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« Low rank perturbations of matrices arise frequently in
applications and in theory.

 They appear when a system with many degrees of
freedom is controlled with actions on a small subset of

the degrees of freedom

« Well-known example: Sherman-Morrison-Woodbury
formula.

(A+uvDHl=a"1_aAlug+via-tly)-tvTa-1

Anxn, UV nxk, rank(U) = rank(V) = k.
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Our Goal: How are typically modified spectral

canonical forms by low rank perturbations?

e Jordan canonical form (JCF) of A € C**™,

e Weierstrass canonical form (WCF) of regular matrix pencils

A+ AB,

A,B € C"" and det(A 4+ AB) does not vanish identically.
Generalized eigenvalue problem

(A4 AB)v =0

e Kronecker canonical form (KCF) of singular matrix pencils

A+ A\B,
A, B € Cm*n or A, B € C"*" and det(A + AB) = 0 for all .
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Many different things may happen

(1 1]/0 0]0 0 00 00O 110 0]0
0 1/0 0|0 00100 01 10|0
A+E;=|0 0|1 1/0|4+4|0 0 0O0O0|=|001T1|0
0 0|0 10 0 00O00O 0 00 1/0
0 0|0 0]0 0 00O0O 0 00 0|0
(1 1/0 0ol0o] [0 0 O O O] 1 1]/0 0]0]
0 1/0 0|0 0 00O00O 0 1/0 00
A+E>,=1|0 0|1 1/0|4+|0O0O0O0OO0O|=]|00]|11]0
0 0|0 1/0 0 00O0O 0 0|0 10
0 0|0 0]0 0 0001 0 0/0 01

Our goal is to describe the GENERIC or most frequent behav-
ior. This will be a behavior that holds for all perturbations E
except those in a set of zero Lebesgue measure. We are able
to describe explicitly this set (HARD AND NOT EASY).
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Al
J.(\) = . e Chxk
-1
A
T (A1) _

Ty O & ... @ Jiy () =

Jkp()\p) |
Direct sum or block diagonal matrix of Jordan blocks.
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Perturbation of Jordan canonical form: an example (1)

JCFof A = J5(9) @ J5(9) ® J5(9) d J3(9) P
J7(=3) @ Js(—3) ® J4(—3) ® J3(—3) ® J1(—3)

Notice that A has only two different eigenvalues 9 and —3.

Let E be such that rank(E) = 2. Then generically

JCFof A4+ F =

«@...0*xd J5(9) @ J3(9) &
*@ ... 0P Jg(—3) ® J3(—3) & J1(—3)

In the x®...®* of the JCF of A+ E there are no Jordan blocks
associated to the eigenvalues 9 and —3. Besides, in general,

it contains only 1 x 1 Jordan blocks.
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Perturbation of Jordan canonical form: an example (ll)

JCFof A = Js5(9)® J5(9) @ Js5(9) ® J3(9) @
J7(=3) @ J(—3) ® J4(—3) ® J3(—-3) & J1(—3)

rank(FE) = 2.

JCFof A+ E = «@...0+xD J5(9) @ J3(9) @
*@...0*xD Ja(—3) D J3(—3) d J1(—3)

For every eigenvalue of A the perturbation E destroys
the 2 = rank(FE) largest Jordan blocks. The other
Jordan blocks of A remains as Jordan blocks of A+ F.
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Perturbation of Jordan canonical form: The Theorem

Theorem: Let A € C"™ and Ay be an eigenvalue
of A with gg Jordan blocks in the JCF of A. Let

E € C*"" with rank (E) < gp.

Then the Jordan blocks in the JCF of A+ E with
eigenvalue \g are just the gp—rank (E) smallest Jor-
dan blocks of A with eigenvalue X\ if and only if
E does not belong to a certain algebraic manifold of

codimension one in the matrix space C"*",
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JCF: Comments on the Theorem

1. The perturbations E are not small.

2. A perturbation matrix E can satisfy the assumptions of the
Theorem for one eigenvalue but not for others.

3. Condition rank(FE) < go defines what we understand by “low
rank’” in this context. It depends on the eigenvalue we consider.

4. Let A = PJP~1 be a Jordan Canonical factorization. If J
and P are given then we are able to give an explicit equation for
the algebraic manifold mentioned in the theorem in terms of some
minors of P~1EP. We have a different equation for each eigenvalue
)\0 of A.

5. We will explain this manifold at the end of the talk if we have
time. Some additional notation is needed.
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e #)\p-Jordan blocks of A = dim Nul(A — X\gl) = go.
e rank(A+ E — \gl) <rank(A — Xgl) + rank(E) <n

e dimNul(C) = n — rank(C)

Then go — rank(E) < dimNul(A+ E — \gl)
Generically

rank(A+ E — XgI) = rank(A — A\gl) + rank(FE)
and
go —rank(F) = dimNul(A+ E — X\gl)

Why and when the smallest Jordan Blocks?
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Welerstrass canonical form: summary (1)

Theorem (Weierstrass) Let A, B € C"*"™ such that the
polynomial p(A) = det(A + AB) does not vanish identi-
cally. Then there exist two nonsingular matrices R and
S such that

~(J o0 I, O
R(A—I—)\B)S_(O Iq)"')‘(o N),

J Iis in Jordan canonical form, and N is in Jordan canon-
ical form with all its eigenvalues equal to zero. J and
N are unique up to permutations of the diagonal Jordan
blocks. This is called the Weierstrass canonical form of
the pencil A + \B.

March 2006 ICAM 2006 11



Welerstrass canonical form: summar

_(J 0 I, O
R(A—I—AB)S—(O Iq)—l—)\( 0 N)’
1. The WCF contains all the spectral information of the generalized
eigenvalue problem (A+ AB)v =0
2. J shows the Jordan structure of the finite eigenvalues of A 4+ \B.

3. N shows the Jordan structure of the infinite eigenvalue of A 4+ A\B.

4. The Jordan structure of the infinite eigenvalue of A + AB is the
Jordan structure of the zero eigenvalue of B 4+ \A.

5. Related to systems of algebraic-differential equations

dx(t)
dt

B = Ax(t)
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Perturbation of Weilerstrass canonical form: example (1)
Part WCF of (A+ AB) for (A= —-5) is

J5(5) ® J4(5) @ J3(5) @ J2(5)

Let us consider a perturbation E4 + AEg such that

rank(Ey, — 5FEg) =2 and rank(Ekpg) =1
Then generically

Part WCF of ( A+ E4+ AN(B+ Eg)) for (A= —-5) is

J1(5) @ J2(5)
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Perturbation Welerstrass canonical form: example (II)

WCF of (A+ AB) is J5(5) ® Ja(5) ® J3(5) @® J2(5)

rank(EF4, — 5 FEp) =2 and rank(Ep) =1

WCF of (A+ E4+ MB + Eg)) is J1(5) @ Jo(5)

The 2 =rank(E 4 — 5FEp) largest Jordan blocks are destroyed.
The 1 = rank(Ep) following largest Jordan blocks turn into 1x1 blocks.

Only the 4 —rank(E 4 — 5FEp) —rank(Epg) smallest Jordan blocks remain
unchanged.
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Perturbation Welerstrass canonical form: The Theorem

Theorem: Let \g be an eigenvalue of the regular pencil A+\B
with go Jordan blocks in the WCF. Let B4+ AEg be another
pencil such that rank(E4 + MNoEpR) < go. Let us define

po = rank(E4 + AoER),  p1 =rank(Epg).

Then for all pencils E4 + ANEg except those in an algebraic
manifold of codimension one:

1. There are go — po Jordan blocks for Ag in the WCF of
A+ Eq+MNB+ Eg), and

2. they are the gg — pg — p1 Smallest Jordan Blocks for g in
the WCF of A+ AB,

3. together with p1 1 x 1 Jordan blocks for \g.
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WCF: Comments on the Theorem

1. Similar remarks to those of JCF.

2. In the case rank(E4) + rank(Ep) <mn and \g # O generically

rank(E4 + A\gEp) = rank(E4) + rank(Ep),

and the number of destroyed and preserved Jordan Blocks 'does
not” depend on the particular Ap.

3. Again an elementary rank argument show that

go — rank(E4 + AoEp) <dimNul(A+ E4 + Ao(B + Ep) ) =

Number of Ag-Jordan blocks in the WCF
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Intuition on differences WCF vs. JCF

JCF. Problem: (A—MXgl)v = 0. Jordan chain correspond-
iIng to a k x k Jordan block

(A—)\()I)’Ulzo, (A—)\()I)’sz’uj_l 13 =2:.k

1

E

WCF. Problem: (A + M\gB)v = 0. Jordan chain corre-
sponding to a k£ x k Jordan block

(A4+XoB)v1 =0, (A+ X oB)v; = Bvj_1 j=2:k

/ \

Eq+ MoEB Ep
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Kronecker canonical form: summary (1)

Theorem (Kronecker) Let A,B € C™*"™, Then there
exist two nonsingular matrices R and S such that

R(A4+XB)S = L\ @...8 Le,(\) @
L, (N @...® Ly (\)
(J+A) e+ AN),

J is square and is in Jordan canonical form,

N is square and is in Jordan canonical form with all its
eigenvalues equal to zero,
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Kronecker canonical form: summary (ll)

Continuation Kronecker’s Let A, B € C"*"

R(A+AB)S = Le(A\) @ ... 0 Le,(A) @
Ly, (N &...& Ly (\) &
(J+AI) & (I+ AN),

1
Le, (M) = A 1 c qeix(&+1)

0<e <ex<...< ¢ are the column minimal indices.
0<n <np<...<nq are the row minimal indices.

Le;(N) (Lgl_()\)) are called column (row) singular blocks.
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Kronecker canonical form: summary (lll)

Continuation Kronecker’s Let A, B € C™*"

R(A4+AB) S = Ley(N)®. . &L, (NS Ly, (N&. .. BL; (NS(JHANS(IT+AN)

1. 0<e1 <ep<...<egpand 0<n <np < ... < ng are unique.

2. J and N are unique up to permutations of the Jordan diagonal
blocks.

3. (J4+ X))@ (I+ AN) is the regular part of the pencil.
4. rank(A+AB) =n—p=m —q
5. R(A+AB) S = (JH+ )@ (I+\N) if and only if det(A+AB) # 0.

6. KCF application in control theory.
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Perturbations of Kronecker canonical form: General Remarks

1. We will consider three singular m xn pencils with rank
less than min{m,n}:

Unperturbed: P(\) = A+ \B;

Perturbation: E(\) = E4 + \Epg,

Perturbed: (P+ E)(\) = (A+ Ey ) +X(B+ Ep).
2. We will assume

rank(P4+FE)(M\) = rank P(A)+rank E(\) < min{m,n}

3. Therefore, we have the global low rank condition

p=rank E(\) < min{p, q}
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Number of minimal indices

rank(P + E)(A) = rank P(\) + rank E(\) < min{m, n}

and

p=rank E(A) < min{p, q}

implies

Number of column (row) singular blocks of (P + E)()\) is
equal to p —rank(F) (g —rank(E)),

What are their dimensions?
How is the regular part?
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Relevant data of unperturbed and perturbation pencil

P(\) = A+ \B

(J+ )&+ AN)

E(\) = E4+ \Ep

VA
VA
1

QN

..<esand 0 <y

o
VA
M
-
VA
PA

_|_
g
N

1—|——|—€]3 and ﬁEﬁl—I—

¥
]
N

(Jp+Al) & (I + ANEg)
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Auxiliary Lemma

Definitions:

L _ -
d, = ZileﬂreJ k=(p+1):p
i — P
k . ~
hy = Zi?_‘m:-??J k=(p+1):gq

Amin = mkin di. and hpin = mkin h;.

Lemma: There exists only one index s (¢) such that

1. ds = dmin (ht :hmin)
2. ds>es> ...z (w>me > ... >m)
3. If k >s (k>1t) then ¢, > dp > ds (g > hi > hy)
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Low rank perturbation of KCF: The Theorem

Theorem: Let v, (u:) be the remainder of the integer
division of 37 ¢, + &by s —p (of Si_,m + 17 by (¢t —
p)), where p = rank(E()\)). Then under certain generic
conditions the KCF of (P + E)(\) is determined by

1. s— p— s column minimal indices equal to d;,
vs column minimal indices equal to d; + 1,
p — s column minimal indices equal to esy1,...,¢€p.

2. t— p— puy row minimal indices equal to hy,
ur row minimal indices equal to hy 4+ 1,
qg —t row minimal indices equal to n41,...,1n4.

3. The regular part is
(JH+XD) DI+ M) & (M + N) @ (M + Ng)
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Low rank perturbation of KCF: Three Main ldeas

e The blocks of the regular parts of P(\) and E()\)
remain unchanged in the sum (P + E)(A) and no
more regular blocks appear.

e Thelargest p—s column and g—t row singular blocks
of P(A\) remain unchanged as singular blocks of

(P+E)(N).

e [ he smallest s column and t row singular blocks of
P()\) are destroyed or transformed into larger blocks
(but not larger than the unchanged ones).
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JCF: generic conditions

Theorem: Let A € C""™ and Mg be an eigenvalue
of A with gg Jordan blocks in the JCF of A. Let

E € C™"™ with rank (E) < gp.

Then the Jordan blocks in the JCF of A+ E with
eigenvalue \g are just the ggp—rank (E) smallest Jor-
dan blocks of A with eigenvalue Mg if and only if
E does not belong to a certain algebraic manifold of
codimension one in the matrix space C"*",
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JCF: generic conditions. Example (II)

ko ok ok
ko ok ok
ko ok ok
b S S
JCFof A+ F = % %
0 1
00
*
If and only if
A AL
Ch = det det 0
0 .H.] m-]#
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JCF: generic conditions. General Case.

Theorem: Let rank(E) = p and the JCF of A be

P AP = J0,(00) @ ... @ Jn,(M0) D Jn, .. (M0) @ - .. Jgo(No) & J,
with ny > ... > n, and det(J — \ol) # O.

1. If n, > n,11 and &, is the minor of P~1EP corresponding to
the lower left positions of the p largest Jordan blocks of P~tAP
then

Generic behavior if and only if ®, # 0.

2. If n, = n,y1 and ®, is ANY minor of P"1EP corresponding
to the lower left positions of p largest Jordan blocks of P~ 1AP
then

Generic behavior if and only if > @, # 0.
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