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Perturbation theory of block LU
factorization

Froil án M. Dopicoand Juan M. Molera
Dpto. de Mateḿaticas. Universidad Carlos III de Madrid. Spain

Setting the Problem

The perturbation theory of LU and Cholesky factorizations is well
understood. Norm and componentwise bounds have been obtained
by Barrlund, Sun, Stewart, Chang, Paige and others in the last years.

There are not perturbation results for block LU factorization. Block
LU factorization arises in several applications. One of the most
important is the factorization of Hermitian indefinite matrices, where
the diagonal pivoting method leads to a blockLDL∗ factorization.

The diagonal pivoting method with partial pivoting (Bunch and
Kaufman) is used in LAPACK for solving Hermitian indefinite
linear systems. Bunch and Parlett’s complete pivoting strategy has
been used by several authors to get rank-revealing factorizations of
Hermitian indefinite matrices.This is a previous step to compute
accurate eigenvalues and eigenvectors of Hermitian matrices. The
accuracy of the computed factorization may be estimated by
combining backward error results and perturbation bounds.

Goal: Get norm and componentwise perturbation bounds for block
LU andLDL∗ factorizations.
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Block notation

A block LU factorizationof ann× n matrixA is as follows:




A11 · · · A1p

A21 · · · A2p

.

.

.

.

.

.

.

.

.

Ap1 · · · App




︸ ︷︷ ︸
A

=




I

L21 I

.

.

.

.
.
.

Lp1 · Lp,p−1 I




︸ ︷︷ ︸
L




U11 U12 · U1p

U22 ·
.
.
. Up−1,p

Upp




︸ ︷︷ ︸
U

The matricesLij , Uij andAij have dimensionsni × nj , and∑p
i=1 ni = n. These dimensions remain fixed when the matrixA

is perturbed.The matricesUii are not, in general, upper triangular.

Theblock strict lower and upper triangular parts ofA are denoted
by:

AL =




0

A21 0

.

.

.

.
.
.

Ap1 · · · Ap,p−1 0




; AU =




A11 A12 · · · A1p

A22

.

.

.

.
.
. Ap−1,p

App




and theblock diagonal part by:

AD = diag(A11, . . . , App).

Finally, ρ(B) denotes thespectral radiusof a matrixB, and|B| is

the entrywise absolute value ofB.
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Perturbation bounds for block LU factorization

Theorem: Let the nonsingularn× n complex matrix
A have the block LU factorizationA = LU appearing
in the previous page. Let us consider the matrix
A + E, and defineF = L−1EU−1. If ρ(|F |) < 1 then

1. The matrixA + E is nonsingular and has aunique
block LU factorization,A + E = L̃Ũ , with the
same block dimensions as those inA = LU .

2. ∣∣∣L̃− L
∣∣∣ ≤ |L| ( |F | (I − |F |)−1

)
L

,

and
∣∣∣Ũ − U

∣∣∣ ≤
( |F | (I − |F |)−1

)
U
|U |.

3. If moreover‖ · ‖ is an absolute and consistent
matrix norm and‖F‖ < 1 then

max

{
‖L̃− L‖
‖L‖ ,

‖Ũ − U‖
‖U‖

}
≤ ‖F‖

1− ‖F‖ .
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Remarks on the conditionρ(|F |) < 1

The conditionρ(|F |) < 1 implies that the block factorization of
A + E exists and is unique. Notice

A + E = L(I + L−1EU−1)U

and

ρ(F (1 : k, 1 : k)) ≤ ρ(|F (1 : k, 1 : k)|) ≤ ρ(|F |).
Then the conditionρ(|L−1EU−1|) < 1 implies that all the leading
principal submatrices of(I + L−1EU−1) are nonsingular. As a
consequence(I + L−1EU−1) has a unique block LU factorization
with the same block dimensions ofA = LU . Therefore

A + E = L(I + L−1EU−1)U = (LL)(UU) ≡ L̃Ũ ,

is the unique block LU factorization ofA + E with the same block
dimensions ofA = LU .

For an absolute and consistent matrix normρ(|F |) ≤ ‖F‖. Then

the condition‖F‖ < 1 impliesρ(F ) < 1, butρ(F ) < 1 remains

valid for a wider set of perturbations.

Remark on practical bounds

Assuming that‖ |L−1| |E| |U−1| ‖ < 1, we can replace|F | by

|L−1| |E| |U−1|, and‖F‖ by ‖L−1‖ ‖E‖ ‖U−1‖ in the bounds

of the previous page. This is more useful in practice,when the only

information onE is a bound on|E| or ‖E‖.
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Block LDL∗ factorization of Hermitian matrices

Given aHermitian indefinite matrixB, the following block

factorization is frequently used:

PBP T = LDL∗,

where,

• P is a permutation matrix.

• L is unit lower triangular.

• D is block diagonal with diagonal blocks of dimension

1× 1 or 2× 2.

• The2× 2 diagonal blocks ofD are Hermitian

indefinite matrices.

• The diagonal blocks ofL corresponding to the2× 2

blocks ofD are2× 2 identity matrices.

This factorization method is usually calledthe diagonal

pivoting method.

Three pivoting strategies to choose the permutation matrixP

are available: complete pivoting (Bunch & Parlett), partial

pivoting (Bunch & Kaufman, implemented in LAPACK),

and rook pivoting (Ashcraft, Grimes, and Lewis).
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Perturbation bounds for LDL∗ factorization

Theorem: Let the nonsingularn× n Hermitian matrixA

have the block factorizationA = LDL∗. Let us consider the

Hermitian matrixA + E, and defineF = L−1EL−∗D−1.

If ρ(|F |) < 1 then

1. The matrixA + E is nonsingular and has aunique

blockLDL∗ factorization,A + E = L̃D̃L̃∗, with the

same block dimensions as those inA = LDL∗.
Moreover, let us denote the block diagonal matricesD

andD̃ by: D = diag(D11, . . . , Dpp) and

D̃ = diag(D̃11, . . . , D̃pp). Then,if Dii andD̃ii are

1× 1 both have the same sign, and, ifDii andD̃ii are

2× 2 both are Hermitian indefinite matrices.

2. ∣∣∣L̃− L
∣∣∣ ≤ |L| ( |F | (I − |F |)−1 )

L
,

and
∣∣∣D̃ −D

∣∣∣ ≤
( |F | (I − |F |)−1 )

D
|D|.

3. If moreover‖ · ‖ is an absolute and consistent matrix

norm and‖F‖ < 1 then

max

{
‖L̃− L‖
‖L‖ ,

‖D̃ −D‖
‖D‖

}
≤ ‖F‖

1− ‖F‖ .
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How are these bounds proved?

They are proved by usingseries expansions.Consider again

A + E = L(I + L−1EU−1

︸ ︷︷ ︸
F

)U = (LL)(UU) ≡ L̃Ũ .

Theorem. Let F be ann× n matrix withρ(|F |) < 1 then:

1. I + F has a unique block LU factorization:

I + F = LU .

2.

L =

∞∑

k=0

Lk and U =

∞∑

k=0

Uk,

with L0 = I, U0 = I, L1 = FL, U1 = FU and for

k ≥ 2:

Lk = (−L1 Uk−1 − L2 Uk−2 · · · − Lk−1 U1)L,

Uk = (−L1 Uk−1 − L2 Uk−2 · · · − Lk−1 U1)U .

3.

|Lk + Uk| ≤ |F |k for k ≥ 1.

Therefore|Lk| ≤
(|F |k)

L
and|Uk| ≤

(|F |k)
U

.

The bound in the last item is the fundamental tool to get

strict perturbation bounds.
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A few explicit terms:

Explicit expressions for the terms in the series can be obtained

L1 + U1 = F

L2 + U2 = −FLFU

L3 + U3 = FL(FLFU )U + (FLFU )LFU

L4 + U4 = −FL(FL(FLFU )U )U − FL((FLFU )LFU )U

−(FLFU )L(FLFU )U − (FL(FLFU )U )LFU

−((FLFU )LFU )LFU

Proving the bounds:

The Theorem in previous page implies

L̃ = LL = L
∞∑

k=0

Lk,

then

|L̃− L| ≤ |L|
∞∑

k=1

|Lk| ≤ |L|
( ∞∑

k=1

|F |k
)

L

= |L| (|F |(I − |F |)−1
)
L
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