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Frobenius companion matrices (I)

Let p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0 be an scalar polynomial.

Then, the roots of p(z) are the eigenvalues of C1 and C2 (known as
Frobenius companion matrices of p(z))

C1 =


−an−1 · · · −a1 −a0

1
. . .

1

 , C2 = CT1 =


−an−1 1

...
. . .

−a1 1
−a0


because their characteristic polynomial is p(z), i.e.,

det(zI − C1) = det(zI − C2) = p(z)

Frobenius companion matrices

Very well-known since long long time ago (at least, since 1879).
They are very easy to construct from the coefficients of p(z).
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Frobenius companion matrices (II)

Frobenius companion matrices of scalar polynomial p(z) = zn +
∑n−1
k=0 akz

k,

C1 =


−an−1 · · · −a1 −a0

1
. . .

1

 , C2 =


−an−1 1

...
. . .

−a1 1
−a0

 ,
are important in theory, numerical computations, and applications.

They are the building blocks of the rational canonical form of a matrix.

They are used to compute all the roots of a polynomial: MATLAB
command roots uses Frobenius companion matrices and the QR
algorithm to compute all the roots of p(z).

They are used in control: Single-input controllable systems can be
transformed into companion form systems, which simplifies theoretical
considerations as feedback analysis.

They can be generalized to become linearizations of matrix polynomials:
theoretical and numerical applications.
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Frobenius companion matrices (III)

But as the degree n increases, Frobenius companion matrices have many
properties that are undesirable numerically, which limit their use in
applications. For instance,

stable ones are nearly unstable,

controllable ones are nearly uncontrollable,

nonsingular ones are nearly singular as a consequence of having large
condition numbers for inversion.

see, C. Kenney, A. J. Laub, Controllability and stability radii for companion
form systems, Math. Control Signals Systems 1 (1988) 239-256.
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Definition of Fiedler companion matrices (Fiedler, LAA, 2003) (I)

Let p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0 and let us define the n× n matrices

Mi :=


In−i−1

−ai 1
1 0

Ii−1

 , i = 1, 2, . . . , n− 1

M0 :=

[
In−1 0
0 −a0

]
,

which satisfy MiMj =MjMi for |i− j| 6= 1.

Lemma
Frobenius companion matrix can be factorized as

C1 =Mn−1Mn−2 · · ·M1M0

What happens if the order of the factors is permuted?
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Definition of Fiedler companion matrices (Fiedler, LAA, 2003) (II)

Let p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0 and let us define the n× n matrices

Mi :=


In−i−1

−ai 1
1 0

Ii−1

 , i = 1, 2, . . . , n− 1

M0 :=

[
In−1 0
0 −a0

]
Definition (Fiedler Companion Matrix)

Given a permutation σ = (i0, i1, . . . , in−1) of (0, 1, . . . , n− 1), the Fiedler
companion matrix of p(z) associated with σ is

Mσ =Mi0Mi1 · · ·Min−1

Examples: Frobenius companion matrices

C1 =Mn−1 · · ·M1M0, C2 =M0M1 · · ·Mn−1
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Properties of Fiedler companion matrices (Fiedler, LAA, 2003)

Let p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0 and let us define the n× n matrices

Mi :=


In−i−1

−ai 1
1 0

Ii−1

 , i = 1, 2, . . . , n− 1

M0 :=

[
In−1 0
0 −a0

]
Given a permutation σ = (i0, i1, . . . , in−1) of (0, 1, . . . , n− 1), the Fiedler
companion matrix of p(z) associated with σ is

Mσ =Mi0Mi1 . . .Min−1

Theorem
If Mσ1

and Mσ2
are two Fiedler matrices of p(z), then Mσ1

is similar to Mσ2
.

(Note: But not similar via permutation matrices!!)
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Fiedler matrices: Examples and structural properties (I)

p(z) = z6 + a5z
5 + a4z

4 + a3z
3 + a2z

2 + a1z + a0

First Frobenius companion matrix:

C1 =M5M4M3M2M1M0 =


−a5 −a4 −a3 −a2 −a1 −a0
1

1
1

1
1


Second Frobenius companion matrix:

C2 =M0M1M2M3M4M5 =


−a5 1
−a4 1
−a3 1
−a2 1
−a1 1
−a0


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Fiedler matrices: Examples and structural properties (II)
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Structural property 1 of Fiedler matrices

Every Fiedler matrix has exactly the same entries as the first Frobenius companion
matrix but they are in different positions.
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Fiedler matrices: Examples and structural properties (III)

p(z) = z6 + a5z
5 + a4z

4 + a3z
3 + a2z

2 + a1z + a0

Very special Fiedler matrices: Pentadiagonal matrices (there are 4 for each
degree n)

P1 = (M0M2M4)(M1M3M5) =


−a5 1 0 0 0 0
−a4 0 −a3 1 0 0
1 0 0 0 0 0
0 0 −a2 0 −a1 1
0 0 1 0 0 0
0 0 0 0 −a0 0



P2 = (M2M4)(M1M3M5)M0 =


−a5 1 0 0 0 0
−a4 0 −a3 1 0 0
1 0 0 0 0 0
0 0 −a2 0 −a1 −a0
0 0 1 0 0 0
0 0 0 0 1 0


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Fiedler matrices: Examples and structural properties (III)

First Frobenius companion matrix:

C1 =M5M4M3M2M1M0 =


−a5 −a4 −a3 −a2 −a1 −a0
1

1
1

1
1
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Pentadiagonal Fiedler matrix:
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
Structural property 2 of Fiedler matrices

Frobenius companion matrices are the Fiedler matrices with largest bandwidth.
Pentadiagonal Fiedler matrices are the ones with smallest bandwidth.
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Fiedler matrices: Examples and structural properties (IV)

First Frobenius companion matrix:

C1 =M5M4M3M2M1M0 =


−a5 −a4 −a3 −a2 −a1 −a0
1

1
1

1
1


Pentadiagonal Fiedler matrix:

P1 = (M0M2M4)(M1M3M5) =


−a5 1 0 0 0 0
−a4 0 −a3 1 0 0
1 0 0 0 0 0
0 0 −a2 0 −a1 1
0 0 1 0 0 0
0 0 0 0 −a0 0



Structural property 3 of Fiedler matrices

The “ones” are never in the main diagonal.
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Fiedler matrices: Examples and structural properties (V)

First Frobenius companion matrix:

C1 =M5M4M3M2M1M0 =


−a5 −a4 −a3 −a2 −a1 −a0
1

1
1

1
1


Pentadiagonal Fiedler matrix:

P1 = (M0M2M4)(M1M3M5) =


−a5 1 0 0 0 0
−a4 0 −a3 1 0 0
1 0 0 0 0 0
0 0 −a2 0 −a1 1
0 0 1 0 0 0
0 0 0 0 −a0 0


Structural property 3 of Fiedler matrices

If a “one” is at the (i, j) entry, then either the ith row or the jth column has the
remaining entries equal to 0.
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Fiedler matrices: Examples and structural properties (V)

First Frobenius companion matrix:

C1 =M5M4M3M2M1M0 =


−a5 −a4 −a3 −a2 −a1 −a0
1

1
1

1
1


Pentadiagonal Fiedler matrix:

P1 = (M0M2M4)(M1M3M5) =


−a5 1 0 0 0 0
−a4 0 −a3 1 0 0
1 0 0 0 0 0
0 0 −a2 0 −a1 1
0 0 1 0 0 0
0 0 0 0 −a0 0
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Structural property 3 of Fiedler matrices
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of the coefficients of the polynomial: −a0,−a1, . . . ,−an−1
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Consecutions and inversions (I)

Let Mσ be the Fiedler matrix associated with permutation σ of (0, 1, . . . , n− 1):

Mσ =Mi0Mi1 · · ·Min−1
.

Since MiMj =MjMi for |i− j| 6= 1, the relative position in Mσ of the factors
Mi and Mi+1 plays a crucial role in many properties of Fiedler matrices. This
motivates the following definitions.

For i = 0, 1, 2, . . . , n− 2, we say that Mσ has a

consecution at i if the matrix Mσ is of the form

Mσ = · · ·Mi · · ·Mi+1 · · ·

inversion at i if the matrix Mσ is of the form

Mσ = · · ·Mi+1 · · ·Mi · · ·

Examples:

M5M1M0M2M3M4 has a consecution at 1.

M5M1M0M2M3M4 has an inversion at 4.
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Consecutions and inversions (II)

Let Mσ be the Fiedler matrix associated with permutation σ of (0, 1, . . . , n− 1):

Mσ =Mi0Mi1 · · ·Min−1
.

We define the positional consecution-inversion sequence of Mσ, denoted by
PCIS(σ), as the (n− 1)-tuple (v0, v1, . . . , vn−2) such that:

vi = 1 if Mσ has a consecution at i.

vi = 0 if Mσ has an inversion at i.

Lemma
Let Mσ1

and Mσ2
be two Fiedler matrices of p(z). Then

Mσ1
=Mσ2

⇐⇒ PCIS(σ1) = PCIS(σ2).

Example:

M0M3M2M1M4M5 =M0M3M4M2M5M1 both have PCIS(σ) = (1, 0, 0, 1, 1)
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Algorithm 1: Constructing Mσ without multiplications

DESCRIPTION: Given p(z) = zn +
∑n−1
k=0 akz

k and PCIS(σ) yields Mσ.

if σ has a consecution at 0 then

W =

[
−a1 1
−a0 0

]
else

W =

[
−a1 −a0
1 0

]
end if
for i = 1 : n− 2

if σ has a consecution at i then

W =

[
−ai+1 1 0
W (:, 1) 0 W (:, 2 : i+ 1)

]
else

W =

−ai+1 W (1, :)
1 0
0 W (2 : i+ 1, :)


endif

end for
Mσ =W
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Number of different Fiedler matrices

Corollary

Let p(z) = zn +
∑n−1
k=0 akz

k with n ≥ 2.

(a) If a0 6= −1, then there are 2n−1 different Fiedler matrices of p(z).

(b) If a0 = −1, then there are 2n−2 different Fiedler matrices of p(z).

Quadratic polynomials: Fiedler matrices are the two Frobenius
companion forms.

Cubic polynomials: There are two additional Fiedler matrices.−a2 −a1 −a0
1 0 0
0 1 0

 ,
−a2 1 0
−a1 0 1
−a0 0 0

 ,
−a2 −a1 1

1 0 0
0 −a0 0

 ,
−a2 1 0
−a1 0 −a0
1 0 0


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Some recent developments on Fiedler companion matrices

We consider in this talk only scalar polynomials,

but it should be stressed that Fiedler companion matrices have received recently
considerable attention as strong linearizations of matrix polynomials (regular,
singular, rectangular),

and that based on them structured linearizations of structured matrix
polynomials (symmetric, palindromic, skew-symmetric,...) have been
constructed.

Antoniou and Vologiannidis (ELA 2004, Math. Control Signals Syst 2011).

De Terán, D., Mackey (SIMAX 2010 and 2011, JCAM 2011, LAA 2012)

Bueno, Furtado (ELA 2012, LAMA to appear, LAA submitted)...

Tisseur and coworkers are considering one particular Fiedler companion matrix
for replacing the Frobenius companion form in MATLAB command polyeig for
computing eigenvalues of matrix polynomials.

Fiedler matrices of scalar polynomials have appeared also in the context of
quasiseparable and CMV matrices: Bella, Olshevsky, Strang, Zhlobich (LAA
2010 and 2011).
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The inverse of a Fiedler matrix

Let p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0

For i = 1, 2, . . . , n− 1, the matrices Mi are nonsingular for any value of
the coefficients, while the matrix M0 is nonsingular if and only if a0 6= 0.
In this case,

M−1
i =


In−i−1

0 1
1 ai

Ii−1

 , M−1
0 =

[
In−1 0
0 −1/a0

]

Let σ = (i0, i1, . . . , in−1) be a permutation of (0, 1, . . . , n− 1) and let
Mσ =Mi0 · · ·Min−1 be the Fiedler matrix of p(z) associated to σ. Then

M−1
σ =M−1

in−1
M−1
in−2
· · ·M−1

i1
M−1
i0
.
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Algorithm 2: Constructing M−1
σ without multiplications

DESCRIPTION: Given p(z) = zn +
∑n−1
k=0 akz

k and PCIS(σ) yields M−1
σ .

if σ has a consecution at 0 then

W =

[
0 −1/a0
1 −a1/a0

]
else

W =

[
0 1

−1/a0 −a1/a0

]
end if
for i = 1 : n− 2

if σ has a consecution at i then

W =

0 W (1, :)
1 ai+1W (1, :)
0 W (2 : i+ 1, :)


else

W =

[
0 1 0

W (:, 1) ai+1W (:, 1) W (:, 2 : i+ 1)

]
end if

end for
M−1
σ =W
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Examples and properties of inverses of Fiedler Matrices (I)

p(z) = z6 + a5z
5 + a4z

4 + a3z
3 + a2z

2 + a1z + a0

Inverse of first Frobenius companion matrix:

C−1
1 =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−1/a0 −a5/a0 −a4/a0 −a3/a0 −a2/a0 −a1/a0


Inverse of pentadiagonal Fiedler matrix

P−1
1 =


0 0 1 0 0 0
1 0 a5 0 0 0
0 0 0 0 1 0
0 1 a4 0 a3 0
0 0 0 0 0 −1/a0
0 0 0 1 a2 −a1/a0


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0 1 a4 0 a3 0
0 0 0 0 0 −1/a0
0 0 0 1 a2 −a1/a0


Property 1

The inverse of a Fiedler matrix has as entries

−1/a0 and some coefficients of p(z) divided by a0 (not always the same!! and to
be determined later)
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Examples and properties of inverses of Fiedler Matrices (II)

Inverse of first Frobenius companion matrix:

C−1
1 =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−1/a0 −a5/a0 −a4/a0 −a3/a0 −a2/a0 −a1/a0


Inverse of pentadiagonal Fiedler matrix

P−1
1 =


0 0 1 0 0 0
1 0 a5 0 0 0
0 0 0 0 1 0
0 1 a4 0 a3 0
0 0 0 0 0 −1/a0
0 0 0 1 a2 −a1/a0


Property 2

The inverse of a Fiedler matrix has as entries

the remaining coefficients of p(z)
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Examples and properties of inverses of Fiedler Matrices (III)

Inverse of first Frobenius companion matrix:

C−1
1 =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−1/a0 −a5/a0 −a4/a0 −a3/a0 −a2/a0 −a1/a0


Inverse of pentadiagonal Fiedler matrix

P−1
1 =


0 0 1 0 0 0
1 0 a5 0 0 0
0 0 0 0 1 0
0 1 a4 0 a3 0
0 0 0 0 0 −1/a0
0 0 0 1 a2 −a1/a0


Property 3

The inverse of a Fiedler matrix has as entries

n− 1 “ones”.
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Initial consecutions/inversions

This additional definition is necessary to determine those entries of
M−1
σ which are coefficients of p(z) divided by a0.

Let Mσ be the Fiedler matrix associated with the permutation σ of
(0, 1, . . . , n− 1):

Mσ =Mi0Mi1 · · ·Min−1
.

We say that Mσ has

c0 initial consecutions if it has consecutions at

0, 1, . . . , c0 − 1, but not at c0.

i0 initial inversions if it has inversions at

0, 1, . . . , i0 − 1, but no at i0.

Example:

Mσ =M4M3M0M1M2M5 −→ c0 = 2.

Mσ =M4M2M1M0M5M3 −→ i0 = 2.
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The entries of M−1
σ

Let Mσ be the Fiedler matrix of p(z) = zn +
∑n−1
k=0 akz

k associated with σ:

Mσ =Mi0Mi1 · · ·Min−1 .

Let tσ be the number of initial consecutions or inversions of Mσ, i.e,

tσ =

{
c0 if c0 6= 0
i0 if c0 = 0

.

Lemma (Entries of M−1
σ )

(a) M−1
σ has tσ + 1 entries equal to − 1

a0
,−a1

a0
, . . . ,−atσ

a0
.

(b) M−1
σ has n− 1− tσ entries equal to atσ+1, atσ+2, . . . , an−1.

(c) M−1
σ has n− 1 entries equal to 1.

(d) The rest of the entries of M−1
σ are equal to 0.
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The entries of M−1
σ . Example.

Pentadiagonal Fiedler matrix (with tσ = c0 = 1)

P1 = (M0M2M4)(M1M3M5) =


−a5 1 0 0 0 0
−a4 0 −a3 1 0 0
1 0 0 0 0 0
0 0 −a2 0 −a1 1
0 0 1 0 0 0
0 0 0 0 −a0 0


Inverse of Pentadiagonal Fiedler matrix

P−1
1 =


0 0 1 0 0 0
1 0 a5 0 0 0
0 0 0 0 1 0
0 1 a4 0 a3 0
0 0 0 0 0 −1/a0
0 0 0 1 a2 −a1/a0


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Frobenius norm of the inverse of a Fiedler matrix

Corollary

Let p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0 with a0 6= 0, let Mσ be the Fiedler

matrix of p(z) associated with a permutation σ, and let tσ be the number of
initial consecutions or inversions of Mσ. Then:

||M−1
σ ||2F = (n− 1) +

1 + |a1|2 + · · ·+ |atσ |2

|a0|2
+ |atσ+1|2 + · · ·+ |an−1|2.

Example:

Pentadiagonal: P1 = (M0M2M4 · · · )(M1M3M5 · · · ) −→ c0 = 1

||P−1
1 ||F =

√
n− 1 +

1 + |a1|2
|a0|2

+ |a2|2 + · · ·+ |an−1|2

Frobenius companion matrix: C1 =Mn−1Mn−2 · · ·M1M0 −→ i0 = n− 1

||C−1
1 ||F =

√
n− 1 +

1 + |a1|2 + |a2|2 + · · ·+ |an−1|2
|a0|2

F. M. Dopico (U. Carlos III, Madrid) Fiedler matrices Madison, October 2012 28 / 50



Frobenius norm of the inverse of a Fiedler matrix

Corollary

Let p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0 with a0 6= 0, let Mσ be the Fiedler

matrix of p(z) associated with a permutation σ, and let tσ be the number of
initial consecutions or inversions of Mσ. Then:

||M−1
σ ||2F = (n− 1) +

1 + |a1|2 + · · ·+ |atσ |2

|a0|2
+ |atσ+1|2 + · · ·+ |an−1|2.

Example:

Pentadiagonal: P1 = (M0M2M4 · · · )(M1M3M5 · · · ) −→ c0 = 1

||P−1
1 ||F =

√
n− 1 +

1 + |a1|2
|a0|2

+ |a2|2 + · · ·+ |an−1|2

Frobenius companion matrix: C1 =Mn−1Mn−2 · · ·M1M0 −→ i0 = n− 1

||C−1
1 ||F =

√
n− 1 +

1 + |a1|2 + |a2|2 + · · ·+ |an−1|2
|a0|2

F. M. Dopico (U. Carlos III, Madrid) Fiedler matrices Madison, October 2012 28 / 50



Outline

1 Introduction

2 Definitions, examples, and properties of Fiedler matrices

3 The inverse of a Fiedler matrix

4 Condition numbers for inversion of Fiedler matrices

5 Singular values of Fiedler matrices and low rank matrices

6 Conclusion and future work

F. M. Dopico (U. Carlos III, Madrid) Fiedler matrices Madison, October 2012 29 / 50



Expression of condition numbers of Fiedler matrices

Let p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0 with a0 6= 0, let Mσ be the Fiedler

matrix of p(z) associated with a permutation σ, and let tσ be the number of
initial consecutions or inversions of Mσ.

Define
N(p)2 := (n− 1) + |a0|2 + |a1|2 + · · ·+ |an−1|2,

which is the square of the Frobenius norm of any Fiedler matrix of p(z) (same
for all Fiedler matrices!!!).

Theorem
In the Frobenius norm, the condition number for inversion of Mσ, i.e.,
κF (Mσ) = ‖Mσ‖F ‖M−1

σ ‖F , is equal to:

κ2F (Mσ) = N(p)2
(
(n− 1) +

1 + |a1|2 + · · ·+ |atσ |2

|a0|2
+ |atσ+1|2 + · · ·+ |an−1|2

)

Remark: If p(z) is fixed, then all Fiedler matrices with the same tσ have the
same condition number!!
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Simple bounds for the condition numbers of Fiedler matrices

Let p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0 with a0 6= 0, and let Mσ be the

Fiedler matrix of p(z) associated with a permutation σ.

(a) If |a0| ≤ 1, then√
n− 1 + |a1|2 + · · ·+ |an−1|2

|a0|
≤ κF (Mσ) ≤

n+ |a1|2 + · · ·+ |an−1|2

|a0|
.

(b) If |a0| > 1, then√
n− 1 + |a0|2 + |a1|2 + · · ·+ |an−1|2 ≤ κF (Mσ) ≤ n−1+ |a0|2+|a1|2+· · ·+|an−1|2.

In plain words: κF (Mσ) is large if and only if

|a0| is small or

|ai| is large for some i = 0, 1, . . . , n− 1.
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Explanation on bounds for condition numbers of Fiedler matrices

In plain words: κF (Mσ) is large if and only if

|a0| is small or

|ai| is large for some i = 0, 1, . . . , n− 1.

Theorem
Let A be nonsingular. Then

1

κ2(A)
=

1

‖A‖2 ‖A−1‖2
= min

{
‖δA‖2
‖A‖2

: A+ δA is singular
}
.

Example:

Mσ =


−a3 1 0 0
−a2 0 −a1 1
1 0 0 0
0 0 −a0 0

 , C1 =


−a3 1 0 0
−a2 0 1 0
−a1 0 0 1
−a0 0 0 0


If some |ai| � 1, then a tiny relative normwise perturbation can turn an
entry 1 in Mσ into a 0 and make the matrix singular.
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Ordering Fiedler matrices according to condition numbers

Given p(z) = zn +
∑n−1
k=0 akz

k, with n ≥ 3 and a0 6= 0, and a number t such
that 1 ≤ t ≤ n− 1, we define the set

St(p) := {Mσ : tσ = t} . (tσ number of initial cons/invs)

All Fiedler matrices in St(p) have the same condition number κF (Mσ).

The cardinality of St(p) is

|St(p)| =
{

2n−1−t, if t < n− 1
2, if t = n− 1

Corollary

Define κ(t) := κF (Mσ), for Mσ ∈ St(p). Then,

(a) If |a0| < 1, then κ(1) ≤ κ(2) ≤ · · · ≤ κ(n− 1).

(b) If |a0| = 1, then κ(1) = κ(2) = · · · = κ(n− 1).

(c) If |a0| > 1, then κ(1) ≥ κ(2) ≥ · · · ≥ κ(n− 1).

If |a0| < 1, then the two Frobenius companion matrices (tσ = n− 1) have
the largest condition numbers.
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Ratio of the condition numbers of two Fiedler matrices (I)

For any pair of permutations σ and µ of (0, 1, . . . , n− 1) such that tσ 6= tµ,

it is possible to find monic polynomials p(z) = zn +
∑n−1
k=0 akz

k of degree
n, such that the ratio

κF (Mµ(p))

κF (Mσ(p))

is arbitrarily large (or small) and, so, different Fiedler matrices
behave very differently.

Loosely speaking these polynomials must satisfy
1 at least one of |a2|, |a3|, . . . , |an−1| is very large, and
2 |a0| is very small or very large.

Note that a1 does not appear!! and that these conditions are necessary
but not sufficient.
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2 |a0| is very small or very large.

Note that a1 does not appear!! and that these conditions are necessary
but not sufficient.
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Example: Large ratio of cond. numbers of two Fiedler matrices

Let p(z) = z3 + 107z2 + 10−5 with degree n = 3 and consider

C1 =

−a2 −a1 −a0
1 0 0
0 1 0

 , P2 =

−a2 −a1 1
1 0 0
0 −a0 0


with a2 = 107 and a0 = 10−5.

Then

κF (C1) = 1021, κF (P2) =
√
2 · 1014, κF (C1)

κF (P2)
=

107√
2

By increasing a2 and/or by decreasing a0, one can increase
κF (C1)/κF (P2) arbitrarily, but

also κF (C1) and κF (P2).

Is it possible to find polynomials with κF (C1) large and κF (P2) small?
No
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Ratio of the condition numbers of two Fiedler matrices (II)

Theorem

Let p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0 with a0 6= 0, let σ and µ be two

permutations of (0, 1, . . . , n− 1), let Mσ and Mµ be the Fiedler matrices of
p(z) associated with σ and µ, and let tσ and tµ be the number of initial
consecutions or inversions of Mσ and Mµ. Assume tσ < tµ.

(a) If |a0| < 1, then

1 ≤
(
κF (Mµ)

κF (Mσ)

)2

≤ κF (Mσ) ≤ κF (Mµ).

(b) If |a0| > 1, then

1 ≤ κF (Mσ)

κF (Mµ)
≤ κF (Mµ) ≤ κF (Mσ).
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Condition numbers in other norms.

We have considered only condition numbers in the Frobenius norm,

because in other norms are more complicated

and Fiedler matrices cannot be ordered (at least in a simple way) in
terms of condition numbers in other norms.

Other properties are also lost for other norms.
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Singular values of Frobenius companion matrices (I)

The Frobenius companion matrix

C1 =


−an−1 · · · −a1 −a0

1
. . .

1


has the remarkable property that its singular values σ1 ≥ σ2 ≥ · · · ≥ σn can
be determined explicitly in terms of the coefficients. (Kenney and Laub, 1988)

σ2
1,n =

1 +
∑n−1
k=0 |ak|2 ±

√(
1 +

∑n−1
k=0 |ak|2

)2
− 4|a0|2

2

σi = 1 for i = 2, 3, . . . , n− 1.

Therefore, the spectral condition number κ2(C1) can also be determined
explicitly.
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Singular values of Frobenius companion matrices (II)

These formulas, that can be easily proved, are linked to the fact that C1

is the sum of a unitary (permutation) matrix plus a matrix of rank one.


−an−1 · · · −a1 −a0

1

. . .
1

 =


1

1

. . .
1

+

1
0
...
0

 [−an−1 · · · −a1 −a0 − 1
]

No other Fiedler companion matrices satisfy this property, and this
makes other Fiedler matrices more difficult.

However, one can prove that every Fiedler matrix can be expressed as a
sum of a permutation matrix plus a matrix whose rank varies from 1 to
b(n+ 1)/2c,
but this is not enough to find explicit expressions of their singular values,
although yes for simplifying their computations.
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Example: Fiedler Matrices as Permutation + low-rank (I)

M5M4M0M1M2M3 =


−a5 −a4 −a3 1 0 0

1 0 0 0 0 0
0 1 0 0 0 0
0 0 −a2 0 1 0
0 0 −a1 0 0 1
0 0 −a0 0 0 0



=


0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0

+


−a5 −a4 −a3 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 −a2 0 0 0
0 0 −a1 0 0 0
0 0 −a0 − 1 0 0 0


= permutation + rank-2

By eliminating rows and columns identically zero, the rank-2 matrix becomes
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By eliminating rows and columns identically zero, the rank-2 matrix becomes
−a5 −a4 −a3

0 0 −a2
0 0 −a1
0 0 −a0 − 1

 −→

× × ×

×
×
×


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Example: Fiedler Matrices as Permutation + low-rank (II)

M0M2M4M1M3M5 =


−a5 1 0 0 0 0
−a4 0 −a3 1 0 0

1 0 0 0 0 0
0 0 −a2 0 −a1 1
0 0 1 0 0 0
0 0 0 0 −a0 0



=


0 1 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0

+


−a5 0 0 0 0 0
−a4 0 −a3 0 0 0

0 0 0 0 0 0
0 0 −a2 0 −a1 0
0 0 0 0 0 0
0 0 0 0 −a0 − 1 0


= permutation + rank-3

By eliminating rows and columns identically zero, the rank-3 matrix becomes
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The pattern of the low-rank term

The examples above show a property that holds for every Fiedler matrix.

Theorem (Fiedler Matrices as permutation plus special low-rank)

Let Mσ be the Fiedler matrix of p(z) = zn +
∑n−1
k=0 akz

k associated with the
permutation σ of (0, 1, . . . , n− 1). Then

Mσ = Uσ + Vσ, where

Uσ is a permutation matrix.

Vσ is such that if all zero rows and columns are removed, then a matrix
Ṽσ with staircase nonzero pattern is obtained, i.e., pattern of the type


× × ×

× ×
× × ×

×
× × ×

 or


× × ×

× ×
× × ×

×
×

 ,
that can be constructed by placing × in the (1, 1) entry and then in the

right-neighbor or in the down-neighbor entry up to the right-lowest entry.
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Consequences of the pattern of the low-rank term

Mσ = Uσ + Vσ ,

where Uσ is a permutation and Vσ is such that if all zero rows-columns
are removed, then a matrix Ṽσ with staircase nonzero pattern is
obtained.

The simple nonzero-pattern structure of Vσ together with the sequence
of consecutions-inversions of Mσ makes possible:

To determine the (generic) rank of Vσ, denoted by rσ.

To find (via easy symbolic algorithms) a rank revealing factorization of Vσ

Vσ = LσRσ, with Lσ ∈ Rn×rσ , Rσ ∈ Rrσ×n

To construct a (2rσ)× (2rσ) matrix such that if 2rσ < n, then the square
roots of its eigenvalues are the singular values of Mσ different from 1.
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are removed, then a matrix Ṽσ with staircase nonzero pattern is
obtained.

The simple nonzero-pattern structure of Vσ together with the sequence
of consecutions-inversions of Mσ makes possible:

To determine the (generic) rank of Vσ, denoted by rσ.

To find (via easy symbolic algorithms) a rank revealing factorization of Vσ

Vσ = LσRσ, with Lσ ∈ Rn×rσ , Rσ ∈ Rrσ×n

To construct a (2rσ)× (2rσ) matrix such that if 2rσ < n, then the square
roots of its eigenvalues are the singular values of Mσ different from 1.

F. M. Dopico (U. Carlos III, Madrid) Fiedler matrices Madison, October 2012 44 / 50



Consequences of the pattern of the low-rank term

Mσ = Uσ + Vσ ,

where Uσ is a permutation and Vσ is such that if all zero rows-columns
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More on consecutions and inversions (I)

Let Mσ be the Fiedler matrix associated with permutation σ of (0, 1, . . . , n− 1):

Mσ =Mi0Mi1 · · ·Min−1
.

We define the reduced consecution-inversion structured sequence of
Mσ, denoted by RCISS(σ) as follows:

If Mσ has a consecution at 0, then

RCISS(σ) = (c0, i0, c1, i1, . . .),

where Mσ has c0 consecutive consecutions at 0, 1, . . . , c0 − 1, i0
consecutive inversions at c0, c0 + 1, . . . , c0 + i0 − 1, and so on...

If Mσ has an inversion at 0, then

RCISS(σ) = (i0, c0, i1, c1, . . .),

where Mσ has i0 consecutive inversions at 0, 1, . . . , i0 − 1, c0 consecutive
consecutions at i0, i0 + 1, . . . , i0 + c0 − 1, and so on...
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More on consecutions and inversions (II)

Example of RCISS(σ): Consider the next Fiedler matrix of
p(z) = z14 +

∑13
i=0 akz

k

Mσ =M13M12M10M6M4M1M0M2M3M5M7M8M9M11

Then
RCISS(σ) = (1, 2, 1, 1, 1, 3, 1, 1, 2)

The rank-determining list of Mσ is obtained from RCISS(σ) in two steps:

1 Remove from RCISS(σ) the first and last entry

(2, 1, 1, 1, 3, 1, 1)

2 Construct a list with the lengths of the strings of consecutive ones

L(σ) = (3, 2).

This is the rank-determining list of Mσ.
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The rank of the low-rank term

Theorem (Fiedler Matrices as permutation plus special low-rank)

Let Mσ be the Fiedler matrix of p(z) = zn +
∑n−1
k=0 akz

k associated with the
permutation σ of (0, 1, . . . , n− 1),

let t be the number of entries of RCISS(σ), and

let L(σ) = (`1, . . . , `q) be the rank-determining list of Mσ.

Then Mσ = Uσ + Vσ, where Uσ is a permutation matrix and (generically)

rankVσ = t−
q∑
j=1

⌈
`j
2

⌉

Example

RCISS(σ) = (1, 2, 1, 1, 1, 3, 1, 1, 2) =⇒ t = 9 and L(σ) = (3, 2). Then

rankVσ = 9− d3/2e − d2/2e = 6 .

F. M. Dopico (U. Carlos III, Madrid) Fiedler matrices Madison, October 2012 47 / 50



The rank of the low-rank term

Theorem (Fiedler Matrices as permutation plus special low-rank)

Let Mσ be the Fiedler matrix of p(z) = zn +
∑n−1
k=0 akz

k associated with the
permutation σ of (0, 1, . . . , n− 1),

let t be the number of entries of RCISS(σ), and

let L(σ) = (`1, . . . , `q) be the rank-determining list of Mσ.

Then Mσ = Uσ + Vσ, where Uσ is a permutation matrix and (generically)

rankVσ = t−
q∑
j=1

⌈
`j
2

⌉

Example

RCISS(σ) = (1, 2, 1, 1, 1, 3, 1, 1, 2) =⇒ t = 9 and L(σ) = (3, 2). Then

rankVσ = 9− d3/2e − d2/2e = 6 .

F. M. Dopico (U. Carlos III, Madrid) Fiedler matrices Madison, October 2012 47 / 50



Some intuitions on the rank of the low-rank term

Then Mσ = Uσ + Vσ, where Uσ is a permutation matrix and

rankVσ = t−
q∑
j=1

⌈
`j
2

⌉
≤
⌊
n+ 1

2

⌋

It is a complicated function of the consecutions/inversions.

Smaller numbers of transitions from series of consecutions to series of
inversions give smaller t, and this encourages smaller ranks,

but high numbers of consecutive transitions give larger `j , and this also
encourages smaller ranks.

Pentadiagonal matrices corresponds (almost always) to the maximal
value of rankVσ and these Mσ have not singular values equal to one.
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value of rankVσ and these Mσ have not singular values equal to one.
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Conclusion and future work

Fiedler companion matrices may behave very differently than classical
Frobenius companion matrices, although the basic algebraic properties
are the same.

From the point of view of condition numbers for inversion Frobenius
companion forms should not be used if |p(0)| < 1,

since they are the Fiedler matrices closest to be singular.

If |p(0)| < 1 use, instead, any Fiedler matrix having a number of initial
consecutions or inversions equal to 1.

One of these is being considered by Tisseur and coworkers to replace
Frobenius companion matrices in MATLAB’s command polyeig.

Ongoing work in my group: study of eigenvalue condition numbers and
backward errors of eigenvalues,

but a general treatment valid for all Fiedler matrices is very difficult and
we need to focus on particular relevant cases.

Many problems remain open on Fiedler companion matrices and
combinatorial properties of consecutions/inversions will play a relevant
role in their solution.
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