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Accurate LDU Rank Revealing Decompositions (RRD)

Let A = LDU and L̂D̂Û be, respectively, the exact and computed LDU
factorizations of a matrix A ∈ Rn×n.

If these factorizations satisfy

L and U are well-conditioned (this happens if complete pivoting is used),

‖L− L̂‖
‖L‖

= O(ε),
‖U − Û‖
‖U‖

= O(ε),
|dii − d̂ii|
|dii|

= O(ε) ∀i,

where ε is machine precision (this can be guaranteed only for some
types of matrices through special implementations of GECP),

then there are algorithms that use the factors L̂, D̂, Û for

computing the SVD of A very accurately (Demmel et al. 1999), and

computing very accurately the solution of Ax = b for almost every b
(D-Molera this conference).
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Accurate LDU RRDs of diagonally dominant matrices

Q. Ye, Math. Comp. (2008), developed a very ingenuous algorithm for
computing accurately in 2n3 flops the LDU factorization with complete
pivoting of row diagonally dominant matrices...

that are parameterized in a particular way, but

best error bounds that have been proved after considerable efforts are

‖L− L̂‖∞
‖L‖∞

≤ 6n 8(n−1)ε,
‖U − Û‖∞
‖U‖∞

≤ 6 · 8(n−1)ε, |dii − d̂ii|
|dii|

≤ 5 · 8(n−1)ε,

where n× n is the size of the matrix.

ε = 2−53 in double precision, so the bounds are useless for n > 20...

However, numerical experiments indicate accuracy....
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‖U‖∞

≤ 6 · 8(n−1)ε, |dii − d̂ii|
|dii|

≤ 5 · 8(n−1)ε,

where n× n is the size of the matrix.

ε = 2−53 in double precision, so the bounds are useless for n > 20...

However, numerical experiments indicate accuracy....

F. M. Dopico (U. Carlos III, Madrid) LDU diagonally dominant SIAM LA 09 5 / 22



Accurate LDU RRDs of diagonally dominant matrices

Q. Ye, Math. Comp. (2008), developed a very ingenuous algorithm for
computing accurately in 2n3 flops the LDU factorization with complete
pivoting of row diagonally dominant matrices...

that are parameterized in a particular way, but

best error bounds that have been proved after considerable efforts are

‖L− L̂‖∞
‖L‖∞

≤ 6n 8(n−1)ε,
‖U − Û‖∞
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Goal of the talk

Is Q. Ye’s algorithm accurate?

Are accurate computations possible for diagonally dominant
matrices?

I will prove sharper error bounds for Q. Ye’s algorithm by using a
new Perturbation Theory for the LDU of diagonally dominant
matrices.

‖L− L̂‖
‖L‖

≤ 14n3ε,
‖U − Û‖
‖U‖

≤ 14n3ε,
|dii − d̂ii|
|dii|

≤ 14n3ε ∀i
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Parameterizing row diagonally dominant matrices (Q. Ye)

Assume A ∈ Rn×n satisfies aii ≥ 0 for all i (no restriction for SVD or
linear systems).

Define v = (v1, v2, . . . , vn) where

vi := aii −
∑
j 6=i

|aij |

A is row diagonally dominant if and only if vi ≥ 0 for all i.

AD :=

{
0 for i = j
aij for i 6= j

The pair (AD, v) allows us to recover the matrix A and we parameterize
the set of n× n matrices through pairs of this type. A matrix A
parameterized is this way will be denoted as

A = D(AD, v)
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Good perturbation properties of this parametrization

Example: Two types of small (≈ 10−3) relative componentwise perturbations
of a row diagonally dominant matrix A:

A =

 3 −1.5 1.5
−1 2.002 1
2 0.5 2.5

 , v(A) =

 0
0.002

0


B =

 3 −1.5 1.5
−1 2.001 1
2 0.5 2.5

 , v(B) =

 0
0.001

0


v(C) =

 0
0.002002

0

 , c12 = −1.5015 =⇒ C =

3.0015 −1.5015 1.5
−1 2.002002 1
2 0.5 2.5


Singular values of A, B and C

A B C

σ1 4.641 4.640 4.642
σ2 2.910 2.909 2.910
σ3 6.663 · 10−4 3.332 · 10−4 6.673 · 10−4
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Key features of Q. Ye’s algorithm for LDU of diag. dominant

INPUT: D(AD, v) with v ≥ 0 (not the matrix A).

It performs Gaussian elimination with complete (diagonal) pivoting.

If we denote A(1) := A and A(k) is the matrix obtained after k − 1 steps
of Gaussian elimination are performed, then the algorithm iterates

D(A
(1)
D , v(1))→ D(A

(2)
D , v(2))→ · · · → D(A

(k)
D , v(k))→ · · ·

v(k+1) is obtained from D(A
(k)
D , v(k)) as a sum of nonnegative terms.

There are no cancellation errors in this part!!

A
(k+1)
D is computed from D(A

(k)
D , v(k)) by applying the usual Gaussian

elimination process. So cancellation errors may appear but they are
bounded in an absolute sense.
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What happens if the vector v in D(AD, v) is not known?

If only the entries of the starting matrix A are known, then one can
compute with the usual recursive summation method

vi := aii −
∑
j 6=i

|aij | for all i,

but it may produce large relative cancellation errors if aii ≈
∑

j 6=i |aij |
and this would spoil the accuracy of the whole computation.

In case of severe cancellation, one can compute the vi with doubly
compensated summation (Priest, 1992) that computes the sum of n
numbers with relative error 2ε with cost of 10(n− 1) flops.
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∑

j 6=i |aij |
and this would spoil the accuracy of the whole computation.

In case of severe cancellation, one can compute the vi with doubly
compensated summation (Priest, 1992) that computes the sum of n
numbers with relative error 2ε with cost of 10(n− 1) flops.
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The absence of cancellation does not imply accuracy (I)

Best available error bounds for Q. Ye’s algorithm increase exponentially
with the dimension 6 · n · 8(n−1)ε.
This algorithm avoids partially cancellation, but I will assume a much
more favorable scenario to show why a direct forward error analysis
produce exponential error bounds in the dimension.

Assumption: There is no cancellation at all in the whole process of
Gaussian elimination, so, in every step k −→ k + 1 and in every update

a
(k+1)
ij = a

(k)
ij −

a
(k)
ik a

(k)
kj

a
(k)
kk

, (k + 1) ≤ i, j ≤ n,

a
(k+1)
ij is computed as a sum of two numbers with the same sign.

Let the relative errors in the computed entries of iterate A(k) be

â
(k)
ij = a

(k)
ij 〈 pk 〉 k ≤ i, j ≤ n,

where 〈 pk 〉 :=

pk∏
i=1

(1 + δi)
±1, |δi| ≤ ε (Stewart’s notation)
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â
(k)
ij = a

(k)
ij 〈 pk 〉 k ≤ i, j ≤ n,

where 〈 pk 〉 :=

pk∏
i=1

(1 + δi)
±1, |δi| ≤ ε (Stewart’s notation)

F. M. Dopico (U. Carlos III, Madrid) LDU diagonally dominant SIAM LA 09 11 / 22



The absence of cancellation does not imply accuracy (I)

Best available error bounds for Q. Ye’s algorithm increase exponentially
with the dimension 6 · n · 8(n−1)ε.
This algorithm avoids partially cancellation, but I will assume a much
more favorable scenario to show why a direct forward error analysis
produce exponential error bounds in the dimension.

Assumption: There is no cancellation at all in the whole process of
Gaussian elimination, so, in every step k −→ k + 1 and in every update

a
(k+1)
ij = a

(k)
ij −

a
(k)
ik a

(k)
kj

a
(k)
kk

, (k + 1) ≤ i, j ≤ n,

a
(k+1)
ij is computed as a sum of two numbers with the same sign.

Let the relative errors in the computed entries of iterate A(k) be

â
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The absence of cancellation does not imply accuracy (II)

Computed entries of A(k+1)

â
(k+1)
ij = â

(k)
ij 〈 1 〉−

â
(k)
ik â

(k)
kj

â
(k)
kk

〈 3 〉 = a
(k)
ij 〈 pk 〉 〈 1 〉−

a
(k)
ik 〈 pk 〉 a

(k)
kj 〈 pk 〉

a
(k)
kk 〈 pk 〉

〈 3 〉

â
(k+1)
ij =

(
a
(k)
ij −

a
(k)
ik a

(k)
kj

a
(k)
kk

)
〈 3 pk + 3 〉 = a

(k+1)
ij 〈 3 pk + 3 〉

We have proved that
pk+1 = 3 pk + 3

p1 = 0 =⇒ pn = 3n
(

3n − 1

2 · 3n−1
− 1

)
=⇒ pn ≈

3n

2

Relative error bounds for LDU without cancellation: 3nε
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We need the help of perturbation theory...

Theorem

Let A = D(AD, v) ∈ Rn×n and Ã = D(ÃD, ṽ) ∈ Rn×n be row diagonally
dominant matrices, and A = LDU and Ã = L̃ D̃ Ũ be their factorizations.
If

|ṽ − v| ≤ δ v and |ÃD −AD| ≤ δ|AD|, with δ < 1,

then

For i = 1 : n

d̃ii = dii
(1 + η1) · · · (1 + ηi)

(1 + α1) · · · (1 + αi−1)
|ηk| ≤ δ, |αk| ≤ δ.

For i < j
|ũij − uij | ≤ 3 iδ

Recall: maxij |uij | = maxii |uii| = 1.
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Perturbation of the L factor.

Theorem (continuation)

For i > j,

|˜̀ij − `ij | ≤ |`ij | ( 1

(1− δ)j
− 1

)
+ 2

(1 + δ)j − 1

(1− δ)j

∣∣∣∣∣a(j)ii

a
(j)
jj

∣∣∣∣∣
= ( jδ +O(δ2) )

(
|`ij | + 2

∣∣∣∣∣a(j)ii

a
(j)
jj

∣∣∣∣∣
)
,

where A(j) is the matrix obtained after (j − 1) steps of Gaussian
elimination.

If the matrix A is ordered for complete pivoting, then |`ij | ≤ 1,
|a(j)ii | ≤ |a

(j)
jj | and

|˜̀ij − `ij | ≤ 3 jδ +O(δ2)
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Complete pivoting is essential for good behavior of L: Example

Matrix ordered according to a pivoting strategy designed to make the factor
L column diagonally dominant and as much as possible.

A =

1000 100 500
0 0.1 0.05

100 10 120

 , v(A) =

400
0.05
10



A =

 1
0 1

0.1 0 1

1000
0.1

70

1 0.1 0.5
1 0.5

1


Example: δ ≈ 10−2 perturbation in D(AD, v).

Ã =

1000 101 500
0 0.1 0.05

100 10 120

 , v(A) =

399
0.05
10



Ã =

 1
0 1

0.1 −1 1

1000
0.1

70.05

1 0.101 0.5
1 0.5

1


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Ã =

1000 101 500
0 0.1 0.05

100 10 120

 , v(A) =

399
0.05
10


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New error bounds for Q. Ye’s algorithm

Theorem

Let us apply Ye’s algorithm with complete pivoting on A = D(AD, v) ∈ Rn×n

row diagonally dominant matrix to compute L̂, D̂ and Û with machine
precision ε. If L, D and U are the exact factors then:

For i > j
|̂̀ij − `ij | ≤ 14n j2 ε < 14n3 ε.

For i = 1, . . . , n

|d̂ii − dii| ≤ |dii|
6n i2 ε

1− 6n i2 ε
≤ |dii|

6n3 ε

1− 6n3 ε
.

For i < j
|ûij − uij | ≤ 8n i2 ε < 8n3 ε.

Recall: maxij |uij | = maxij |`ij | = 1.

O(n3 ε) error bounds, no exponential growth with the dimension.
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Two key facts on the error analysis (I)

Delicate error analysis: inductive argument in the dimension n.

Fact 1. If the first step of Gaussian Elimination is

A(1) :=

[
a11 A12

A21 A22

]
=

[
1

A21

a11
In−1

] [
a11 A12

A(2)

]
and the LDU factorization of A(2) = L22D22U22 then

A(1) =

[
1

A21

a11
L22

] [
a11

D22

] [
1 A12

a11

U22

]
.

is the LDU factorization of A = A(1).

Let D(Â
(2)
D , v̂(2)) be the computed parametrization of A(2).
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Two key facts on the error analysis (II)

Fact 2. The computation of D(Â
(2)
D , v̂(2)) in Q. Ye’s algorithm is

equivalent to the following sequence:

1 Make a relative componentwise perturbation of order nε in
D(A

(1)
D , v(1)), getting D(Ã

(1)
D , ṽ(1)).

2 Apply exactly one step of GE to D(Ã
(1)
D , ṽ(1)), getting D(Ã

(2)
D , ṽ(2)).

3 Make a relative componentwise perturbation of order nε in
D(Ã

(2)
D , ṽ(2)), getting D(Â

(2)
D , v̂(2)).

Let Φ(n) be the error produced by Q. Ye´s algorithm for LDU on a n× n
row diagonally dominant matrix. Then perturbation theory implies

Φ(n) = Φ(n− 1) + C n2 ε, with Φ(1) = 0

Finally Φ(n) = O(n3 ε)
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Conclusions

The satisfactory error analysis that we have presented is possible
because a structured perturbation theory has been developed.

This error analysis proves rigorously that for any diagonally
dominant matrix A, there are algorithms that

compute its SVD with high relative accuracy, (Ye’s + Demmel et al)
compute accurately the solution of Ax = b for almost every b, (Ye’s
+ D-Molera)

with cost O(n3) and independently of the traditional condition
number of A.
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