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Symplectic Matrices
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Definition: S € R27x2n i symplectic if ST JS = J

We will consider often the partition of symplectic S
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The problem to be solved

Symplectic matrices are implicitly defined as solutions of
the nonlinear matrix equation S7JS = J

This makes difficult to work with them both in theory and in
numerical algorithms.

OUR GOAL: To present an explicit description
(parametrization) of the group of symplectic matrices, i.e.,
to find the set of solutions of

ST 7S = J where S unknown

and to apply this parametrization to different problems.
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Outline of the talk

1. Previous results
2. Parametrization
3. Subparametrization problems

4. Description of Doubly structured sets (symplectic and
other property):

o LU factorizations of symplectic

« Positive definite symplectic

Positive elementwise symplectic

TN, TP, oscillatory symplectic

Symplectic M-Matrices

5. Conclusions and Open problems
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Previous I: A result by Mehrmann (SIMAX, 1988)

Theorem: Let S = [211212| pe symplectic with S11
S21.522
non-singular. Then

g — I 0 S11 O i 51_11812
So1871 1 0 Sif ||oO I

1. The three factors are symplectic.

2. 8215’1_11 and 5’1_11512 are symmetric.
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Parametrization with nonsingular (1,1)-block

1. |y 7| is symplectic if and only if X = X7

2. _gg} is symplectic if and only if Y = G~ 1.

3. Products and transposes of symplectic are
symplectic.

Theorem: The set of symplectic matrices with non-

singular S1q is

;T

S(1.1) G GE (G nonsingular
—\|lcG ¢ct+cecee | T c=cl, E=FE"
- _J/
Y
I O G O I E
cC I1||lo g l||lo1I
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Parametrization with nonsingular (1,1)-block

Theorem: The set of symplectic matrices with non-
singular S1q is

;T

S(1,1) — G GE | G nonsingular \>
—\|lceG ¢ct+cecere | c=cl, E=F"
|\ ~ 4
I O G O I E
cC I||lo g lT||o I

2n2+n free parameters in this parametrization. This

What happens if §q11 is singular?
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Previous |lI: The complementary bases theorem
Definition: Symplect_ic iInterchange matrices

_ J J+n
] 0 1
I—IJ — 1 : 0 E RQ’I’LXQTL
7]+n ~1 0
Theorem - If S € R2"X2n js sym-

plectic with singular (11)-block then there exist matri-

ces @ and Q' that are products of at most n symplectic
Interchange matrices such that:

Q S and S Q' are symplectic with nonsingular (1, 1) block.
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The group of symplectic matrices

CG G 1T+ CGE

~ . | )

Cc=cT 6 g=ET \
; | E octic | | (

REMARK: Given a symplectic matrix, ( may be not
........ —~ dla A can Ll A i e~ s tom ol mm it smdel o tm o m o de - a2 -~ —~
ariiaue LISl LIe DIreviousS dAesCcripDrLIior is noL a riidurouas
unigue, then the previous description is not a rigurous
O A R E. =T . PR - Py PRI D I § P [ Y

parametrizatior I e nonunigueness or (Y can be use-

July 2006 GAMM-SIAM 2006 9




Subparametrization Problems (1)
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Subparametrization Problems (ll)

rg a

4. Parametrization of the set of 2n x n matrices that
‘ .

S21

5. Parametrization of the set of symplectic matrices

with given [%H This is an affine subspace in R27X27

—~ Py . /Y)2 m
OoT dimension ”’—QJ

6. Any A € Rnt)x(n+1) can pe S(1:n+1,1:n+1)
of a symplectic S except by the fact that a,,41 41 IS
determined by the other entries.
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LU factorizations of Symplectic Matrices (ll)
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1. S is PD if and only if S§11 is PD.
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Symplectic Matrices with positive entries

et of symplectic matrices with nonsingular Sq1

‘7

s(1,1) — G GE _ G nonsingular
- G GT'+cGgr | c=ct,Ep=E"

positive entries

START by choosing arbitrary G > 0, C > 0, and
FE > 0 with positive entries. So CGE > 0.

THEN, a number o« > 0 is chosen such that
a«CGE+ G T > 0.

FINALLY: £ = oF
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Totally Nonnegative (TN) Symplectic Matrices ()

DEFINITIONS:

Matrices with all minors nonnegative (positive)
are called TN (totally positive TP) matrices.

If Ais TN and AF TP for some positive integer
k then A is called OSCILLATORY.
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Totally Nonnegative (TN) Symplectic Matrices (ll)
Are there symplectic TP matrices?
Are there symplectic oscillatory matrices?

Theorem (the 2 x 2 case): S € R?%X2 js sym-
plectic and TP if and only if detS = 1 and
si; > 0 for all (7,7).

If any three positive entries such that sy1s9> >
| I | L | . -

tained fromdetS=1¢v..— — — —  —
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Totally Nonnegative (TN) Symplectic Matrices (lI)

Theorem: Let S € R2"%X2n with n > 1 be symplectic.
T hen

Sketch of the Proof: LU factorization of S is

g — [ L1 0 ] [ U1 Li;S12 S11 = L11Un1

S1i = LaoUao

_ where
So1U7y Loz 0 Uz }

If S TP then Si;1 is TP and the LU factors of S are triangular
TP. Therefore Ly and Uy are triangular TP and S;{ is TP.

CONTRADICTION!!, S;; TP implies that S;; has negative

entries.
July 2006 GAMM-SIAM 2006 18




Totally Nonnegative (TN) Symplectic Matrices (1V)

Theorem: The set of 2nx2n (n > 1) symplectic and
TN matrices is

¢ -)\1 \
D 0

\ - - /
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Symplectic M-Matrices ()

Definition: A € R"*" is a M-Matrix if a;; < 0 for i # j

aNa RetA) > O TOor eve IV.SIIC envalue A OorT A

sM_ )| D DK H=H!'<0 >
- " )| HD D '4 HDK | K=kKT<0
HD K diagonal
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Symplectic M-Matrices (ll)

Given an arbitrary H = H! < 0, the matrices K =
K1 < 0 such that HDK is diagonal can be easily
determined. For instance if h1o = ho1 #= O:

o O
o O
o O

T

|

2

|
OO0 O ~O
OO0O0O

The ? that remain in K after this process is repeated
for all entries h;; = hj; 7= 0, are free parameters in
K = K! <0 for a given H.
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Conclusions and Open Problems

* An explicit description of the group of symplectic matrices
has been introduced.

* It allows to solve very easily many theoretical questions.

e Perturbation theory with respect the symplectic
parameters? Interesting properties?

 How to compute the parametrization in a stable an efficient
way If we are given the entries of a symplectic matrix?

 |s it possible to get a rank revealing factorization?

 Have these symplectic parameters an intrinsic meaning?
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