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Jacobi Algorithm: Brief History

The Jacobi algorithm computes eigenvalues and eigenvectors
of real symmetric matrices.
It is one of the earliest methods in numerical analysis, dating to
1846. It is older than matrix theory itself.
It was the standard procedure in 1950s for solving dense
symmetric eigenvalue problems before the faster QR algorithm
was developed...
It was forgotten but from the 1980s it came back to scene because
of its adaptability to parallel computers, and
from the 1990s because sometimes, through special
implementations, Jacobi algorithm is able to compute
eigenvalues and eigenvectors much more accurately than
any other method.
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Jacobi Algorithm: Basics (I)

It is very easy to diagonalize 2× 2 symmetric matrices.

[
cos θ − sin θ
sin θ cos θ

]T [
aii aij
aij ajj

] [
cos θ − sin θ
sin θ cos θ

]
=
[
λ1 0
0 λ2

]

τ =
aii − ajj

2 aij

t =
sign(τ)

|τ |+
√

1 + τ2

cos θ =
1√

1 + t2
, sin θ =

t√
1 + t2

λ1 = aii + aij t

λ2 = ajj − aij t

Denote for simplicity c ≡ cos θ and s ≡ sin θ.
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Jacobi Algorithm: Basics (II)

Then, given A = AT ∈ Rn×n, the previous expressions can be used to
compute a plane rotation

i j

R(i, j, c, s) =
i

j



1
. . .

c −s
. . .

s c
. . .

1


∈ Rn×n,

such that (
R(i, j, c, s)TAR(i, j, c, s)

)
ij

= 0
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The Jacobi Algorithm

INPUT: A = AT ∈ Rn×n

OUTPUT: e-values, λk, and matrix of e-vectors, U , of A

U = In

repeat
choose a pair i 6= j
compute c and s such that

(
R(i, j, c, s)TAR(i, j, c, s)

)
ij

= 0
A = R(i, j, c, s)TAR(i, j, c, s)
U = U R(i, j, c, s)

until A is sufficiently diagonal

λk = akk for k = 1, 2, . . . , n.

Remarks
Each step costs 6n operations.
Each step only modifies rows and columns i and j (parallelism).
The steps do not preserve previous zeros.
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How to pick (i, j) pairs

Classical strategy
Choose in each step (i, j) such that |aij | = maxk 6=l |akl|.
No practical: n2−n

2 search for cost 6n in each step.

Cyclic-by-row strategy
(1, 2), (1, 3), . . . , (1, n)

(2, 3), . . . , (2, n)
. . . . . .
(n− 1, n)

A whole cycle is called a sweep.

Convergence of Cyclic-by-row strategy
It is globally convergent (Forsythe and Henrici (1960)).
It is quadratically convergent (ultimately) (Wilkinson (1962)).
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Stopping Criterion

INPUT: A = AT ∈ Rn×n

U = In

repeat
choose a pair i 6= j
compute c and s such that

(
R(i, j, c, s)TAR(i, j, c, s)

)
ij

= 0
A = R(i, j, c, s)TAR(i, j, c, s)
U = U R(i, j, c, s)

until A is sufficiently diagonal

λk = akk for k = 1, 2, . . . , n.

Two options√∑
k 6=l |akl|2 ≤ tol ‖A‖F (basic)

|aij |√
|aiiajj |

≤ tol for all i 6= j (accurate, it is used in this talk)

Usually tol = O(ε), where ε is the machine precision.
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Errors in eigenvalues computed by Jacobi, QR,....

We restrict to eigenvalues for simplicity in this talk, also results on
eigenvectors.
Given A = AT ∈ Rn×n, Jacobi, QR, divide and conquer,... are
backward stable, i.e., the computed eigenvalues λ̂1 ≥ . . . ≥ λ̂n
are the exact eigenvalues of

A+ E, with ‖E‖2 = O(ε)‖A‖2
where ε ≈ 10−16 in double precision.
If λ1 ≥ . . . ≥ λn are the eigenvalues of A then Weyl’s perturbation
theorem implies

|λ̂i − λi| ≤ ‖E‖2 = O(ε)‖A‖2 for all i

|λ̂i − λi|
|λi|

= O(ε)
‖A‖2
|λi|

≤ O(ε)κ(A) for all i,

because κ(A) = maxi |λi|
mini |λi| . Very large if κ(A) ≥ 1

ε ≈ 1016.

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi ILAS 2008 8 / 55



Errors in eigenvalues computed by Jacobi, QR,....

We restrict to eigenvalues for simplicity in this talk, also results on
eigenvectors.
Given A = AT ∈ Rn×n, Jacobi, QR, divide and conquer,... are
backward stable, i.e., the computed eigenvalues λ̂1 ≥ . . . ≥ λ̂n
are the exact eigenvalues of

A+ E, with ‖E‖2 = O(ε)‖A‖2
where ε ≈ 10−16 in double precision.
If λ1 ≥ . . . ≥ λn are the eigenvalues of A then Weyl’s perturbation
theorem implies

|λ̂i − λi| ≤ ‖E‖2 = O(ε)‖A‖2 for all i

|λ̂i − λi|
|λi|

= O(ε)
‖A‖2
|λi|

≤ O(ε)κ(A) for all i,

because κ(A) = maxi |λi|
mini |λi| . Very large if κ(A) ≥ 1

ε ≈ 1016.

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi ILAS 2008 8 / 55



Errors in eigenvalues computed by Jacobi, QR,....

We restrict to eigenvalues for simplicity in this talk, also results on
eigenvectors.
Given A = AT ∈ Rn×n, Jacobi, QR, divide and conquer,... are
backward stable, i.e., the computed eigenvalues λ̂1 ≥ . . . ≥ λ̂n
are the exact eigenvalues of

A+ E, with ‖E‖2 = O(ε)‖A‖2
where ε ≈ 10−16 in double precision.
If λ1 ≥ . . . ≥ λn are the eigenvalues of A then Weyl’s perturbation
theorem implies

|λ̂i − λi| ≤ ‖E‖2 = O(ε)‖A‖2 for all i

|λ̂i − λi|
|λi|

= O(ε)
‖A‖2
|λi|

≤ O(ε)κ(A) for all i,

because κ(A) = maxi |λi|
mini |λi| . Very large if κ(A) ≥ 1

ε ≈ 1016.

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi ILAS 2008 8 / 55



Errors in eigenvalues computed by Jacobi, QR,....

We restrict to eigenvalues for simplicity in this talk, also results on
eigenvectors.
Given A = AT ∈ Rn×n, Jacobi, QR, divide and conquer,... are
backward stable, i.e., the computed eigenvalues λ̂1 ≥ . . . ≥ λ̂n
are the exact eigenvalues of

A+ E, with ‖E‖2 = O(ε)‖A‖2
where ε ≈ 10−16 in double precision.
If λ1 ≥ . . . ≥ λn are the eigenvalues of A then Weyl’s perturbation
theorem implies

|λ̂i − λi| ≤ ‖E‖2 = O(ε)‖A‖2 for all i

|λ̂i − λi|
|λi|

= O(ε)
‖A‖2
|λi|

≤ O(ε)κ(A) for all i,

because κ(A) = maxi |λi|
mini |λi| . Very large if κ(A) ≥ 1

ε ≈ 1016.

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi ILAS 2008 8 / 55



Errors in eigenvalues computed by Jacobi, QR,....

We restrict to eigenvalues for simplicity in this talk, also results on
eigenvectors.
Given A = AT ∈ Rn×n, Jacobi, QR, divide and conquer,... are
backward stable, i.e., the computed eigenvalues λ̂1 ≥ . . . ≥ λ̂n
are the exact eigenvalues of

A+ E, with ‖E‖2 = O(ε)‖A‖2
where ε ≈ 10−16 in double precision.
If λ1 ≥ . . . ≥ λn are the eigenvalues of A then Weyl’s perturbation
theorem implies

|λ̂i − λi| ≤ ‖E‖2 = O(ε)‖A‖2 for all i

|λ̂i − λi|
|λi|

= O(ε)
‖A‖2
|λi|

≤ O(ε)κ(A) for all i,

because κ(A) = maxi |λi|
mini |λi| . Very large if κ(A) ≥ 1

ε ≈ 1016.

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi ILAS 2008 8 / 55



Famous example: 100× 100 Hilbert matrix

hij =
1

i+ j − 1
, 1 ≤ i, j ≤ 100

λ1 > λ2 > . . . > λ100 > 0.
κ(H) ≈ 3.8 · 10150

λ100

EXACT 5.779700862834802 · 10−151

MATLAB (eig) −1.216072660266760 · 10−19

Jacobi −2.488943645649488 · 10−17

Can we do anything better?
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Outline

1 Accurate eigencomputations for symmetric matrices

2 Rank Revealing Decompositions (RRD)

3 Computing Accurate RRDs

4 Previous algorithms for accurate e-values from RRDs

5 New Implicit Jacobi for accurate eigenvalues of RRDs

6 Rounding errors in Implicit Jacobi

7 How to deal with singular matrices?

8 Numerical Experiments

9 Conclusions
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Overview

In the last twenty years an intensive research effort has been
made to compute eigenvalues and eigenvectors of n× n
symmetric matrices to high relative accuracy (hra).
Given A = AT ∈ Rn×n, we will say that an algorithm computes all
its eigenvalues to hra if the computed eigenvalues satisfy

|λ̂i − λi| = O(ε) |λi| for all i

and, in addition,
1 the cost is O(n3) flops,
2 and extra precision is not used.

HRA is only possible for special types of matrices.
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The beginning: Implicit zero-shift QR for singular
values of bidiagonal matrices.
Demmel-Kahan 1990

All of the singular values of any bidiagonal matrix B can be
computed with high relative accuracy.
A variation of the QR iteration is needed (or dqds by Fernando and
Parlett 1994).
Consequence: the eigenvalues of any positive definite
tridiagonal matrix BTB can be computed with high relative
accuracy if its Cholesky factor B is known.
If for a positive definite tridiagonal matrix only its entries are
known, then we cannot compute its eigenvalues with
guaranteed high relative accuracy.
General rule for accurate computations: a good representation
of the matrix is essential.
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A second milestone: Jacobi can be more accurate
than QR. Demmel-Veselić 1992

Let A = AT be positive definite.

Let D = diag
(

1√
a11
, . . . , 1√

ann

)
.

Then Jacobi algorithm computes the eigenvalues with errors

|λ̂i − λi|
|λi|

= O(ε)κ(DAD) for all i,

not O(ε)κ(A).
κ(DAD) ≤ n min

D′ diagonal
κ(D′AD′).

It is one of the two types of symmetric matrices for which direct
application of Jacobi gives high relative accuracy. The other
type is scaled diagonally dominant matrices (Matejaš, 2008).
Very restrictive. It does not cover Hilbert matrix for instance.
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Example: Jacobi on positive definite well scalable
matrix

A =

 1040 1029 1019

1029 1020 109

1019 109 1

 κ(A) = 1.019 · 1040

Computed Eigenvalues:

exacts MATLAB Jacobi
1.000000000000000 · 1040 1.000000000000000 · 1040 1.000000000000000 · 1040

9.900000000000005 · 1019 −8.100009764062724 · 1019 9.900000000000000 · 1019

9.818181818181818 · 10−1 −1.208925819614629 · 1024 9.818181818181818 · 10−1

 10−20

10−10

1

A
 10−20

10−10

1

 =

 1 10−1 10−1

10−1 1 10−1

10−1 10−1 1

 ≡ B

κ(B) = 1.33
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Selected references for HRA algorithms for
symmetric eigenproblems (SVDs)

Demmel-Kahan (1990), Barlow-Demmel (1990), Demmel-Veselić
(1992), Demmel-Gragg (1993), Demmel (1999)
Veselić-Slapničar (1992, 93, 03)
Fernando-Parlett (1994)
Drmač (1998, 99), Drmač-Veselić (2008)
Demmel, Gu, Eisenstat, Slapničar, Veselić, Drmač (1999)
Demmel-Koev (2001, 04, 06), Koev (2005, 07)
D-Molera-Moro(03),D-Koev(06,07),Peláez-Moro(06),D-Molera(08)
Ye (2008)
It has motivated Spectral Relative Perturbation Theory (Eisenstat,
Ipsen, R.C. Li, Mathias)
Improved Convergence analysis of Jacobi Algorithms (Drmač,
Hari, Matejas).
Application to MRRR O(n2)-algorithm by Dhillon and Parlett.
Analysis of block Jacobi methods (Hari, Drmač)...
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Demmel, Gu, Eisenstat, Slapničar, Veselić, Drmač (1999)
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Outline

1 Accurate eigencomputations for symmetric matrices

2 Rank Revealing Decompositions (RRD)

3 Computing Accurate RRDs

4 Previous algorithms for accurate e-values from RRDs

5 New Implicit Jacobi for accurate eigenvalues of RRDs

6 Rounding errors in Implicit Jacobi

7 How to deal with singular matrices?

8 Numerical Experiments
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Key unifying idea: Rank Revealing
Decompositions (RRD) (Demmel et al. 1999)

The world of high relative accuracy algorithms for computing
eigenvalues of symmetric matrices and SVDs of general matrices
was a jungle until 1999.
There were QR methods for SVDs, Jacobi methods for positive
definite matrices and SVDs, bisection methods for scaled
diagonally dominant and for matrices with acyclic graphs, new
implementations of the dqds method.....
In 1999 Demmel et al. showed that every class of matrices for
which its SVD can be accurately computed fits in the unifying
framework of computing first an accurate RRD and then use a
Jacobi type algorithm on the decomposition.
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Symmetric Rank Revealing Decompositions (RRD)

We restrict in this talk to symmetric RRDs of A = AT ∈ Rn×n.

Compute first an accurate RRD

A = XDXT ,

X is well-conditioned and D is diagonal and nonsingular.

Remark: Accuracy is only possible for special types of matrices
through structured implementations of Gaussian elimination with
complete pivoting (GECP), or variations of GECP.

Compute eigenvalues and eigenvectors with high relative
accuracy from the factors X and D through a Jacobi-type
algorithms.

These Jacobi algorithms are the main purpose of this talk!!
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A symmetric RRD determines accurately its
eigenvalues: Example

A = XDXT =

 1 1 1
−1 −1 1

2 1 1

 1050

1
−1050

XT

=

 1 −2 · 1050 − 1 1050 + 1
−2 · 1050 − 1 1 −3 · 1050 − 1

1050 + 1 −3 · 1050 − 1 3 · 1050 + 1

 (κ(X) = 7.21)

We consider the exact eigenvalues of TWO perturbations of A
Ã: ã33 = (1 + 10−3) a33.

Â: d̂33 = (1 + 10−3) d33.

A Ã Â

5.53112887 · 1050 5.53291828 · 1050 5.53080731 · 1050

2.85714285 · 10−1 8.56985368 · 1046 2.85714285 · 10−1

−2.53112887 · 1050 −2.53077527 · 1050 −2.53380731 · 1050
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A symmetric RRD determines accurately its
eigenvalues: Theorem

Theorem (D, Koev (2006))

Let A = AT = XDXT be an RRD, where X ∈ Rn×r, n ≥ r, and
D = diag(d1, . . . , dr) ∈ Rr×r. Let X̂ and D̂ = diag(d̂1, . . . , d̂r) be
perturbations of X and D such that

‖X̂ −X‖2
‖X‖2

≤ δ and
|d̂i − di|
|di|

≤ δ for i = 1, . . . , r,

where δ < 1. Let λ1 ≥ · · · ≥ λn be the eigenvalues of A and
λ̂1 ≥ · · · ≥ λ̂n be the eigenvalues of X̂D̂X̂T then, for all i,∣∣∣∣∣λi − λ̂iλi

∣∣∣∣∣ ≤κ(X)
(

4δ + 2δ2 + κ(X)
(
2δ + δ2

)2) ≈ 4 δ κ(X) +O(δ2)
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A symmetric RRD determines accurately its
eigenvalues: Proof and multiplicative perturbation
theory

Write
X̂D̂X̂T = (I + F )XDXT (I + F )T ,

with ‖F‖2 ≤ (2δ + δ2)κ(X).

Theorem (Eisenstat, Ipsen (1995))

Let A = AT ∈ Rn×n and Ã = (I + F )A(I + F )T ∈ Rn×n. Let
λ1 ≥ · · · ≥ λn and λ̃1 ≥ · · · ≥ λ̃n be, respectively, the eigenvalues of A
and Ã. Then

|λ̃i − λi| ≤ (2 ‖F‖2 + ‖F‖22) |λi|, for i = 1, . . . ., n
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The accuracy that we need

The computed factors X̂ and D̂ of an RRD A = XDXT of A = AT

have to satisfy the forward error bounds

|Dii − D̂ii| = O(ε)|Dii|, for all i

‖X − X̂‖2 = O(ε)‖X‖2,

to guarantee that the relative errors between the eigenvalues of
A = XDXT and X̂D̂X̂T are O(εκ(X)).

This accuracy can be obtained only for special types of matrices
through highly structured implementations of Gaussian elimination
with complete pivoting (GECP), or variations of GECP. Each class
of matrices needs a different implementation.
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Classes of symmetric matrices with accurate
RRDs

1 Well Scaled Symmetric Positive Definite (Demmel and Veselić).
2 Scaled diagonally dominant (Barlow and Demmel)
3 Symmetric Cauchy and Scaled-Cauchy (D and Koev).
4 Symmetric Vandermonde (D and Koev).
5 Symmetric Totally nonnegative (D and Koev).
6 Symmetric Graded Matrices (D and Molera).
7 Symmetric DSTU and TSC (Peláez and Moro).
8 Symmetric diagonally dominant M-matrices (Demmel and Koev),

(Peña).
9 Symmetric diagonally dominant (Ye)....
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An example: Symmetric Cauchy matrices (I)

aij =
1

xi + xj
, 1 ≤ i, j ≤ n

Algorithm for accurate RRD (D and Koev (2006))

Compute accurate Schur Complements (Gohberg, Kailath,
Olshevsky) and (Demmel).

S(m)
rs = S(m−1)

rs

(xr − xm)(xs − xm)
(xm + xs)(xr + xm)

for m+ 1 ≤ r, s ≤ n,

Use Diagonal Pivoting Method with the Bunch-Parlett complete
pivoting strategy on the Schur Complements to get

PAP T = LD̄LT ,

with L block lower triangular, D̄ block diagonal matrix with blocks
1× 1 or 2× 2.
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An example: Symmetric Cauchy matrices (II)

Orthogonal diagonalization of the 2 x 2 pivots in D̄ = (UDUT )

PAP T = LD̄LT = L(UDUT )LT ,

A = (P TLU)D (P TLU)T

≡ XDXT

Remark
A long and detailed error analysis is needed to prove that the
computed RRD is accurate.
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Accurate e-values from X and D: Positive definite
case

Algorithm (Demmel, Veselić (1992))

Given RRD A = XDXT positive definite:
1 Compute SVD of

X
√
D = UΣV T

with one-sided Jacobi on the left.
2 The spectral decomposition is

A = X
√
D(X

√
D)T = UΣ2UT .

Note on one-sided Jacobi

One sided Jacobi on (X
√
D) consists simply in computing the usual

Jacobi rotations corresponding to (X
√
D)(X

√
D)T , and apply them

only on (X
√
D) −→ RT (X

√
D).
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Accurate RRD computation and One-sided Jacobi
in action

100× 100 Hilbert Matrix:

hij =
1

i+ j − 1
, 1 ≤ i, j ≤ 100

λ1 > λ2 > . . . > λ100 > 0.
κ(H) ≈ 3.8 · 10150

λ100

EXACT 5.779700862834802 · 10−151

RRD+Jacobi 5.779700862834813 · 10−151

MATLAB (eig) −1.216072660266760 · 10−19

Jacobi −2.488943645649488 · 10−17

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi ILAS 2008 30 / 55



Accurate RRD computation and One-sided Jacobi
in action

100× 100 Hilbert Matrix:

hij =
1

i+ j − 1
, 1 ≤ i, j ≤ 100

λ1 > λ2 > . . . > λ100 > 0.
κ(H) ≈ 3.8 · 10150

λ100

EXACT 5.779700862834802 · 10−151

RRD+Jacobi 5.779700862834813 · 10−151

MATLAB (eig) −1.216072660266760 · 10−19

Jacobi −2.488943645649488 · 10−17

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi ILAS 2008 30 / 55



Accurate RRD computation and One-sided Jacobi
in action

100× 100 Hilbert Matrix:

hij =
1

i+ j − 1
, 1 ≤ i, j ≤ 100

λ1 > λ2 > . . . > λ100 > 0.
κ(H) ≈ 3.8 · 10150

λ100

EXACT 5.779700862834802 · 10−151

RRD+Jacobi 5.779700862834813 · 10−151

MATLAB (eig) −1.216072660266760 · 10−19

Jacobi −2.488943645649488 · 10−17

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi ILAS 2008 30 / 55



Accurate RRD computation and One-sided Jacobi
in action

100× 100 Hilbert Matrix:

hij =
1

i+ j − 1
, 1 ≤ i, j ≤ 100

λ1 > λ2 > . . . > λ100 > 0.
κ(H) ≈ 3.8 · 10150

λ100

EXACT 5.779700862834802 · 10−151

RRD+Jacobi 5.779700862834813 · 10−151

MATLAB (eig) −1.216072660266760 · 10−19

Jacobi −2.488943645649488 · 10−17

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi ILAS 2008 30 / 55



Accurate e-values from X and D: General case

The solution of the indefinite case has been much more difficult. A
satisfactory algorithm has been found only very recently.

Essentially two Jacobi type algorithms were proposed in the past for
the indefinite case. They work well in practice, but they both have
shortcomings:

One-sided Hyperbolic Jacobi (Slapničar, Veselić (1992,2003)).
1 It uses hyperbolic transformations (symmetric matrices are

diagonalizable by orthogonal similarity).
2 The error bounds implied by the use of hyperbolic rotations are not

rigorously bounded.
Signed-SVD (D., Molera, Moro (2003), D., Molera (2008)),

1 It does guarantee hra error bounds.
2 It does not respect the symmetry of the problem.
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Our Goal

To present a new and simple implicit Jacobi algorithm (D, Koev,
Molera 2008) on a given RRD

A = XDXT

possibly indefinite that has the following three properties:

1 it computes the eigenvalues and eigenvectors of A to high relative
accuracy,

2 it preserves the symmetry of the problem, and
3 it uses only orthogonal transformations.
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Basic Description (1)

INPUT: Factors X and D of a decomposition A = XDXT of a
symmetric matrix, where X is well-conditioned and D is diagonal,
perhaps indefinite.
We run the standard Jacobi algorithm to compute eigenvalues and
eigenvectors but applying the rotations only on X.
BASIC STEP: Compute a plane Jacobi rotation R such that
(RTAR)ij = 0, for some i 6= j, then

XDXT −→ (RTX)D(RTX)T .

From a decomposition of A we obtain a decomposition of RTAR.
The matrix A is never formed.
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Basic Description (2)

Algorithm stops when the off diagonal part of Af = XfDX
T
f is

small enough.
OUTPUT:

1 The eigenvalues of A are the computed diagonal entries of
XfDX

T
f .

2 Eigenvectors are the columns of R1R2 · · ·Rf

Let ε be the unit roundoff. The errors in computed eigenvalues are

|λ̂i − λi|
|λi|

≤ O(εκ(X)) for all i,

for any condition number of A, i.e., of D. (κ(X) = ‖X‖2‖X−1‖2)
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Implicit Jacobi for square factors

INPUT: X ∈ Rn×n nonsingular and D ∈ Rn×n diag. and nonsingular
OUTPUT: e-values, λi, and matrix of e-vectors, U , of A = XDXT

U = In
repeat

for i < j
compute aii, aij , ajj of A = XDXT and T =

[
c
s
−s
c

]
, such that

T T
[
aii aij
aij ajj

]
T =

[
µ1

µ2

]
X = R(i, j, c, s)T X
U = U R(i, j, c, s)

endfor
until convergence

(
|aij |√
|aiiajj |

≤ tol = O(ε) for all i > j

)
compute λk = akk for k = 1, 2, . . . , n.
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Jacobi rotations on X preserve accurate e-values

Lemma (Small multiplicative backward errors of Jacobi rotations)

Let Ri be exact Jacobi rotations and R̂i their floating point
approximations. Then

1

X̂N ≡ fl(R̂TN · · · R̂T1X) = (I + F )RTN · · ·RT1X,

where ‖F‖2 = O(N εκ(X)), and
2

X̂NDX̂
T
N = (I + F )(R1 · · ·RN )TXDXT (R1 · · ·RN )(I + F )T
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Proof of Rounding Errors in Jacobi rotations

Proof.

Let UT = RTN · · ·RT1 .

fl(R̂TN · · · R̂T1X) = RTN · · ·RT1 (X + E) with ‖E‖2 = O(Nε‖X‖2).

fl(R̂TN · · · R̂T1X) = UT (I + EX−1)X = (I + UTEX−1U)UTX.
‖UTEX−1U‖2 = ‖EX−1‖2 = O(Nεκ(X)).
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Implicit Jacobi for square factors

INPUT: X ∈ Rn×n nonsingular and D ∈ Rn×n diag. and nonsingular
OUTPUT: e-values, λi, and matrix of e-vectors, U , of A = XDXT

U = In
repeat

for i < j
compute aii, aij , ajj of A = XDXT and T =

[
c
s
−s
c

]
, such that

T T
[
aii aij
aij ajj

]
T =

[
µ1

µ2

]
X = R(i, j, c, s)T X
U = U R(i, j, c, s)

endfor
until convergence

(
|aij |√
|aiiajj |

≤ tol = O(ε) for all i > j

)
compute λk = akk for k = 1, 2, . . . , n. −→ IS THIS ACCURATE???
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Errors on diagonal entries of almost diagonal
RRDs (I)

Given X ∈ Rn×n nonsingular and D = diag(d1, . . . , dn) ∈ Rn×n

diagonal and nonsingular:

Assume that A = XDXT satisfies |aij |√
|aiiajj |

= O(ε) for all i > j.

aii =
n∑
k=1

x2
ikdk

∣∣∣∣fl(aii)− aii
aii

∣∣∣∣ ≤ (n+ 1)ε
1− (n+ 1)ε

n∑
k=1

x2
ik|dk|∣∣∣∣∣

n∑
k=1

x2
ikdk

∣∣∣∣∣
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Errors on diagonal entries of almost diagonal
RRDs (II): EXAMPLE
INPUT: κ(X) = 7.21

XDXT =

 1 1 1
−1 −1 1

2 1 1

 1050

1
−1050

XT

RUNNING IMPLICIT JACOBI UNTIL CONVERGENCE

XfDX
T
f =

 4.79 · 10−48 5.35 · 10−1 2.04 · 10−47

3.8 · 10−1 4.03 · 10−2 1.64
2.42 1.65 5.67 · 10−1

 1050

1
−1050

XT
f

=

 2.86 · 10−1 −3.16 · 103 2.39 · 10−3

−3.16 · 103 −2.53 · 1050 1.04 · 1034

2.39 · 10−3 2.08 · 1034 5.53 · 1050


THERE IS NO CANCELLATION

2.86 · 10−1 = (4.79 · 10−48)2 × 1050 + (5.35 · 10−1)2 × 1 + (2.04 · 10−47)2 × (−1050)

= 2.29 · 10−45 + 2.86 · 10−1 − 4.18 · 10−44

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi ILAS 2008 42 / 55



Errors on diagonal entries of almost diagonal
RRDs (II): EXAMPLE
INPUT: κ(X) = 7.21

XDXT =

 1 1 1
−1 −1 1

2 1 1

 1050

1
−1050

XT

RUNNING IMPLICIT JACOBI UNTIL CONVERGENCE

XfDX
T
f =

 4.79 · 10−48 5.35 · 10−1 2.04 · 10−47

3.8 · 10−1 4.03 · 10−2 1.64
2.42 1.65 5.67 · 10−1

 1050

1
−1050

XT
f

=

 2.86 · 10−1 −3.16 · 103 2.39 · 10−3

−3.16 · 103 −2.53 · 1050 1.04 · 1034

2.39 · 10−3 2.08 · 1034 5.53 · 1050


THERE IS NO CANCELLATION

2.86 · 10−1 = (4.79 · 10−48)2 × 1050 + (5.35 · 10−1)2 × 1 + (2.04 · 10−47)2 × (−1050)

= 2.29 · 10−45 + 2.86 · 10−1 − 4.18 · 10−44

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi ILAS 2008 42 / 55



Errors on diagonal entries of almost diagonal
RRDs (II): EXAMPLE
INPUT: κ(X) = 7.21

XDXT =

 1 1 1
−1 −1 1

2 1 1

 1050

1
−1050

XT

RUNNING IMPLICIT JACOBI UNTIL CONVERGENCE

XfDX
T
f =

 4.79 · 10−48 5.35 · 10−1 2.04 · 10−47

3.8 · 10−1 4.03 · 10−2 1.64
2.42 1.65 5.67 · 10−1

 1050

1
−1050

XT
f

=

 2.86 · 10−1 −3.16 · 103 2.39 · 10−3

−3.16 · 103 −2.53 · 1050 1.04 · 1034

2.39 · 10−3 2.08 · 1034 5.53 · 1050


THERE IS NO CANCELLATION

2.86 · 10−1 = (4.79 · 10−48)2 × 1050 + (5.35 · 10−1)2 × 1 + (2.04 · 10−47)2 × (−1050)

= 2.29 · 10−45 + 2.86 · 10−1 − 4.18 · 10−44

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi ILAS 2008 42 / 55



Errors on diagonal entries of almost diagonal
RRDs (II): EXAMPLE
INPUT: κ(X) = 7.21

XDXT =

 1 1 1
−1 −1 1

2 1 1

 1050

1
−1050

XT

RUNNING IMPLICIT JACOBI UNTIL CONVERGENCE

XfDX
T
f =

 4.79 · 10−48 5.35 · 10−1 2.04 · 10−47

3.8 · 10−1 4.03 · 10−2 1.64
2.42 1.65 5.67 · 10−1

 1050

1
−1050

XT
f

=

 2.86 · 10−1 −3.16 · 103 2.39 · 10−3

−3.16 · 103 −2.53 · 1050 1.04 · 1034

2.39 · 10−3 2.08 · 1034 5.53 · 1050


THERE IS NO CANCELLATION

2.86 · 10−1 = (4.79 · 10−48)2 × 1050 + (5.35 · 10−1)2 × 1 + (2.04 · 10−47)2 × (−1050)

= 2.29 · 10−45 + 2.86 · 10−1 − 4.18 · 10−44

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi ILAS 2008 42 / 55



Errors on diagonal entries of almost diagonal
RRDs (III): THE MAIN THEOREM

Theorem
Let X,D ∈ Rn×n be nonsingular and D = diag(d1, . . . , dn) be diagonal. If the
matrix A ≡ XDXT satisfies aii =

∑n
k=1 x

2
ikdk 6= 0 for all i, and

|aij |√
|aiiajj |

≤ δ, for all i 6= j, where δ ≤ 1
5n , then

n∑
k=1

x2
ik|dk|

|aii|
≤ κ(X)

1− 2nδ

(
1 +

2n5/2δ

1− nδ
+ n2

(
nδ

1− nδ

)2
)
, i = 1, . . . , n.

n∑
k=1

x2
ik|dk|

|aii|
≤ κ(X)

(
1 +O(n5/2δ)

)
, i = 1, . . . , n.
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Errors on diagonal entries of almost diagonal
RRDs (IV): Corollary

Corollary

If A = XDXT satisfies the stopping criterion then∣∣∣∣fl(aii)− aii
aii

∣∣∣∣ ≤ (n+ 1) ε κ(X) +O(κ(X) ε2)
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Key idea in the proof of THE MAIN THEOREM

Proof by contradiction

A = XDXT is close to diagonal, then its diagonal entries are
close to its eigenvalues.
Assume ∑n

k=1 x
2
ik|dk|

|aii|
=
∑n

k=1 x
2
ik|dk|

|
∑n

k=1 x
2
ikdk|

>> κ(X)

Then there are perturbations d̃k = dk(1 + δk), |δk| < β << 1 such
that (XD̃XT )ii =

∑n
k=1 x

2
ikd̃k, satisfy

|aii − (XD̃XT )ii|
|aii|

>> βκ(X).

This is in contradiction with an RRD determining accurately its
eigenvalues.
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Implicit Jacobi is multiplicative backward stable

Theorem
Let N be the number of rotations applied by implicit Jacobi on
A = XDXT until convergence, and Λ̂ and Û be the computed
matrices of eigenvalues and eigenvectors. Then there exists an exact
orthogonal matrix U ∈ Rn×n such that

U Λ̂UT = (I + E)XDXT (I + E)T ,

with
‖E‖F = O(εN κ(X)) and ‖Û − U‖F = O(N ε).

Corollary (Forward errors in e-values)

|λ̂i − λi|
|λi|

≤ O(εN κ(X)) for all i,
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Technical comments

To establish the backward error result, we need to prove that

The stopping criterion in finite arithmetic on A = XfDX
T
f gives

exact information, i.e.,

fl

(
|aij |√
|aiiajj |

)
≤ ε κ(X) =⇒ |aij |√

|aiiajj |
≤ n ε κ(X) +O(ε2)

for all i 6= j, which is the case if there is no cancellation in fl(aii).
The stopping criterion introduces small multiplicative backward
errors, i.e.,

diag(fl(a11), . . . , fl(ann)) = (I + F )XfDX
T
f (I + F )T ,

where ‖F‖F = O(n2 ε κ(X)).
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Rectangular RRDs

So far we have considered A = XDXT with square and
nonsingular X and D, which excludes singular matrices A.
If we insist on X being nonsingular, then A is singular if and only if
D is singular.
The zero eigenvalues of A are revealed by the zero diagonal
entries of D
Discarding these entries we get

A = XDXT ∈ Rn×n where X ∈ Rn×r D ∈ Rr×r,

with n > r, X with full rank, and D nonsingular.
Implicit Jacobi converges to an n× n diagonal matrix with zero
entries and cancellation is unavoidable.
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Algorithm for rectangular RRD A = XDXT

A = XDXT ∈ Rn×n with X ∈ Rn×r, D ∈ Rr×r,

1 Compute full QR factorization of X

Q

[
R
0

]
= X where Q ∈ Rn×n, R ∈ Rr×r

2 Note that

A = Q

[
RDRT 0

0 0

]
QT

3 Apply Implicit Jacobi on RDRT (with factors square and
nonsingular) to compute

1 Nonzero eigenvalues of A: λ1, . . . , λr.
2 Eigenvector matrix of RDRT : UR

4 [Q(:, 1 : r)UR | Q(:, r + 1 : n)] is the eigenvector matrix of A.
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Numerical Experiments

Thousands of numerical experiments confirm the high relative
accuracy of Implicit Jacobi that we have rigorously proven.
Traditional Jacobi is slow, then Implicit Jacobi is slow.
The new Implicit Jacobi is the fastest algorithm with guaranteed
errors bounds.
We only offer one example.
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Accurate RRD and Implicit Jacobi in action

EXAMPLE: Symmetric INDEFINITE 100× 100 Cauchy matrix A

aij =
1

xi + xj
, with

{
xi = i− 0.5 for i = 1 : 99
x100 = −99.5

κ(A) = 3.5 · 10147

Errors in RRD and Implicit Jacobi compared to 200-decimal
digits MATLAB’s eig command

max
i

|λ̂i − λi|
|λi|

= 1.2 · 10−13 and max
i
‖v̂i − vi‖2 = 5.7 · 10−14.

Errors in MATLAB’s eig function

max
i

|λ̂i − λi|
|λi|

= 1.84 · 10132 and max
i
‖v̂i − vi‖2 = 1.41.
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Conclusions

RRDs together with Implicit Jacobi algorithms are the standard
way to compute accurate eigenvalues of structured symmetric
matrices.
To compute an accurate rank revealing decomposition (RRD) is
essential to get accurate eigenvalues. It is a nontrivial task.
The new implicit Jacobi algorithm on symmetric RRDs
A = XDXT is the first algorithm that:

1 computes accurate e-values and e-vectors of A,
2 preserves the symmetry, and uses only orthogonal transformations.

The error bounds are the best possible ones from the sensitivity
of the problem.
The implicit Jacobi algorithm is a very simple extension of
standard Jacobi.
The implicit Jacobi algorithm is backward stable in a strong
multiplicative sense.
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