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Abstract (I)

The matrix Sylvester equation

AX −XB = C, A ∈ Cm×m, B ∈ Cn×n are given

is, probably, the most famous matrix equation. It arises

as a step in algorithms for computing eigenvalues/vectors;

in the perturbation theory of invariant subspaces of matrices;

in the characterization of the matrices that commute with a given matrix
AX = XA.

Its particular case, the Lyapunov equation,

AX +XA∗ = C

arises in control and linear system theory and in stability theory...

I Properties of Sylvester eq. are well-known and are presented in standard
books on Matrix Analysis.

I Numerical methods for solution are also well-known.
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Abstract (II)

Recently, the matrix Sylvester equation for congruence or T-Sylvester
equation

AX +XTB = C, A ∈ Cm×n, B ∈ Cn×m

has received considerable attention as a consequence of its relationship with
palindromic eigenvalue problems

Gx = −λGTx, G ∈ Cn×n .

These problems arise in a number of applications:

the mathematical modelling and numerical simulation of the behavior of
periodic surface acoustic wave filters (2002, 2006);

the analysis of rail track vibrations produced by high speed trains (2004,
2006, 2009);

discrete-time optimal control problems (2008).

The spectrum of palindromic eigenproblems has the symmetry (λ, 1/λ).
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Abstract (III)

AX −XB = C vs. AX +XTB = C

The “transposed second X” makes the study of both equations very different.
Not many? references available for T-Sylvester equation.

In this talk, I will revise my research work on Sylvester equation for
congruence that has been published in

F. De Terán & D, The solution of the equation XA+AXT = 0 and its application
to the theory of orbits, Lin. Alg. Appl. 434 (2011) 44-67.

F. De Terán & D, The equation XA+AX∗ = 0 and the dimension of
*congruence orbits, Electronic Journal of Linear Algebra, 22 (2011) 448-465.

F. De Terán & D, Consistency and efficient solution of the Sylvester equation for
?-congruence, Elect. Journal of Linear Algebra 22 (2011) 849-863.

F. De Terán & D & N. Guillery & D. Montealegre & N. Reyes, The solution of the
equation AX +X?B = 0, published electronically in Lin. Alg. Appl., 2013.

This talk is my “personal journey” trough Sylvester eq. for congruence.
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Abstract (III)

AX −XB = C vs. AX +X∗B = C

The “transposed second X” makes the study of both equations very different.
Not many? references available for T-Sylvester equation.

In this talk, I will revise my work on Sylvester equation for congruence that
has been presented in

F. De Terán & D, The solution of the equation XA+AXT = 0 and its
application to the theory of orbits, Lin. Alg. Appl. 434 (2011) 44-67.

F. De Terán & D, The equation XA+AX∗ = 0 and the dimension of
*congruence orbits, Electronic Journal of Linear Algebra, 22 (2011) 448-465.

F. De Terán & D, Consistency and efficient solution of the Sylvester equation for
?-congruence, Elect. Journal of Linear Algebra, 22 (2011) 849-863.

F. De Terán & D & N. Guillery & D. Montealegre & N. Reyes, The solution of the
equation AX +X?B = 0, published electronically in Lin. Alg. Appl., 2013.

Both interesting, both related, but DIFFERENT!!!
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but sometimes both cases simultaneously: ? = T or ∗
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Outline

1 Previous and related work

2 The equation AXT +XA = 0
Motivation: Orbits and the computation of canonical forms
Strategy for solving AXT +XA = 0
The canonical form for congruence
The solution of AXT +XA = 0
Generic canonical structure for congruence

3 The general equation AX +X?B = C
Motivation
Consistency of the Sylvester equation for ?-congruence
Uniqueness of solutions
Efficient and stable algorithm to compute unique solutions

4 General solution of AX +X?B = 0

5 Conclusions
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An important particular case of AX +X?B = C

AX +X?A? = C (? = T or ∗)

arises in time-invariant Hamiltonian systems and R-matrix treatment of
completely integrable mechanical systems.

Hodges, Ann. Mat. Pura Appl., (1957): A nonsingular. Over finite fields.

Taussky & Wielandt, Arch. Rational Mech. Anal., (1962): functions
G(X) = AX +X?A?; its eigenvalues. Algebraically closed fields.

Ballantine, Lin. Alg. Appl., (1969): AX +X∗A = C, with A Hermitian and
positive definite. Neccesary and sufficient conditions for consistency.

Lancaster & Rozsa, SIAM J. Alg. Disc. Meth., (1983): Necessary and
sufficient conditions for consistency in terms of a rank factorization of A.
Closed formula for general solution using submatrices of C and rank
factorization of A, and dimension of the solution space.

Braden, SIAM J. Matrix Anal. Appl., (1998): Similar results but in terms
of projectors and generalized inverses AGA = A.

Djordjević, J. Comput. Appl. Math., (2007): Extends Lancaster & Rozsa
and Braden to A,C,X bounded linear operators on Hilbert spaces.
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Another important particular case of AX +X?B = C

AX +X?A = 0, A ∈ Cn×n (? = T or ∗)

De Terán & D., Lin. Alg. Appl. and Elec. J. Lin. Alg., (2011):

General solution obtained in the spirit of classical methods of
solution of standard Sylvester equation.
Related to the theory of orbits by the action of congruence.
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References for general equation AX +X?B = C

Wimmer, Lin. Alg. Appl., (1994): Necessary and sufficient conditions for
consistency. Complex matrices

Byers & Kressner, SIAM J. Matrix Anal. Appl., (2006): Necessary and
sufficient conditions for unique solution for ? = T . Complex matrices.

Kressner & Schröder & Watkins, Numer. Algor., (2009): Same for ? = ∗.
De Terán & D., Elec. J. Lin. Alg., (2011): Efficient algorithm for
computing the solution when it is unique.

Chiang & Chu & Lin, Appl. Math. Comp., (2012): Repeat some of the
results above in other language and considers more general eqs.
AXB + CX?D = E.

De Terán & D & Guillery & Montealegre & Reyes, Lin. Alg. Appl., (2013):
General solution in the homogeneous case.

Other papers Piao-Zhang-Wang, (2007) (involved, formula for solution
gen. inverses, under certain assumptions); Cvetković-Ilić, (2008)
(operators with certain restrictions); Ikramov (2009) (conditions for
unique solvability); Vorontsov-Ikramov (2011) (algorithm).
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Some interesting questions

Due to roundoff errors, uncertainty in the data, ... , usually it is not possible
to compute the exact canonical forms of matrix eigenvalue problems.

Ax = λx (Jordan Canonical Form (JCF)).

Ax = λBx (Kronecker Canonical Form (KCF)).

Some related questions:

Which are the nearby canonical structures (JCF, KCF) to a given one?

Which is the generic canonical structure?

Same questions for matrices/matrix pencils in a particular subset (low-rank,
palindromic, symmetric,...) and structure preserving numerical methods.

I The theory of orbits provides a theoretical framework for these questions.
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Congruence, equivalence, and similarity. Orbits

Given A, B ∈ Cn×n

O(A) =
{
PAPT : P nonsingular

}
Congruence orbit of A

Os(A) =
{
PAP−1 : P nonsingular

}
Similarity orbit of A

Oe(A− λB) = {P (A− λB)Q : P,Q nonsing.} Equivalency orbit of A− λB

Similarity/equivalency orbits

have been widely studied: Arnold (1971), Demmel-Edelman (1995),
Edelman-Elmroth-Kågström (1997, 1999), Johansson (2006), ...

correspond to matrices with the same Jordan Canonical Form (JCF) /
Pencils with the same Kronecker Canonical Form (KCF).

The dimension of these orbits gives us an idea of their “size".

The description of the hierarchy of inclusions between closures of
different orbits allows us to identify nearby Jordan/Kronecker structures
and is useful in the design of algorithms to compute the JCF/KCF.

Congruence orbits? Important in structure preserving methods for
palindromic eigenproblems.
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Codimension of the tangent space

TO(A)(A) =
{
XA+AXT : X ∈ Cn×n

}
Tangent space of O(A) at A

TOs(A)(A) = {XA−AX : X ∈ Cn×n} Tangent space of Os(A) at A

Then:

(a) codimO(A) = codimTO(A)(A) = dim(solution space of XA+AXT = 0)

(b) codimOs(A) = codimTOs(A)(A) = dim(solution space of XA−AX = 0)

General solution of XA−AX = 0: known since the 1950’s (Gantmacher) and
probably before. Depends on the JCF of A.

Our goal: Solve XA+ AXT = 0

(In this talk are mainly interested in the dimension of the solution space, but
we are able also to give the solution!)
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Getting a simpler equation via congruence

Notation: SA =
{
X ∈ Cn×n : AXT +XA = 0

}
(solution space)

Consider B := PAPT (P nonsingular) then

B
(
PXP−1

)
T +

(
PXP−1

)
B = 0

and SA = P−1SBP .

In particular: dimSA = dimSB

Procedure to solve AXT +XA = 0:

1 Set CA = PAPT , the canonical form of A for congruence !?.

2 Solve CAY T + Y CA = 0.

3 Undo the change: X = P−1Y P .
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The canonical form for congruence

Theorem (Canonical form for congruence (Horn & Sergeichuk, 2006) )

Each matrix A ∈ Cn×n is congruent to a direct sum, uniquely determined up
to permutation of summands, of blocks of types 0, I and II.

(Type 0) Jk(0) =


0 1
. . .

. . .

0 1
0


k×k

(Type I) Γk =



0 (−1)k+1

. .
.

(−1)k

−1 . .
.

1 1
−1 −1

1 1 0


k×k

, Γ1 = [1]

(Type II) H2k(µ) =

[
0 Ik

Jk(µ) 0

]
2k×2k

, H2(µ) =

[
0 1
µ 0

]
, (0 6= µ 6= (−1)k+1)
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The canonical form for congruence: a brief history (I)

Turnbull (U. St. Andrews, Scotland) & Aitken (U. Edinburgh, Scotland),
An Introduction to the Theory of Canonical Matrices, 1932.
For complex matrices. Six types of blocks.

Gabriel, J. Algebra (1974), studied equivalence of bilinear forms in fields
with characteristic 6= 2.

Riehm, J. Algebra (1974), reduced the problem of equivalence of bilinear
forms to equivalence of Hermitian forms.

Sergeichuk, Math. USSR Izvestiya (1988) complete study via quivers
and Hermitian forms in fields with characteristic 6= 2.

Thompson, Linear Algebra and its Applications (1991). Complex and
real matrices: Symmetric/Skew-Symmetric pencils.

Lee and Weinberg, Linear Algebra and its Applications (1996). Complex
and real matrices based on Thompson and A = S +K, with S = ST and
K = −KT . Six blocks for complex (Turnbull and Aitken). Eight blocks for
real matrices.
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The canonical form for congruence: a brief history (II)

Corbas and Williams, J. Pure Appl. Algebra (2001), canonical forms over
algebraically closed fields with characteristic not 2.

Lanscaster and Rodman, Linear Algebra and its Applications (2005) and
SIAM Review (2005). Same approach as Thompson and Lee-Weinberg.

Simplest form for complex matrices with only 3 types of blocks: Horn
and Sergeichuk, Linear Algebra and its Applications (2004, 2006).
Proofs: first based on quivers and second constructive and based only
on basic Matrix Analysis.

I F. De Terán, “Canonical forms for congruence of matrices: a tribute to H. W.
Turnbull and A. C. Aitken” , Actas del II congreso de la red ALAMA, Valencia,
2-4 june, 2010.
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Outline

1 Previous and related work

2 The equation AXT +XA = 0
Motivation: Orbits and the computation of canonical forms
Strategy for solving AXT +XA = 0
The canonical form for congruence
The solution of AXT +XA = 0
Generic canonical structure for congruence

3 The general equation AX +X?B = C
Motivation
Consistency of the Sylvester equation for ?-congruence
Uniqueness of solutions
Efficient and stable algorithm to compute unique solutions

4 General solution of AX +X?B = 0

5 Conclusions
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Remember...

Procedure to solve AXT +XA = 0:

1 Set CA = PAPT , the canonical form of A for congruence.

2 Solve CAY T + Y CA = 0.

3 Undo the change: X = P−1Y P .
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Partition into blocks to solve XCA + CAX
T = 0 (I)

Set CA = D1 ⊕ · · · ⊕Ds , Di = Jk(0), Γk, or H2k(µ) (Canonical form of A)

Partition X =

 X11 . . . X1s

...
...

Xs1 . . . Xss

 conformally with CA.

Equating the (i, j) and (j, i) blocks of XCA + CAX
T = 0, we get:

i = j : XiiDi +DiX
T
ii = 0 → codimDi (codimension)

i 6= j :
(i, j) XijDj +DiX

T
ji = 0

(j, i) XjiDi +DjX
T
ij = 0

→ inter (Di, Dj) (interaction)

Then:

dimSA = codimO(A) =
∑
i codimDi +

∑
i 6=j inter (Di, Dj)
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Partition into blocks to solve XCA + CAX
T = 0 (II)

The problem reduces to solve matrix equations of the types:

(a) XD +DXT = 0 (easier Sylvester equation for congruence)

with D = Jk(0) (type 0), Γk (type I), or H2k(µ) (type II)
(3 different types of eqs.)

(b) XD1 +D2Y
T = 0

Y D2 +D1X
T = 0

(system of two matrix equations)

with D1, D2 = Jk(0) (type 0), Γ` (type I), or H2m(µ) (type II)
(6 different types of eqs.)
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The codimension formula

Theorem (De Terán & D, Lin. Alg. Appl., 2011)

Let A ∈ Cn×n be a matrix with canonical form for congruence

CA =Jp1(0)⊕ Jp2(0)⊕ · · · ⊕ Jpa(0)

⊕ Γq1 ⊕ Γq2 ⊕ · · · ⊕ Γqb
⊕H2r1(µ1)⊕H2r2(µ2)⊕ · · · ⊕H2rc(µc).

Then the codimension of the orbit of A for the action of congruence, i.e., the
dimension of the solution space of XA+AXT = 0, depends only on CA. It
can be computed as the sum

cTotal = c0 + c1 + c2 + i00 + i11 + i22 + i01 + i02 + i12 .
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Codimensions and interactions of canonical blocks

Codimension

c0 →
⌈
k
2

⌉
c1 →

⌊
k
2

⌋
c2 →

{
k , if µ 6= (−1)k

k + 2
⌈
k
2

⌉
, if µ = (−1)k

Interaction (same type) Interaction (di�erent type)

i00 →

 ` , ` even
k , ` odd and k 6= `

k + 1 , ` odd and k = `
i01 →

{
0 , k even
` , k odd

i11 →
{

0 , k, ` different parity
min{k, `} , k, ` same parity i02 →

{
0 , k even
2` , k odd

i22 →


4 min{k, `} , µ = µ̃ = ±1
2 min{k, `} , µ = µ̃ 6= ±1
2 min{k, `} , µ 6= µ̃, µµ̃ = 1

0 , µ 6= µ̃, µµ̃ 6= 1

i12 →
{

2 min{k, `} , µ = (−1)k+1

0 , µ 6= (−1)k+1

I Explicit solution found by De Terán & D (LAA, 2011) in all cases, except for
the case eq. corresp. to codim. of two special type II blocks:

XH2k((−1)k) +H2k((−1)k)XT = 0 .

This solved by S. R. García & A. L. Shoemaker, Lin. Alg. Appl., 2012.
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Generic canonical structure for congruence (I)

Generic = codimension zero

Theorem (De Terán & D, Lin. Alg. Appl., 2011)

The minimal codimension for a congruence orbit in Cn×n is bn/2c.

Generic canonical structure for congruence is not given by a single orbit!!

Similarity orbits (JCF): There is no generic JCF with fixed eigenvalues.

I The generic Jordan structure is J1(λ1)⊕ · · · ⊕ J1(λn), with λ1, . . . , λn
different (not fixed)
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Generic canonical structure for congruence (II): Bundles

Definition (Arnold, 1971)

Given A ∈ Cn×n with Jordan Canonical Form

JA = Jλ1
⊕ · · · ⊕ Jλd

,

where

Jλi
:= Jni,1

(λi)⊕ · · · ⊕ Jni,qi
(λi), for i = 1, . . . , d and λi 6= λj if i 6= j,

the similarity bundle of A is

Bs(A) =
⋃

λ′
i∈C, i=1,...,d

λ′
i 6=λ

′
j , i 6=j

Os
(
Jλ′

1
⊕ · · · ⊕ Jλ′

d

)
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Generic canonical structure for congruence (III): Congruence bundles

Definition (De Terán & D, Lin. Alg. Appl., 2011)

Given A ∈ Cn×n with canonical form for congruence

CA =

a⊕
i=1

Jpi(0) ⊕
b⊕
i=1

Γqi ⊕
t⊕
i=1

H(µi), µi 6= µj , µi 6= 1/µj if i 6= j,

where

H(µi) = H2ri,1(µi)⊕H2ri,2(µi)⊕ · · · ⊕H2ri,gi
(µi), for i = 1, . . . , t,

the congruence bundle of A is

B(A) =
⋃

µ′
i∈C, i=1,...,t

µ′
i 6=µ

′
j , µ

′
iµ

′
j 6=1,i 6=j

O

(
a⊕
i=1

Jpi(0) ⊕
b⊕
i=1

Γqi ⊕
t⊕
i=1

H(µ′i)

)
.

(same structure as CA but unfixed complex values µ in type II blocks)
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The generic canonical structure for congruence

If t=number of different µ′s appearing in type II blocks of CA, then
codim(B(A)) = codim(O(A))− t .

Theorem (De Terán & D, Lin. Alg. Appl., 2011)

The following bundles for congruence in Cn×n have codimension zero

1 n even
Gn = B

(
H2(µ1)⊕H2(µ2)⊕ · · · ⊕H2(µn/2)

)
,

with µi 6= ±1, i = 1, . . . , n/2, µi 6= µj and µi 6= 1/µj if i 6= j.

2 n odd

Gn = B
(
H2(µ1)⊕H2(µ2)⊕ · · · ⊕H2(µ(n−1)/2)⊕ Γ1

)
,

with µi 6= ±1, i = 1, . . . , (n− 1)/2, µi 6= µj and µi 6= 1/µj if i 6= j.

Then Gn is the generic canonical structure for congruence in Cn×n (with
unspecified values µ1, µ2, . . .).
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Summary of section 3

Given A ∈ Cm×n, B ∈ Cn×m, and C ∈ Cm×m, we study the equations

AX + X?B = C , (X? = XT or X∗),

where X ∈ Cn×m is the unknown to be determined. More precisely:

1 Necessary and sufficient conditions for consistency (Wimmer 1994, De
Terán & D., Elect. J. Lin. Alg., 2011 (2)).

2 Necessary and sufficient conditions for uniqueness of solutions (Byers,
Kressner, Schröder, Watkins, 2006, 2009).

3 Efficient and stable numerical algorithm for computing the unique
solution (De Terán & D., Elect. J. Lin. Alg., 2011 (2) ).

We establish parallelisms/differences with well-known Sylvester equation

AX − X B = C , A ∈ Cm×m, B ∈ Cn×n, C ∈ Cm×n .
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KEY: Canonical forms for congruence DO not work for AX +XTB = C

AX +XTB = C, with A 6= B.

A = QACAQ
T
A and B = QBCBQ

T
B .

QACAQ
T
AX +XTQBCBQ

T
B = C

CAQ
T
AXQ

−T
B +Q−1A XTQBCB = Q−1A CQ−TB

CA QTAXQ
−T
B + Q−1A XTQB CB = Q−1A CQ−TB

But, (
QTAXQ

−T
B

)T 6= Q−1A XTQB

with equality only if
QA = QB
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In stark contrast with classical Sylvester AX −XB = C,

where “canonical forms” for similarity work both if A = B or if A 6= B:

AX −XB = C.

A = QAJAQ
−1
A and B = QBJBQ

−1
B , with JA and JB JCFs.

QAJAQ
−1
A X −XQBJBQ−1B = C

JAQ
−1
A XQB −Q−1A XQBJB = Q−1A CQB

JA Q−1A XQB − Q−1A XQB JB = Q−1A CQB

“Canonical forms” to be used:

1 For theory: JCF.

2 For computations: Schur form
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The proper transformation for AX +XTB = C

Equivalence of pencil A− λBT

AX +XTB = C, with A 6= B.

A− λBT = PRQ− λPSQ = P (R− λS)Q, with P and Q nonsingular.

PRQX +XTQTSTPT = C

RQXP−T + P−1XTQT ST = P−1CP−T

R QXP−T +
(
QXP−T

)T
ST = P−1CP−T

“Canonical forms” for pencils to be used:
1 For theory: KCF (Kronecker Canonical Form).
2 For computations: Generalized Schur form.
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Motivation for studying AX + X?B = C (I)

It is well known that given a block upper triangular matrix (computed by the
QR-algorithm for eigenvalues), then[

I X
0 I

] [
A C
0 B

] [
I X
0 I

]−1
=

[
A C − (AX −XB)

0 B

]
.

Therefore, to find a solution of the Sylvester equation AX −XB = C allows
us to block-diagonalize block-triangular matrices via similarity[

I X
0 I

] [
A C
0 B

] [
I −X
0 I

]
=

[
A 0
0 B

]
.

This is indeed done in practice in numerical algorithms (LAPACK, MATLAB)
to compute bases of invariant subspaces (eigenvectors) of matrices, via the
classical Bartels-Stewart algorithm (Comm ACM, 1972) or level-3 BLAS
variants of it Jonsson-Kågström (ACM TMS, 2002).
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Motivation for studying AX + X?B = C (II)

Structured numerical algorithms for linear palindromic eigenproblems
(Z + λZ?) compute an anti-triangular Schur form via unitary ?-congruence:

Theorem (Kressner, Schröder, Watkins (Numer. Alg., 2009) and
Mackey2, Mehl, Mehrmann (NLAA, 2009))

Let Z ∈ Cn×n. Then there exists a unitary matrix U ∈ Cn×n such that

M = U? Z U =


∗ · · · · · · ∗
... . .

.
0

... . .
.

. .
. ...

∗ 0 · · · 0


M can be computed via structure-preserving methods (Kressner, Schröder,
Watkins (Numer. Alg., 2009)) or (Mackey2, Mehl, Mehrmann (NLAA, 2009))
and compute eigenvalues of Z + λZ? with exact pairing λ, 1/λ?.
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Motivation for studying AX + X?B = C (III)

Given a block upper ANTI-triangular matrix (computed via structured
algorithms for linear palindromic eigenproblems, when the matrix is real or
several eigenvalues form a cluster), then[

I 0
−X I

]? [
C A
B 0

] [
I 0
−X I

]
=

[
C − (AX + X?B) A

B 0

]
.

Therefore, to find a solution of the Sylvester equation for ?-congruence
allows us to block-ANTI-diagonalize block-ANTI-triangular matrices via
?-congruence [

I −X?

0 I

] [
C A
B 0

] [
I 0
−X I

]
=

[
0 A
B 0

]
,

and to compute deflating subspaces of palindromic pencils.
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Consistency of AX + X?B = C

Theorem (Wimmer (LAA, 1994), De Terán and D. (ELA, 2011))

Let F be a field of characteristic different from two and let A ∈ Fm×n,
B ∈ Fn×m, C ∈ Fm×m be given. There is some X ∈ Fn×m such that

AX +X?B = C

if and only if [
C A
B 0

]
and

[
0 A
B 0

]
are ?-congruent.

Remarks:

The implication =⇒ very easy: done in previous slide.

The implication⇐= more challenging.

Wimmer proved in 1994 the result, for F = C and ? = ∗, without any
reference to palindromic eigenproblems.

His motivation was the study of standard Sylvester equations with
Hermitian solutions.
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...to be compared with Roth’s criterion for standard Sylvester equation

Theorem (Roth (Proc. AMS, 1952))

Let F be any field and let A ∈ Fm×m, B ∈ Fn×n, C ∈ Fm×n be given. There is
some X ∈ Fm×n such that

AX − X B = C

if and only if [
A C
0 B

]
and

[
A 0
0 B

]
are similar.
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Uniqueness of solutions of AX + X?B = C (I)

Remarks:

If the matrices A ∈ Fm×n and B ∈ Fn×m are rectangular (m 6= n), then
the equation does not have a unique solution for every right-hand
side C,

that is, the operator

Fn×m −→ Fm×m
X 7−→ AX + X?B

is never invertible.

It is of course possible that m > n and that for particular A, B and C, a
solution exists and is unique,

but we restrict ourselves here to the square case m = n.
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Uniqueness of solutions of AX + X?B = C (II)

Definition: a set {λ1, . . . , λn} ⊂ C is ?-reciprocal free if λi 6= 1/λ?j for any
1 ≤ i, j ≤ n. We admit 0 and/or∞ as elements of {λ1, . . . , λn}.

Theorem (Byers, Kressner (SIMAX, 2006), Kressner, Schröder, Watkins,
(Num. Alg., 2009))

Let A,B ∈ Cn×n be given. Then:

AX + XT B = C has a unique solution X for every right-hand side
C ∈ Cn×n if and only if the following conditions hold:

1) The pencil A− λBT is regular, and
2) the set of eigenvalues of A− λBT \{1} is T -reciprocal free and if 1
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...to be compared with uniqueness conditions for standard Sylvester eq

Theorem

Let A ∈ Cm×m and B ∈ Cn×n be given. Then:

AX − X B = C has a unique solution X for every right-hand side
C ∈ Cm×n if and only if A and B have no eigenvalues in common.

Remark: Comparison of both results brings to our attention a key difference
that appears always between solution methods for AX +X?B = C and
AX −XB = C:

In AX +X?B = C, one starts by dealing with the eigenproblem of
A− λB?, that is, one deals from the very beginning simultaneously
with A and B.

By contrast in AX −XB = C, one starts by dealing independently with
the eigenproblems of A and B.
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The fundamental transformation

In this section in AX + X?B = C all matrices are in Cn×n and the
solution is unique for every C.

AX + X?B = C is equivalent to a linear system for the n2 entries of X
if ? = T and to a linear system for the 2n2 entries of (ReX , ImX) if
? = ∗. From now on, we say simply “linear system” for X.

Then, it is possible to use Gaussian elimination on the equivalent
system, but it costs O(n6) flops, which is not feasible except for small n.

IDEA: transform AX + X?B = C into an equation of the same type
but with much simpler coefficients instead of A and B and that can
be easily solved to get a total cost of O(n3) flops.

To this purpose, use QZ algorithm to compute in O(n3) flops the
generalized Schur decomposition of

A− λB? = U(R− λS)V , where

{
R, S are upper triangular
U, V are unitary matrices

If A,B real matrices: use real arithmetic to get quasi-triangular R. We do
not consider this for brevity.
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Algorithm to solve AX + X?B = C in O(n3) flops

INPUT: A,B,C ∈ Cn×n
OUTPUT: X ∈ Cn×n

Step 1. Compute via QZ algorithm R,S, U and V such that

A = URV , B? = USV , where

{
R, S are upper triangular
U, V are unitary matrices

Step 2. Compute E = U∗ C (U?)∗

Step 3. Solve for W ∈ Cn×n the transformed equation

RW + W ? S? = E

Step 4. Compute X = V ∗W U?

F. M. Dopico (U. Carlos III, Madrid) Sylvester equation for congruence Edinburgh, 2013 50 / 61



Algorithm to solve AX + X?B = C in O(n3) flops

INPUT: A,B,C ∈ Cn×n
OUTPUT: X ∈ Cn×n

Step 1. Compute via QZ algorithm R,S, U and V such that

A = URV , B? = USV , where
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Step 2. Compute E = U∗ C (U?)∗
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Algorithm to solve the transformed equation RW + W ? S? = E (I)

We illustrate with 4× 4 example for simplicity:
r11 r12 r13 r14
0 r22 r23 r24
0 0 r33 r34
0 0 0 r44



w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34

w41 w42 w43 w44



+


w?11 w?21 w?31 w?41
w?12 w?22 w?32 w?42
w?13 w?23 w?33 w?43
w?14 w?24 w?34 w?44



s?11 0 0 0
s?12 s?22 0 0
s?13 s?23 s?33 0
s?14 s?24 s?34 s?44

 =


e11 e12 e13 e14
e21 e22 e23 e24
e31 e32 e33 e34
e41 e42 e43 e44



If we equate the (4,4)-entry, then we get

r44 w44 + w?44 s?44 = e44 ,

a scalar equation that allows us to determine w44 .
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 =


e11 e12 e13 e14
e21 e22 e23 e24
e31 e32 e33 e34
e41 e42 e43 e44


If we equate the (1:3,1:3) submatrices , then we get r11 r12 r13

0 r22 r23
0 0 r33

 w11 w12 w13

w21 w22 w23

w31 w32 w33

+

 w?11 w?21 w?31
w?12 w?22 w?32
w?13 w?23 w?33

 s?11 0 0
s?12 s?22 0
s?13 s?23 s?33


=

 e11 e12 e13
e21 e22 e23
e31 e32 e33

−
 r14
r24
r34

 [ w41 w42 w43

]
−

 w?41
w?42
w?43

 [ s?14 s?24 s?34
]

which is a 3× 3 matrix equation of the same type as the original one.
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Remarks on algorithm to solve AX + X?B = C

Cost: 2n3 +O(n2) flops for simplified system and a total cost
76n3 +O(n2) flops for the whole algorithm for AX +X?B = C.

Forward stable algorithm.

The algorithm should be compared with Bartels-Stewart algorithm for
Sylvester equation AX −XB = C:

1 Compute independently triang. Schur forms TA and TB of A and B.
2 Solve TA Y − Y TB = D for Y .
3 Recover X from Y .

Same flavor, but also relevant differences.
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Theoretical method to solve AX + X?B = 0 (I)

In case of consistency, but “nonuniqueness”, general solution of
AX +X?B = C is X = Xp +Xh, where

1 Xp is a particular solution and
2 Xh is the general solution of AX +X?B = 0.

The latter found by De Terán, D., Guillery, Montealegre, Reyes, Lin. Alg.
Appl., 2013

Summer REU program 2011, U. of California at S. Barbara, M.I. Bueno.

I do not know any clear application for this problem.
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Theoretical method to solve AX + X?B = 0 (II)

KEY IDEA: If E − λF ? is the Kronecker Canonical form (KCF) of
A− λB? for strict equivalence, i.e.,

A− λB? = P (E − λF ?)Q, with P and Q nonsingular,

then AX +X?B = 0 can be transformed into

EY + Y ?F = 0, with Y = QXP−?.

If E = E1 ⊕ · · · ⊕ Ed, F ? = F ?1 ⊕ · · · ⊕ F ?d , and Y = [Yij ] is partitioned
into blocks accordingly, then this equation decouples in

EiYii + Y ?iiFi = 0 and
{
EiYij + Y ?jiFj = 0
EjYji + Y ?ijFi = 0

, (1 ≤ i < j ≤ d).

Since KCF has 4 types of blocks, this produces 14 different types of
matrix (systems) equations, whose explicit solutions have been found.

Much more complicated general solution than standard Sylvester eq:
AX −XB = 0, which depends on JCF of A and B and requires to solve
only one type of equation.
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The Kronecker Canonical Form of a Matrix Pencil

Theorem

Let G,H ∈ Cm×n. Then G− λH is strictly equivalent to a direct sum of
pencils of the following types

“Finite blocks”: Jk(λi − λ) :=


λi − λ 1

λi − λ 1
. . .

. . .

λi − λ

 are k × k.

“Infinite blocks”: N` =


1 λ

1 λ
. . .

. . .

1

 are `× `.

“Right singular blocks”: Lp :=


λ 1

λ 1
. . .

. . .

λ 1

 are p× (p+ 1).

“Left singular blocks": transposes of right singular blocks.
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Breakdown of the dimension count for AX +XTB = 0 (I)

Theorem

Let A ∈ Cm×n and B ∈ Cn×m. If the pencil A− λBT has the KCF

E − λFT = Lε1 ⊕ Lε2 ⊕ · · · ⊕ Lεa
⊕ LTη1 ⊕ L

T
η2 ⊕ · · · ⊕ L

T
ηb

⊕Nu1
⊕Nu2

⊕ · · · ⊕Nuc

⊕ Jk1(λ1 − λ)⊕ Jk2(λ2 − λ)⊕ · · · ⊕ Jkd(λd − λ) .

Then the dimension of the solution space of the matrix equation

AX +XTB = 0

depends only on E − λFT and is
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Breakdown of the dimension count for AX +XTB = 0 (II)

Theorem

dimension =

a∑
i=1

εi +
∑
λi=1

bki/2c+
∑
λj=−1

dkj/2e

+

a∑
i,j=1
i<j

(εi + εj) +
∑
i<j

λiλj=1

min{ki, kj}

+
∑
εi≤ηj

(ηj − εi + 1)

+ a

c∑
i=1

ui + a

d∑
i=1

ki +
∑
i,j
λj=0

min{ui, kj}
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Last important comment on solution of AX +XTB = 0

The method in this section can be applied when A = B (orbits).

Same results are obtained but expressed in different ways.

What method is better?
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Conclusions

Many questions related to the Sylvester equation for ?-congruence
AX + X?B = C are nowadays well-understood.

This equation appears in several applications and is related to
“congruence problems”.

Connections with classical Sylvester equation AX −XB = C but also
relevant differences.

Several problems still remain open. Among them, I consider the most
relevant:

Eigenvalues of the operator X 7−→ AX +XTB.

Hasse diagram for inclusion of closures of congruence orbits.
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