DOUBLY STRUCTURED SETS OF SYMPLECTIC MATRICES

Froilán M. Dopico

Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM and Departamento de Matemáticas, Universidad Carlos III de Madrid, Spain

Joint work with Charles R. Johnson, The College of William and Mary, Williamsburg, VA, USA

September 2008

Symplectic Matrices

$$J = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$$
 where $I_n \quad n \times n$ identity matrix

Definition: $S \in \mathbb{R}^{2n \times 2n}$ is symplectic if $S^T J S = J$

We will consider often the partition of symplectic ${\boldsymbol{S}}$

$$S = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \quad \text{with} \quad S_{ij} \in \mathbb{R}^{n \times n}$$

The symplectic group is important in theory and applications (Hamiltonian mechanics, parametric resonance, electromagnetism, symplectic integrators, discrete control problems, Kalman filtering,....) September 2008 CORTONA-ITALY, 2008 2

The problem to be solved

Symplectic matrices are **implicitly defined** as solutions of the nonlinear matrix equation $S^T J S = J$

This is useful for **checking** if a matrix is symplectic, **but not for constructing** symplectic matrices.

This characterization makes difficult to work with them, both in theory and in structured numerical algorithms.

OUR GOAL: To present an **explicit description** (parametrization) of the group of symplectic matrices, i.e., to find the set of solutions of

$S^T J S = J$ where S unknown

and to apply this parametrization to construct symplectic matrices that have extra structures.

Outline of the talk

- 1. Previous results
- 2. Parametrization
- 3. Brief Summary on subparametrization problems
- 4. Description of doubly structured sets (symplectic and other property):
 - LU factorizations of symplectic
 - Orthogonal symplectic
 - Positive definite symplectic
 - Positive elementwise symplectic
 - TN, TP, oscillatory symplectic
 - Symplectic M-Matrices
- 5. Conclusions and Open problems

Previous I: A result by Mehrmann (SIMAX, 1988)

Theorem: Let $S = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix}$ be symplectic with S_{11} non-singular. Then

$$S = \begin{bmatrix} I & 0 \\ S_{21}S_{11}^{-1} & I \end{bmatrix} \begin{bmatrix} S_{11} & 0 \\ 0 & S_{11}^{-T} \end{bmatrix} \begin{bmatrix} I & S_{11}^{-1}S_{12} \\ 0 & I \end{bmatrix}$$

where

1. The three factors are symplectic.

2. $S_{21}S_{11}^{-1}$ and $S_{11}^{-1}S_{12}$ are symmetric.

Let us combine this with three trivial facts...

Parametrization with nonsingular (1,1)-block

- **1.** $\begin{bmatrix} I & 0 \\ X & I \end{bmatrix}$ is symplectic if and only if $X = X^T$.
- **2.** $\begin{bmatrix} G & 0 \\ 0 & Y \end{bmatrix}$ is symplectic if and only if $Y = G^{-T}$.
- **3.** Products and transposes of symplectic are symplectic.

Theorem: The set of symplectic matrices with non-singular S_{11} is

$$S^{(1,1)} = \left\{ \begin{bmatrix} G & GE \\ CG & G^{-T} + CGE \end{bmatrix} : \begin{array}{c} G \text{ nonsingular} \\ C = C^T, E = E^T \end{array} \right\}$$
$$\underbrace{\begin{bmatrix} I & 0 \\ C & I \end{bmatrix} \begin{bmatrix} G & 0 \\ 0 & G^{-T} \end{bmatrix} \begin{bmatrix} I & E \\ 0 & I \end{bmatrix}}$$

Parametrization with nonsingular (1,1)-block

Theorem: The set of symplectic matrices with nonsingular S_{11} is

$$\mathcal{S}^{(1,1)} = \left\{ \begin{bmatrix} G & GE \\ CG & G^{-T} + CGE \end{bmatrix} : \begin{array}{c} G \text{ nonsingular} \\ C = C^T, E = E^T \end{array} \right\}$$
$$\begin{bmatrix} I & 0 \\ C & I \end{bmatrix} \begin{bmatrix} G & 0 \\ 0 & G^{-T} \end{bmatrix} \begin{bmatrix} I & E \\ 0 & I \end{bmatrix}$$

 $2n^2 + n$ free parameters in this parametrization. This is precisely the dimension of the symplectic group.

What happens if S_{11} is singular?

Previous II: The complementary bases theorem

Definition: Symplectic interchange matrices

Theorem (FD, Johnson, LAA 2006): If $S \in \mathbb{R}^{2n \times 2n}$ is symplectic with singular (11)-block then there exist matrices Q and Q' that are products of at most n symplectic interchange matrices such that:

QS and SQ' are symplectic with nonsingular (1, 1) block.

The group of symplectic matrices

Theorem: The group of symplectic matrices is $S = \left\{ Q \begin{bmatrix} G & GE \\ CG & G^{-T} + CGE \end{bmatrix} : \\ \begin{array}{c} G \text{ nonsingular} \\ C = C^T , E = E^T \\ Q \text{ product of symplectic interchanges} \end{array} \right\}$

REMARK: Given a symplectic matrix, Q may be not unique, then the previous description is not a *rigurous parametrization*. The nonuniqueness of Q can be useful for numerical purposes.

Subparametrization Problems (I)

1. Parametrization of symplectic matrices with $rank(S_{11}) = k$. This set depends on $2n^2 + n - \frac{(n-k)^2 + (n-k)}{2}$ parameters.

SIMILAR FOR ANY OTHER BLOCK 2. Any matrix can be S_{11} of a symplectic. If S_{11} is fixed and has rank $(S_{11}) = k$ the set of symplectic matrices compatible can be parametrized and depends on $\frac{n^2+n}{2} + \frac{k^2+k}{2} + n(n-k)$ parameters.

3. $S^{(1,1)}$ is a dense open subset of S and secuences can be explicitly constructed.

Subparametrization Problems (II)

4. Parametrization of the set of $2n \times n$ matrices that can be $\begin{bmatrix} S_{11} \\ S_{21} \end{bmatrix}$ of a symplectic.

5. Parametrization of the set of symplectic matrices with given $\begin{bmatrix} S_{11} \\ S_{21} \end{bmatrix}$. This is an affine subspace in $\mathbb{R}^{2n \times 2n}$ of dimension $\frac{n^2+n}{2}$.

6. Any $A \in \mathbb{R}^{(n+1)\times(n+1)}$ can be S(1:n+1,1:n+1)of a symplectic S except by the fact that $a_{n+1,n+1}$ is determined by the other entries.

and more...

September 2008

LU factorizations of Symplectic Matrices (I)

Theorem: Let $S = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix}$ be symplectic. Then

1. S has LU factorization if and only if S_{11} and S_{11}^{-T} have LU factorizations.

2. S has LU factorization if and only if S_{11} is nonsingular and has LU and UL factorizations.

3. S has LU factorization if and only if

 $\det S_{11}(1:k,1:k) \det S_{11}(k:n,k:n) \neq 0 \quad k = 1:n$

to be continued....

September 2008

LU factorizations of Symplectic Matrices (II)

4. If $S_{11} = L_{11}U_{11}$ and $S_{11}^{-T} = L_{22}U_{22}$ are LU factorizations, then the LU factorization of S is

$$S = \begin{bmatrix} L_{11} & 0 \\ S_{21}U_{11}^{-1} & L_{22} \end{bmatrix} \begin{bmatrix} U_{11} & L_{11}^{-1}S_{12} \\ 0 & U_{22} \end{bmatrix}$$

5. The LU factors of S are symplectic if and only if S_{11} is diagonal.

Symplectic LU-like factorization

$$S = \begin{bmatrix} L_{11} & 0\\ S_{21}U_{11}^{-1} & L_{11}^{-T} \end{bmatrix} \begin{bmatrix} U_{11} & L_{11}^{-1}S_{12}\\ 0 & U_{11}^{-T} \end{bmatrix}$$

upper triang. Iower triang

Symplectic Orthogonal Matrices

Theorem: The set of 2n-by-2n orthogonal symplectic matrices is

$$S^{O} = \begin{cases} Q \begin{bmatrix} (I+C^{2})^{-1/2}U & -C(I+C^{2})^{-1/2}U \\ C(I+C^{2})^{-1/2}U & (I+C^{2})^{-1/2}U \end{bmatrix} \\ U \text{ orthogonal} \\ C = C^{T} \\ Q \text{ product of symplectic interchanges} \end{cases}$$

Idea of the proof: Impose $S^T S = I$ on

$$S = \begin{bmatrix} G & GE \\ CG & G^{-T} + CGE \end{bmatrix},$$

with G nonsingular, $C = C^T$, $E = E^T$.

September 2008

Symplectic Positive Definite (PD) Matrices

Theorem: Let $S = \begin{bmatrix} S_{11} & S_{21}^T \\ S_{21} & S_{22} \end{bmatrix}$ be symmetric and symplectic. Then

- **1.** S is PD if and only if S_{11} is PD.
- 2. The set of PD symplectic matrices is

$$S^{\mathsf{PD}} = \left\{ \begin{bmatrix} G & GC \\ CG & G^{-1} + CGC \end{bmatrix} : \begin{array}{c} G \text{ positive definite} \\ C = C^T \end{bmatrix} \right\}$$

 $\mathcal{S}^{\mathsf{PD}}$ depends on $n^2 + n$ parameters.

3. Every PD symplectic matrix $S = HH^T$ with H symplectic.

4. The unique PD square root of S is symplectic, but not the Cholesky factor.

Symplectic Matrices with positive entries

Set of symplectic matrices with nonsingular S_{11}

$$\mathcal{S}^{(1,1)} = \left\{ \begin{bmatrix} G & GE \\ CG & G^{-T} + CGE \end{bmatrix} : \begin{array}{c} G \text{ nonsingular} \\ C = C^T, E = E^T \end{array} \right\}$$

This allows us to generate symplectic matrices with **positive entries** (contrast with orthogonal matrices).

START by choosing arbitrary G > 0, C > 0, and $\tilde{E} > 0$ with positive entries. So $CG\tilde{E} > 0$.

THEN, a number $\alpha > 0$ is chosen such that $\alpha CG\tilde{E} + G^{-T} > 0$.

FINALLY:
$$E \equiv \alpha \widetilde{E}$$

September 2008

DEFINITIONS:

Matrices with all minors nonnegative (positive) are called TN (totally positive TP) matrices.

If A is TN and A^k TP for some positive integer k then A is called OSCILLATORY.

Applications in mechanical oscillatory problems

Totally Nonnegative (TN) Symplectic Matrices (II)

I is symplectic and TN.

Are there symplectic TP matrices? Are there symplectic oscillatory matrices?

What is the set of symplectic TN matrices?

Theorem (the 2 × 2 case): $S \in \mathbb{R}^{2 \times 2}$ is symplectic and TP if and only if det S = 1 and $s_{ij} > 0$ for all (i, j).

If any three positive entries s_{11}, s_{12}, s_{21} are chosen then the remaining entry a_{22} is obtained from det S = 1 as $s_{22} = (1 + s_{12}s_{21})/s_{11}$.

Totally Nonnegative (TN) Symplectic Matrices (III)

Theorem: Let $S \in \mathbb{R}^{2n \times 2n}$ with n > 1 be symplectic. Then

- **1.** S is not TP.
- **2.** S is not oscillatory.

Sketch of the Proof: LU factorization of S is

$$S = \begin{bmatrix} L_{11} & 0\\ S_{21}U_{11}^{-1} & L_{22} \end{bmatrix} \begin{bmatrix} U_{11} & L_{11}^{-1}S_{12}\\ 0 & U_{22} \end{bmatrix} \text{ where } \begin{array}{c} S_{11} = L_{11}U_{11}\\ S_{11}^{-T} = L_{22}U_{22} \end{bmatrix}$$

If $S \top P$ then S_{11} is TP and the LU factors of S are triangular TP. Therefore L_{22} and U_{22} are triangular TP and S_{11}^{-T} is TP.

CONTRADICTION!!, S_{11} TP implies that S_{11}^{-T} has negative

entries. September 2008

Totally Nonnegative (TN) Symplectic Matrices (IV)

Theorem: The set of
$$2n \times 2n$$
 $(n > 1)$ symplectic and
TN matrices is
$$S^{\mathsf{TN}} = \left\{ \begin{bmatrix} D & 0 \\ 0 & D^{-1} \end{bmatrix} : D = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} \lambda_i > 0 \right\}$$

Definition: $A \in \mathbb{R}^{n \times n}$ is a M-Matrix if $a_{ij} \leq 0$ for $i \neq j$ and $\operatorname{Re}(\lambda) > 0$ for every eigenvalue λ of A.

September 2008

Symplectic M-Matrices (II)

Given an arbitrary $H = H^T \leq 0$, the matrices $K = K^T \leq 0$ such that HDK is *diagonal* can be easily determined. For instance if $h_{12} = h_{21} \neq 0$:

The ? that remain in K after this process is repeated for all entries $h_{ij} = h_{ji} \neq 0$, are free parameters in $K = K^T \leq 0$ for a given H.

Conclusions and Open Problems

- An explicit description of the group of symplectic matrices has been introduced.
- It allows us to characterize very easily several structured sets of symplectic matrices.
- How to extend this approach to other structured sets? Rank structured symplectic matrices?
- Perturbation theory with respect the symplectic parameters? Interesting properties?
- How to compute the parametrization in a stable an efficient way if we are given the entries of a symplectic matrix?
- Have these symplectic parameters an intrinsic meaning?