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Abstract (1)

INPUT: Factors X and D of a decomposition A = XDXT of a
symmetric matrix, where X is well-conditioned and D is diagonal,
perhaps indefinite.
We run the standard Jacobi algorithm to compute eigenvalues and
eigenvectors but applying the rotations only on X.
BASIC STEP: Compute a plane Jacobi rotation R such that
(RTAR)ij = 0, for some i 6= j, then

XDXT −→ (RTX)D(RTX)T .

From a decomposition of A we obtain a decomposition of RTAR.
The matrix A is never formed.
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Abstract (2)

Algorithm stops when the off diagonal part of Af = XfDX
T
f is

small enough.
OUTPUT:

1 The eigenvalues of A are the computed diagonal entries of
XfDX

T
f .

2 Eigenvectors are the columns of R1R2 · · ·Rf

Let ε be the unit roundoff. The errors in computed eigenvalues
and eigenvectors are

|λ̂i − λi|
|λi|

≤ O(εκ(X)) and θ(vi, v̂i) ≤
O(εκ(X))

min
j 6=i

∣∣∣λi−λj

λi

∣∣∣ for all i,

for any condition number of A, i.e., of D. (κ(X) = ‖X‖2‖X−1‖2)
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Abstract (3)

This implicit Jacobi algorithm is mathematically equivalent to the
standard one.

This is the first algorithm that
1 computes accurate eigenvalues an eigenvectors of symmetric

(indefinite) matrices,
2 respects and preserves the symmetry of the problem, and
3 uses only orthogonal transformations.

We consider in this talk only nonsingular matrices A = XDXT .
The algorithm can deal with singular matrices by computing first
the QR factorization of X.
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Outline

1 Why is the Implicit Jacobi algorithm interesting?

2 Why does Implicit Jacobi compute accurate eigenvalues and
eigenvectors?

3 The rigorous roundoff error result

4 Numerical Experiments

5 Conclusions
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Accurate eigencomputations for symmetric
matrices

In the last twenty years an intensive research effort has been
made to compute eigenvalues and eigenvectors of n× n
symmetric matrices to high relative accuracy (hra).
Given A = AT ∈ Rn×n, we will say that an algorithm computes all
its eigenvalues and eigenvectors to hra if the computed
eigenvalues and eigenvectors satisfy

|λ̂i − λi| = O(ε) |λi| and θ(vi, v̂i) ≤
O(ε)

min
j 6=i

∣∣∣λi−λj

λi

∣∣∣ for all i

and, in addition,
1 the cost is O(n3) flops,
2 and extra precision is not used.

HRA is only possible for special types of matrices.
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HRA is not obtained from standard algorithms

EXAMPLE: Symmetric INDEFINITE 100× 100 Cauchy matrix A

aij =
1

xi + xj
, with

{
xi = i− 0.5 for i = 1 : 99
x100 = −99.5

κ(A) = 3.5 · 10147

Errors in accurate algorithm (Factorization + Imp. Jacobi)
compared to 200-decimal digits MATLAB’s eig command

max
i

|λ̂i − λi|
|λi|

= 1.2 · 10−13 and max
i
‖v̂i − vi‖2 = 5.7 · 10−14.

Errors in MATLAB’s eig function

max
i

|λ̂i − λi|
|λi|

= 1.84 · 10132 and max
i
‖v̂i − vi‖2 = 1.41.
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Selected references for HRA algorithms for
symmetric eigenproblems (SVDs)

Demmel-Kahan (1990), Barlow-Demmel (1990), Demmel-Veselić
(1992), Demmel-Gragg (1993), Demmel (1999)
Veselić-Slapničar (1992, 93, 03)
Fernando-Parlett (1994)
Drmač (1998, 99), Drmač-Veselić (2008)
Demmel, Gu, Eisenstat, Slapničar, Veselić, Drmač (1999)
Demmel-Koev (2001, 04, 06), Koev (2005, 07)
D-Molera-Moro(03),D-Koev(06,07),Peláez-Moro(06),D-Molera(08)
Ye (2008)
It has motivated Spectral Relative Perturbation Theory (Eisenstat,
Ipsen, R.C. Li, Mathias)
Improved Convergence analysis of Jacobi Algorithms (Drmač,
Hari, Matejas).
Application to MRRR O(n2)-algorithm by Dhillon and Parlett.
Analysis of block Jacobi methods (Hari, Drmač)...
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Veselić-Slapničar (1992, 93, 03)
Fernando-Parlett (1994)
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Demmel-Koev (2001, 04, 06), Koev (2005, 07)
D-Molera-Moro(03),D-Koev(06,07),Peláez-Moro(06),D-Molera(08)
Ye (2008)
It has motivated Spectral Relative Perturbation Theory (Eisenstat,
Ipsen, R.C. Li, Mathias)
Improved Convergence analysis of Jacobi Algorithms (Drmač,
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Key unifying idea: Rank Revealing
Decompositions (RRD) (Demmel et al. 1999)

We restrict to symmetric RRDs of A = AT ∈ Rn×n.

Compute first an accurate RRD

A = XDXT ,

X is well-conditioned and D is diagonal and nonsingular.

Remark: Accuracy is only possible for special types of matrices
through structured implementations of Gaussian elimination with
complete pivoting (GECP), or variations of GECP.

Compute eigenvalues and eigenvectors with hra from the factors
X and D with a Jacobi-type method.
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A symmetric RRD determines accurately its
eigenvalues and eigenvectors (I): multiplicative
perturbations

Theorem

Let A = AT ∈ Rn×n and A = XDXT be an RRD of A, where
X ∈ Rn×r, n ≥ r, and D = diag(d1, . . . , dr) ∈ Rr×r. Let X̂ and
D̂ = diag(d̂1, . . . , d̂r) be perturbations of X and D, respectively, that
satisfy

‖X̂ −X‖2
‖X‖2

≤ δ and
|d̂i − di|
|di|

≤ δ for i = 1, . . . , r,

where δ < 1. Then

X̂D̂X̂T = (I + F )A(I + F )T ,

with ‖F‖2 ≤ (2δ + δ2)κ(X).
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A symmetric RRD determines accurately its
eigenvalues and eigenvectors (II): multiplicative
perturbation theory

Theorem (Eisenstat, Ipsen (1995) and R. C. Li (2000))

Let A = AT ∈ Rn×n and Ã = (I + F )A(I + F )T ∈ Rn×n, where
‖F‖2 < 1. Let λ1 ≥ · · · ≥ λn and λ̃1 ≥ · · · ≥ λ̃n be, respectively, the
eigenvalues of A and Ã. Then

|λ̃i − λi| ≤ (2 ‖F‖2 + ‖F‖22) |λi|, for i = 1, . . . ., n

For the corresponding eigenvectors, vi and ṽi,

1
2

sin 2θ(vi, ṽi) ≤
2

min
j 6=i

∣∣∣λi−λj

λi

∣∣∣ · 1 + ‖F‖2
1− ‖F‖2

(2 ‖F‖2 + ‖F‖22)
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Accurate e-values and e-vectors from X and D (1):
Positive definite case

Algorithm (Demmel, Veselić (1992))

Given RRD A = XDXT positive definite:
1 Compute SVD of

X
√
D = UΣV T

with one-sided Jacobi on the left.
2 The spectral decomposition is

A = X
√
D(X

√
D)T = UΣ2UT .
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Accurate e-values and e-vectors from X and D (2):
General case

Two algorithms have been proposed for the indefinite case. They
work well in practice, they both have shortcomings:

One-sided Hyperbolic Jacobi (Slapničar, Veselić (1992,2003)).
1 It uses hyperbolic transformations (symmetric matrices are

diagonalizable by orthogonal similarity).
2 The error bounds implied by the use of hyperbolic rotations are not

rigorously bounded.
Signed-SVD (D., Molera, Moro (2003), D., Molera (2008)),

1 It does guarantee hra error bounds.
2 It does not respect the symmetry of the problem.
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Notation for Jacobi rotation (c2 + s2 = 1)

i j

R(i, j, c, s) =
i

j



1
. . .

c −s
. . .

s c
. . .

1


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Implicit Jacobi for square factors

INPUT: X ∈ Rn×n nonsingular and D ∈ Rn×n diag. and nonsingular
OUTPUT: e-values, λi, and matrix of e-vectors, U , of A = XDXT

U = In
repeat

for i < j
compute aii, aij , ajj of A = XDXT and T =

[
c
s
−s
c

]
, such that

T T
[
aii aij
aij ajj

]
T =

[
µ1

µ2

]
X = R(i, j, c, s)T X
U = U R(i, j, c, s)

endfor
until convergence

(
|aij |√
|aiiajj |

≤ tol = O(ε) for all i > j

)
compute λk = akk for k = 1, 2, . . . , n.
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Jacobi rotations on X preserve accurate e-values
and e-vectors

Lemma (Small multiplicative backward errors of Jacobi rotations)

Let Ri be exact Jacobi rotations and R̂i their floating point
approximations. Then

1

X̂N ≡ fl(R̂TN · · · R̂T1X) = (I + F )RTN · · ·RT1X,

where ‖F‖2 = O(N εκ(X)), and
2

X̂NDX̂
T
N = (I + F )(R1 · · ·RN )TXDXT (R1 · · ·RN )(I + F )T
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Proof of Rounding Errors in Jacobi rotations

Proof.

Let UT = RTN · · ·RT1 .

fl(R̂TN · · · R̂T1X) = RTN · · ·RT1 (X + E) with ‖E‖2 = O(Nε‖X‖2).

fl(R̂TN · · · R̂T1X) = UT (I + EX−1)X = (I + UTEX−1U)UTX.
‖UTEX−1U‖2 = ‖EX−1‖2 = O(Nεκ(X)).
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Errors on diagonal entries of almost diagonal
RRDs (I)

Given X ∈ Rn×n nonsingular and D = diag(d1, . . . , dn) ∈ Rn×n

diagonal and nonsingular:

Assume that A = XDXT satisfies |aij |√
|aiiajj |

= O(ε) for all i > j.

aii =
n∑
k=1

x2
ikdk

∣∣∣∣fl(aii)− aii
aii

∣∣∣∣ ≤ (n+ 1)ε
1− (n+ 1)ε

n∑
k=1

x2
ik|dk|∣∣∣∣∣

n∑
k=1

x2
ikdk

∣∣∣∣∣
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Errors on diagonal entries of almost diagonal
RRDs (II): EXAMPLE
INPUT: κ(X) = 7.21

XDXT =

 1 1 1
−1 −1 1

2 1 1

 1050

1
−1050

XT

RUNNING IMPLICIT JACOBI UNTIL CONVERGENCE

XfDXT
f =

 4.79 · 10−48 5.35 · 10−1 2.04 · 10−47

3.8 · 10−1 4.03 · 10−2 1.64
2.42 1.65 5.67 · 10−1

 1050

1
−1050

XT
f

=

 2.86 · 10−1 −3.16 · 103 2.39 · 10−3

−3.16 · 103 −2.53 · 1050 1.04 · 1034

2.39 · 10−3 2.08 · 1034 5.53 · 1050


THERE IS NO CANCELLATION

2.86 · 10−1 = (4.79 · 10−48)2 × 1050 + (5.35 · 10−1)2 × 1 + (2.04 · 10−47)2 × (−1050)

= 2.29 · 10−45 + 2.86 · 10−1 − 4.18 · 10−44

F. M. Dopico (U. Carlos III, Madrid) High Relative Accuracy Algorithm Householder Symposium XVII 21 / 34



Errors on diagonal entries of almost diagonal
RRDs (II): EXAMPLE
INPUT: κ(X) = 7.21

XDXT =

 1 1 1
−1 −1 1

2 1 1

 1050

1
−1050

XT

RUNNING IMPLICIT JACOBI UNTIL CONVERGENCE

XfDXT
f =

 4.79 · 10−48 5.35 · 10−1 2.04 · 10−47

3.8 · 10−1 4.03 · 10−2 1.64
2.42 1.65 5.67 · 10−1

 1050

1
−1050

XT
f

=

 2.86 · 10−1 −3.16 · 103 2.39 · 10−3

−3.16 · 103 −2.53 · 1050 1.04 · 1034

2.39 · 10−3 2.08 · 1034 5.53 · 1050


THERE IS NO CANCELLATION

2.86 · 10−1 = (4.79 · 10−48)2 × 1050 + (5.35 · 10−1)2 × 1 + (2.04 · 10−47)2 × (−1050)

= 2.29 · 10−45 + 2.86 · 10−1 − 4.18 · 10−44

F. M. Dopico (U. Carlos III, Madrid) High Relative Accuracy Algorithm Householder Symposium XVII 21 / 34



Errors on diagonal entries of almost diagonal
RRDs (II): EXAMPLE
INPUT: κ(X) = 7.21

XDXT =

 1 1 1
−1 −1 1

2 1 1

 1050

1
−1050

XT

RUNNING IMPLICIT JACOBI UNTIL CONVERGENCE

XfDXT
f =

 4.79 · 10−48 5.35 · 10−1 2.04 · 10−47

3.8 · 10−1 4.03 · 10−2 1.64
2.42 1.65 5.67 · 10−1

 1050

1
−1050

XT
f

=

 2.86 · 10−1 −3.16 · 103 2.39 · 10−3

−3.16 · 103 −2.53 · 1050 1.04 · 1034

2.39 · 10−3 2.08 · 1034 5.53 · 1050


THERE IS NO CANCELLATION

2.86 · 10−1 = (4.79 · 10−48)2 × 1050 + (5.35 · 10−1)2 × 1 + (2.04 · 10−47)2 × (−1050)

= 2.29 · 10−45 + 2.86 · 10−1 − 4.18 · 10−44

F. M. Dopico (U. Carlos III, Madrid) High Relative Accuracy Algorithm Householder Symposium XVII 21 / 34



Errors on diagonal entries of almost diagonal
RRDs (II): EXAMPLE
INPUT: κ(X) = 7.21

XDXT =

 1 1 1
−1 −1 1

2 1 1

 1050

1
−1050

XT

RUNNING IMPLICIT JACOBI UNTIL CONVERGENCE

XfDXT
f =

 4.79 · 10−48 5.35 · 10−1 2.04 · 10−47

3.8 · 10−1 4.03 · 10−2 1.64
2.42 1.65 5.67 · 10−1

 1050

1
−1050

XT
f

=

 2.86 · 10−1 −3.16 · 103 2.39 · 10−3

−3.16 · 103 −2.53 · 1050 1.04 · 1034

2.39 · 10−3 2.08 · 1034 5.53 · 1050


THERE IS NO CANCELLATION

2.86 · 10−1 = (4.79 · 10−48)2 × 1050 + (5.35 · 10−1)2 × 1 + (2.04 · 10−47)2 × (−1050)

= 2.29 · 10−45 + 2.86 · 10−1 − 4.18 · 10−44

F. M. Dopico (U. Carlos III, Madrid) High Relative Accuracy Algorithm Householder Symposium XVII 21 / 34



Errors on diagonal entries of almost diagonal
RRDs (II): EXAMPLE
INPUT: κ(X) = 7.21

XDXT =

 1 1 1
−1 −1 1

2 1 1

 1050

1
−1050

XT

RUNNING IMPLICIT JACOBI UNTIL CONVERGENCE

XfDXT
f =

 4.79 · 10−48 5.35 · 10−1 2.04 · 10−47

3.8 · 10−1 4.03 · 10−2 1.64
2.42 1.65 5.67 · 10−1

 1050

1
−1050

XT
f

=

 2.86 · 10−1 −3.16 · 103 2.39 · 10−3

−3.16 · 103 −2.53 · 1050 1.04 · 1034

2.39 · 10−3 2.08 · 1034 5.53 · 1050


THERE IS NO CANCELLATION

2.86 · 10−1 = (4.79 · 10−48)2 × 1050 + (5.35 · 10−1)2 × 1 + (2.04 · 10−47)2 × (−1050)

= 2.29 · 10−45 + 2.86 · 10−1 − 4.18 · 10−44

F. M. Dopico (U. Carlos III, Madrid) High Relative Accuracy Algorithm Householder Symposium XVII 21 / 34



Errors on diagonal entries of almost diagonal
RRDs (III): THE MAIN THEOREM

Theorem
Let X,D ∈ Rn×n be nonsingular and D = diag(d1, . . . , dn) be diagonal. If the
matrix A ≡ XDXT satisfies aii =

∑n
k=1 x

2
ikdk 6= 0 for all i, and

|aij |√
|aiiajj |

≤ δ, for all i 6= j, where δ ≤ 1
5n , then

n∑
k=1

x2
ik|dk|

|aii|
≤ κ(X)

1− 2nδ

(
1 +

2n5/2δ

1− nδ
+ n2

(
nδ

1− nδ

)2
)
, i = 1, . . . , n.

n∑
k=1

x2
ik|dk|

|aii|
≤ κ(X)

(
1 +O(n5/2δ)

)
, i = 1, . . . , n.
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Errors on diagonal entries of almost diagonal
RRDs (IV): Corollary

Corollary

If A = XDXT satisfies the stopping criterion then∣∣∣∣fl(aii)− aii
aii

∣∣∣∣ ≤ (n+ 1) ε κ(X) +O(κ(X) ε2)
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Key idea in the proof of THE MAIN THEOREM

Proof by contradiction

A = XDXT is close to diagonal, then its diagonal entries are
close to its eigenvalues.
Assume ∑n

k=1 x
2
ik|dk|

|aii|
=
∑n

k=1 x
2
ik|dk|

|
∑n

k=1 x
2
ikdk|

>> κ(X)

Then there are perturbations d̃k = dk(1 + δk), |δk| < β << 1 such
that (XD̃XT )ii =

∑n
k=1 x

2
ikd̃k, satisfy

|aii − (XD̃XT )ii|
|aii|

>> βκ(X).

This is in contradiction with an RRD determining accurately its
eigenvalues.
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Implicit Jacobi is multiplicative backward stable

Theorem
Let N be the number of rotations applied by implicit Jacobi on
A = XDXT until convergence, and Λ̂ and Û be the computed
matrices of eigenvalues and eigenvectors. Then there exists an exact
orthogonal matrix U ∈ Rn×n such that

U Λ̂UT = (I + E)XDXT (I + E)T ,

with
‖E‖F = O(εN κ(X)) and ‖Û − U‖F = O(N ε).

Corollary (Forward errors in e-values and e-vectors)

|λ̂i − λi|
|λi|

≤ O(εN κ(X)) and θ(vi, v̂i) ≤
O(εN κ(X))

min
j 6=i

∣∣∣λi−λj

λi

∣∣∣ for all i,
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Corollary (Forward errors in e-values and e-vectors)

|λ̂i − λi|
|λi|

≤ O(εN κ(X)) and θ(vi, v̂i) ≤
O(εN κ(X))

min
j 6=i

∣∣∣λi−λj

λi

∣∣∣ for all i,

F. M. Dopico (U. Carlos III, Madrid) High Relative Accuracy Algorithm Householder Symposium XVII 26 / 34



Technical comments

To establish the backward error result, we need to prove that

The stopping criterion in finite arithmetic on A = XfDX
T
f gives

exact information, i.e.,

fl

(
|aij |√
|aiiajj |

)
≤ ε κ(X) =⇒ |aij |√

|aiiajj |
≤ n ε κ(X) +O(ε2)

for all i 6= j, which is the case if there is no cancellation in fl(aii).
The stopping criterion introduces small multiplicative backward
errors, i.e.,

diag(fl(a11), . . . , fl(ann)) = (I + F )XfDX
T
f (I + F )T ,

where ‖F‖F = O(n2 ε κ(X)).
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Numerical Experiments

Thousands of numerical experiments confirm the high relative
accuracy that we have rigorously proven.
Traditional Jacobi is slow, then Implicit Jacobi is slow.
Speed is not our main issue, but we have compared the number
of sweeps performed by Implicit Jacobi with respect other high
relative accuracy algorithms:

1 One sided Hyperbolic Jacobi (Slapničar-Veselić): not rigorous
bounds.

2 SSVD-l (D-Molera-Moro): not rigorous bounds.
3 SSVD-r (D-Molera-Moro): rigorous bounds.

We have used gallery('randsvd',...) by N. Higham in
MATLAB to generate random RRDs with X well-conditioned and
D indefinite and extremely ill-conditioned.
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Number of sweeps: Increasing κ(D) (I)

In all of these tests κ(X) = 30 and X,D are 100× 100.

D has one entry with magnitude 1 and the rest 1/κ(D)

κ(D) Imp. Jac. Hyp. Jac. SSVD-l SSVD-r

1010 10 10.8 10 13
1030 10 10.6 9.8 13.2
1050 10.8 10.8 10 14
1070 11 11 10.2 13.6
1090 10.8 10.6 10 13.8
10110 11 10.4 10 14.8
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Number of sweeps: Increasing κ(D) (II)

In all of these tests κ(X) = 30 and X,D are 100× 100.

D has entries with magnitudes geometrically distributed

κ(D) Imp. Jac. Hyp. Jac. SSVD-l SSVD-r

1010 16 9 6.2 27.2
1030 24.8 9 4.8 39.6
1050 32.4 9 4.4 47.2
1070 35.8 9.4 4.4 52.6
1090 40 9 4 57
10110 43.2 9 3 59.6

|di| = κ(D)
i−1
n−1 , i = 1, . . . , n
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Numerical Experiments: Conclusions

The comparison of the performance of the available high relative
accuracy algorithms for symmetric indefinite RRDs depends
heavily on the distribution of the eigenvalues
The new Implicit Jacobi is the fastest algorithm with guaranteed
errors bounds (the other one is SSVD-r).
The new Implicit Jacobi may be considerably slower than
Hyperbolic Jacobi and SSVD-l, both with errors not rigorously
bounded.
The fastest one is SSVD-l that can benefit from new fast and
accurate Jacobi SVD algorithm by Drmač and Veselić (2008).
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Conclusions

The implicit Jacobi algorithm on symmetric rank revealing
factorizations

A = XDXT

is the first algorithm that:
1 computes the eigenvalues and eigenvectors of A to high relative

accuracy,
2 preserves the symmetry, and
3 uses only orthogonal transformations.

In addition, the error bounds are rigorously proven, and are the
best possible ones from the sensitivity of the problem.
The implicit Jacobi algorithm is very simple and natural.
The implicit Jacobi algorithm is backward stable in a strong
multiplicative sense.
More research to speed up the algorithm is needed.
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