The Inverse Complex Eigenvector Problem for Real Tridiagonal Matrices

Froilán M. Dopico (U. Carlos III, Spain)
Beresford Parlett (U. California-Berkeley, USA)
Carla Ferreira (U. Minho, Portugal)

First Joint International Meeting RSME-SCM-SEMA-SIMAI-UMI Special Session "Linear Algebra: Algorithms and Applications" Bilbao, June 30 - July 4, 2014

Outline

- 1 Tridiagonal matrices and diagonal similarities
- 2 Our original motivation for studying this problem
- The basic rules of the "inverse" game
- 4 The inverse problem for general tridiagonals
- lacktriangledown The inverse problem for the T-S symmetric form
- $oldsymbol{6}$ The inverse problem for the J form
- Numerical applications

Outline

- 1 Tridiagonal matrices and diagonal similarities
- Our original motivation for studying this problem
- The basic rules of the "inverse" game
- The inverse problem for general tridiagonals
- lacktriangledown The inverse problem for the T-S symmetric form
- f 6 The inverse problem for the J form
- Numerical applications

General real tridiagonal matrices

We consider real tridiagonal matrices

$$C = \begin{bmatrix} a_1 & f_1 \\ e_1 & a_2 & f_2 \\ & e_2 & a_3 & f_3 \\ & & \ddots & \ddots & \ddots \\ & & & e_{n-2} & a_{n-1} & f_{n-1} \\ & & & & e_{n-1} & a_n \end{bmatrix} \in \mathbb{R}^{n \times n}$$

- C is unreduced if $e_i \neq 0$ and $f_i \neq 0$, for all i.
- Otherwise *C* is **reduced**.

General real tridiagonal matrices

We consider real tridiagonal matrices

$$C = \begin{bmatrix} a_1 & f_1 \\ e_1 & a_2 & f_2 \\ & e_2 & a_3 & f_3 \\ & & \ddots & \ddots & \ddots \\ & & & e_{n-2} & a_{n-1} & f_{n-1} \\ & & & & e_{n-1} & a_n \end{bmatrix} \in \mathbb{R}^{n \times n}$$

- C is unreduced if $e_i \neq 0$ and $f_i \neq 0$, for all i.
- Otherwise C is reduced.

General real tridiagonal matrices

We consider real tridiagonal matrices

$$C = \begin{bmatrix} a_1 & f_1 \\ e_1 & a_2 & f_2 \\ & e_2 & a_3 & f_3 \\ & & \ddots & \ddots & \ddots \\ & & & e_{n-2} & a_{n-1} & f_{n-1} \\ & & & & e_{n-1} & a_n \end{bmatrix} \in \mathbb{R}^{n \times n}$$

- C is unreduced if $e_i \neq 0$ and $f_i \neq 0$, for all i.
- Otherwise *C* is **reduced**.

Balanced real tridiagonal matrices: the T-S symmetric form

Lemma

For any real unreduced tridiagonal matrix $C \in \mathbb{R}^{n \times n}$ there exists a diagonal matrix $D \in \mathbb{R}^{n \times n}$ such that

$$D^{-1}CD = ST,$$

where

$$S = \begin{bmatrix} \pm 1 & & & & & \\ & \pm 1 & & & & \\ & & \ddots & & & \\ & & & \pm 1 & & \\ & & & & \pm 1 \end{bmatrix}, \quad T = \begin{bmatrix} a_1 & b_1 & & & & \\ b_1 & a_2 & b_2 & & & & \\ & \ddots & \ddots & \ddots & \ddots & \\ & & b_{n-2} & a_{n-1} & b_{n-1} & \\ & & & b_{n-1} & a_n \end{bmatrix} \in \mathbb{R}^{n \times n}$$

So, the standard matrix eigenproblem for ${\cal C}$ is equivalent to the **generalized symmetric** eigenproblem

Balanced real tridiagonal matrices: the T-S symmetric form

Lemma

For any real unreduced tridiagonal matrix $C \in \mathbb{R}^{n \times n}$ there exists a diagonal matrix $D \in \mathbb{R}^{n \times n}$ such that

$$D^{-1}CD = ST,$$

where

$$S = \begin{bmatrix} \pm 1 & & & & & \\ & \pm 1 & & & & \\ & & \ddots & & & \\ & & & \pm 1 & & \\ & & & & \pm 1 \end{bmatrix}, \quad T = \begin{bmatrix} a_1 & b_1 & & & & \\ b_1 & a_2 & b_2 & & & \\ & \ddots & \ddots & \ddots & \\ & & b_{n-2} & a_{n-1} & b_{n-1} \\ & & & b_{n-1} & a_n \end{bmatrix} \in \mathbb{R}^{n \times n}$$

So, the standard matrix eigenproblem for ${\cal C}$ is equivalent to the **generalized symmetric** eigenproblem

 $Tx = \lambda Sx$

Tridiagonal matrices with unit superdiagonal: the J form

Lemma

For any real unreduced tridiagonal matrix $C \in \mathbb{R}^{n \times n}$ there exists a diagonal matrix $\tilde{D} \in \mathbb{R}^{n \times n}$ such that

$$\tilde{D}^{-1}C\tilde{D} = J,$$

where

$$\mathbf{J} = \begin{bmatrix} a_1 & 1 & & & & \\ c_1 & a_2 & 1 & & & \\ & \ddots & \ddots & \ddots & \\ & & c_{n-2} & a_{n-1} & 1 \\ & & & c_{n-1} & a_n \end{bmatrix} \in \mathbb{R}^{n \times n}$$

- J-form allows us to use dqds algorithms for computing eigenvalues (Day (Ph. D. Thesis, Berkeley, 1995), Parlett (Acta Numerica, 1995), Ferreira & Parlett (Real-3dqds, submitted)).
- T-S symmetric form is balanced and balanced matrices are often considered advantageous in eigenvalue computations.
- Left eigenvectors of ST are very simply related to right eigenvectors:

$$ST x = \lambda x \iff (x^T S) ST = \lambda (x^T S) \iff y^* ST = \lambda y^*$$

with $y^* = (x^T S)$. So, we only need to compute one of them.

Generalized tridiagonal symmetric indefinite eigenvalue problems

$$T x = \lambda S x$$

- J-form allows us to use dqds algorithms for computing eigenvalues (Day (Ph. D. Thesis, Berkeley, 1995), Parlett (Acta Numerica, 1995), Ferreira & Parlett (Real-3dqds, submitted)).
- T-S symmetric form is balanced and balanced matrices are often considered advantageous in eigenvalue computations.
- Left eigenvectors of *ST* are very simply related to right eigenvectors:

$$ST x = \lambda x \iff (x^T S) ST = \lambda (x^T S) \iff y^* ST = \lambda y^*$$

with $\boldsymbol{y}^* = (\boldsymbol{x}^T S)$. So, we only need to compute one of them.

Generalized tridiagonal symmetric indefinite eigenvalue problems

$$T x = \lambda S x$$

- J-form allows us to use dqds algorithms for computing eigenvalues (Day (Ph. D. Thesis, Berkeley, 1995), Parlett (Acta Numerica, 1995), Ferreira & Parlett (Real-3dqds, submitted)).
- T-S symmetric form is balanced and balanced matrices are often considered advantageous in eigenvalue computations.
- Left eigenvectors of *ST* are very simply related to right eigenvectors:

$$ST x = \lambda x \iff (x^T S) ST = \lambda (x^T S) \iff y^* ST = \lambda y^*,$$

with $y^* = (x^T S)$. So, we only need to compute one of them.

Generalized tridiagonal symmetric indefinite eigenvalue problems

- J-form allows us to use dqds algorithms for computing eigenvalues (Day (Ph. D. Thesis, Berkeley, 1995), Parlett (Acta Numerica, 1995), Ferreira & Parlett (Real-3dqds, submitted)).
- T-S symmetric form is balanced and balanced matrices are often considered advantageous in eigenvalue computations.
- Left eigenvectors of *ST* are very simply related to right eigenvectors:

$$ST x = \lambda x \iff (x^T S) ST = \lambda (x^T S) \iff y^* ST = \lambda y^*,$$

with $y^* = (x^T S)$. So, we only need to compute one of them.

Generalized tridiagonal symmetric indefinite eigenvalue problems

$$T x = \lambda S x$$

Outline

- Tridiagonal matrices and diagonal similarities
- 2 Our original motivation for studying this problem
- 3 The basic rules of the "inverse" game
- The inverse problem for general tridiagonals
- lacktriangledown The inverse problem for the T-S symmetric form
- lacktriangle The inverse problem for the J form
- Numerical applications

- There are good and "fast" ($O(n^2)$ cost) algorithms for computing all eigenvalues of an $n \times n$ nonsymmetric tridiagonal matrix:
 - Bini, Gemignani, Tisseur (SIMAX 2005) "Ehrlich-Aberth Method".
 - Ferreira, Parlett (submitted), Real dqds (related to LR).
- But, we cannot guarantee that they are "backward" stable.
- since the stable orthogonal QR-iteration does not preserve the tridiagonal structure and leads to algorithm with $O(n^3)$ cost.
- In this scenario, to deliver a "bound" on the error of each computed eigenvalue is essential.

- There are good and "fast" ($O(n^2)$ cost) algorithms for computing all eigenvalues of an $n \times n$ nonsymmetric tridiagonal matrix:
 - Bini, Gemignani, Tisseur (SIMAX 2005) "Ehrlich-Aberth Method".
 - Ferreira, Parlett (submitted), Real dqds (related to LR).
- But, we cannot guarantee that they are "backward" stable,
- since the stable orthogonal QR-iteration does not preserve the tridiagonal structure and leads to algorithm with $O(n^3)$ cost.
- In this scenario, to deliver a "bound" on the error of each computed eigenvalue is essential.

- There are good and "fast" ($O(n^2)$ cost) algorithms for computing all eigenvalues of an $n \times n$ nonsymmetric tridiagonal matrix:
 - Bini, Gemignani, Tisseur (SIMAX 2005) "Ehrlich-Aberth Method".
 - Ferreira, Parlett (submitted), Real dqds (related to LR).
- But, we cannot guarantee that they are "backward" stable,
- since the stable orthogonal QR-iteration does not preserve the tridiagonal structure and leads to algorithm with $O(n^3)$ cost.
- In this scenario, to deliver a "bound" on the error of each computed eigenvalue is essential.

- There are good and "fast" ($O(n^2)$ cost) algorithms for computing all eigenvalues of an $n \times n$ nonsymmetric tridiagonal matrix:
 - Bini, Gemignani, Tisseur (SIMAX 2005) "Ehrlich-Aberth Method".
 - Perreira, Parlett (submitted), Real dqds (related to LR).
- But, we cannot guarantee that they are "backward" stable,
- since the stable orthogonal QR-iteration does not preserve the tridiagonal structure and leads to algorithm with $O(n^3)$ cost.
- In this scenario, to deliver a "bound" on the error of each computed eigenvalue is essential.

- For that we need a "condition number", to compute a "backward error", and to get from them a "forward error".
- The usual "unstructured" approach is very pessimistic in many critical situations and different "structured approaches" behave very differently
- Structured eigenvalue cond. numbers have been extensively studied in
 - Ferreira, Parlett, D, Sensitivity of eigenvalues of an unsymmetric tridiagonal matrix, Numer. Math., 2012.
- Among many other results, this reference proves that, if $J=\mathcal{L}\mathcal{U}$, then very often for tiny eigenvalues

 $\mathsf{relcond}(\lambda, \mathcal{L}, \mathcal{U}) \ll \mathsf{relcond}(\lambda, C)$

- For that we need a "condition number", to compute a "backward error", and to get from them a "forward error".
- The usual "unstructured" approach is very pessimistic in many critical situations and different "structured approaches" behave very differently.
- Structured eigenvalue cond. numbers have been extensively studied in
 - Ferreira, Parlett, D, Sensitivity of eigenvalues of an unsymmetric tridiagonal matrix, Numer. Math., 2012.
- Among many other results, this reference proves that, if $J=\mathcal{L}\mathcal{U}$, then very often for tiny eigenvalues

 $\mathsf{relcond}(\lambda,\mathcal{L},\mathcal{U}) \ll \mathsf{relcond}(\lambda,C)$

- For that we need a "condition number", to compute a "backward error", and to get from them a "forward error".
- The usual "unstructured" approach is very pessimistic in many critical situations and different "structured approaches" behave very differently.
- Structured eigenvalue cond. numbers have been extensively studied in
 - Ferreira, Parlett, D, Sensitivity of eigenvalues of an unsymmetric tridiagonal matrix, Numer. Math., 2012.
- Among many other results, this reference proves that, if $J = \mathcal{LU}$, then very often for tiny eigenvalues

 $\mathsf{relcond}(\lambda, \mathcal{L}, \mathcal{U}) \ll \mathsf{relcond}(\lambda, C)$

- For that we need a "condition number", to compute a "backward error", and to get from them a "forward error".
- The usual "unstructured" approach is very pessimistic in many critical situations and different "structured approaches" behave very differently.
- Structured eigenvalue cond. numbers have been extensively studied in
 - Ferreira, Parlett, D, Sensitivity of eigenvalues of an unsymmetric tridiagonal matrix, Numer. Math., 2012.
- Among many other results, this reference proves that, if $J = \mathcal{LU}$, then very often for tiny eigenvalues

 $\mathsf{relcond}(\lambda, \mathcal{L}, \mathcal{U}) \ll \mathsf{relcond}(\lambda, C)$

- We still need structured backward errors.
- We deduced methods to compute in O(n) flops structured backward errors from approximated eigenpairs $(\tilde{\lambda}, \tilde{x})$ or eigentriples $(\tilde{\lambda}, \tilde{x}, \tilde{y})$.
- ullet For instance, for the $J=\mathcal{L}\mathcal{U}$ form (used in dqds), we computed

$$\eta(\tilde{\lambda}, \tilde{x}) = \min \left\{ \epsilon : (\mathcal{L} + \Delta \mathcal{L})(\mathcal{U} + \Delta \mathcal{U})\tilde{x} = \tilde{\lambda}\tilde{x}, |\Delta \mathcal{L}| \le \epsilon |\mathcal{L}|, |\Delta \mathcal{U}| \le \epsilon |\mathcal{U}| \right\}$$

- We tested our method to compute $\eta(\tilde{\lambda}, \tilde{x})$ on many tridiagonal matrices, with eigenvalues/vectors reliably computed by MATLAB, and
- we were happy, since we got almost always tiny $\eta(\tilde{\lambda}, \tilde{x})$.
- But, we asked for more: If J is real and $(\tilde{\lambda}, \tilde{x})$ are complex, then the backward errors $\Delta \mathcal{L}$ and $\Delta \mathcal{U}$ should be real.

- We still need structured backward errors.
- We deduced methods to compute in O(n) flops structured backward errors from approximated eigenpairs $(\tilde{\lambda}, \tilde{x})$ or eigentriples $(\tilde{\lambda}, \tilde{x}, \tilde{y})$.
- For instance, for the $J = \mathcal{L}\mathcal{U}$ form (used in dqds), we computed

$$\eta(\tilde{\lambda}, \tilde{x}) = \min \left\{ \epsilon : (\mathcal{L} + \Delta \mathcal{L})(\mathcal{U} + \Delta \mathcal{U})\tilde{x} = \tilde{\lambda}\tilde{x}, \, |\Delta \mathcal{L}| \le \epsilon |\mathcal{L}|, \, |\Delta \mathcal{U}| \le \epsilon |\mathcal{U}| \right\}$$

- We tested our method to compute $\eta(\tilde{\lambda}, \tilde{x})$ on many tridiagonal matrices, with eigenvalues/vectors reliably computed by MATLAB, and
- we were happy, since we got almost always tiny $\eta(\tilde{\lambda}, \tilde{x})$.
- But, we asked for more: If J is real and $(\tilde{\lambda}, \tilde{x})$ are complex, then the backward errors $\Delta \mathcal{L}$ and $\Delta \mathcal{U}$ should be real.

- We still need structured backward errors.
- We deduced methods to compute in O(n) flops structured backward errors from approximated eigenpairs $(\tilde{\lambda}, \tilde{x})$ or eigentriples $(\tilde{\lambda}, \tilde{x}, \tilde{y})$.
- For instance, for the $J = \mathcal{L}\mathcal{U}$ form (used in dqds), we computed

$$\eta(\tilde{\lambda}, \tilde{x}) = \min \left\{ \epsilon : (\mathcal{L} + \Delta \mathcal{L})(\mathcal{U} + \Delta \mathcal{U})\tilde{x} = \tilde{\lambda}\tilde{x}, \, |\Delta \mathcal{L}| \le \epsilon |\mathcal{L}|, \, |\Delta \mathcal{U}| \le \epsilon |\mathcal{U}| \right\}$$

- We tested our method to compute $\eta(\tilde{\lambda}, \tilde{x})$ on many tridiagonal matrices, with eigenvalues/vectors reliably computed by MATLAB, and
- we were happy, since we got almost always tiny $\eta(\tilde{\lambda}, \tilde{x})$.
- But, we asked for more: If J is real and $(\tilde{\lambda}, \tilde{x})$ are complex, then the backward errors $\Delta \mathcal{L}$ and $\Delta \mathcal{U}$ should be real.

- We still need structured backward errors.
- We deduced methods to compute in O(n) flops structured backward errors from approximated eigenpairs $(\tilde{\lambda}, \tilde{x})$ or eigentriples $(\tilde{\lambda}, \tilde{x}, \tilde{y})$.
- For instance, for the $J = \mathcal{L}\mathcal{U}$ form (used in dqds), we computed

$$\eta(\tilde{\lambda}, \tilde{x}) = \min \left\{ \epsilon : (\mathcal{L} + \Delta \mathcal{L})(\mathcal{U} + \Delta \mathcal{U})\tilde{x} = \tilde{\lambda}\tilde{x}, \, |\Delta \mathcal{L}| \le \epsilon |\mathcal{L}|, \, |\Delta \mathcal{U}| \le \epsilon |\mathcal{U}| \right\}$$

- We tested our method to compute $\eta(\tilde{\lambda}, \tilde{x})$ on many tridiagonal matrices, with eigenvalues/vectors reliably computed by MATLAB, and
- we were happy, since we got almost always tiny $\eta(\lambda, \tilde{x})$.
- But, we asked for more: If J is real and $(\tilde{\lambda}, \tilde{x})$ are complex, then the backward errors $\Delta \mathcal{L}$ and $\Delta \mathcal{U}$ should be real.

- We still need structured backward errors.
- We deduced methods to compute in O(n) flops structured backward errors from approximated eigenpairs $(\tilde{\lambda}, \tilde{x})$ or eigentriples $(\tilde{\lambda}, \tilde{x}, \tilde{y})$.
- For instance, for the $J = \mathcal{L}\mathcal{U}$ form (used in dqds), we computed

$$\eta(\tilde{\lambda}, \tilde{x}) = \min \left\{ \epsilon : (\mathcal{L} + \Delta \mathcal{L})(\mathcal{U} + \Delta \mathcal{U})\tilde{x} = \tilde{\lambda}\tilde{x}, \, |\Delta \mathcal{L}| \le \epsilon |\mathcal{L}|, \, |\Delta \mathcal{U}| \le \epsilon |\mathcal{U}| \right\}$$

- We tested our method to compute $\eta(\tilde{\lambda}, \tilde{x})$ on many tridiagonal matrices, with eigenvalues/vectors reliably computed by MATLAB, and
- we were happy, since we got almost always tiny $\eta(\tilde{\lambda}, \tilde{x})$.
- But, we asked for more: If J is real and $(\tilde{\lambda}, \tilde{x})$ are complex, then the backward errors $\Delta \mathcal{L}$ and $\Delta \mathcal{U}$ should be real.

- We still need structured backward errors.
- We deduced methods to compute in O(n) flops structured backward errors from approximated eigenpairs $(\tilde{\lambda}, \tilde{x})$ or eigentriples $(\tilde{\lambda}, \tilde{x}, \tilde{y})$.
- For instance, for the $J = \mathcal{L}\mathcal{U}$ form (used in dqds), we computed

$$\eta(\tilde{\lambda}, \tilde{x}) = \min \left\{ \epsilon : (\mathcal{L} + \Delta \mathcal{L})(\mathcal{U} + \Delta \mathcal{U})\tilde{x} = \tilde{\lambda}\tilde{x}, |\Delta \mathcal{L}| \le \epsilon |\mathcal{L}|, |\Delta \mathcal{U}| \le \epsilon |\mathcal{U}| \right\}$$

- We tested our method to compute $\eta(\tilde{\lambda}, \tilde{x})$ on many tridiagonal matrices, with eigenvalues/vectors reliably computed by MATLAB, and
- we were happy, since we got almost always tiny $\eta(\tilde{\lambda}, \tilde{x})$.
- But, we asked for more: If J is real and $(\tilde{\lambda}, \tilde{x})$ are complex, then the backward errors $\Delta \mathcal{L}$ and $\Delta \mathcal{U}$ should be real.

- We worked hard to compute in a least squares sense $\eta_{\mathbb{R}}(\tilde{\lambda}, \tilde{x})$ and....
- Disaster: often $\eta_{\mathbb{R}}(\tilde{\lambda}, \tilde{x})$ was too large and sometimes huge.
- We were puzzled for a period, but the reason is clear

• so to look for structured ΔJ such that $(J + \Delta J)\tilde{x} = \tilde{\lambda}\tilde{x}$ leads to

2n real equations for the 2n-1 real unknowns in ΔJ ,

- and the system has not solution in general.
- (Higham & Higham, SIMAX 1998, reported on other inconsistent structured backward error eigenproblems.)

- We worked hard to compute in a least squares sense $\eta_{\mathbb{R}}(\tilde{\lambda}, \tilde{x})$ and....
- Disaster: often $\eta_{\mathbb{R}}(\tilde{\lambda}, \tilde{x})$ was too large and sometimes huge.
- We were puzzled for a period, but the reason is clear.

• so to look for structured ΔJ such that $(J + \Delta J)\tilde{x} = \tilde{\lambda}\tilde{x}$ leads to

2n real equations for the 2n-1 real unknowns in ΔJ

- and the system has not solution in general.
- (Higham & Higham, SIMAX 1998, reported on other inconsistent structured backward error eigenproblems.)

- We worked hard to compute in a least squares sense $\eta_{\mathbb{R}}(\tilde{\lambda}, \tilde{x})$ and....
- Disaster: often $\eta_{\mathbb{R}}(\tilde{\lambda}, \tilde{x})$ was too large and sometimes huge.
- We were puzzled for a period, but the reason is clear.

• so to look for structured ΔJ such that $(J + \Delta J)\tilde{x} = \tilde{\lambda}\tilde{x}$ leads to

2n real equations for the 2n-1 real unknowns in ΔJ

- and the system has not solution in general.
- (Higham & Higham, SIMAX 1998, reported on other inconsistent structured backward error eigenproblems.)

- We worked hard to compute in a least squares sense $\eta_{\mathbb{R}}(\tilde{\lambda}, \tilde{x})$ and....
- Disaster: often $\eta_{\mathbb{R}}(\tilde{\lambda}, \tilde{x})$ was too large and sometimes huge.
- We were puzzled for a period, but the reason is clear.

ullet so to look for structured ΔJ such that $(J+\Delta J) ilde x= ilde\lambda ilde x$ leads to

2n real equations for the 2n-1 real unknowns in ΔJ ,

- and the system has not solution in general.
- (Higham & Higham, SIMAX 1998, reported on other inconsistent structured backward error eigenproblems.)

- We worked hard to compute in a least squares sense $\eta_{\mathbb{R}}(\tilde{\lambda}, \tilde{x})$ and....
- Disaster: often $\eta_{\mathbb{R}}(\tilde{\lambda}, \tilde{x})$ was too large and sometimes huge.
- We were puzzled for a period, but the reason is clear.

• so to look for structured ΔJ such that $(J + \Delta J)\tilde{x} = \tilde{\lambda}\tilde{x}$ leads to

2n real equations for the 2n-1 real unknowns in ΔJ ,

- and the system has not solution in general.
- (Higham & Higham, SIMAX 1998, reported on other inconsistent structured backward error eigenproblems.)

- We worked hard to compute in a least squares sense $\eta_{\mathbb{R}}(\tilde{\lambda}, \tilde{x})$ and....
- Disaster: often $\eta_{\mathbb{R}}(\tilde{\lambda}, \tilde{x})$ was too large and sometimes huge.
- We were puzzled for a period, but the reason is clear.

ullet so to look for structured ΔJ such that $\dfrac{(J+\Delta J) ilde{x}= ilde{\lambda} ilde{x}}{}$ leads to

2n real equations for the 2n-1 real unknowns in ΔJ ,

- and the system has not solution in general.
- (Higham & Higham, SIMAX 1998, reported on other inconsistent structured backward error eigenproblems.)

The questions

So, we naturally asked ourselves the following questions:

- When given complex vectors are (right and/or left) eigenvectors of real tridiagonal matrices?
- How to construct the corresponding matrices?

This is an inverse eigenvector problem.

The questions

So, we naturally asked ourselves the following questions:

- When given complex vectors are (right and/or left) eigenvectors of real tridiagonal matrices?
- How to construct the corresponding matrices?

This is an inverse eigenvector problem.

Outline

- Tridiagonal matrices and diagonal similarities
- Our original motivation for studying this problem
- 3 The basic rules of the "inverse" game
- 4 The inverse problem for general tridiagonals
- lacktriangledown The inverse problem for the T-S symmetric form
- f 6 The inverse problem for the J form
- Numerical applications

FIRST RULE: complex eigenvectors of REAL GENERAL matrices

Theorem

Let $A \in \mathbb{R}^{n \times n}$ and let λ be a nonreal number. If $x, y \in \mathbb{C}^n$ satisfy

$$A \mathbf{x} = \lambda \mathbf{x}$$
 and $\mathbf{y}^* A = \lambda \mathbf{y}^*$,

then

$$\boldsymbol{y}^T \boldsymbol{x} = 0.$$

Remark

In contrast with $y^* x \neq 0$ for simple eigenvalues.

FIRST RULE: complex eigenvectors of REAL GENERAL matrices

Theorem

Let $A \in \mathbb{R}^{n \times n}$ and let λ be a nonreal number. If $x, y \in \mathbb{C}^n$ satisfy

$$A \mathbf{x} = \lambda \mathbf{x}$$
 and $\mathbf{y}^* A = \lambda \mathbf{y}^*$,

then

$$\boldsymbol{y}^T \boldsymbol{x} = 0.$$

Remark

In contrast with $y^*x \neq 0$ for simple eigenvalues.

SECOND RULE: complex eigenvectors of REAL TRIDIAGONAL matrices

Theorem

Let $C \in \mathbb{R}^{n \times n}$ be tridiagonal and let λ be a nonreal eigenvalue of C with geometric multiplicity 1. If $u, v \in \mathbb{C}^n$ satisfy

$$C \boldsymbol{u} = \lambda \boldsymbol{u}$$
 and $\boldsymbol{v}^* C = \lambda \boldsymbol{v}^*$,

then there exists $0 \neq \alpha \in \mathbb{C}$ such that

$$\alpha u_k v_k \in \mathbb{R}$$

for
$$k = 1, 2, ..., n$$
.

In plain words:

A pair of complex left-right eigenvectors of a real tridiagonal matrix can always be normalized so that $u_k v_k$ is real for all k.

Remark 2

This property is specific of real tridiagonal matrices.

SECOND RULE: complex eigenvectors of REAL TRIDIAGONAL matrices

Theorem

Let $C \in \mathbb{R}^{n \times n}$ be tridiagonal and let λ be a nonreal eigenvalue of C with geometric multiplicity 1. If $u, v \in \mathbb{C}^n$ satisfy

$$C \boldsymbol{u} = \lambda \boldsymbol{u}$$
 and $\boldsymbol{v}^* C = \lambda \boldsymbol{v}^*$,

then there exists $0 \neq \alpha \in \mathbb{C}$ such that

$$\alpha u_k v_k \in \mathbb{R}$$

for
$$k = 1, 2, ..., n$$
.

In plain words:

A pair of complex left-right eigenvectors of a real tridiagonal matrix can always be normalized so that $u_k v_k$ is real for all k.

Remark 2

This property is specific of real tridiagonal matrices.

SECOND RULE: complex eigenvectors of REAL TRIDIAGONAL matrices

Theorem

Let $C \in \mathbb{R}^{n \times n}$ be tridiagonal and let λ be a nonreal eigenvalue of C with geometric multiplicity 1. If $u, v \in \mathbb{C}^n$ satisfy

$$C \boldsymbol{u} = \lambda \boldsymbol{u}$$
 and $\boldsymbol{v}^* C = \lambda \boldsymbol{v}^*$,

then there exists $0 \neq \alpha \in \mathbb{C}$ such that

$$\alpha u_k v_k \in \mathbb{R}$$

for
$$k = 1, 2, ..., n$$
.

In plain words:

A pair of complex left-right eigenvectors of a real tridiagonal matrix can always be normalized so that $u_k v_k$ is real for all k.

Remark 2

• This property is specific of real tridiagonal matrices.

As a consequence of previous slides, for solving the

Inverse Complex Eigenvector Problem for real tridiagonals

Given nonzero $u,v\in\mathbb{C}^n$

- to determine necessary and sufficient conditions under which they are a pair of right-left eigenvectors of a real tridiagonal matrix, and
- to develop efficient methods for constructing such a matrix.

we will assume in all our results

The basic hypotheses

$$\mathbf{v}^T \mathbf{u} = 0$$

and

$$u_k v_k \in \mathbb{R}$$

for k = 1, 2, ..., n

As a consequence of previous slides, for solving the

Inverse Complex Eigenvector Problem for real tridiagonals

Given nonzero $u, v \in \mathbb{C}^n$,

- to determine necessary and sufficient conditions under which they are a pair of right-left eigenvectors of a real tridiagonal matrix, and
- to develop efficient methods for constructing such a matrix.

we will assume in all our results

The basic hypotheses

$$\boldsymbol{v}^T \boldsymbol{u} = 0$$

and

$$u_k v_k \in \mathbb{R}$$

for k = 1, 2, ..., n

As a consequence of previous slides, for solving the

Inverse Complex Eigenvector Problem for real tridiagonals

Given nonzero $u, v \in \mathbb{C}^n$,

- to determine necessary and sufficient conditions under which they are a pair of right-left eigenvectors of a real tridiagonal matrix, and
- to develop efficient methods for constructing such a matrix.

we will assume in all our results

The basic hypotheses

$$\boldsymbol{v}^T \, \boldsymbol{u} = 0$$

and

$$u_k v_k \in \mathbb{R}$$

for k = 1, 2, ..., n

As a consequence of previous slides, for solving the

Inverse Complex Eigenvector Problem for real tridiagonals

Given nonzero $u, v \in \mathbb{C}^n$,

- to determine necessary and sufficient conditions under which they are a pair of right-left eigenvectors of a real tridiagonal matrix, and
- to develop efficient methods for constructing such a matrix.

we will assume in all our results

The basic hypotheses

$$\boldsymbol{v}^T \, \boldsymbol{u} \, = \, 0$$

and

$$u_k v_k \in \mathbb{R}$$

for k = 1, 2, ..., n.

One additional hypothesis (not essential)

- We will assume that the given vectors have NO zero entries,
- since, otherwise the inverse problem can be reduced to smaller inverse subproblems.

One additional hypothesis (not essential)

- We will assume that the given vectors have NO zero entries,
- since, otherwise the inverse problem can be reduced to smaller inverse subproblems.

Outline

- Tridiagonal matrices and diagonal similarities
- Our original motivation for studying this problem
- The basic rules of the "inverse" game
- The inverse problem for general tridiagonals
- lacktriangledown The inverse problem for the T-S symmetric form
- f 6 The inverse problem for the J form
- Numerical applications

Existence and uniqueness of C

Theorem

Let $u, v \in \mathbb{C}^n$ have no zero entries and satisfy $v^T u = 0$ and $u_k v_k \in \mathbb{R}$ for $k = 1, \ldots, n$. For each nonreal $\lambda \in \mathbb{C}$ there exists a unique real tridiagonal matrix $C \in \mathbb{R}^{n \times n}$ such that

$$C \mathbf{u} = \lambda \mathbf{u}$$
 and $\mathbf{v}^* C = \lambda \mathbf{v}^*$,

if, and only if,

$$\mathcal{I}m(v_k u_{k+1}) \neq 0,$$

for
$$k = 1, ..., n - 1$$
.

Remarks

- Most vectors that satisfy the basic hypotheses $v^T u = 0$ and $u_k v_k \in \mathbb{R}$ for all k, are left-right eigenvectors of real tridiagonals.
- The conditions $\mathcal{I}m(v_k\,u_{k+1})\neq 0$ are surprisingly simple, taking into account that given v,u, and λ one has 4n real linear equations for the the 3n-2 real unknown entries of C.

Existence and uniqueness of C

Theorem

Let $u, v \in \mathbb{C}^n$ have no zero entries and satisfy $v^T u = 0$ and $u_k v_k \in \mathbb{R}$ for $k=1,\ldots,n$. For each nonreal $\lambda\in\mathbb{C}$ there exists a unique real tridiagonal matrix $C \in \mathbb{R}^{n \times n}$ such that

$$C u = \lambda u$$
 and $v^* C = \lambda v^*$,

if, and only if,

$$\mathcal{I}m(v_k \, u_{k+1}) \neq 0,$$
 for $k = 1, \dots, n-1.$

for
$$k = 1, ..., n - 1$$
.

Remarks

- Most vectors that satisfy the basic hypotheses $v^T u = 0$ and $u_k v_k \in \mathbb{R}$ for all k, are left-right eigenvectors of real tridiagonals.
- The conditions $\mathcal{I}m(v_k u_{k+1}) \neq 0$ are surprisingly simple, taking into

Existence and uniqueness of C

Theorem

Let $u, v \in \mathbb{C}^n$ have no zero entries and satisfy $v^T u = 0$ and $u_k v_k \in \mathbb{R}$ for $k=1,\ldots,n$. For each nonreal $\lambda\in\mathbb{C}$ there exists a unique real tridiagonal matrix $C \in \mathbb{R}^{n \times n}$ such that

$$C u = \lambda u$$
 and $v^* C = \lambda v^*$,

if, and only if,

$$\mathcal{I}m(v_k \, u_{k+1}) \neq 0,$$
 for $k = 1, \dots, n-1.$

for
$$k = 1, ..., n - 1$$
.

Remarks

- Most vectors that satisfy the basic hypotheses $v^T u = 0$ and $u_k v_k \in \mathbb{R}$ for all k, are left-right eigenvectors of real tridiagonals.
- The conditions $\mathcal{I}m(v_k u_{k+1}) \neq 0$ are surprisingly simple, taking into account that given v, u, and λ one has 4n real linear equations for the the 3n-2 real unknown entries of C.

Construction of C in O(n) flops

Theorem

Let $u, v \in \mathbb{C}^n$ have no zero entries and satisfy $v^T u = 0$, $u_k v_k \in \mathbb{R}$ for k = 1 : n, and $\mathcal{I}m(v_k u_{k+1}) \neq 0$ for k = 1 : n - 1. Choose any $\lambda \in \mathbb{C}$ and construct the following sequences of real numbers:

$$\bullet \ \ f_k = \frac{\mathcal{I}m(\lambda) \ \sum_{i=1}^k u_i v_i}{\mathcal{I}m(v_k \ u_{k+1})}, \qquad \textit{for } k=1:n-1,$$

•
$$e_k = f_k \frac{|v_k|^2 |u_{k+1}|^2}{(u_k v_k) (u_{k+1} v_{k+1})}$$
, for $k = 1: n-1$,

$$\bullet \ \ a_k = \mathcal{R}e(\lambda) - \frac{f_{k-1}\mathcal{R}e(v_{k-1}u_k) + f_k\mathcal{R}e(v_ku_{k+1})}{u_kv_k}, \qquad \text{for } k=1:n.$$

Then

$$C = \begin{bmatrix} a_1 & f_1 \\ e_1 & a_2 & \ddots \\ & \ddots & \ddots & f_{n-1} \\ & & e_{n-1} & a_n \end{bmatrix} \in \mathbb{R}^{n \times n}$$

is the unique real tridiagonal matrix that satisfies $C u = \lambda u$ and $v^* C = \lambda v^*$

Construction of C in O(n) flops

Theorem

Let $u, v \in \mathbb{C}^n$ have no zero entries and satisfy $v^T u = 0$, $u_k v_k \in \mathbb{R}$ for k = 1:n, and $\mathcal{I}m(v_k|u_{k+1}) \neq 0$ for k=1:n-1. Choose any $\lambda \in \mathbb{C}$ and construct the following sequences of real numbers:

•
$$f_k = \frac{\mathcal{I}m(\lambda) \sum_{i=1}^k u_i v_i}{\mathcal{I}m(v_k u_{k+1})}$$
, for $k = 1: n-1$,
• $e_k = f_k \frac{|v_k|^2 |u_{k+1}|^2}{(u_k v_k) (u_{k+1} v_{k+1})}$, for $k = 1: n-1$,

$$\bullet \ e_k = f_k \, \frac{|v_k|^2 \, |u_{k+1}|^2}{(u_k v_k) \, (u_{k+1} v_{k+1})}, \qquad \text{for } k = 1:n-1,$$

$$\bullet \ \ a_k = \mathcal{R}e(\lambda) - \frac{f_{k-1}\mathcal{R}e(v_{k-1}u_k) + f_k\mathcal{R}e(v_ku_{k+1})}{u_kv_k}, \qquad \text{for } k = 1:n.$$

Then

$$C = \begin{bmatrix} a_1 & f_1 & & & & \\ e_1 & a_2 & \ddots & & & \\ & \ddots & \ddots & f_{n-1} \\ & & e_{n-1} & a_n \end{bmatrix} \in \mathbb{R}^{n \times n}$$

is the unique real tridiagonal matrix that satisfies $C u = \lambda u$ and $v^* C = \lambda v^*$.

The family of all Cs for prescribed u and v

Theorem

Let $u, v \in \mathbb{C}^n$ have no zero entries and satisfy $v^Tu = 0$, $u_kv_k \in \mathbb{R}$ for k = 1: n, and $\frac{\mathcal{I}m(v_k\,u_{k+1}) \neq 0}{\mathcal{I}m(v_k\,u_{k+1})}$ for k = 1: n-1. Let $C^{(\mathfrak{i})}$ be the unique real tridiagonal matrix such that

$$C^{(\mathfrak{i})}\,oldsymbol{u}=\mathfrak{i}\,oldsymbol{u}$$
 and $oldsymbol{v}^*\,C^{(\mathfrak{i})}=\mathfrak{i}\,oldsymbol{v}^*$.

Then,

- $C = \Re(\lambda) I_n + \Im(\lambda) C^{(i)}$ is the unique real tridiagonal matrix such that $C u = \lambda u$ and $v^* C = \lambda v^*$.
- $\mathcal{W} = \operatorname{Span}_{\mathbb{R}}\{I_n, C^{(i)}\}\$ is the family of all real tridiagonal matrices with (u, v) as a pair of right-left eigenvectors.

The family of all Cs for prescribed u and v

Theorem

Let $u, v \in \mathbb{C}^n$ have no zero entries and satisfy $v^T u = 0$, $u_k v_k \in \mathbb{R}$ for k = 1 : n, and $\frac{\mathcal{I}m(v_k u_{k+1}) \neq 0}{\mathcal{I}m(v_k u_{k+1})}$ for k = 1 : n - 1. Let $C^{(\mathfrak{i})}$ be the unique real tridiagonal matrix such that

$$C^{(\mathfrak{i})} \, oldsymbol{u} = \mathfrak{i} \, oldsymbol{u} \quad ext{and} \quad oldsymbol{v}^* \, C^{(\mathfrak{i})} = \mathfrak{i} \, oldsymbol{v}^* \, .$$

Then,

- $C = \Re(\lambda) I_n + \Im(\lambda) C^{(i)}$ is the unique real tridiagonal matrix such that $C u = \lambda u$ and $v^* C = \lambda v^*$.
- $\mathcal{W} = \operatorname{Span}_{\mathbb{R}}\{I_n, C^{(i)}\}\$ is the family of all real tridiagonal matrices with (u, v) as a pair of right-left eigenvectors.

Existence and uniqueness of unreduced C

Theorem

Let $u, v \in \mathbb{C}^n$ have no zero entries and satisfy $v^T u = 0$ and $u_k v_k \in \mathbb{R}$ for $k=1,\ldots,n$. For each nonreal $\lambda\in\mathbb{C}$ there exists a unique unreduced real tridiagonal matrix $C \in \mathbb{R}^{n \times n}$ such that

$$C u = \lambda u$$
 and $v^* C = \lambda v^*$,

if, and only if,

- - $\mathcal{I}m(v_k u_{k+1}) \neq 0$, for $k = 1, \ldots, n-1$, and

Just existence of C

Theorem

Let $u, v \in \mathbb{C}^n$ have no zero entries and satisfy $v^T u = 0$ and $u_k v_k \in \mathbb{R}$ for $k=1,\ldots,n$. For each nonreal $\lambda\in\mathbb{C}$ there exists a real tridiagonal matrix $C \in \mathbb{R}^{n \times n}$ such that

$$C u = \lambda u$$
 and $v^* C = \lambda v^*$

if, and only if,

$$\mathcal{I}m(v_k u_{k+1}) = 0 \Longrightarrow \sum_{i=1}^k u_i v_i = 0,$$
 for $k = 1, \dots, n-1.$

for
$$k = 1, ..., n - 1$$
.

For completeness: if only one vector is prescribed?

- It is natural to wonder what happens if only $u \in \mathbb{C}^n$ (or v) is prescribed.
- This problem does not seem very challenging since $Cu = \lambda u$ gives 2n real equations for the 3n-2 unknown entries of $C \in \mathbb{R}^{n \times n}$.

Theorem

Let $u \in \mathbb{C}^n$ have no zero entries. For each nonreal $\lambda \in \mathbb{C}$ there exists a real tridiagonal matrix $C \in \mathbb{R}^{n \times n}$ such that $C u = \lambda u$ if, and only if, the sequence

$$\mathcal{I}m(u_1\overline{u_2}),\ldots,\mathcal{I}m(u_k\overline{u_{k+1}}),\ldots,\mathcal{I}m(u_{n-1}\overline{u_n})$$

has no two consecutive zero terms and the first and last terms are nonzero.

For completeness: if only one vector is prescribed?

- It is natural to wonder what happens if only $u \in \mathbb{C}^n$ (or v) is prescribed.
- This problem does not seem very challenging since $Cu = \lambda u$ gives 2n real equations for the 3n-2 unknown entries of $C \in \mathbb{R}^{n \times n}$.

Theorem

Let $u \in \mathbb{C}^n$ have no zero entries. For each nonreal $\lambda \in \mathbb{C}$ there exists a real tridiagonal matrix $C \in \mathbb{R}^{n \times n}$ such that $C u = \lambda u$ if, and only if, the sequence

$$\mathcal{I}m(u_1\overline{u_2}),\ldots,\mathcal{I}m(u_k\overline{u_{k+1}}),\ldots,\mathcal{I}m(u_{n-1}\overline{u_n})$$

has no two consecutive zero terms and the first and last terms are nonzero.

For completeness: if only one vector is prescribed?

- It is natural to wonder what happens if only $u \in \mathbb{C}^n$ (or v) is prescribed.
- This problem does not seem very challenging since $Cu = \lambda u$ gives 2n real equations for the 3n-2 unknown entries of $C \in \mathbb{R}^{n \times n}$.

Theorem

Let $u \in \mathbb{C}^n$ have no zero entries. For each nonreal $\lambda \in \mathbb{C}$ there exists a real tridiagonal matrix $C \in \mathbb{R}^{n \times n}$ such that $C u = \lambda u$ if, and only if, the sequence

$$\mathcal{I}m(u_1\overline{u_2}),\ldots,\mathcal{I}m(u_k\overline{u_{k+1}}),\ldots,\mathcal{I}m(u_{n-1}\overline{u_n})$$

has no two consecutive zero terms and the first and last terms are nonzero.

Outline

- Tridiagonal matrices and diagonal similarities
- Our original motivation for studying this problem
- The basic rules of the "inverse" game
- The inverse problem for general tridiagonals
- **5** The inverse problem for the T-S symmetric form
- lacktriangle The inverse problem for the J form
- Numerical applications

$$ST = \begin{bmatrix} \pm 1 & & & & & \\ & \pm 1 & & & & \\ & & & \ddots & & \\ & & & & \pm 1 & \\ & & & & & \pm 1 \end{bmatrix} \begin{bmatrix} a_1 & b_1 & & & & \\ b_1 & a_2 & b_2 & & & \\ & \ddots & \ddots & \ddots & \\ & & b_{n-2} & a_{n-1} & b_{n-1} \\ & & & b_{n-1} & a_n \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Recall

$$ST \ x = \lambda x \iff (x^T S) ST = \lambda (x^T S) \iff y^* ST = \lambda y^*, \text{ i.e., } y = S \overline{x}$$

- **1** Only one vector should be prescribed if S is prescribed.
- 2 The first basic hypothesis $y^Tx = 0$ reduces to $x^*Sx = 0$.
- **3** We do not need the second basic hypothesis $x_k y_k \in \mathbb{R}$ for all k, since it is automatically guaranteed by the structure of the problem:

$$x_k y_k = s_{kk} |x_k|^2$$

$$ST = \begin{bmatrix} \pm 1 & & & & & \\ & \pm 1 & & & & \\ & & \ddots & & \\ & & & \pm 1 & \\ & & & & \pm 1 \end{bmatrix} \begin{bmatrix} a_1 & b_1 & & & \\ b_1 & a_2 & b_2 & & & \\ & \ddots & \ddots & \ddots & \\ & & b_{n-2} & a_{n-1} & b_{n-1} \\ & & & b_{n-1} & a_n \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Recall,

$$ST \ x = \lambda x \iff (x^T S) ST = \lambda (x^T S) \iff y^* ST = \lambda y^*, \text{ i.e., } y = S \overline{x}$$

- Only one vector should be prescribed if S is prescribed.
- 2 The first basic hypothesis $y^T x = 0$ reduces to $x^* S x = 0$.
- **3** We do not need the second basic hypothesis $x_k y_k \in \mathbb{R}$ for all k, since it is automatically guaranteed by the structure of the problem:

$$x_k y_k = s_{kk} |x_k|^2$$

$$ST = \begin{bmatrix} \pm 1 & & & & & \\ & \pm 1 & & & & \\ & & \ddots & & \\ & & & \pm 1 & \\ & & & & \pm 1 \end{bmatrix} \begin{bmatrix} a_1 & b_1 & & & \\ b_1 & a_2 & b_2 & & & \\ & \ddots & \ddots & \ddots & \\ & & b_{n-2} & a_{n-1} & b_{n-1} \\ & & & b_{n-1} & a_n \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Recall,

$$ST \ x = \lambda x \iff (x^T S) ST = \lambda (x^T S) \iff y^* ST = \lambda y^*, \text{ i.e., } y = S \overline{x}$$

- Only one vector should be prescribed if S is prescribed.
- 2 The first basic hypothesis $y^T x = 0$ reduces to $x^* S x = 0$.
- **3** We do not need the second basic hypothesis $x_k y_k \in \mathbb{R}$ for all k, since it is automatically guaranteed by the structure of the problem:

$$x_k y_k = s_{kk} |x_k|^2.$$

$$ST = \begin{bmatrix} \pm 1 & & & & & \\ & \pm 1 & & & & \\ & & \ddots & & \\ & & & \pm 1 & \\ & & & & \pm 1 \end{bmatrix} \begin{bmatrix} a_1 & b_1 & & & \\ b_1 & a_2 & b_2 & & & \\ & \ddots & \ddots & \ddots & \\ & & b_{n-2} & a_{n-1} & b_{n-1} \\ & & & b_{n-1} & a_n \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Recall,

$$ST \ x = \lambda x \iff (x^T S) ST = \lambda (x^T S) \iff y^* ST = \lambda y^*, \text{ i.e., } y = S \overline{x}$$

- Only one vector should be prescribed if S is prescribed.
- 2 The first basic hypothesis $y^Tx = 0$ reduces to $x^*Sx = 0$
- **3** We do not need the second basic hypothesis $x_k y_k \in \mathbb{R}$ for all k, since it is automatically guaranteed by the structure of the problem:

$$x_k y_k = s_{kk} |x_k|^2$$

$$ST = \begin{bmatrix} \pm 1 & & & & & \\ & \pm 1 & & & & \\ & & \ddots & & \\ & & & \pm 1 & \\ & & & & \pm 1 \end{bmatrix} \begin{bmatrix} a_1 & b_1 & & & \\ b_1 & a_2 & b_2 & & & \\ & \ddots & \ddots & \ddots & \\ & & b_{n-2} & a_{n-1} & b_{n-1} \\ & & & b_{n-1} & a_n \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Recall,

$$ST \ x = \lambda x \iff (x^T S) ST = \lambda (x^T S) \iff y^* ST = \lambda y^*, \text{ i.e., } y = S \overline{x}$$

- lacktriangle Only one vector should be prescribed if S is prescribed.
- 2 The first basic hypothesis $y^Tx = 0$ reduces to $x^*Sx = 0$
- **3** We do not need the second basic hypothesis $x_k y_k \in \mathbb{R}$ for all k, since it is automatically guaranteed by the structure of the problem:

$$x_k y_k = s_{kk} |x_k|^2$$

$$ST = \begin{bmatrix} \pm 1 & & & & & \\ & \pm 1 & & & & \\ & & \ddots & & \\ & & & \pm 1 & \\ & & & & \pm 1 \end{bmatrix} \begin{bmatrix} a_1 & b_1 & & & \\ b_1 & a_2 & b_2 & & & \\ & \ddots & \ddots & \ddots & \\ & & b_{n-2} & a_{n-1} & b_{n-1} \\ & & & b_{n-1} & a_n \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Recall,

$$ST \ x = \lambda x \iff (x^T S) ST = \lambda (x^T S) \iff y^* ST = \lambda y^*, \text{ i.e., } y = S \overline{x}$$

- **1** Only one vector should be prescribed if S is prescribed.
- **2** The first basic hypothesis $y^T x = 0$ reduces to $x^* S x = 0$.
- **3** We do not need the second basic hypothesis $x_k y_k \in \mathbb{R}$ for all k, since it is automatically guaranteed by the structure of the problem:

$$x_k y_k = s_{kk} |x_k|^2$$

$$ST = \begin{bmatrix} \pm 1 & & & & & \\ & \pm 1 & & & & \\ & & \ddots & & \\ & & & \pm 1 & \\ & & & & \pm 1 \end{bmatrix} \begin{bmatrix} a_1 & b_1 & & & & \\ b_1 & a_2 & b_2 & & & \\ & \ddots & \ddots & \ddots & \\ & & b_{n-2} & a_{n-1} & b_{n-1} \\ & & & b_{n-1} & a_n \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Recall,

$$ST \ x = \lambda x \iff (x^T S) ST = \lambda (x^T S) \iff y^* ST = \lambda y^*, \text{ i.e., } y = S \overline{x}$$

- **1** Only one vector should be prescribed if S is prescribed.
- **2** The first basic hypothesis $y^T x = 0$ reduces to $x^* S x = 0$.
- **3** We do not need the second basic hypothesis $x_k y_k \in \mathbb{R}$ for all k, since it is automatically guaranteed by the structure of the problem:

$$x_k y_k = s_{kk} |x_k|^2.$$

Existence and uniqueness of T

Theorem

Let S be an indefinite signature matrix and let $x \in \mathbb{C}^n$ have no zero entries and satisfy $x^*Sx = 0$. For each nonreal $\lambda \in \mathbb{C}$ there exists a unique symmetric real tridiagonal matrix $T \in \mathbb{R}^{n \times n}$ such that

$$Tx = Sx\lambda$$

if, and only if, $Im(\overline{x_k} x_{k+1}) \neq 0$, for k = 1, ..., n-1.

Existence and uniqueness of unreduced T

Theorem

Let S be an indefinite signature matrix and let $x \in \mathbb{C}^n$ have no zero entries and satisfy $x^*Sx = 0$. For each nonreal $\lambda \in \mathbb{C}$ there exists a unique unreduced symmetric real tridiagonal matrix $T \in \mathbb{R}^{n \times n}$ such that

$$Tx = Sx\lambda$$

if, and only if,

- $\sum_{j=1}^{k} s_j |x_j|^2 \neq 0 , \text{ for } k = 1, \dots, n-1.$

Construction of T in O(n) flops

Theorem

Let S be an indefinite signature matrix and let $x \in \mathbb{C}^n$ have no zero entries, satisfy $x^*Sx = 0$, and $\frac{\mathcal{I}m(\overline{x_k}\,x_{k+1}) \neq 0}{\mathcal{I}m(\overline{x_k}\,x_{k+1}) \neq 0}$ for k = 1: n-1. Choose any $\lambda \in \mathbb{C}$ and construct the following sequences of real numbers:

$$\bullet \ b_k = \frac{\mathcal{I}m(\lambda) \, \sum_{i=1}^k s_i \, |x_i|^2}{\mathcal{I}m(\overline{x_k} \, x_{k+1})}, \qquad \text{for } \ k=1:n-1,$$

$$\bullet \ a_k = s_k \, \mathcal{R}e(\lambda) - \frac{b_{k-1} \mathcal{R}e(x_{k-1} \, \overline{x_k}) + b_k \mathcal{R}e(\overline{x_k} x_{k+1})}{|x_k|^2}, \qquad \text{for} \ k = 1:n.$$

Then

$$T = \begin{bmatrix} a_1 & b_1 & & & \\ b_1 & a_2 & \ddots & & \\ & \ddots & \ddots & b_{n-1} \\ & & b_{n-1} & a_n \end{bmatrix} \in \mathbb{R}^{n \times n}$$

is the unique real symmetric tridiagonal matrix that satisfies $Tx = \lambda Sx$.

Theorem

Let S be an indefinite signature matrix and let $x \in \mathbb{C}^n$ have no zero entries and satisfy $x^*Sx = 0$. For each nonreal $\lambda \in \mathbb{C}$ there exists a symmetric real tridiagonal matrix $T \in \mathbb{R}^{n \times n}$ such that

$$Tx = Sx\lambda$$

if, and only if,

$$\mathcal{I}m(\overline{x_k}\,x_{k+1})=0\Longrightarrow \sum_{i=1}^k s_i|x_i|^2=0$$
, for $k=1,\ldots,n-1$.

Outline

- Tridiagonal matrices and diagonal similarities
- Our original motivation for studying this problem
- The basic rules of the "inverse" game
- The inverse problem for general tridiagonals
- lacktriangledown The inverse problem for the T-S symmetric form
- f 6 The inverse problem for the J form
- Numerical applications

Just a brief summary of the J inverse problem

- We have solved two inverse problems:
 - **1** A pair of potential right-left eigenvectors $u, v \in \mathbb{C}^n$ is given.
 - ② Only one potential right eigenvector $u \in \mathbb{C}^n$ is given.
- Bottom line: The inverse problems for the J-form are rather different that for general tridiagonals and for the T-S symmetric form, since the eigenvalue λ has to be particularly related to the pair (u,v) or to u.

Just a brief summary of the J inverse problem

- We have solved two inverse problems:
 - **1** A pair of potential right-left eigenvectors $u, v \in \mathbb{C}^n$ is given.
 - ② Only one potential right eigenvector $u \in \mathbb{C}^n$ is given.
- Bottom line: The inverse problems for the J-form are rather different that for general tridiagonals and for the T-S symmetric form, since the eigenvalue λ has to be particularly related to the pair (u,v) or to u.

Outline

- Tridiagonal matrices and diagonal similarities
- Our original motivation for studying this problem
- The basic rules of the "inverse" game
- The inverse problem for general tridiagonals
- lacktriangledown The inverse problem for the T-S symmetric form
- $oldsymbol{6}$ The inverse problem for the J form
- Numerical applications

Simplicity of reconstruction formulae

The simplicity of reconstruction expressions as, for instance,

$$\mathbf{1} \quad b_k = \frac{\mathcal{I}m(\lambda) \sum_{i=1}^k s_i |x_i|^2}{\mathcal{I}m(\overline{x_k} x_{k+1})}, \qquad k = 1: n-1,$$

$$\mathbf{2} \quad a_k = s_k \, \mathcal{R}e(\lambda) - \frac{b_{k-1} \mathcal{R}e(x_{k-1} \, \overline{x_k}) + b_k \mathcal{R}e(\overline{x_k} x_{k+1})}{|x_k|^2}, \qquad k = 1: n,$$

in the T-S symmetric form,

- makes it possible to use them to refine approximate eigenvalues/vectors.
- This is still under development and we only describe one of the ideas we are considering.

Simplicity of reconstruction formulae

The simplicity of reconstruction expressions as, for instance,

$$\mathbf{0} \ b_k = \frac{\mathcal{I}m(\lambda) \sum_{i=1}^k s_i \, |x_i|^2}{\mathcal{I}m(\overline{x_k} \, x_{k+1})}, \qquad k=1:n-1,$$

$$\mathbf{2} \ a_k = s_k \, \mathcal{R}e(\lambda) - \frac{b_{k-1} \mathcal{R}e(x_{k-1} \, \overline{x_k}) + b_k \mathcal{R}e(\overline{x_k} x_{k+1})}{|x_k|^2}, \qquad k=1:n,$$

in the T-S symmetric form,

- makes it possible to use them to refine approximate eigenvalues/vectors.
- This is still under development and we only describe one of the ideas we are considering.

Simplicity of reconstruction formulae

The simplicity of reconstruction expressions as, for instance,

$$\mathbf{0} \ b_k = \frac{\mathcal{I}m(\lambda) \sum_{i=1}^k s_i \, |x_i|^2}{\mathcal{I}m(\overline{x_k} \, x_{k+1})}, \qquad k=1:n-1,$$

$$\mathbf{2} \ a_k = s_k \, \mathcal{R}e(\lambda) - \frac{b_{k-1} \mathcal{R}e(x_{k-1} \, \overline{x_k}) + b_k \mathcal{R}e(\overline{x_k} x_{k+1})}{|x_k|^2}, \qquad k=1:n,$$

in the T-S symmetric form,

- makes it possible to use them to refine approximate eigenvalues/vectors.
- This is still under development and we only describe one of the ideas we are considering.

- Assume T and S are given, we have computed an approximate nonreal $\widetilde{\lambda}$, and from it an approximate eigenvector \widetilde{x} .
- Assume \widetilde{x} satisfies conditions for being e-vector (or we force it) and let $T^{(i)}\widetilde{x}=\mathrm{i}\,S\,\widetilde{x}$, then

$$T^{(\lambda)} = \mathcal{R}e(\lambda) S + \mathcal{I}m(\lambda) T^{(i)}$$

is the unique real symmetric tridiagonal matrix such that $T^{(\lambda)}\,\widetilde{\pmb x}=\lambda\,S\,\widetilde{\pmb x}.$

The solution of

$$\min_{\lambda \in \mathbb{C}} \|T^{(\lambda)} - T\|_F$$

- just by vectorizing the nontrivial diagonals of T, S, and $T^{(i)}$.
- The minimizers $\mathcal{R}e(\lambda)$ and $\mathcal{I}m(\lambda)$ should refine $\widetilde{\lambda}$.
- This procedure can be iterated and used instead of Rayleigh-quotient iteration.

- Assume T and S are given, we have computed an approximate nonreal $\widetilde{\lambda}$, and from it an approximate eigenvector \widetilde{x} .
- Assume \widetilde{x} satisfies conditions for being e-vector (or we force it) and let $T^{(i)}\widetilde{x}=\mathfrak{i}\,S\,\widetilde{x}$, then

$$T^{(\lambda)} = \mathcal{R}e(\lambda) S + \mathcal{I}m(\lambda) T^{(i)}$$

is the unique real symmetric tridiagonal matrix such that $T^{(\lambda)} \tilde{x} = \lambda S \tilde{x}$.

The solution of

$$\min_{\lambda \in \mathbb{C}} \|T^{(\lambda)} - T\|_F$$

- just by vectorizing the nontrivial diagonals of T, S, and $T^{(i)}$.
- The minimizers $\mathcal{R}e(\lambda)$ and $\mathcal{I}m(\lambda)$ should refine $\widetilde{\lambda}$.
- This procedure can be iterated and used instead of Rayleigh-quotient iteration.

- Assume T and S are given, we have computed an approximate nonreal $\widetilde{\lambda}$, and from it an approximate eigenvector \widetilde{x} .
- Assume \widetilde{x} satisfies conditions for being e-vector (or we force it) and let $T^{(i)}\widetilde{x}=\mathfrak{i}\,S\,\widetilde{x}$, then

$$T^{(\lambda)} = \mathcal{R}e(\lambda) S + \mathcal{I}m(\lambda) T^{(i)}$$

is the unique real symmetric tridiagonal matrix such that $T^{(\lambda)}\widetilde{x} = \lambda S \widetilde{x}$.

The solution of

$$\min_{\lambda \in \mathbb{C}} \|T^{(\lambda)} - T\|_F$$

- just by vectorizing the nontrivial diagonals of T, S, and $T^{(i)}$.
- The minimizers $\mathcal{R}e(\lambda)$ and $\mathcal{I}m(\lambda)$ should refine $\widetilde{\lambda}$.
- This procedure can be iterated and used instead of Rayleigh-quotient iteration.

- Assume T and S are given, we have computed an approximate nonreal $\widetilde{\lambda}$, and from it an approximate eigenvector \widetilde{x} .
- Assume \widetilde{x} satisfies conditions for being e-vector (or we force it) and let $T^{(\mathfrak{i})}\,\widetilde{x}=\mathfrak{i}\,S\,\widetilde{x}$, then

$$T^{(\lambda)} = \mathcal{R}e(\lambda) S + \mathcal{I}m(\lambda) T^{(i)}$$

is the unique real symmetric tridiagonal matrix such that $T^{(\lambda)} \tilde{x} = \lambda S \tilde{x}$.

The solution of

$$\min_{\lambda \in \mathbb{C}} \|T^{(\lambda)} - T\|_F$$

- just by vectorizing the nontrivial diagonals of T, S, and $T^{(i)}$.
- The minimizers $\mathcal{R}e(\lambda)$ and $\mathcal{I}m(\lambda)$ should refine $\widetilde{\lambda}$.
- This procedure can be iterated and used instead of Rayleigh-quotient iteration.

- Assume T and S are given, we have computed an approximate nonreal $\widetilde{\lambda}$, and from it an approximate eigenvector \widetilde{x} .
- Assume \widetilde{x} satisfies conditions for being e-vector (or we force it) and let $T^{(\mathfrak{i})}\,\widetilde{x}=\mathfrak{i}\,S\,\widetilde{x}$, then

$$T^{(\lambda)} = \mathcal{R}e(\lambda) S + \mathcal{I}m(\lambda) T^{(i)}$$

is the unique real symmetric tridiagonal matrix such that $T^{(\lambda)} \tilde{x} = \lambda S \tilde{x}$.

The solution of

$$\min_{\lambda \in \mathbb{C}} \|T^{(\lambda)} - T\|_F$$

- just by vectorizing the nontrivial diagonals of T, S, and $T^{(i)}$.
- The minimizers $\mathcal{R}e(\lambda)$ and $\mathcal{I}m(\lambda)$ should refine $\widetilde{\lambda}$.
- This procedure can be iterated and used instead of Rayleigh-quotient iteration.

- Assume T and S are given, we have computed an approximate nonreal $\widetilde{\lambda}$, and from it an approximate eigenvector \widetilde{x} .
- Assume \widetilde{x} satisfies conditions for being e-vector (or we force it) and let $T^{(i)}\widetilde{x}=\mathfrak{i}\,S\,\widetilde{x}$, then

$$T^{(\lambda)} = \mathcal{R}e(\lambda) S + \mathcal{I}m(\lambda) T^{(i)}$$

is the unique real symmetric tridiagonal matrix such that $T^{(\lambda)} \tilde{x} = \lambda S \tilde{x}$.

The solution of

$$\min_{\lambda \in \mathbb{C}} \|T^{(\lambda)} - T\|_F$$

- just by vectorizing the nontrivial diagonals of T, S, and $T^{(i)}$.
- The minimizers $\mathcal{R}e(\lambda)$ and $\mathcal{I}m(\lambda)$ should refine $\widetilde{\lambda}$.
- This procedure can be iterated and used instead of Rayleigh-quotient iteration.