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General real tridiagonal matrices

We consider real tridiagonal matrices

C =



a1 f1
e1 a2 f2

e2 a3 f3
. . .

. . .
. . .

en−2 an−1 fn−1
en−1 an


∈ Rn×n

C is unreduced if ei 6= 0 and fi 6= 0, for all i.

Otherwise C is reduced.
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Balanced real tridiagonal matrices: the T -S symmetric form

Lemma

For any real unreduced tridiagonal matrix C ∈ Rn×n there exists a diagonal
matrix D ∈ Rn×n such that

D−1CD = S T ,

where

S =


±1

±1
. . .

±1
±1

 , T =


a1 b1
b1 a2 b2

. . .
. . .

. . .

bn−2 an−1 bn−1
bn−1 an

 ∈ Rn×n

So, the standard matrix eigenproblem for C is equivalent to the generalized
symmetric eigenproblem

Tx = λSx
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Tridiagonal matrices with unit superdiagonal: the J form

Lemma

For any real unreduced tridiagonal matrix C ∈ Rn×n there exists a diagonal
matrix D̃ ∈ Rn×n such that

D̃−1CD̃ = J,

where

J =


a1 1
c1 a2 1

. . .
. . .

. . .

cn−2 an−1 1
cn−1 an

 ∈ Rn×n
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T -S symmetric vs. J form: Advantages-disadvantages

J-form allows us to use dqds algorithms for computing eigenvalues (Day
(Ph. D. Thesis, Berkeley, 1995), Parlett (Acta Numerica, 1995), Ferreira
& Parlett (Real-3dqds, submitted)).

T -S symmetric form is balanced and balanced matrices are often
considered advantageous in eigenvalue computations.

Left eigenvectors of S T are very simply related to right eigenvectors:

S T x = λx⇐⇒ (xT S)S T = λ (xT S)⇐⇒ y∗S T = λy∗ ,

with y∗ = (xT S) . So, we only need to compute one of them.

Generalized tridiagonal symmetric indefinite eigenvalue problems

T x = λS x

arise in solving symmetric polynomial eigenvalue problems via
symmetric linearizations (Tisseur, SIMAX, 2004).
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The nonsymmetric tridiagonal eigenvalue problem

There are good and “fast” (O(n2) cost) algorithms for computing all
eigenvalues of an n× n nonsymmetric tridiagonal matrix:

1 Bini, Gemignani, Tisseur (SIMAX 2005) “Ehrlich-Aberth Method”.
2 Ferreira, Parlett (submitted), Real dqds (related to LR).

But, we cannot guarantee that they are “backward” stable,

since the stable orthogonal QR-iteration does not preserve the
tridiagonal structure and leads to algorithm with O(n3) cost.

In this scenario, to deliver a “bound” on the error of each computed
eigenvalue is essential.
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Tridiagonal eigenvalue sensitivity and backward error issues (I)

For that we need a “condition number”, to compute a “backward error”,
and to get from them a “forward error”.

The usual “unstructured” approach is very pessimistic in many critical
situations and different “structured approaches” behave very differently.

Structured eigenvalue cond. numbers have been extensively studied in

Ferreira, Parlett, D, Sensitivity of eigenvalues of an unsymmetric
tridiagonal matrix, Numer. Math., 2012.

Among many other results, this reference proves that, if J = LU , then
very often for tiny eigenvalues

relcond(λ,L,U)� relcond(λ,C)
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Tridiagonal eigenvalue sensitivity and backward error issues (II)

We still need structured backward errors.

We deduced methods to compute in O(n) flops structured backward
errors from approximated eigenpairs (λ̃, x̃) or eigentriples (λ̃, x̃, ỹ).

For instance, for the J = LU form (used in dqds), we computed

η(λ̃, x̃) = min
{
ε : (L+ ∆L)(U + ∆U)x̃ = λ̃x̃, |∆L| ≤ ε|L|, |∆U| ≤ ε|U|

}
We tested our method to compute η(λ̃, x̃) on many tridiagonal matrices,
with eigenvalues/vectors reliably computed by MATLAB, and

we were happy, since we got almost always tiny η(λ̃, x̃).

But, we asked for more: If J is real and (λ̃, x̃) are complex, then the
backward errors ∆L and ∆U should be real.
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Tridiagonal eigenvalue sensitivity and backward error issues (III)

We worked hard to compute in a least squares sense ηR(λ̃, x̃) and....

Disaster: often ηR(λ̃, x̃) was too large and sometimes huge.

We were puzzled for a period, but the reason is clear.

J =


a1 1
c1 a2 1

. . .
. . .

. . .

cn−1 an

 ∈ Rn×n depends on 2n− 1 real parameters

so to look for structured ∆J such that (J + ∆J)x̃ = λ̃x̃ leads to

2n real equations for the 2n− 1 real unknowns in ∆J ,

and the system has not solution in general .

(Higham & Higham, SIMAX 1998, reported on other inconsistent
structured backward error eigenproblems.)
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The questions

So, we naturally asked ourselves the following questions:

When given complex vectors are (right and/or left) eigenvectors of
real tridiagonal matrices?

How to construct the corresponding matrices?

This is an inverse eigenvector problem.

F. M. Dopico (U. Carlos III) Inverse complex eigenvector problem June 30, 2014 11 / 29



The questions

So, we naturally asked ourselves the following questions:

When given complex vectors are (right and/or left) eigenvectors of
real tridiagonal matrices?

How to construct the corresponding matrices?

This is an inverse eigenvector problem.

F. M. Dopico (U. Carlos III) Inverse complex eigenvector problem June 30, 2014 11 / 29



Outline

1 Tridiagonal matrices and diagonal similarities

2 Our original motivation for studying this problem

3 The basic rules of the “inverse” game

4 The inverse problem for general tridiagonals

5 The inverse problem for the T -S symmetric form

6 The inverse problem for the J form

7 Numerical applications

F. M. Dopico (U. Carlos III) Inverse complex eigenvector problem June 30, 2014 11 / 29



FIRST RULE: complex eigenvectors of REAL GENERAL matrices

Theorem

Let A ∈ Rn×n and let λ be a nonreal number. If x,y ∈ Cn satisfy

Ax = λx and y∗A = λy∗ ,

then yT x = 0 .

Remark

In contrast with y∗ x 6= 0 for simple eigenvalues.
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SECOND RULE: complex eigenvectors of REAL TRIDIAGONAL matrices

Theorem

Let C ∈ Rn×n be tridiagonal and let λ be a nonreal eigenvalue of C with
geometric multiplicity 1. If u,v ∈ Cn satisfy

C u = λu and v∗ C = λv∗ ,

then there exists 0 6= α ∈ C such that αuk vk ∈ R for k = 1, 2, . . . , n.

In plain words:

A pair of complex left-right eigenvectors of a real tridiagonal matrix can
always be normalized so that ukvk is real for all k.

Remark 2

This property is specific of real tridiagonal matrices.
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The basic hypotheses

As a consequence of previous slides, for solving the

Inverse Complex Eigenvector Problem for real tridiagonals

Given nonzero u,v ∈ Cn,

to determine necessary and sufficient conditions under which they are a
pair of right-left eigenvectors of a real tridiagonal matrix, and

to develop efficient methods for constructing such a matrix.

we will assume in all our results

The basic hypotheses

vT u = 0 and uk vk ∈ R for k = 1, 2, . . . , n.
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One additional hypothesis (not essential)

We will assume that the given vectors have NO zero entries,

since, otherwise the inverse problem can be reduced to smaller inverse
subproblems.
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Outline

1 Tridiagonal matrices and diagonal similarities

2 Our original motivation for studying this problem

3 The basic rules of the “inverse” game

4 The inverse problem for general tridiagonals

5 The inverse problem for the T -S symmetric form

6 The inverse problem for the J form

7 Numerical applications
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Existence and uniqueness of C

Theorem

Let u,v ∈ Cn have no zero entries and satisfy vTu = 0 and ukvk ∈ R for
k = 1, . . . , n. For each nonreal λ ∈ C there exists a unique real tridiagonal
matrix C ∈ Rn×n such that

C u = λu and v∗ C = λv∗ ,

if, and only if, Im(vk uk+1) 6= 0, for k = 1, . . . , n− 1.

Remarks

Most vectors that satisfy the basic hypotheses vTu = 0 and ukvk ∈ R
for all k, are left-right eigenvectors of real tridiagonals.

The conditions Im(vk uk+1) 6= 0 are surprisingly simple, taking into
account that given v,u, and λ one has 4n real linear equations for the
the 3n− 2 real unknown entries of C.
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Construction of C in O(n) flops

Theorem

Let u,v ∈ Cn have no zero entries and satisfy vTu = 0, ukvk ∈ R for k = 1 : n, and
Im(vk uk+1) 6= 0 for k = 1 : n− 1. Choose any λ ∈ C and construct the following

sequences of real numbers:

fk =
Im(λ)

∑k
i=1 uivi

Im(vk uk+1)
, for k = 1 : n− 1,

ek = fk
|vk|2 |uk+1|2

(ukvk) (uk+1vk+1)
, for k = 1 : n− 1,

ak = Re(λ)− fk−1Re(vk−1uk) + fkRe(vkuk+1)

ukvk
, for k = 1 : n.

Then

C =


a1 f1

e1 a2
. . .

. . .
. . . fn−1

en−1 an

 ∈ Rn×n

is the unique real tridiagonal matrix that satisfies C u = λu and v∗ C = λv∗ .
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The family of all Cs for prescribed u and v

Theorem

Let u,v ∈ Cn have no zero entries and satisfy vTu = 0, ukvk ∈ R for
k = 1 : n, and Im(vk uk+1) 6= 0 for k = 1 : n− 1. Let C(i) be the unique real
tridiagonal matrix such that

C(i) u = iu and v∗ C(i) = iv∗ .

Then,

C = Re(λ) In + Im(λ)C(i) is the unique real tridiagonal matrix such
that C u = λu and v∗ C = λv∗ .

W = SpanR{In , C(i)} is the family of all real tridiagonal matrices with
(u,v) as a pair of right-left eigenvectors.
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Existence and uniqueness of unreduced C

Theorem

Let u,v ∈ Cn have no zero entries and satisfy vTu = 0 and ukvk ∈ R for
k = 1, . . . , n. For each nonreal λ ∈ C there exists a unique unreduced real
tridiagonal matrix C ∈ Rn×n such that

C u = λu and v∗ C = λv∗ ,

if, and only if,

1 Im(vk uk+1) 6= 0, for k = 1, . . . , n− 1, and

2

k∑
i=1

uivi 6= 0, for k = 1, . . . , n− 1.
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Just existence of C

Theorem

Let u,v ∈ Cn have no zero entries and satisfy vTu = 0 and ukvk ∈ R for
k = 1, . . . , n. For each nonreal λ ∈ C there exists a real tridiagonal matrix
C ∈ Rn×n such that

C u = λu and v∗ C = λv∗

if, and only if,

Im(vk uk+1) = 0 =⇒
k∑
i=1

uivi = 0, for k = 1, . . . , n− 1.
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For completeness: if only one vector is prescribed?

It is natural to wonder what happens if only u ∈ Cn (or v) is prescribed.

This problem does not seem very challenging since Cu = λu gives 2n
real equations for the 3n− 2 unknown entries of C ∈ Rn×n.

Theorem
Let u ∈ Cn have no zero entries. For each nonreal λ ∈ C there exists a real
tridiagonal matrix C ∈ Rn×n such that C u = λu if, and only if, the sequence

Im(u1u2), . . . , Im(ukuk+1), . . . , Im(un−1un)

has no two consecutive zero terms and the first and last terms are nonzero.
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Three key points

S T =


±1

±1
. . .

±1
±1




a1 b1
b1 a2 b2

. . .
. . .

. . .

bn−2 an−1 bn−1
bn−1 an

 ∈ Rn×n

Recall,

S T x = λx⇐⇒ (xT S)S T = λ (xT S)⇐⇒ y∗ S T = λy∗, i.e., y = S x

Therefore in the inverse problem:

1 Only one vector should be prescribed if S is prescribed.
2 The first basic hypothesis yTx = 0 reduces to x∗Sx = 0 .
3 We do not need the second basic hypothesis xkyk ∈ R for all k,

since it is automatically guaranteed by the structure of the problem:

xkyk = skk|xk|2 .
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Existence and uniqueness of T

Theorem
Let S be an indefinite signature matrix and let x ∈ Cn have no zero entries
and satisfy x∗Sx = 0. For each nonreal λ ∈ C there exists a unique
symmetric real tridiagonal matrix T ∈ Rn×n such that

Tx = Sxλ

if, and only if, Im(xk xk+1) 6= 0 , for k = 1, . . . , n− 1.
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Existence and uniqueness of unreduced T

Theorem
Let S be an indefinite signature matrix and let x ∈ Cn have no zero entries
and satisfy x∗Sx = 0. For each nonreal λ ∈ C there exists a unique
unreduced symmetric real tridiagonal matrix T ∈ Rn×n such that

Tx = Sxλ

if, and only if,

1 Im(xk xk+1) 6= 0 , for k = 1, . . . , n− 1,

2

k∑
j=1

sj |xj |2 6= 0 , for k = 1, . . . , n− 1.
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Construction of T in O(n) flops

Theorem
Let S be an indefinite signature matrix and let x ∈ Cn have no zero entries,
satisfy x∗Sx = 0, and Im(xk xk+1) 6= 0 for k = 1 : n− 1. Choose any λ ∈ C
and construct the following sequences of real numbers:

bk =
Im(λ)

∑k
i=1 si |xi|2

Im(xk xk+1)
, for k = 1 : n− 1,

ak = skRe(λ)− bk−1Re(xk−1 xk) + bkRe(xkxk+1)

|xk|2
, for k = 1 : n.

Then

T =


a1 b1

b1 a2
. . .

. . .
. . . bn−1
bn−1 an

 ∈ Rn×n

is the unique real symmetric tridiagonal matrix that satisfies T x = λS x .
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Just existence of T

Theorem
Let S be an indefinite signature matrix and let x ∈ Cn have no zero entries
and satisfy x∗Sx = 0. For each nonreal λ ∈ C there exists a symmetric real
tridiagonal matrix T ∈ Rn×n such that

Tx = Sxλ

if, and only if,

Im(xk xk+1) = 0 =⇒
k∑
i=1

si|xi|2 = 0 , for k = 1, . . . , n− 1.
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Just a brief summary of the J inverse problem

We have solved two inverse problems:

1 A pair of potential right-left eigenvectors u,v ∈ Cn is given.
2 Only one potential right eigenvector u ∈ Cn is given.

Bottom line: The inverse problems for the J-form are rather different
that for general tridiagonals and for the T-S symmetric form, since the
eigenvalue λ has to be particularly related to the pair (u,v) or to u.

F. M. Dopico (U. Carlos III) Inverse complex eigenvector problem June 30, 2014 27 / 29



Just a brief summary of the J inverse problem

We have solved two inverse problems:

1 A pair of potential right-left eigenvectors u,v ∈ Cn is given.
2 Only one potential right eigenvector u ∈ Cn is given.

Bottom line: The inverse problems for the J-form are rather different
that for general tridiagonals and for the T-S symmetric form, since the
eigenvalue λ has to be particularly related to the pair (u,v) or to u.

F. M. Dopico (U. Carlos III) Inverse complex eigenvector problem June 30, 2014 27 / 29



Outline

1 Tridiagonal matrices and diagonal similarities

2 Our original motivation for studying this problem

3 The basic rules of the “inverse” game

4 The inverse problem for general tridiagonals

5 The inverse problem for the T -S symmetric form

6 The inverse problem for the J form

7 Numerical applications

F. M. Dopico (U. Carlos III) Inverse complex eigenvector problem June 30, 2014 27 / 29



Simplicity of reconstruction formulae

The simplicity of reconstruction expressions as, for instance,

1 bk =
Im(λ)

∑k
i=1 si |xi|2

Im(xk xk+1)
, k = 1 : n− 1,

2 ak = skRe(λ)− bk−1Re(xk−1 xk) + bkRe(xkxk+1)

|xk|2
, k = 1 : n,

in the T -S symmetric form,

makes it possible to use them to refine approximate eigenvalues/vectors.

This is still under development and we only describe one of the ideas we
are considering.
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Refining Re(λ) and Im(λ) in the T -S framework

Assume T and S are given, we have computed an approximate nonreal
λ̃, and from it an approximate eigenvector x̃.

Assume x̃ satisfies conditions for being e-vector (or we force it) and let
T (i) x̃ = iS x̃, then

T (λ) = Re(λ)S + Im(λ)T (i)

is the unique real symmetric tridiagonal matrix such that T (λ) x̃ = λS x̃.

The solution of
min
λ∈C
‖T (λ) − T‖F

can be obtained in 24n flops solving a standard real least squares
problem for Re(λ) and Im(λ),

just by vectorizing the nontrivial diagonals of T , S, and T (i).

The minimizers Re(λ) and Im(λ) should refine λ̃.

This procedure can be iterated and used instead of Rayleigh-quotient
iteration.
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