal constants in the error bounds. The assumption max{κ2(X), κ2(Y )}

√
r γ̃rmax{m,n} <

1 guarantees that the backward errors ∆X̂ on X̂ in Step 2 preserve the full rank, i.e.,
rank (X̂) = rank (X̂ + ∆X̂) = r, and the same for the backward errors on Ŷ in Step 4.
Finally, the technical assumption κ2(Y )n r2 γ̃n < 1 is needed for applying [28, Theorem
21.4] in the error analysis of Step 4.

We present in Theorem 6.2 two statements for the backward errors of Algorithm 6.1, one
with respect the computed factors X̂ , D̂, and Ŷ of A and another with respect the exact ones,
which is the result to be used in practice. The reason for presenting these two statements
is that the former gives stronger column-wise and row-wise backward errors in X̂ and Ŷ ,
respectively, than the latter. This may be used to give stronger final backward errors for some
particular classes of matrices, as Cauchy matrices. We do not follow this line here.

THEOREM 6.2. Let X̂ ∈ Cm×r, D̂ ∈ Cr×r, and Ŷ ∈ Cr×n be the factors of A
computed in Step 1 of Algorithm 6.1 and assume that they satisfy the error bounds (2.3)
and (2.4) with respect to the exact factors X , D, and Y of A. Assume also that (2.5),

max{κ2(X), κ2(Y )}
√
r γ̃rmax{m,n} < 1, and(6.2)

κ2(Y )n r2 γ̃n < 1(6.3)

hold. Let x̂0 be the computed minimum 2-norm solution of minx∈Cn ‖b− Ax‖2 using Algo-
rithm 6.1 in finite precision with unit roundoff u. Then the following statements hold.

(a) x̂0 is the exact minimum 2-norm solution of

(6.4) min
x∈Cn

‖(b+ ∆b)− (X̂ + ∆X̂)(D̂ + ∆D̂)(Ŷ + ∆Ŷ )x‖2,

where

‖∆X̂(:, j)‖2 ≤ γ̃mr ‖X̂(:, j)‖2, ‖∆Ŷ (j, :)‖2 ≤ γ̃nr ‖Ŷ (j, :)‖2, for j = 1, . . . , r

|∆D̂| ≤ γ̃1 |D̂|, ‖∆b‖2 ≤ γ̃mr ‖b‖2 .

(b) x̂0 is the exact minimum 2-norm solution of

(6.5) min
x∈Cn

‖(b+ ∆b)− (X + ∆X)(D + ∆D)(Y + ∆Y )x‖2,

where

‖∆X‖2 ≤ (u p(m,n) +
√
r γ̃mr +

√
r γ̃mr u p(m,n)) ‖X‖2,

‖∆Y ‖2 ≤ (u p(m,n) +
√
r γ̃nr +

√
r γ̃nr u p(m,n)) ‖Y ‖2,

|∆D| ≤ (u p(m,n) + γ̃1 + γ̃1 u p(m,n)) |D|, ‖∆b‖2 ≤ γ̃mr ‖b‖2 .
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(c) If x0 is the exact minimum 2-norm solution of minx∈Cn ‖b − Ax‖2, then ‖x̂0 −
x0‖2/‖x0‖2 can be bounded as in Theorem 5.1 with α = (u p(m,n) +

√
r γ̃mr +√

r γ̃mr u p(m,n)), β = (u p(m,n)+
√
r γ̃nr+

√
r γ̃nr u p(m,n)), ρ = (u p(m,n)+

γ̃1 + γ̃1 u p(m,n)), and ε = γ̃mr. In particular, to first order in u, and if c is an
small integer constant, then

‖x̂0 − x0‖2
‖x0‖2

≤ c u
[
py(m,n)κ2(Y ) + px(m,n)κ2(X)

‖A†‖2‖b‖2
‖x0‖2

]
+O(u2) ,

where py(m,n) := (p(m,n) + nr3/2) and px(m,n) := (p(m,n) +mr3/2).

Proof. In order to prove part (a) let us write the backward errors in steps 2, 3, and 4 of
Algorithm 6.1.

1. The backward errors of Step 2 are given in [28, Theorem 20.3]: the solution
computed in Step 2, x̂1, is the exact solution of the LS problem

(6.6) min
x∈Cr

‖(b+ ∆b)− (X̂ + ∆X̂)x‖2 ,

where ‖∆X̂(:, j)‖2 ≤ γ̃mr‖X̂(:, j)‖2, for j = 1, . . . , r, and ‖∆b‖2 ≤ γ̃mr ‖b‖2.
Therefore, ‖∆X̂‖2 ≤ ‖∆X̂‖F ≤ γ̃mr‖X̂‖F ≤

√
rγ̃mr‖X̂‖2. Note also that,

as we have commented before, (2.3) and (2.5) imply rank (X) = rank (X̂) = r,
so Weyl perturbation theorem [44] for singular values and (6.2) imply |σr(X̂ +

∆X̂) − σr(X̂)|/σr(X̂) ≤ ‖∆X̂‖2/σr(X̂) ≤
√
rγ̃mrκ2(X̂) < 1, and, finally,

rank (X̂) = rank (X̂ + ∆X̂) = r. As a consequence, x̂1 satisfies

(6.7) x̂1 = (X̂ + ∆X̂)†(b+ ∆b),

with X̂ + ∆X̂ ∈ Cm×r and rank (X̂ + ∆X̂) = r.
2. As a consequence of [28, Lemma 3.5], the solution, x̂2, computed in Step 3 obeys

(6.8) (D̂ + ∆D̂) x̂2 = x̂1 with |∆D̂| ≤ γ̃1|D̂|,

with D̂+∆D̂ ∈ Cr×r diagonal and nonsingular, since (2.4) and (2.5) imply rank (D) =

rank (D̂) = r and γ̃1 < 1 by (6.2).
3. The backward errors of Step 4 are given in [28, Theorem 21.4]. The application

of [28, Theorem 21.4] requires rank (Ŷ ) = r, which follows from (2.3) and (2.5),
and the assumption

‖ |Ŷ †| |Ŷ | ‖2 r n γn < 1,

which is guaranteed by (6.3), since ‖ |Ŷ †| |Ŷ | ‖2 r n γn ≤ κ2(Ŷ ) r2 nγn < 1. With
this condition, the minimum 2-norm solution computed in Step 4, x̂0, is the exact
minimum 2-norm solution of the underdetermined system

(Ŷ + ∆Ŷ )x = x̂2 ,

with ‖∆Ŷ (j, :)‖2 ≤ γ̃nr‖Ŷ (j, :)‖2, for j = 1, . . . , r. In addition, we can prove
rank (Ŷ ) = rank (Ŷ + ∆Ŷ ) = r via an argument similar to the one we used to
prove the same for X̂ + ∆X̂ . Therefore, x̂0 obeys

(6.9) x̂0 = (Ŷ + ∆Ŷ )†x̂2,

with Ŷ + ∆Ŷ ∈ Cr×n and rank (Ŷ + ∆Ŷ ) = r.
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From (6.7), (6.8), and (6.9) we have that

x̂0 = (Ŷ + ∆Ŷ )†(D̂ + ∆D̂)−1(X̂ + ∆X̂)†(b+ ∆b)(6.10)

=
[
(X̂ + ∆X̂) (D̂ + ∆D̂) (Ŷ + ∆Ŷ )

]†
(b+ ∆b) ,(6.11)

where the second equality follows from Lemma 2.2-(c). This and the bounds we have devel-
oped for X̂ , D̂, and Ŷ prove part (a) of Theorem 6.2.

The proof of Theorem 6.2-(b) follows easily from part-(a). Equations (2.3) and (2.4)
allow us to write X̂ = X + EX , D̂ = D + ED, and Ŷ = Y + EY , where ‖EX‖2 ≤
u p(m,n) ‖X‖2, |ED| ≤ u p(m,n)|D|, and ‖EY ‖2 ≤ u p(m,n)‖Y ‖2. Therefore, we can
write

(6.12) X̂ + ∆X̂ = X + EX + ∆X̂ =: X + ∆X ,

where

‖∆X‖2 ≤ ‖EX‖2 + ‖∆X̂‖2
≤ u p(m,n) ‖X‖2 +

√
r γ̃mr‖X̂‖2

≤ u p(m,n) ‖X‖2 +
√
r γ̃mr (‖X‖2 + ‖EX‖2)

≤ (u p(m,n) +
√
r γ̃mr +

√
r γ̃mr u p(m,n)) ‖X‖2 .(6.13)

Analogously, we can write

D̂ + ∆D̂ =: D + ∆D , with |∆D| ≤ (u p(m,n) + γ̃1 + γ̃1 u p(m,n)) |D| ,

Ŷ + ∆Ŷ =: Y + ∆Y , with ‖∆Y ‖2 ≤ (u p(m,n) +
√
r γ̃nr +

√
r γ̃nr u p(m,n)) ‖Y ‖2 .

If these equations and (6.12)-(6.13) are inserted into (6.4), then (6.5) is obtained and part (b)
is proved. Finally, part (c) is an immediate consequence of part (b) and Theorem 5.1.

Observe that, since in an RRD the factors X and Y are well conditioned, Theorem 6.2-
(c) guarantees that the forward error in the solution computed by Algorithm 6.1 is bounded
by O(u)‖A†‖2‖b‖2/‖x0‖2.

7. Numerical experiments. In this section we will show numerical tests done using
MATLABTM that illustrate how well the errors committed by Algorithm 6.1 compare with
the theoretical predictions and with the errors committed by the usual method to solve LS
problems using the QR factorization computed with the traditional Householder algorithm
as implemented in MATLABTM [28, Section 20.2]. For that, we will use three important
classes of rectangular structured matrices that may have huge condition numbers: Cauchy,
Vandermonde, and Graded matrices. For matrices in these classes, accurate RRDs in the
sense of Definition 2.3 can be computed using the algorithms in [8] and [27]. We will present
tests only for matrices A ∈ Rm×n with real entries, m ≥ n, and such that rank(A) = n,
which means that we consider only LS problems with unique solutions.

We know from (1.1) and (4.14) that if x̂0 is the unique solution of minx∈Rn ‖Ax − b‖2
computed by the QR algorithm in MATLABTM and x0 is the exact solution, then

(7.1)
‖x̂0 − x0‖2
‖x0‖2

≤ cmn3/2 uκ2(A)
‖A†‖2‖b‖2
‖x0‖2

,

which is a bound larger than (1.1) but reliable in most situations. In contrast, Algorithm 6.1
satisfies (see (1.2) and Theorem 6.2-(c))

(7.2)
‖x̂0 − x0‖2
‖x0‖2

≤ u f(m,n)

(
κ2(Y ) + κ2(X)

‖A†‖2‖b‖2
‖x0‖2

)
.
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In our tests we have computed the relative error in the solution for both algorithms, and also
the quantities

(7.3) ΘQR := u

(
κ2(A)

‖A†‖2‖b‖2
‖x0‖2

)
, ΘRRD := u

(
κ2(Y ) + κ2(X)

‖A†‖2‖b‖2
‖x0‖2

)
,

to check, erasing pessimistic dimensional constants, how sharp the bounds (7.1) and (7.2) are.
We will see that Algorithm 6.1 is by far the most accurate of the two: for random right-hand
sides b, it achieves relative normwise errors of order unit roundoff, which means that ΘRRD

is O(u) almost always even for extremely ill-conditioned matrices A.

7.1. Cauchy matrices. The entries of a Cauchy matrix,C ∈ Rm×n,m ≥ n, are defined
in terms of two vectors z = [z1, . . . , zm]T ∈ Rm, y = [y1, . . . , yn]T ∈ Rn as

(7.4) cij =
1

zi + yj
, i = 1, . . . ,m, j = 1, . . . , n.

Matrices of the form G = S1CS2, where C is Cauchy and S1, S2 are diagonal and nonsin-
gular, are called in [8] quasi-Cauchy matrices, which include, as a particular case, Cauchy
matrices for S1 = Im, S2 = In. Quasi-Cauchy matrices have full column rank if zi 6= zj
for any i 6= j, yk 6= yl for any k 6= l, and zi 6= −yj for all i, j. Algorithm 3 in [8] uses a
structured version of GECP to compute an accurate RRD of any square quasi-Cauchy ma-
trix. This algorithm can be very easily extended to deal with rectangular matrices, and this
version is the one used in the tests of this section to compute the RRD in Step 1 of Al-
gorithm 6.1. The overall cost of this step is 2mn2 − 2n3/3 + O(n2 + mn) operations plus
mn2/2− n3/6 +O(n2 +mn) comparisons.

In order to make easy references, let us summarize and give names to the two algorithms
that are used in this section for solving minx∈Rn ‖Cx− b‖2, with C a Cauchy matrix:

• LS-QR: given the vectors z and y, the entries of C are computed as in (7.4) and
the LS problem is solved using the Householder QR factorization implemented in
MATLABTM.

• LS-RRD: the LS problem is solved using Algorithm 6.1 with the RRD in Step 1
computed with the rectangular version discussed above of Algorithm 3 in [8].

The QR factorizations needed in Steps 2 and 4 of Algorithm 6.1 are computed with the
routine in MATLABTM. Note that in this case the linear system Y x = x2 in Step 4 has the
matrix Y nonsingular and GE with partial pivoting can be used in its solution.

In our tests, we have generated Cauchy matrices with random z and y vectors, we have
generated also random right-hand side vectors b, and we have computed the solution of
minx∈Rn ‖Cx − b‖2 using the algorithms LS-QR and LS-RRD. To compute the relative
errors ‖x̂0 − x0‖2/‖x0‖2, we take as “exact” solution x0 the one computed via the svd
command of MATLABTMrun in variable precision arithmetic. In each test we have set the pre-
cision to 2 log10 |D1/Dn|+30 decimal digits, whereD1 andDn are, respectively, the largest
and the smallest (in absolute value) diagonal entries of the diagonal matrix D in the RRD of
C computed in Step 1 of Algorithm 6.1. The motivation of taking 2 log10 |D1/Dn| + 30
decimal digits comes from the facts that |D1/Dn| has a magnitude similar to κ2(C), because
X and Y are well-conditioned, and that, according to (7.1) and to the discussion in Subsec-
tion 4.1, the error in traditional algorithms for LS problems is almost always much smaller
than uκ2(C)2. The random vectors z, y, and b have been chosen either from the uniform dis-
tribution in the interval [0, 1] (command rand in MATLABTM), or from the standard normal
distribution (command randn in MATLABTM). In all experiments we have tested the eight
resulting possibilities in the choice of the random distributions for z, y, and b.
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Two kind of experiments have been done. In the first group, we have fixed the size of
the matrix: m × n = 100 × 50, 50 × 30, or 25 × 10. For each size we have generated
50 × 8 different sets of the random vectors z, y, and b, therefore, generating a total of 400
different LS problems for each size. Figure 7.1 shows the results for the size 100 × 50
when the vectors z and b are selected from the standard normal distribution and the vector
y from the uniform distribution in [0, 1]. We have plotted in a log-log scale the relative
error ‖x̂0 − x0‖2/‖x0‖2 of the solution against the condition number (computed from the
“exact” SVD in variable precision arithmetic used to compute the “exact solution” x0) of
the matrices for the algorithms LS-QR and LS-RRD. Besides this, we have displayed also
the quantities ΘQR and ΘRRD appearing in (7.3). We observe that the relative error in the
LS-RRD algorithm is of order u times a small constant, as predicted, while the error for
LS-QR scales almost linearly with κ2(C) until it saturates. The linear dependence on κ2(C)
of the relative error in LS-QR is the predicted by (7.1) since ‖C†‖2‖b‖2/‖x0‖2 has been
always moderate in these tests. It can be also observed that the bound ΘRRD is rather sharp
and does not overestimate the actual errors. For other sizes and other ways to generate z, y,
and b the results have been similar.

In our second group of tests we have fixed the number of rows of the matrix and varied
the number of the columns. We have tested matrices of sizes m = 100, n = 10 : 10 : 90
(5 × 8 sets of random vectors z, y, and b for each size), m = 50, n = 10 : 2 : 40 (10 × 8
sets of random vectors z, y, and b for each size), and m = 25, n = 5 : 5 : 20 (20 × 8 sets
of random vectors z, y, and b for each size). This makes a total of 2280 matrices. Figure 7.2
shows the results for m = 50, n = 10 : 2 : 40 for four different combinations of the random
distributions for z, y, and b. For each size we plot the maximum relative error out of the 10
samples. Again the relative errors of the solution for the LS-RRD algorithm are of order u
times a moderate constant, while for the LS-QR algorithm are huge. For other sizes and other
ways to generate z, y, and b the results have been similar.

For all our experiments with Cauchy matrices, the range of the condition numbers has
been 100 . κ2(C) . 10100, the maximum value of the term ‖C†‖2‖b‖2/‖x0‖2 has been
1376, 8 ≤ κ2(X) ≤ 72, and 13 ≤ κ2(Y ) ≤ 58.

7.2. Vandermonde matrices. We have performed numerical tests of Algorithm 6.1
similar to those in Subsection 7.1 with Vandermonde matrices. Vandermonde matrices appear
naturally in polynomial data fitting. Given a vector of points z = [z1, . . . , zm]T ∈ Rm, such
that zi 6= zj if i 6= j, and a set of “function values” b = [b1, . . . , bm]T ∈ Rm, the problem
of finding the polynomial Pn−1(z), of degree less than or equal to n − 1, n ≤ m, that best
fits the data z, b in the LS sense is equivalent as solving the LS problem minc∈Rn ‖V c− b‖2
where V ∈ Rm×n is a Vandermonde matrix, whose entries are given by

(7.5) vij = zj−1i , i = 1, . . . ,m, j = 1, . . . , n,

and the sought solution c ∈ Rn is the vector that contains the coefficients of the polynomial
Pn−1(z) = c1 + c2z+ · · ·+ cnz

n−1. A method to compute an accurate RRD of any Vander-
monde matrix was presented in [8, Section 5]. It is based on the fact that if F ∈ Cn×n is the
n × n discrete Fourier transform, then V F is a quasi-Cauchy matrix whose parameters can
be accurately computed in O(mn) operations, as well as the sums and subtractions of any
pair of these parameters. Then, an accurate RRD of V F = XDY can be computed with the
Algorithm 3 in [8] adapted to deal with rectangular matrices as in Subsection 7.1. Finally,
V = XD (Y F ∗) is an accurate RRD of V . The overall cost is the same as for Cauchy
matrices: 2mn2 − 2n3/3 + O(n2 + mn) operations plus mn2/2 − n3/6 + O(n2 + mn)
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FIG. 7.1. Forward relative error ‖x̂0 − x0‖2/‖x0‖2 against κ2(C). C are random 100 × 50 Cauchy
matrices. The vectors z and b are selected from the standard normal distribution and the vector y from the uniform
distribution in [0, 1].

comparisons. This algorithm will be used to compute the RRD in Step 1 of Algorithm 6.1.
The two algorithms used in this section for solving minx∈Rn ‖V x− b‖2 are:

• LS-QR: given the vector z, the entries of V are computed as in (7.5) and the LS prob-
lem is solved using the Householder QR factorization implemented in MATLABTM.

• LS-RRD: the LS problem is solved using Algorithm 6.1 with the RRD in Step 1
computed with the rectangular version discussed above of the method in [8, Sec. 5].

In our tests, we have generated Vandermonde matrices with random z vectors, we have
generated also random right-hand side vectors b, and we have computed the solution of
minx∈Rn ‖V x − b‖2 using the algorithms LS-QR and LS-RRD. To compute the relative
error ‖x̂0 − x0‖2/‖x0‖2, we follow the procedure presented in Subsection 7.1 to obtain the
“exact” solution x0. The random vectors z and b have been chosen either from the uniform
distribution in [0, 1] or from the standard normal distribution. In all experiments we have
tested the four resulting combinations in the choice of the random distributions for z and b.

We have tested m× n matrices of sizes m = 50, n = 5:5 :30; m = 100, n = 10:5 :60;
and m = 500, n = 100 : 50 : 250. For each size we have generated different sets of the
random vectors z and b (for m = 50, 100, 25 × 4 different sets, and for m = 500, 10 × 4
different sets), generating a total of 1860 different LS problems. Figure 7.3 shows the results
for the sizes m = 100, n = 10:5 :60, when the vectors z and b are chosen from the standard
normal distribution. We have plotted in a log-log scale the relative error ‖x̂0−x0‖2/‖x0‖2 of
the solution against the condition number (computed from the “exact" SVD as in Subsection
7.1) of the matrices for the algorithms LS-QR and LS-RRD. Besides this, we have displayed
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FIG. 7.2. Forward relative error ‖x̂0 − x0‖2/‖x0‖2 against n, for m × n Cauchy matrices of sizes m =
50, n = 10:2 :40 (10 matrices for each size) for four different combinations of the random distributions (mode=1
denotes the standard normal distribution and mode=2 denotes the uniform distribution in [0, 1]) for z, y, and b.

also the quantities‖ ΘQR and ΘRRD appearing in (7.3). The results are similar to those
obtained in Figure 7.1 for Cauchy matrices and we refer the reader to the comments made
in Subsection 7.1. For other sizes and other ways to generate z and b the results have been
similar, producing the algorithm LS-RRD relative errors that are always of order u times a
moderate constant and the algorithm LS-QR relative errors that scale linearly with κ2(V ) and
that are very large for very large κ2(V ). For all our experiments with Vandermonde matrices,
the range of the condition numbers has been 100 . κ2(V ) . 1070, the maximum value of
the term ‖V †‖2‖b‖2/‖x0‖2 has been 1076, 4 ≤ κ2(X) ≤ 65, and 3 ≤ κ2(Y ) ≤ 87.

7.3. Graded matrices. Another class of matrices for which it is possible to compute
an accurate RRD under certain conditions are graded matrices: matrices of the form A =
S1BS2 ∈ Rm×n, with S1 ∈ Rm×m and S2 ∈ Rn×n nonsingular diagonal matrices that
may be arbitrarily ill-conditioned, B ∈ Rm×n a well-conditioned matrix, and rank(A) = n.
Therefore, the matrix A can have a huge condition number. Higham in [27] determined
conditions such that if the QR factorization with complete pivoting (column pivoting together
with row sorting or row pivoting, see [27] for details) of a graded matrix A is computed and
the SVD of the permuted R factor is computed via the one-sided Jacobi algorithm [24], then
the SVD of A is obtained with high relative accuracy. In this section we show that under the

‖To keep the scale of the plot we have plotted min (ΘQR, 10) instead of ΘQR, since values of ΘQR much
larger than in Figure 7.1 have appeared in these tests.
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FIG. 7.3. Forward relative error ‖x̂0 − x0‖2/‖x0‖2 against κ2(V ) for random Vandermonde matrices V of
sizes 100× 10:5 :60. The random vectors z and b are selected from the standard normal distribution.

same conditions, the QR factorization with complete pivoting can be used to solve accurately
and very efficiently LS problems whose coefficient matrix is graded. To this purpose, note
that if PRAPC = QR is the thin QR factorization with complete pivoting, where PR and
PC are permutation matrices, Q ∈ Rm×n, and R ∈ Rn×n, then an RRD A = XDY can be
obtained as follows:

A = PTRQRP
T
C = (PTR Q)D (D−1RPTC ),

whereD := diag(R),X := PTRQ, and Y := D−1RPTC . In this case, Step 2 of Algorithm
6.1 reduces to x1 = QTPRb and Steps 3-4 can be merged in only one step without af-
fecting the rounding errors, since the errors are componentwise andD diagonal. This merged
step is simply to solve the linear system (RPTC )x = x1. Therefore, D is not necessary and
Algorithm 6.1 simplifies to Algorithm 7.1, which is almost the usual algorithm to solve LS
problems using the QR factorization.

ALGORITHM 7.1. (Accurate solution of graded LS problems via QR-complete pivoting)
Input: A ∈ Rm×n graded matrix, b ∈ Rm, m ≥ n = rank(A).
Output: x0 unique solution of minx∈Rn ‖b−Ax‖2

Step 1: Compute the thin QR decomposition with complete pivoting (see [27]) of A,
A = PTRQRP

T
C .
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Step 2: Compute x1 = QT PR b.

Step 3: Solve the consistent linear system RPTC x = x1 to get x0.

The cost of Algorithm 7.1 is essentially the same as the standard Householder QR
method, i.e., 2mn2 − 2

3n
3 flops, since the cost of pivoting is O(mn). As usual it is not

necessary to form explicitly the matrix Q. Algorithm 7.1 runs also for matrices A that are not
graded, but then the accuracy is not guaranteed.

It is important to note that GECP can be also used to compute under the same conditions
an accurate RRD of a graded matrix [9, Section 4] and then Algorithm 6.1 can be used
to solve accurately graded LS problems. However, this procedure needs to compute a QR
factorization in Step 2 of Algorithm 6.1 and, so, it is more expensive than Algorithm 7.1.

Next, we explain briefly and in a simplified non-rigorous way which are the errors com-
mitted by Algorithm 7.1. These errors are essentially equal to those of Algorithm 6.1 taking
as RRD A = (PTR Q)D (D−1RPTC ), and therefore they are determined by the errors com-
mitted in the computation of the QR factorization with complete pivoting. In order to make
notation simpler, we assume that the matrix A has been pre-pivoted, i.e., that Step 1 of
Algorithm 7.1 produces PR = Im and PC = In. Observe that this induces correspond-
ing pre-permutations in S1, B, and S2. First, it was proved in [27, Theorem 2.5] that if
A = S1BS2 ∈ Rm×n(m ≥ n), for arbitrary nonsingular diagonal matrices S1 and S2, then
the factor R̂ computed in Step 1 of Algorithm 7.1, obeys

(7.6) S1(B + ∆B)S2 = QR̂, with ‖∆B‖2 = O(u)‖B‖2,

where Q ∈ Rm×n is a matrix having exactly orthonormal columns. The big-O notation in
(7.6) hides some factors: growth factors and low degree polynomials in m and n, that might
be important in some rare cases. See [27] for the details. However our experiments (as those
in [27]) show that O(u) is in practice a small constant times u. If we would compute the
factor Q explicitly, then we would obtain a matrix Q̂ such that ‖Q − Q̂‖2 = O(u) [28, eq.
(19.13)], where Q is the matrix in (7.6). Therefore, we will not distinguish between the exact
Q and the computed one in the following discussion.

Now we need to get, from the backward error in (7.6), forward errors on the RRD of the
type appearing in Definition 2.3. To this purpose, recall that if B = LU has an LU factoriza-
tion (without pivoting), L ∈ Rm×n and U ∈ Rn×n, whose factors are well-conditioned and
such that ‖B†‖2 ≈ ‖L†‖2‖U−1‖2, then it was proven in the proof of [9, Theorem 4.1] that
S1(B + ∆B)S2 can be written as∗∗

S1(B + ∆B)S2 = (I + E)A(I + F ),(7.7)

with max(‖E‖2, ‖F‖2) = O(τ ‖∆B‖2‖B†‖2) = O(u) τ κ2(B),(7.8)

where the factor τ controls the grading (after the permutations in Step 1 of Algorithm 7.1)
and it is given by

(7.9) τ = max(1, τ1, τ2), with τ1 = max
1≤j≤n

j ≤ k ≤ m

|(S1)kk|
|(S1)jj |

, τ2 = max
1≤j≤k≤n

|(S2)kk|
|(S2)jj |

.

Combining (7.6) and (7.7), neglecting second order terms, and defining D̂ := diag(R̂), we
get A = (I − E)QD̂(D̂−1R̂)(I − F ). So, X = (I − E)Q, the matrix D̂, and Y =

∗∗The actual bounds are more complicated and include κ2(L) and κ2(U), that may be much larger than κ2(B)
since the pivoting is made on A and not on B (see [9, Section 4] and [27] for details). In our discussion, we pretend
to emphasize the main factors that control the errors in practice and not to present a rigorous analysis.
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(D̂−1R̂)(I − F ) can be considered as the factors of an exact RRD of A, whose computed
factors would be X̂ = Q, D̂, and Ŷ = (D̂−1R̂). Observe that here the exact and the
computed diagonal factors are the same. Therefore, we can use (7.8) to get max{‖X̂ −
X‖2/‖X̂‖2 , ‖Ŷ − Y ‖2/‖Ŷ ‖2} = O(u) τ κ2(B), which allows us to apply Theorem 6.2-(c)
with p(m,n) replaced by τ κ2(B) and to get to first order the following forward error on the
solution computed by Algorithm 7.1

(7.10)
‖x̂0 − x0‖2
‖x0‖2

≤ O(u) τ κ2(B)

(
κ2(D̂−1R̂) +

‖A†‖2‖b‖2
‖x0‖2

)
+O(u2) ,

where we have used that κ2(Q) = 1. A key point in the bound (7.10) is the parameter τ ,
which penalizes κ2(B). It might be very large, because the diagonal matrices S1 and S2 can
be arbitrarily ill-conditioned. However, the permutations coming from QR with complete
pivoting almost always reorder S1 and S2 in such a way that τ is of order one.
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FIG. 7.4. Forward relative error ‖x̂0−x0‖2/‖x0‖2 against κ2(B) for random graded matricesA = S1BS2

of size 100× 40, with B, S1, and S2 generated with the option (b) explained in text.

To test the accuracy of Algorithm 7.1 for graded matrices A we have performed several
numerical experiments similar to those in [27] and we have used the following two algorithms
for solving minx∈Rn ‖Ax− b‖2:

• LS-QR: computes the solution using the Householder QR factorization with column
pivoting as implemented in MATLABTM.
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• LS-RRD: uses Algorithm 7.1 with the QR factorization in Step 1 computed with
row sorting and column pivoting [27].

Observe that the algorithms LS-QR in Subsections 7.1 and 7.2 used Householder QR with-
out any pivoting. Here, we use column pivoting to illustrate that the additional row sort-
ing in LS-RRD is fundamental to get accurate solutions. To compute the relative error
‖x̂0−x0‖2/‖x0‖2, we follow the procedure presented in Subsection 7.1 with D = diag(R).

In our tests, we have generated random matrices of the form A = S1BS2, where B is
constructed always using the mode 3 in the routine randsvd from the Test Matrix Toolbox
developed by Higham [26], i.e., B is a random dense matrix with given condition number
and with its singular values distributed geometrically. The diagonal matrices S1 and S2 are
also generated with randsvd by using a variety of distributions for its singular values, i.e.,
for its diagonal entries. We have run experiments where the sizes m × n of the matrices
A and B have been m = 50, n = 10 : 10 : 30 and m = 100, n = 20 : 20 : 60. The
matrices A have been built in the following way: we have chosen matrices B with condition
numbers κ2(B) = 10i, for i = 1 : 10. We have generated diagonal matrices S1 and S2

with positive diagonal entries chosen from one of the three pairs of distributions: (a) the
entries of both S1 and S2 having uniformly distributed logarithm (mode 5 in randsvd), but
with decreasing order for the entries for S1 and increasing order for S2; (b) the entries of
both S1 and S2 being geometrically distributed (mode 3 in randsvd) but with increasing
order for S1 and decreasing for S2; (c) geometrically distributed entries in decreasing order
for S1 and entries with uniformly distributed logarithm in increasing order for S2. We took
κ2(S1) = κ2(S2) = 10k with k = 2 : 2 : 16. For each size, for each option (a), (b), or (c),
and for each triplet (κ2(B), κ2(S1), κ2(S2)), ten matrices were generated and ten right-hand
sides b, which follow the standard normal distribution. This makes, for each size and each
κ2(B), a total of 10× 8× 3 = 240 matrices.

In Figure 7.4 we show the results for the size 100 × 40 and with option (b) for matrices
S1 and S2. We have plotted in a log-log scale the maximum relative error for all the 80
matrices with that particular κ2(B). It is observed that the error for the LS-RRD algorithm
behaves as O(u)κ2(B), which according to (7.10) implies that the numbers τ , κ2(D̂−1R̂),
and ‖A†‖2‖b‖2/‖x0‖2 have been of order one in all these tests. The error of the algorithm
LS-QR loses as many as six more digits of precision, behaving notably worse than LS-RRD.
We have plotted also a dashed line showing the quantity m uκ2(B). The behaviors for all the
other sizes of the matrices and all the other modes of randsvd are similar.

For all our experiments with graded matrices, the range of the condition numbers has
been 10 . κ2(A) . 1040, the maximum value of the term ‖A†‖2‖b‖2/‖x0‖2 has been 108,
and 2 ≤ κ2(D̂−1R̂) ≤ 18.

7.4. Numerical tests controlling the residual. In the numerical tests done previously
the right-hand sides b where chosen randomly. Therefore, the relative residual ρr := ‖b −
Ax0‖2/‖b‖2 has been really small very rarely, because if rank(A) = n < m, then it is very
unlikely that θ(b,R(A)) is very small. In this subsection, we consider a different type of tests
in which we generate random vectors b with a fixed value of ρr. For this purpose, we have
performed experiments with m×n Cauchy and Vandermonde matrices in the following way.
We first get the RRD of the matrix A = XDY . We compute the full SVD of the matrix
X (something that can be done accurately via the command svd of MATLABTM since X is
well-conditioned): X = UXΣXV

T
X , where UX ∈ Rm×m, ΣX ∈ Rm×n, and VX ∈ Rn×n.

Then, we partition UX = [U1 U2], where U1 ∈ Rm×n and U2 ∈ Rm×(m−n), and generate
random vectors α ∈ Rn, β ∈ Rm−n such that ‖α‖2 = ‖β‖2 = 1. With this we define

(7.11) b0 := U1α ∈ R(A), ∆b := t U2β ∈ R(A)⊥, and b := b0 + ∆b ,
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where we have used thatR(A) = R(X) and t ≥ 0 is a parameter. Observe that in this way

(7.12) ρr =
‖b−Ax0‖2
‖b‖2

=
t√

1 + t2
,

because the solution x0 obeys Ax0 = b0. We have used Cauchy matrices of sizes m =
100 × n = 20 : 20 : 60 and Vandermonde matrices of sizes m = 50 × n = 5 : 5 : 25.
For each size we have changed the value of t to get relative residuals ρr = 10[−16:2:−2].
For each size and for each value of ρr we have generated 10 matrices and 10 right-hand
sides b, using the standard normal distribution for the parameters of the matrices and for the
vectors α and β. Finally, for each value of ρr, we get the maximum value of all relative
forward errors, for all sizes and all random tests. The results are displayed in Table 7.1 for
Vandermonde matrices. Similar results are obtained for Cauchy matrices. It can be observed
that the analysis in Section 4.1 holds independently of the size of the relative residual, even
for very small ones. We stress again that the really important point on the bound (1.2) is
that ‖A†‖2 ‖b‖2/‖x0‖2 is small for most right-hand sides b for any fixed size of the relative
residual not too close to one, independently of the ill-conditioning of the matrix A.

log10(‖b−Ax0‖2/‖b‖2) −16 −14 −12 −10 −8 −6 −4 −2

QR : log10(‖∆x‖2/‖x0‖2) −2.7 −2.8 −2.1 −2.5 −3.8 −3.5 −3.3 −2.6

RRD : log10(‖∆x‖2/‖x0‖2) −14.1 −14.0 −13.8 −13.9 −14.1 −14.0 −13.8 −13.8

TABLE 7.1
Experiments controlling the residual. The forward relative error ‖∆x‖2/‖x0‖2 is displayed for both algo-

rithms LS-QR and LS-RRD described in Subsection 7.2 for different values of the relative residual. This experiment
was done with Vandermonde matrices of sizes m = 50 × n = 5 : 5 : 25. All the necessary random vectors were
chosen from the standard normal distribution.

7.5. Tests with ‖A†‖2 ‖b‖2 / ‖x0‖2 not small. In the all random tests presented in Sub-
sections 7.1, 7.2, 7.3, and 7.4 the factor ‖A†‖2 ‖b‖2/‖x0‖2 has been moderate and there-
fore Algorithm 6.1 has solved accurately all tested LS problems. So, these tests have con-
firmed the discussion in Subsection 4.1. Of course, it is possible to prepare tests where
‖A†‖2 ‖b‖2/‖x0‖2 is not small and Algorithm 6.1 is not accurate, but this requires to se-
lect very carefully the vectors b. We have proceed as follows: the right-hand side has been
prepared to be b = u1 + b⊥, where u1 is the left singular vector of A corresponding to its
largest singular value and b⊥ is any random vector orthogonal toR(A). Note that for vectors
of this type ‖A†‖2 ‖b‖2/‖x0‖2 = κ2(A)

√
1 + ‖b⊥‖22 and, as a consequence, the forward

relative errors in the solutions committed by Algorithm 6.1 have been big and proportional to
the unit roundoff times the condition numbers of the matrices. However, despite of this fact,
the errors of Algorithm 6.1 have been much smaller than those committed by the standard
Householder-QR algorithm. The reason is that the error (1.1) for Householder-QR includes
the term Φ defined in (4.14) and, for vectors b = u1 + b⊥, Φ = κ2(A)2‖b⊥‖2, which is
really huge if κ2(A) is large and ‖b⊥‖2 = ‖r‖2 is not too small. Recall in this context our
discussion of (4.15). As it was pointed out in [18], notice that for ill-conditioned matrices the
vectors b = u1 + b⊥ have to be generated using highly accurate algorithms for getting u1 and
b⊥ (see [9] and Subsection 7.4). If the vector b is prepared using usual floating point arith-
metic and the svd command in MATLABTM, the rounding errors make it impossible for b to
have exactly the required structure and Algorithm 6.1 computes solutions with high relative
accuracy.



Multiplicative perturbation theory and accurate solution of least squares problems 31

8. Conclusions and future work. In this paper we have introduced, and carefully
analyzed, a new algorithm to compute accurate solutions of those least squares problems
minx∈Cn ‖Ax − b‖2 such that an accurate rank-revealing decomposition of the coefficient
matrix A can be computed. This is nowadays possible for many classes of structured matri-
ces that may have extremely large traditional condition numbers, as it was explained in the
Introduction, and, probably, it will be possible for more classes in the future. In addition, the
new algorithm can be also applied to compute accurate minimum 2-norm solutions of un-
derdetermined linear systems. This work together with the previous papers [9, 17, 18] show
that, for those matrices for which accurate rank-revealing decompositions can be computed,
we can perform accurately and efficiently almost all basic tasks of Numerical Linear Algebra,
i.e., solution of linear systems, solution of least squares problems, computation of eigenvalues
and eigenvectors of symmetric matrices, and computation of the singular value decomposi-
tion, and to obtain relative errors of order u for very ill-conditioned problems where standard
algorithms fail to provide even a single correct digit of accuracy. The only basic problem
that is excluded from this framework is the nonsymmetric eigenvalue problem. To investigate
at which extent rank-revealing decompositions allow us to solve accurately nonsymmetric
eigenvalue problems will be the subject of our future research.
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