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What is Numerical Linear Algebra? (I)

Numerical Linear Algebra is a part of Numerical Analysis that develops
efficient and stable algorithms to solve

Systems of linear equations:

Ax = b ,

where A ∈ Rn×n and b ∈ Rn×1;

Least squares problems:

min
x
‖Ax− b‖2 ,

where A ∈ Rm×n and b ∈ Rm×1;

Matrix eigenvalue/vector problems:

Ax = λx ,

where A ∈ Rn×n;

Matrix singular value problems:

AT Ax = σ2 x ,

where A ∈ Rm×n.
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What is Numerical Linear Algebra? (II)

The problems in previous slide are the classic problems of Numerical Linear
Algebra, but nowadays many other problems are considered in Numerical
Linear Algebra. Among them:

Efficient and stable algorithms for polynomial eigenvalue problems:(
Ak λ

k +Ak−1 λ
k−1 + · · ·+A1 λ+A0

)
x = 0 ,

where Ai ∈ Rn×n, for i = 0, 1, . . . , k;

Efficient and stable algorithms for more general nonlinear eigenvalue
problems:

F (λ)x = 0,

where F : C→ Cn×n.

Linear and nonlinear matrix equations (Sylvester, Lyapunov, Riccati,...)

Matrix nearness problems, Matrix optimization problems, Tensor
computations (or numerical MULTIlinear algebra),...
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Dense versus Sparse Numerical Linear Algebra (I)

Traditionally the algorithms of Numerical Linear Algebra are divided into two
classes:

(a) Algorithms for dense n× n matrices with computational cost of O(n3)
arithmetic operations.

These algorithms are also known as direct algorithms since they
terminate after an essentially fixed number of operations.

In the jargon of Numerical Linear Algebra even the algorithms for
eigenvalues of dense matrices are termed direct, since they
deliver the maximum accuracy allowed by the computer in O(n3)
operations.

What are dense matrices? Those that are not represented in terms
of a number of parameters much smaller than n2.

The cost O(n3) implies that these algorithms can be used only for
matrices of moderate size: n . 20000.
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Dense versus Sparse Numerical Linear Algebra (II)

Traditionally the algorithms of Numerical Linear Algebra are divided into two
classes:

(a) Algorithms for dense n× n matrices with computational cost of O(n3)
arithmetic operations.

(b) Algorithms for n× n matrices with n very large (n & 105) and that can be
represented in terms of a number of parameters� O(n2), with
computational cost� O(n3) operations.

Very often the matrices considered by these algorithms are sparse,
in the sense that have many zero entries,

but they may not have zero entries at all and just to allow an sparse
representation as, for instance, low rank matrices.

Very often these algorithms are iterative.
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Dense versus Sparse Numerical Linear Algebra (III)

(a) Examples of dense/direct algorithms:

Gaussian elimination for linear systems of equations.
Householder-QR for least squares problems.
Francis-QR for eigenvalues and eigenvectors.

(b) Examples of sparse/iterative algorithms:

Conjugate gradient and GMRES for systems of equations.
Multigrid for systems of equations.
Lanczos and Arnoldi for eigenvalues and eigenvectors.
Jacobi-Davidson for eigenvalues and eigenvectors.
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“Accurate” versus “Standard” Numerical Linear Algebra

We see that there is a widely accepted division between dense/direct
and sparse/iterative Numerical Linear Algebra.

In this talk, I pretend first to establish a much less known division
between accurate and standard Numerical Linear Algebra.

In order to understand this division, we need before to revise a few key
concepts of rounding error analysis in Numerical Linear Algebra.
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Numbers and arithmetic in current computers (I)

Computers can only represent a finite subset of the real numbers, which
is called the set of floating point numbers, denoted by F. This fact
produces errors.

F is not closed under basic arithmetic operations (+,−,×, /), but when
they are performed on a computer, they must give another number of F.
This fact produces further errors.

These two facts are encapsulated into the axioms of rounding error
analysis.
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Numbers and arithmetic in current computers (II)

Axiom 1. Rounding

If x ∈ R lies in the range of F, then x is approximated by a number fl(x) ∈ F
such that

fl(x) = x (1 + δ), |δ| ≤ u,

where u is the unit roundoff of the computer!!! (u = 2−53 ≈ 1.11× 10−16 in
IEEE double precision).

Axiom 2. Arithmetic
If x, y ∈ F and op ∈ {+,−,×, /}, then

computed(xop y) = (xop y) (1 + α), |α| ≤ u,

where (xop y) is the exact result, that may not be in F.

In plain words: the relative error committed in rounding a single number or in
performing a single arithmetic operation on a computer is bounded by u .
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First accuracy limit of an algorithm in Numerical Linear Algebra

Consequences:

The unit roundoff u necessarily appears in any error bound for the
output of any algorithm running on a computer.

Relative rounding error bounds cannot be smaller than u , since this is
the bound for the error committed in just one arithmetic operation,

that is, if y is the exact output of any algorithm and ŷ is the computed
output when the algorithm runs in a computer, the best error bound
that can be expected is

|y − ŷ|
|y| ≤ O(u),

with the constant in O(u) roughly equal to the number of operations.

Standard algorithms in Numerical Linear Algebra do NOT guarantee
such error bounds, but are valid in general.

(Highly) accurate algorithms in Numerical Linear Algebra guarantee
such error bounds, but are NOT valid in general.
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Why standard algorithms are not accurate? Second accuracy limit

Axiom 1. Rounding

If x ∈ R lies in the range of F, then x is approximated by a number fl(x) ∈ F
such that

fl(x) = x (1 + δ), |δ| ≤ u ,

where u is the unit roundoff of the computer.

The input data x of any algorithm are rounded, i.e., approximated by
nearby numbers such that

|x− fl(x)|
|x| ≤ O(u) ,

This imposes a more subtle second accuracy limit:

“The best that can be expected from an algorithm is to compute
outputs that are exact for nearby inputs.”
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Backward error analysis

The idea of backward error analysis is to attach the errors to the
input data of an algorithm, instead to the output result.

The first backward error analysis was performed by Wallace Givens
(1910-1993) in 1954,

but James Wilkinson (1919-1986) is widely considered as the founder
of backward error analysis, since he developed backward error analyses
of many important algorithms in Numerical Linear Algebra.

Traditionally, it is said that, from the point of view of rounding errors,
“being BACKWARD STABLE is the best we can hope for an
algorithm in Numerical Linear Algebra”.

Many famous and useful algorithms are NOT backward stable.

Backward error analysis is often subtle and difficult.

The best possible illustration of backward error analysis is via examples.
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Backward errors in Gaussian Elimination for linear systems

Theorem (Wilkinson, 1961)

Let A ∈ Rn×n be any nonsingular matrix, let b ∈ Rn, and let

x̂

be the approximate solution of

Ax = b

computed by Gaussian Elimination with partial pivoting in a computer
with unit roundoff u.
Then

(A+ ∆A)x̂ = b,
‖∆A‖∞
‖A‖∞

≤ O(u) ,

i.e., the computed solution is the exact solution of a nearby linear
system.
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Backward errors of Householder-QR for least squares problems

Theorem (Stewart, 1973)

Let A ∈ Rm×n, m ≥ n, let b ∈ Rm×1, and let x̂ be the approximate

solution of

min
x
‖b−Ax‖2

computed via the QR factorization implemented with the Householder
algorithm in a computer with unit-roundoff u.

Then, x̂ is the exact solution of the least squares problem

min
x
‖(b+ ∆b) − (A+ ∆A)x‖2,

where
‖∆A‖2
‖A‖2

≤ O(u) and
‖∆b‖2
‖b‖2

≤ O(u) .
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Backward errors of Francis-QR algorithm for eigenvalues

Theorem

Let A ∈ Rn×n and let

λ̂1 , λ̂2 , . . . , λ̂n

be the approximate eigenvalues of A computed via the Francis-QR
algorithm in a computer with unit-roundoff u.
Then,

λ̂1 , λ̂2 , . . . , λ̂n

are the exact eigenvalues of

(A+ ∆A) , where
‖∆A‖2
‖A‖2

≤ O(u) .
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Some conclusions on backward error analysis

There is no attempt of comparing the exact output with the computed
output.

In fact, the exact outputs do not appear in the statements of the
theorems.

Most algorithms in Numerical Linear Algebra are NOT backward
stable.

Backward stable algorithms should be considered GEMS of Numerical
Analysis.

Very famous and useful algorithms that are NOT backward stable are:

1 Multiplication of two matrices.
2 Krylov iterative methods: conjugate gradient, GMRES, Lanczos,

Arnoldi,...
3 Direct methods for solving Sylvester and Lyapunov matrix

equations as the Bartels-Stewart algorithm...
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Why standard algorithms are not accurate?

“The best that can be expected from an algorithm is to compute
outputs that are exact for nearby inputs.”

The algorithms that satisfy this are called backward stable,

and are great, but

if tiny perturbations of the inputs may produce huge variations of the
outputs, then

backward stable algorithms may produce huge errors in the
outputs.

Errors in the outputs are called forward errors,

and to evaluate them in backward stable algorithms requires the use of
perturbation theory.
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From backward to forward errors (I): Linear Systems

The approximate solution x̂ of Ax = b computed by GEPP satisfies

(A+ ∆A)x̂ = b,
‖∆A‖∞
‖A‖∞

≤ O(u),

Bounding the difference between the exact solution, x , and the computed
solution, x̂ , becomes a mathematical problem of perturbation theory.

Theorem (Wilkinson, 1963)

‖x− x̂‖∞
‖x‖∞

. ‖A‖∞ ‖A−1‖∞
‖∆A‖∞
‖A‖∞

. O(u)κ∞(A)

Definition (The (very famous!!!) condition number of a matrix)

κ∞(A) := ‖A‖∞ ‖A−1‖∞

Several other norms are used for condition numbers.
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From backward to forward errors (II): Least Squares Problems

The approximate solution x̂ of min
z
‖b−Az‖2 computed by Householder

-QR is the exact solution of

min
z
‖(b+ ∆b) − (A+ ∆A)z‖2,

‖∆A‖2
‖A‖2

≤ O(u) and
‖∆b‖2
‖b‖2

≤ O(u) .

Theorem (Wedin, 1973)

If x is the exact solution of minz ‖b−Az‖2, then

‖x̂− x‖2
‖x‖2

. 2κ2(A)
‖∆A‖2
‖A‖2

+
‖A†‖2 ‖b‖2
‖x‖2

‖∆b‖2
‖b‖2

+ κ2(A)2
‖Ax− b‖2
‖A‖2 ‖x‖2

‖∆A‖2
‖A‖2

Theorem (Forward errors for least squares problems)

‖x̂− x‖2
‖x‖2

. O(u)

(
2κ2(A) +

‖A†‖2 ‖b‖2
‖x‖2

+ κ2(A)2
‖Ax− b‖2
‖A‖2 ‖x‖2

)
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From backward to forward errors (III): Eigenvalues

The approximate eigenvalues λ̂1 ≥ · · · ≥ λ̂n of A = AT ∈ Rn×n

computed by the Francis-QR algorithm are the exact eigenvalues of

(A+ ∆A) , where
‖∆A‖2
‖A‖2

≤ O(u) .

Theorem (Weyl, 1912)

If λ1 ≥ · · · ≥ λn are the exact eigenvalues of A, then

max
i
|λ̂i − λi| ≤ ‖∆A‖2

Theorem (Forward errors)

If λ1 ≥ · · · ≥ λn are the exact eigenvalues of A, then

max
i

∣∣∣∣∣ λ̂i − λiλi

∣∣∣∣∣ ≤ O(u)κ(A)
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Conclusion: Backward stable algorithms are NOT accurate

Key Result (Backward stable algorithms are not accurate)

Backward stable algorithms applied to a matrix A ∈ Rn×n for different
purposes satisfy

Relative errors ≥ O(u) κ(A)

Therefore, backward stable algorithms produce huge errors for
ill-conditioned matrices, i.e., for matrices such that

κ(A) := ‖A‖ ‖A−1‖ � 1
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Famous example: eigenvalues of Hilbert matrix (I)

H = [hij ]; hij :=
1

i+ j − 1
, 1 ≤ i, j ≤ 100

λ1 > λ2 > · · · > λ100 > 0.

κ(H) ≈ 3.8 · 10150

λ100

EXACT 5.779700862834802 · 10−151

MATLAB (eig) −1.216072660266760 · 10−19

Jacobi −2.488943645649488 · 10−17

Extremely ill-conditioned matrices arise often in practice:
Vandermonde, Cauchy, scaled-matrices...

We need to do something MUCH better!!
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Famous example: eigenvalues of Hilbert matrix (II)

H = [hij ]; hij :=
1

i+ j − 1
, 1 ≤ i, j ≤ 100

λ1 > λ2 > · · · > λ100 > 0.

κ(H) ≈ 3.8 · 10150

λ100

EXACT 5.779700862834802 · 10−151

MATLAB (eig) −1.216072660266760 · 10−19

Jacobi −2.488943645649488 · 10−17

Implicit Jacobi 5.779700862834813 · 10−151
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1 A brief walk through Numerical Linear Algebra

2 Rounding errors in Numerical Linear Algebra

3 Highly accurate algorithms in Numerical Linear Algebra
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Highly accurate algorithms

Key Result (Backward stable algorithms are NOT accurate)

Backward stable algorithms applied to a matrix A ∈ Rn×n for different
purposes satisfy

Relative errors ≥ O(u) κ(A)

Definition (“Highly accurate algorithms” or “accurate algorithms”)

These are algorithms that provide

Relative errors ≤ O(u)

for certain particular classes of structured matrices

with roughly the same computational cost of O(n3) operations than
standard algorithms.

Fundamental Fact on Accurate Algorithms

They are valid only for particular classes of structured matrices.
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General comments on accurate algorithms

Some of them exist since the first days of Numerical Linear Algebra:
Powell and Reid (1969), Björck and Pereyra (1970),...

Intensive development and rigorous error analyses of these algorithms
start in late 1980’s-early 1990’s: Barlow, Higham, Demmel, Kahan,
Stewart, Veselić,...

It continues in the 1990’s: Dhillon, Drmač, Eisenstat, Fernando, Hari,
Ipsen, Gu, Li, Parlett, Slapničar,...

and in the 2000-10’s: Alonso, Barreras, Boros, Castro-González,
Ceballos, Delgado, D., Kailath, Koev, Marco, Martínez, Molera, Moro,
Olshesky, Peña, Peláez, Ye,...

New structured results on matrix perturbation theory have been
needed to perform the error analyses.

Many different structured algorithms, many different error analyses,....

I will focus in the rest of the talk on an approach that unifies many
results on accurate algorithms and is based on...
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It continues in the 1990’s: Dhillon, Drmač, Eisenstat, Fernando, Hari,
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Summary of the rest of the talk (I)

Given the factors of a rank revealing decomposition (RRD)

A = XDY ,

where X and Y are well-conditioned, and D is diagonal and
non-singular (and, so, it inherits the potential ill-conditioning of A).

We present briefly ACCURATE algorithms developed by
1 Demmel, Gu, Eisenstat, Slapničar, Veselić, and Drmač, Lin. Alg.

Appl., 1999.
2 D., Koev, and Molera, Numer. Math., 2009.
3 D. and Molera, IMA J. Numer. Anal., 2012.
4 Castro-González, Ceballos, D., Molera, SIAM J. Matrix Anal. Appl.,

2013.
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Summary of the rest of the talk (II)

These ACCURATE algorithms allow us to compute (in the same order)
Singular Value Decomposition (SVD) of A = XDY ,
Eigenvalues and eigenvectors of symmetric A = XDXT ,
Solution of linear system (XDY )x = b,
Solution of least squares problem minx ‖b− (XDY )x‖2,

with
Relative Errors ≤ O(u)

independently of κ(A),

but, more precisely, with

Relative Errors ≤ O(κu),

where κ is a relevant condition number for each problem with respect
perturbations of the factors.

κ is almost always of order O(1) and

κ� κ(A) = ‖A‖ ‖A−1‖
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Summary of the rest of the talk (III)

Most important NEW message of this talk: From a RRD A = XDY of
a matrix, that may be arbitrarily ill-conditioned, it is possible to solve
(almost) all basic problems of Numerical Linear Algebra with relative
errors of O(u) and with computational costs of the same order as
traditional algorithms.

Only the nonsymmetric eigenvalue problem is excluded from this
approach.

Therefore, for those classes of matrices for which RRDs can be
accurately computed, it is possible to solve accurately (almost) all basic
problems of Numerical Linear Algebra, independently of the magnitude
of the traditional condition number of the matrix.

Key idea: Algorithms for RRDs never form the matrix. They work
directly on the factors and deal with the ill-conditioned diagonal factor
D in a special and highly accurate way.
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Definition of RRD

Definition (Demmel, Gu, Eisenstat, Slapničar, Veselić, Drmač, LAA, 99)

An RRD of A ∈ Rm×n is a factorization

A = XDY ,

where X ∈ Rm×r, D = diag(d1, d2, . . . , dr) ∈ Rr×r is nonsingular, and
Y ∈ Rr×n are such that

rankA = rankX = rankD = rankY = r, and

X and Y are well conditioned.

A = XDY =


× ×
× ×
× ×
× ×
× ×


[
×
×

] [
× × ×
× × ×

]
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Definition of accurate RRD

Definition (Demmel et al, LAA, 1999)

Let X̂ ∈ Rm×r, D̂ = diag(d̂1, d̂2, . . . , d̂r) ∈ Rr×r, and Ŷ ∈ Rr×n be the factors
of an RRD A = XDY computed by a certain algorithm. We say that X̂D̂Ŷ
has been accurately computed if

‖X̂ −X‖2
‖X‖2

= O(u),
‖Ŷ − Y ‖2
‖Y ‖2

= O(u), and

|d̂i − di|
|di|

= O(u), i = 1 : r.

This is the accuracy that we need to apply the algorithms of this talk to
X̂D̂Ŷ and to perform accurate Numerical Linear Algebra on A.

This accuracy can be obtained only for special types of matrices through
highly structured implementations of Gaussian elimination with complete
pivoting (GECP) (and for one class via QRCP).

F. M. Dopico (U. Carlos III, Madrid) Accurate Numerical Linear Algebra CEDYA 2013 35 / 56



Definition of accurate RRD

Definition (Demmel et al, LAA, 1999)

Let X̂ ∈ Rm×r, D̂ = diag(d̂1, d̂2, . . . , d̂r) ∈ Rr×r, and Ŷ ∈ Rr×n be the factors
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Matrices for which accurate RRDs can be computed

Cauchy, Scaled-Cauchy, Vandermonde (DFT + GECP). [Demmel]

Diagonally Dominant M-Matrices. [Demmel and Koev, Peña]

Polynomial Vandermonde. [Demmel and Koev]

Well Scalable Symmetric Positive Definite. [Demmel and Veselić]

Some well Scalable Symmetric Indefinite. [Slapničar and Veselić]

Scaled Diagonally Dominant. [Barlow and Demmel]

Acyclic Matrices (include bidiagonal). [Demmel and Gragg]

Diagonally Dominant. [Ye, D. and Koev]

Totally Nonnegative. [D. and Koev]

DSTU. [Demmel]

Graded Matrices. [Demmel et al.] [Higham]

Symmetric versions. [D. and Koev] [D., Molera, Ceballos] [Peláez and
Moro]

....
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The algorithm for Linear Systems

Algorithm (D. & Molera, IMA J. Numer. Anal., 2012)

Input: A ∈ Rn×n (nonsingular), b ∈ Rn

Output: x solution of Ax = b

1 Compute an accurate RRD of A = XDY

2 Solve the three systems

X s = b −→ s

Dw = s −→ w

Y x = w −→ x

X s = b and Y x = w are solved by any backward stable method.

wi = si/dii, i = 1 : n.

Intuition: the ill-conditioned linear system is solved very accurately.

Cost: O(n3) flops.

F. M. Dopico (U. Carlos III, Madrid) Accurate Numerical Linear Algebra CEDYA 2013 38 / 56



The algorithm for Linear Systems

Algorithm (D. & Molera, IMA J. Numer. Anal., 2012)

Input: A ∈ Rn×n (nonsingular), b ∈ Rn

Output: x solution of Ax = b

1 Compute an accurate RRD of A = XDY

2 Solve the three systems

X s = b −→ s

Dw = s −→ w

Y x = w −→ x

X s = b and Y x = w are solved by any backward stable method.

wi = si/dii, i = 1 : n.

Intuition: the ill-conditioned linear system is solved very accurately.

Cost: O(n3) flops.

F. M. Dopico (U. Carlos III, Madrid) Accurate Numerical Linear Algebra CEDYA 2013 38 / 56



The algorithm for Linear Systems

Algorithm (D. & Molera, IMA J. Numer. Anal., 2012)

Input: A ∈ Rn×n (nonsingular), b ∈ Rn

Output: x solution of Ax = b

1 Compute an accurate RRD of A = XDY

2 Solve the three systems

X s = b −→ s

Dw = s −→ w

Y x = w −→ x

X s = b and Y x = w are solved by any backward stable method.

wi = si/dii, i = 1 : n.

Intuition: the ill-conditioned linear system is solved very accurately.

Cost: O(n3) flops.

F. M. Dopico (U. Carlos III, Madrid) Accurate Numerical Linear Algebra CEDYA 2013 38 / 56



The algorithm for Linear Systems

Algorithm (D. & Molera, IMA J. Numer. Anal., 2012)

Input: A ∈ Rn×n (nonsingular), b ∈ Rn

Output: x solution of Ax = b

1 Compute an accurate RRD of A = XDY

2 Solve the three systems

X s = b −→ s

Dw = s −→ w

Y x = w −→ x

X s = b and Y x = w are solved by any backward stable method.

wi = si/dii, i = 1 : n.

Intuition: the ill-conditioned linear system is solved very accurately.

Cost: O(n3) flops.

F. M. Dopico (U. Carlos III, Madrid) Accurate Numerical Linear Algebra CEDYA 2013 38 / 56



The algorithm for Linear Systems

Algorithm (D. & Molera, IMA J. Numer. Anal., 2012)

Input: A ∈ Rn×n (nonsingular), b ∈ Rn

Output: x solution of Ax = b

1 Compute an accurate RRD of A = XDY

2 Solve the three systems

X s = b −→ s

Dw = s −→ w

Y x = w −→ x

X s = b and Y x = w are solved by any backward stable method.

wi = si/dii, i = 1 : n.

Intuition: the ill-conditioned linear system is solved very accurately.

Cost: O(n3) flops.

F. M. Dopico (U. Carlos III, Madrid) Accurate Numerical Linear Algebra CEDYA 2013 38 / 56



The error for Linear Systems

Theorem (D. & Molera, IMA J. Numer. Anal., 2012)

If x̂ is the solution of Ax = b computed by the algorithm in previous slide
(A = XDY ), then

‖x̂− x‖2
‖x‖2

≤ O(u) max{κ2(X) , κ2(Y )} ‖A
−1‖2‖b‖2
‖x‖2

To be compared with

‖x̂− x‖2
‖x‖2

≤ O(u)κ2(A) ,

that holds for traditional algorithms as GEPP, GECP, QR,...
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(
‖A−1‖2‖b‖2 / ‖x‖2

)
is "almost always" a moderate number

(Chan & Foulser, 1988)

‖A−1‖2‖b‖2
‖x‖2

≤ κ2(A), but even more "almost always"

‖A−1‖2‖b‖2
‖x‖2

� κ2(A) , if A very ill-conditioned because,

‖A−1‖2‖b‖2
‖x‖2

≤ 1

cos θ(un, b)
,

where un left-singular vector of A of smallest singular value.

Example in MATLAB:

>> V = vander(randn(20,1)); b=randn(20,1);

>> cond(V)= 7.1021e+11

>> x = V\b;
>> norm(inv(V))*norm(b)/norm(x) = 8.4317
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Numerical tests for linear systems: Random Vandermonde Matrices.

(computing RRD as Demmel, SIMAX, 1999)

Forward error vs size. Random Vandermonde matrices.

n

||∆x||2
||x||2

GECP
RRD
BjP

Θ1

10 20 30 40 50 60 70 80 90 100

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

1
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The algorithm for Least Squares Problems

Algorithm (Castro, Ceballos, D., Molera, SIAM J. Matrix Anal., 2013)

Input: A ∈ Rm×n, b ∈ Rm

Output: x0 minimum 2-norm solution of minx∈Rn ‖b−Ax‖2
1 Compute an accurate RRD of A = XDY

2 Apply to XDY the following steps

1 Compute the solution x1 of minx∈Rr ‖b−X x‖2 using

Householder-QR.
2 Solve the diagonal linear system, Dx2 = x1.
3 Compute the minimum 2-norm solution x0 of the

underdetermined linear system Y x = x2 using

Householder-QR on Y ∗.

x2(i) = x1(i)/dii, i = 1 : r.

Intuition: the ill-conditioned linear system is solved very accurately.

Cost: O(mn2) flops.
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The error for Least Squares Problems

Theorem (Castro, Ceballos, D., Molera, SIAM J. Matrix Anal., 2013)

If x̂0 is the minimum 2-norm solution of minx∈Rn ‖b−Ax‖2 computed by the
algorithm in previous slide (A = XDY ) and x0 is the exact one, then

‖x̂0 − x0‖2
‖x0‖2

≤ O(u) max{κ2(Y ), κ2(X)} ‖A
†‖2 ‖b‖2
‖x0‖2

,

A† is the Moore-Penrose pseudo-inverse of A and κ2(Y ) = ‖Y ‖2‖Y †‖2.

To be compared with

‖x̂0 − x0‖2
‖x0‖2

≤ O(u)

(
κ2(A) +

‖A†‖2‖b‖2
‖x0‖2

+ κ2(A)2
‖b−Ax0‖2
‖A‖2 ‖x0‖2

)
,

that holds for traditional algorithms as Householder-QR, SVD,...
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(
‖A†‖2‖b‖2 / ‖x0‖2

)
is "almost always" a moderate number

Define

κLS(A, b) :=

(
κ2(A) +

‖A†‖2‖b‖2
‖x0‖2

+ κ2(A)2
‖b−Ax0‖2
‖A‖2 ‖x0‖2

)
,

‖A†‖2‖b‖2
‖x0‖2

≤ κLS(A, b), but even more "almost always"

‖A†‖2‖b‖2
‖x0‖2

� κLS(A, b) , if A very ill-conditioned because,

‖A†‖2‖b‖2
‖x0‖2

≤ 1

cos θ(ur, b)
,

where ur left-singular vector of A of smallest nonzero singular value.
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Numerical tests for Least Squares: 50× n graded matrices S1BS2, with

κ2(B) = 10 and κ2(S1) = κ2(S2) = 10(2:2:16) (comp. RRD as Higham, 2000)
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The algorithm for eigenvalues-vectors of symmetric matrices

Algorithm (IMPLICIT JACOBI. (D., Koev, Molera, Numer. Math., 2009))

Input: A = AT ∈ Rn×n

Output: e-values, λi, and matrix of e-vectors, U, of A

1 Compute an accurate symmetric RRD of A = XDXT

2 Apply implicit Jacobi to XDXT , i.e.,

U = In
repeat

for i < j
compute aii, aij , ajj of A = XDXT

compute Jacobi Rotation R s.t. aij = 0 by similarity

X = R∗X
U = U R

endfor
until convergence

(
|aij |√
|aiiajj |

≤ tol = O(u) for all i < j

)
compute λk = akk for k = 1 : n.
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Comments on the IMPLICIT JACOBI algorithm

The ill-conditioned matrix D is never modified.

Only the well-conditioned factor X is transformed in the process.

This is the reason why high relative accuracy is obtained.

Cost: O(n3) flops.

Efficient implementation requires preconditioning via QR
factorization with column pivoting of X

√
|D| (this was suggested by

Drmač).
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The errors in IMPLICIT JACOBI

Theorem (D., Koev, Molera, Numer. Math., 2009)

Let λ̂i be the eigenvalues of A = XDXT computed by the Implicit Jacobi
Algorithm and λi the exact ones. Let v̂i and vi be the corresponding
eigenvectors. Then

|λ̂i − λi|
|λi|

≤ O(u)κ2(X) and θ(vi, v̂i) ≤
O(u)κ(X)

min
j 6=i

∣∣∣λi−λj

λi

∣∣∣ for all i,

To be compared with

|λ̂i − λi|
|λi|

≤ O(u)κ2(A) and θ(vi, v̂i) ≤
O(u)

minj 6=i|λi−λj |
maxi |λi|

for all i,

that hold for traditional algorithms as QR, divide and conquer,...
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Numerical test for Implicit Jacobi (computing RRD as D. and Koev, 2006)

EXAMPLE: Symmetric INDEFINITE 100× 100 Cauchy matrix A

aij =
1

xi + xj
, with

{
xi = i− 0.5 for i = 1 : 99
x100 = −99.5

κ(A) = 3.5 · 10147

Errors in RRD + Imp. Jacobi compared to 200-decimal digits
MATLAB’s eig command

max
i

|λ̂i − λi|
|λi|

= 1.2 · 10−13 and max
i
‖v̂i − vi‖2 = 5.7 · 10−14

Errors in MATLAB’s eig function

max
i

|λ̂i − λi|
|λi|

= 1.84 · 10132 and max
i
‖v̂i − vi‖2 = 1.41
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The algorithm for the Singular Value Decomposition (SVD)

Algorithm (Demmel, Gu, Eisenstat, Slapničar, Veselić, Drmač, LAA, 99)

Input: A ∈ Rm×n

Output: UΣV T SVD of A

1 Compute an accurate RRD of A = XDY

2 Apply to XDY the following algorithm

1 QR with column pivoting of XD = QRP (so A = QRPY )
2 Multiply to get W = RPY (so A = QW)
3 Compute SVD of W = ŪΣV ∗ with one-sided Jacobi (so

A = QŪΣV T )
4 Multiply U = QŪ (so A = UΣV T )

The one-sided Jacobi step can be performed with new fast and accurate
Jacobi algorithm by Drmač and Veselić, SIMAX, 2008.

Cost: O(mn2) flops.
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The errors in accurate SVD

Theorem (Demmel, Gu, Eisenstat, Slapničar, Veselić, Drmač, LAA, 99)

Let σ̂i be the singular values of A = XDY computed by the algorithm in
previous slide and σi the exact ones. Let ûi and ui be the corresponding left
singular vectors and v̂i and vi the right ones. Then

|σ̂i − σi|
|σi|

≤ O(u) max{κ2(X), κ2(Y )} and

θ(vi, v̂i) ≤
O(u) max{κ2(X), κ2(Y )}

min
j 6=i

∣∣∣σi−σj

σi

∣∣∣ for all i,

To be compared with
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Conclusions and open problems

Rank-Revealing decompositions (RRDs) may be computed with high
accuracy for many classes of structured matrices.

This allows us to perform with high accuracy almost all basic tasks of
Numerical Linear Algebra for these structured matrices.

By contrast, standard algorithms may not produce a single digit of
accuracy for these matrices.

The only basic task that is not included in the RRD framework is the
nonsymmetric eigenvalue problem.

This problem will be the subject of future research.
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