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Abstract

Given A ∈ Cm×n, B ∈ Cn×m, and C ∈ Cm×m, we study the equations

AX + X?B = C , (X? = XT or X∗),

where X ∈ Cn×m is the unknown to be determined. More precisely:

1 Necessary and sufficient conditions for consistency (Wimmer 1994, De
Terán and D. 2011).

2 Necessary and sufficient conditions for uniqueness of solutions (Byers,
Kressner, Schröder, Watkins, 2006, 2009).

3 Efficient and stable numerical algorithm for computing the unique
solution (De Terán and D. 2011).

4 Very briefly, general solution and dimension of solution space of
AX + X?B = 0 (De Terán, D., Guillery, Montealegre, Reyes, 2011)

We establish parallelism/differences with well-known Sylvester equation

AX − X B = C , A ∈ Cm×m, B ∈ Cn×n, C ∈ Cm×n .
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Motivation for studying AX + X?B = C (I)

It is well known that given a block upper triangular matrix (computed by the
QR-algorithm for eigenvalues, when the matrix is real or several eigenvalues
form a cluster), then[

I X
0 I

] [
A C
0 B

] [
I X
0 I

]−1

=

[
A C − (AX −XB)

0 B

]
.

Therefore, to find a solution of the Sylvester equation AX −XB = C allows
us to block-diagonalize block-triangular matrices via similarity[

I X
0 I

] [
A C
0 B

] [
I −X
0 I

]
=

[
A 0
0 B

]
.

This is indeed done in practice in numerical algorithms (LAPACK, MATLAB)
to compute bases of invariant subspaces (eigenvectors) of matrices, via the
classical Bartels-Stewart algorithm (Comm ACM, 1972) or level-3 BLAS
variants of it Jonsson-Kågström (ACM TMS, 2002).
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Motivation for studying AX + X?B = C (II)

Structured numerical algorithms for linear palindromic eigenproblems
(Z + λZ?) compute an anti-triangular Schur form via unitary ?-congruence:

Theorem (Kressner, Schröder, Watkins (Numer. Alg., 2009) and
Mackey2, Mehl, Mehrmann (NLAA, 2009))

Let Z ∈ Cn×n. Then there exists a unitary matrix U ∈ Cn×n such that

M = U? Z U =


∗ · · · · · · ∗
... . .

.
0

... . .
.

. .
. ...

∗ 0 · · · 0


The matrix M can be computed, for instance, through structure-preserving

QR-type methods for matrices in anti-Hessenberg form (Kressner,
Schröder, Watkins (Numer. Alg., 2009)),

Jacobi-type methods (Mackey2, Mehl, Mehrmann (NLAA, 2009)),

and compute eigenvalues of Z + λZ? with exact pairing λ, 1/λ?.
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Motivation for studying AX + X?B = C (III)

Given a block upper ANTI-triangular matrix (computed via structured
algorithms for linear palindromic eigenproblems, when the matrix is real or
several eigenvalues form a cluster), then[

I 0
−X I

]? [
C A
B 0

] [
I 0
−X I

]
=

[
C − (AX + X?B) A

B 0

]
.

Therefore, to find a solution of the Sylvester equation for ?-congruence
allows us to block-ANTI-diagonalize block-ANTI-triangular matrices via
?-congruence [

I −X?

0 I

] [
C A
B 0

] [
I 0
−X I

]
=

[
0 A
B 0

]
,

and to compute deflating subspaces of palindromic pencils.

GOAL: To understand Sylvester equations for ?-congruence and develop
efficient and stable numerical algorithms for its solution in order to completely
solve the linear palindromic eigenproblem numerically and to determine the
conditioning of its deflating subspaces under structured perturbations.
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Consistency of AX + X?B = C

Theorem (Wimmer (LAA, 1994), De Terán and D. (ELA, 2011))

Let F be a field of characteristic different from two and let A ∈ Fm×n,
B ∈ Fn×m, C ∈ Fm×m be given. There is some X ∈ Fn×m such that

AX +X?B = C

if and only if [
C A
B 0

]
and

[
0 A
B 0

]
are ?-congruent.

Remarks:

The implication =⇒ very easy: done in previous slide.

The implication⇐= more challenging.

Wimmer proved in 1994 the result, for F = C and ? = ∗, without any
reference to palindromic eigenproblems.

His motivation was the study of standard Sylvester equations with
Hermitian solutions.
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...to be compared with Roth’s criterion for standard Sylvester equation

Theorem (Roth (Proc. AMS, 1952))

Let F be any field and let A ∈ Fm×m, B ∈ Fn×n, C ∈ Fm×n be given. There is
some X ∈ Fm×n such that

AX − X B = C

if and only if [
A C
0 B

]
and

[
A 0
0 B

]
are similar.
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Uniqueness of solutions of AX + X?B = C (I)

Remarks:

If the matrices A ∈ Fm×n and B ∈ Fn×m are rectangular (m 6= n), then
the equation does not have a unique solution for every right-hand
side C,

that is, the operator

Fn×m −→ Fm×m

X 7−→ AX + X?B

is never invertible.

It is of course possible that m > n and that for particular A, B and C, a
solution exists and is unique,

but we restrict ourselves here to the square case m = n.
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Uniqueness of solutions of AX + X?B = C (II)

Definition: a set {λ1, . . . , λn} ⊂ C is ?-reciprocal free if λi 6= 1/λ?j for any
1 ≤ i, j ≤ n. We admit 0 and/or∞ as elements of {λ1, . . . , λn}.

Theorem (Byers, Kressner (SIMAX, 2006), Kressner, Schröder, Watkins,
(Num. Alg., 2009))

Let A,B ∈ Cn×n be given. Then:

AX + XT B = C has a unique solution X for every right-hand side
C ∈ Cn×n if and only if the following conditions hold:

1) The pencil A− λBT is regular, and
2) the set of eigenvalues of A− λBT \{1} is T -reciprocal free and if 1

is an eigenvalue of A− λBT , then it has algebraic multiplicity 1.

AX + X∗B = C has a unique solution X for every right-hand side
C ∈ Cn×n if and only if the following conditions hold:

1) The pencil A− λB∗ is regular, and
2) the set of eigenvalues of A− λB∗ is ∗-reciprocal free.
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...to be compared with uniqueness conditions for standard Sylvester eq

Theorem

Let A ∈ Cm×m and B ∈ Cn×n be given. Then:

AX − X B = C has a unique solution X for every right-hand side
C ∈ Cm×n if and only if A and B have no eigenvalues in common.

Remark: Comparison of both results brings to our attention a key difference
that appears always between solution methods for AX +X?B = C and
AX −XB = C:

In AX +X?B = C, one starts dealing with the eigenproblem of
A− λB?, that is, one deals from the very beginning simultaneously
with A and B.

By contrast in AX −XB = C, one starts dealing independently with
the eigenproblems of A and B.
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The fundamental transformation

In this section in AX + X?B = C all matrices are in Cn×n and the
solution is unique for every C.

AX + X?B = C is equivalent to a linear system for the n2 entries of X
if ? = T and to a linear system for the 2n2 entries of (ReX , ImX) if
? = ∗. From now on, we say simply “linear system” for X.

Then, it is possible to use Gaussian elimination on the equivalent system
(constructed via vec(X), vec(C), ⊗), but it costs O(n6) flops, which is
prohibitive except for small n.

IDEA: transform AX + X?B = C into an equation of the same type
but with much simpler coefficients instead of A and B and that can
be easily solved to get a total cost of O(n3) flops.

To this purpose, use QZ algorithm to compute in O(n3) flops the
generalized Schur decomposition of

A− λB? = U(R− λS)V , where

{
R, S are upper triangular
U, V are unitary matrices

If A,B real matrices: use real arithmetic to get quasi-triangular R. We do
not consider this for brevity.
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IDEA: transform AX + X?B = C into an equation of the same type
but with much simpler coefficients instead of A and B and that can
be easily solved to get a total cost of O(n3) flops.

To this purpose, use QZ algorithm to compute in O(n3) flops the
generalized Schur decomposition of

A− λB? = U(R− λS)V , where

{
R, S are upper triangular
U, V are unitary matrices

If A,B real matrices: use real arithmetic to get quasi-triangular R. We do
not consider this for brevity.
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Algorithm to solve AX + X?B = C in O(n3) flops

INPUT: A,B,C ∈ Cn×n

OUTPUT: X ∈ Cn×n

Step 1. Compute via QZ algorithm R,S, U and V such that

A = URV , B? = USV , where

{
R, S are upper triangular
U, V are unitary matrices

Step 2. Compute E = U∗ C (U?)∗

Step 3. Solve for W ∈ Cn×n the transformed equation

RW + W ? S? = E

Step 4. Compute X = V ∗W U?

F. M. Dopico (U. Carlos III, Madrid) Sylvester equation for congruence CEDYA 2011 17 / 24



Algorithm to solve AX + X?B = C in O(n3) flops

INPUT: A,B,C ∈ Cn×n

OUTPUT: X ∈ Cn×n

Step 1. Compute via QZ algorithm R,S, U and V such that

A = URV , B? = USV , where

{
R, S are upper triangular
U, V are unitary matrices

Step 2. Compute E = U∗ C (U?)∗

Step 3. How to solve for W ∈ Cn×n the transformed equation

RW + W ? S? = E ?

Step 4. Compute X = V ∗W U?

F. M. Dopico (U. Carlos III, Madrid) Sylvester equation for congruence CEDYA 2011 17 / 24



Algorithm to solve the transformed equation RW + W ? S? = E (I)

We illustrate with 4× 4 example for simplicity:
r11 r12 r13 r14
0 r22 r23 r24
0 0 r33 r34
0 0 0 r44



w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34

w41 w42 w43 w44



+


w?

11 w?
21 w?

31 w?
41

w?
12 w?

22 w?
32 w?

42

w?
13 w?

23 w?
33 w?

43

w?
14 w?

24 w?
34 w?

44



s?11 0 0 0
s?12 s?22 0 0
s?13 s?23 s?33 0
s?14 s?24 s?34 s?44

 =


e11 e12 e13 e14
e21 e22 e23 e24
e31 e32 e33 e34
e41 e42 e43 e44



If we equate the (4,4)-entry, then we get

r44 w44 + w?
44 s?44 = e44 ,

a scalar equation that allows us to determine w44 .
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a 2× 2 system of scalar equations that allows us to determine w34 and
w43 simultaneously.
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
If we equate the (1:3,1:3) submatrices , then we get r11 r12 r13

0 r22 r23
0 0 r33

 w11 w12 w13

w21 w22 w23

w31 w32 w33

+

 w?
11 w?

21 w?
31

w?
12 w?

22 w?
32

w?
13 w?

23 w?
33

 s?11 0 0
s?12 s?22 0
s?13 s?23 s?33


=

 e11 e12 e13
e21 e22 e23
e31 e32 e33

−

 r14
r24
r34

 [ w41 w42 w43

]
−

 w?
41

w?
42

w?
43

 [ s?14 s?24 s?34
]

which is a 3× 3 matrix equation of the same type as the original one.
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Algorithm to solve the transformed equation RW + W ? S? = E (II)

INPUT: R,S,E ∈ Cn×n, with R and S upper triangular
OUTPUT: W ∈ Cn×n

for j = p : −1 : 1
solve rjjwjj + w?

jjs
?
jj = ejj to get wjj

for i = j − 1 : −1 : 1

solve

{
siiwij + w?

jir
?
jj = e?ji −

∑j
k=i+1 sikwkj

riiwij + w?
jis

?
jj = eij −

∑j
k=i+1 rikwkj

}
to get wij , wji

end
E(1 : j − 1, 1 : j − 1) = E(1 : j − 1, 1 : j − 1)−R(1 : j − 1, j)W (j, 1 : j − 1)

−(S(1 : j − 1, j)W (j, 1 : j − 1))?

end

Cost

2n3 +O(n2) flops for real input matrices and a total cost 76n3 +O(n2)
flops for the whole algorithm for AX +X?B = C.
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Remarks on algorithm to solve AX + X?B = C

Roundoff errors: X̂, computed solution of AX +X?B = C, satisfies

‖AX̂ + X̂?B − C‖F ≤ αun5/2 (‖A‖F + ‖B‖F ) ‖X̂‖F ,

with u unit roundoff and α small integer constant.

The algorithm for solving RW +W ? S? = E is dominated by level-2
BLAS operations. In modern computers, a blocked-version dominated
by level-3 BLAS operations would be more efficient (future work), but...

for AX +X?B = C, cost is dominated by the QZ-alg on A− λB?.

The algorithm should be compared with Bartels-Stewart algorithm for
Sylvester equation AX −XB = C:

1 Compute independently triang. Schur forms TA and TB of A and B.
2 Solve TA Y − Y TB = D for Y .
3 Recover X from Y .

Same flavor, but also differences: A− λB? and TA Y − Y TB = D allows
us to compute each entry of Y in terms on previous ones (from left and
from bottom) without using 2× 2 linear-systems.
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Theoretical method to solve AX + X?B = 0

In case of consistency, but “nonuniqueness”, general solution of
AX +X?B = C is X = Xp +Xh, where

1 Xp is a particular solution and
2 Xh is the general solution of AX +X?B = 0.

The latter found a few weeks ago by De Terán, D., Guillery, Montealegre,
Reyes (REU program, U. of California at S. Barbara, M.I. Bueno).

KEY IDEA: If E − λF ? is the Kronecker Canonical form (KCF) of
A− λB?, then AX +X?B = 0 can be transformed into

EY + Y ?F = 0.

If E = E1 ⊕ · · · ⊕ Ed, F ? = F ?
1 ⊕ · · · ⊕ F ?

d , and Y = [Yij ] is partitioned
into blocks accordingly, then this equation decouples in

EiYii + Y ?
iiFi = 0 and

{
EiYij + Y ?

jiFj = 0
EjYji + Y ?

ijFi = 0
, (1 ≤ i < j ≤ d),

which produce 14 different types of matrix (systems) equations, whose
explicit solutions have been found. Much more complicated general
solution than standard Sylvester eq: AX −XB = 0.
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Conclusions

Several questions related to the Sylvester equation for ?-congruence
AX + X?B = C are well-understood:

1 Necessary and sufficient conds for consistency/uniqueness of sols.
2 Efficient and stable nume. algorithm for computing unique solution.
3 General solution of AX + X?B = 0.

Connections with strd. Syl. eq AX −XB = C but also relevant diffs:
1 Use of QZ-algor for pencil A−λB? instead of QR-algor for matrices.
2 Use of KCF for pencil A− λB? instead of JCF for matrices in

general homogeneous solution: much more complicated solution.
3 The Canonical Form for Congruence only useful in the particular

case AX +X?A = 0.

Several problems still remain open. Among them:
1 Combine the algor for AX + X?B = C with algors for computing

the anti-triangular Schur form for completely solving the linear
palindromic eigenproblem via congruence.

2 Numerical method for computing basis of the solution space of
AX + X?B = 0 via staircase-form of A− λB?.

3 Eigenvalues of the operator X 7−→ AX +X?B.
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