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The starting point: Frobenius 1910

Theorem

Let A ∈ Cn×n. There are matrices B,C ∈ Cn×n such that B = BT , C = CT ,
and

A = BC.

Either B or C can be chosen to be nonsingular.

Remarks

The result remains valid for any field F.

It can be found in standard books (Horn & Johnson, Matrix Analysis).

Olga Taussky paid attention to this result in “The role of symmetric
matrices in the study of general matrices”, LAA, 1972.
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Frobenius’s result calls itself for extensions in several directions

Theorem (Frobenius, 1910)

Let A ∈ Cn×n. There are matrices B,C ∈ Cn×n such that B = BT , C = CT ,
and

A = BC.

Either B or C can be chosen to be nonsingular.

Some relevant potential extensions:

How many factorizations exist?: characterization of all possible
symmetric factors B and C.

How to compute factors B and C?

“Either B or C can be chosen to be nonsingular” is a bit vague for
present times. More informative would be “Either B or C can be chosen
to have condition number as small as...”. So, given A,

What is the smallest possible cond. number of a nonsingular C (or B)?
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The answers to these questions are easier by defining “symmetrizers”

First, note that one only needs to determine the non-singular
factor: take CT = C ∈ Cn×n in A = BC to be nonsingular, then

A = BC ⇐⇒ AC−1 = B.

Second, note that it is easier to determine X = C−1 since it is a
nonsingular solution of a particular Sylvester equation with restrictions

AX −XTAT = 0
X = XT

(equivalent to B = BT )
(equivalent to C = CT )

Solutions X of these equations are called right symmetrizers of A.

There are also left symmetrizers, which are right symmetrizers of AT .

Baksalary & Kala (LAA-1981) defined symmetrizers X 6= XT in a more
general setting and characterized them via projectors and
pseudoinverses (not via matrix equations).
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My goals in this talk

Given A ∈ Cn×n and the Sylvester equation with restrictions

AX −XTAT = 0
X = XT

I will describe theoretically the set of all solutions using standard
techniques. Easy problem but I have not found it in the literature.

I will briefly mention the most recent algorithms for computing
solutions (symmetrizers) in an stable way. Very difficult problem with
relevant recent advances by Frank Uhlig.

Comments on the smallest possible condition number of solutions.
Very difficult completely open problem. Recent advances in joint work
with Paul Van Dooren.
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Applications of symmetrizers??

To be honest, nowadays, I do not see any application for them.

In the past (see Datta (1973), Venkaiah & Sen (JCAM, 1988),...), it was
said that symmetrizers allow us to transform a nonsymmetric standard
eigenproblem into a generalized symmetric eigenproblem.

Nonsingular left symmetrizers Y are more convenient for this task

Av = λv⇐⇒ (Y A)v = λY v,

But with present eigensolvers, I do not think that this transformation has
any advantage.

But “symmetrizers” are fun, classical, and a highly nontrivial problem!!
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Some antecedents that I have found in the literature...

Given A ∈ Cn×n and the Sylvester equation with restrictions

AX −XTAT = 0
X = XT

Frobenius in 1910 noted that there are at least n linearly independent
solutions (just counting equations and unknowns).

Taussky and Zassenhaus (Pacific. J. Math., 1959) proved that there are
exactly n linearly independent solutions if and only if A is nonderogatory.

Uhlig (LAA, 1974) describes implicitly the set of solutions for A ∈ Rn×n
and describes all possible inertias attained by solutions.
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General solution via the Jordan canonical form of A

Standard technique for Sylvester eqs. (Gantmacher, Horn & Johnson)

Let

A = P J P−1 with

J = diag
(
Jn1

(λ1) , . . . , Jnq
(λq)

)
Jordan canonical form (JCF) of A,

where e-values are not necessarily pairwise different. Then

AX −XTAT = 0
X = XT ⇐⇒ (PJP−1)X −XT (P−TJTPT ) = 0

X = XT

⇐⇒ J(P−1XP−T )− (P−1XTP−T )JT = 0
(P−1XP−T ) = (P−1XTP−T )

Define Y := (P−1XP−T ) and get JY − Y TJT = 0
Y = Y T
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“The theorem of the general solution” or “the set of all symmetrizers”

Theorem (General solution)

Let A = P diag
(
Jn1

(λ1) , . . . , Jnq
(λq)

)
P−1 be the JCF of A ∈ Cn×n. Then

the general solution of

AX −XTAT = 0
X = XT

is given by the formula X = P Y PT , where

Y = (Yij)
q
i,j=1

with

(a) Yij ∈ Cni×nj ,

(b) Yij = Y Tji ,

(c) Yij = 0 if λi 6= λj ,

(d) Yij is an upper antitriangular Hankel matrix if λi = λj
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Example for a “set of all symmetrizers”

Consider
A = diag ( J3(1) , J2(1) , J3(2) ) .

Then the set of all (right) symmetrizers of A consists of the matrices of the
form

X =



a b c e f 0 0 0
b c 0 f 0 0 0 0
c 0 0 0 0 0 0 0
e f 0 g h 0 0 0
f 0 0 h 0 0 0 0
0 0 0 0 0 r s t
0 0 0 0 0 s t 0
0 0 0 0 0 t 0 0


,

where all the letters are free parameters.
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The dimension of the solution space

Theorem (Dimension of the solution space)

Let A = P diag
(
Jn1(λ1) , . . . , Jnq (λq)

)
P−1 be the JCF of A ∈ Cn×n. Then

the space S of solutions of

AX −XTAT = 0
X = XT

has dimension

dimS =
∑

1≤i≤j≤q

νij , with νij =

{
0, if λi 6= λj ,
min{ni, nj} if λi = λj .

This dimension can be also expressed as follows: let Λ(A) be the set of
distinct eigenvalues of A and for each λ ∈ Λ(A), let

n1(λ) ≥ n2(λ) ≥ · · · be the sizes of its Jordan blocks,

then
dimS =

∑
λ∈Λ(A)

(n1(λ) + 2n2(λ) + 3n3(λ) + · · · )
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Special case: symmetrizers of diagonalizable matrices

Corollary (Diagonalizable matrices)

Let A = V diag (λ1 , . . . , λn )V −1 ∈ Cn×n be diagonalizable. Then, all
matrices of the form

X = V D V T , with D any arbitrary diagonal matrix

are solutions of AX −XTAT = 0
X = XT

Moreover, if λi 6= λj whenever i 6= j, then all solutions have this form.

Remark

Since the columns of V are eigenvectors of A and almost all
matrices are diagonalizable, this result opens the possibility of
computing symmetrizers just by taking D = In,

...but other D may be more convenient for good conditioning.
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The simplest symmetrizer of a non-diagonalizable matrix

Corollary (The simplest symmetrizer)

Let A = P diag
(
Jn1(λ1) , . . . , Jnq (λq)

)
P−1 be the JCF of A ∈ Cn×n and let

Ei =


0 0 1

. .
.

. .
.

0

0 . .
.

. .
.

1 0 0

 ∈ Cni×ni

be the reverse identity matrix. Then

X = P


E1

E2

. . .

Eq

PT

is a solution of AX −XTAT = 0
X = XT

F. M. Dopico (U. Carlos III, Madrid) Sylvester equations and symmetrizers August 7, 2014 14 / 26



Outline

1 The history and the problems

2 The set of all symmetrizers

3 Algorithms for computing symmetrizers

4 Remarks on condition numbers of symmetrizers

5 Conclusions



A brief history on computing symmetrizers

There were attempts from early 1960s through 1970s to compute
symmetrizers by several researchers

J. Howland & F. Farrel (1963),
J. Howland (1971),
B. N. Datta (1973),
L. Trapp (1975), ...

These attempts used Hessenberg reduction and they were unstable.

The problem of computing symmetrizers lay dormant and has been
reconsidered again recently by Frank Uhlig (LAMA, 2012) and in D. &
Frank Uhlig (Submitted, 2014).
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The most important message on computing symmetrizers is...

It is easy to compute symmetrizers in an stable and efficient way
(O(n3) cost),

but, in difficult situations, it is not clear how to compute full-rank
well-conditioned symmetrizers,

but there are advances.

Remark
Compute in difficult situations “sufficiently” well-conditioned symmetrizers is
very hard at present and one reason is that there are no yet theoretical
results on the smallest condition number of the symmetrizers of a given
matrix A ∈ Cn×n.
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Computing Symmetrizers via eigenanalysis (I): basic approach

Recall: if A = V ΛV −1 ∈ Cn×n is diagonalizable, then, all matrices of the
form X = V D V T , with D arbitrary diagonal matrix are symmetrizers of A.

MATLAB BASIC ALGORITHM
[V,Lamb] = eig(A)

X = V*V'

eig command is Francis QR + computing eigenvectors, so O(n3) cost.

This works almost always very well, but it was not used in the 1960s,
1970s,...: why waiting until D. & Uhlig, 2014?

We are taking D = I (MATLAB gives columns of norm 1) but other
options may be more convenient for good conditioning...

because if V is very ill-conditioned X = (V V T ) can be also very ill
conditioned or even singular in floating point arithmetic.

The residual errors can be proved to be very good.
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Computing Symmetrizers via eigenanalysis (II): errors in basic approach

Theorem

Let V̂ be the eigenvector matrix of A ∈ Cn×n computed by MATLAB and let
X̂ = fl(V̂ D V̂ T ) be the computed symmetrizer of A for a diagonal matrix D,
then

‖AX̂ − X̂AT ‖2
‖A‖2 ‖X̂‖2

≤ p(n)u
‖V̂ D1/2‖22
‖X̂‖2

,

with p(n) a low-degree polynomial and u the unit-roundoff of the computer.

Remarks:

The expected error in Sylvester equations is

‖AX̂ − X̂AT ‖2
‖A‖2 ‖X̂‖2

≤ p(n)u.

The extra factor is unavoidable in this approach, since it cames from
computing X̂ = fl(V̂ D V̂ T ),

but we have not observed it in the many many tests we have performed.
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What to do if fl(V̂ V̂ T ) is very ill-conditioned?

Choose another D 6= In: We do not know yet how to choose D to really
get small as possible κ2(V DV T ).

I discuss next very very briefly two available approaches:

Still use eigenanalysis via orthonormal bases of principal
subspaces of A (subspaces generated by Jordan chains).

Completely different approach via an iterative method developed
by Uhlig (LAMA, 2013) based on Huang-Nong method (LAA,
2010) for solving finite dimensional linear operator equations.
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Method 1: Orthonormal bases of principal subspaces of A

If the (scaled) eigenvector matrix V of A is ill-conditioned, then at least
one eigenvalue λ of A is ill-conditioned (Stewart & Sun, 1990), and

A is very close to a matrix with λ as multiple evalue (Wilkinson, 1972).

If one can identify well a “cluster” of computed multiple eigenvalues (of
A+E) and from them a “unique” multiple approx evalue of a A, then

methods by Golub-Wilkinson (1976) + intricate developments allow us to
compute reliably orthonormal bases of principal subspaces of A and

the Hessenberg matrices that represent A in these bases.

From here it is easy, to compute symmetrizers.

Drawback 1: The method cost O(n4) for complicated Jordan structures.

Drawback 2: It only improves conditioning of symmetrizers if “multiple
evalues” are well identified. Old open problem in Numerical Lin. Algebra.
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Method 2: Iterative method

Given T : H1 −→ H2 linear operator on finite dimensional inner-product
spaces, Huang & Nong (LAA, 2010) developed an iterative algorithm for
solving

T (x) = f

Some features of this algorithm are
It resembles BICG.
It converges always in a finite number of steps.
It works when there are infinite solutions.

Uhlig (LAMA, 2012) adapts Huang & Nong’s algor in a non-trivial way to
the symmetrizer problem by taking

T (X) =

[
AX −XTAT

X −XT

]
, f = 0, H1 = Cn×n, H2 = C2n×n

Positive property: It finds better conditioned symmetrizers in
difficult situations than methods based on eigenanalysis. (Why????)

Negative property: It is very slow O(n5) up to O(n7) cost.
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Positive property: It finds better conditioned symmetrizers in
difficult situations than methods based on eigenanalysis. (Why????)

Negative property: It is very slow O(n5) up to O(n7) cost.

F. M. Dopico (U. Carlos III, Madrid) Sylvester equations and symmetrizers August 7, 2014 21 / 26



Method 2: Iterative method

Given T : H1 −→ H2 linear operator on finite dimensional inner-product
spaces, Huang & Nong (LAA, 2010) developed an iterative algorithm for
solving

T (x) = f

Some features of this algorithm are
It resembles BICG.
It converges always in a finite number of steps.
It works when there are infinite solutions.

Uhlig (LAMA, 2012) adapts Huang & Nong’s algor in a non-trivial way to
the symmetrizer problem by taking

T (X) =

[
AX −XTAT

X −XT

]
, f = 0, H1 = Cn×n, H2 = C2n×n

Positive property: It finds better conditioned symmetrizers in
difficult situations than methods based on eigenanalysis. (Why????)

Negative property: It is very slow O(n5) up to O(n7) cost.

F. M. Dopico (U. Carlos III, Madrid) Sylvester equations and symmetrizers August 7, 2014 21 / 26



Method 2: Iterative method

Given T : H1 −→ H2 linear operator on finite dimensional inner-product
spaces, Huang & Nong (LAA, 2010) developed an iterative algorithm for
solving

T (x) = f

Some features of this algorithm are
It resembles BICG.
It converges always in a finite number of steps.
It works when there are infinite solutions.

Uhlig (LAMA, 2012) adapts Huang & Nong’s algor in a non-trivial way to
the symmetrizer problem by taking

T (X) =

[
AX −XTAT

X −XT

]
, f = 0, H1 = Cn×n, H2 = C2n×n

Positive property: It finds better conditioned symmetrizers in
difficult situations than methods based on eigenanalysis. (Why????)

Negative property: It is very slow O(n5) up to O(n7) cost.

F. M. Dopico (U. Carlos III, Madrid) Sylvester equations and symmetrizers August 7, 2014 21 / 26



Method 2: Iterative method

Given T : H1 −→ H2 linear operator on finite dimensional inner-product
spaces, Huang & Nong (LAA, 2010) developed an iterative algorithm for
solving

T (x) = f

Some features of this algorithm are
It resembles BICG.
It converges always in a finite number of steps.
It works when there are infinite solutions.

Uhlig (LAMA, 2012) adapts Huang & Nong’s algor in a non-trivial way to
the symmetrizer problem by taking

T (X) =

[
AX −XTAT

X −XT

]
, f = 0, H1 = Cn×n, H2 = C2n×n

Positive property: It finds better conditioned symmetrizers in
difficult situations than methods based on eigenanalysis. (Why????)

Negative property: It is very slow O(n5) up to O(n7) cost.

F. M. Dopico (U. Carlos III, Madrid) Sylvester equations and symmetrizers August 7, 2014 21 / 26



Numerical test 1: random matrices

Averages on 10 random 100× 100 and 10 random 200× 200 matrices.

A max eig res. error cond(X) runtime
cond no average

100 by 100
iter. method 2.2e-9 7.2e+03 13.75

eigenv. method 32.6 9.2e-15 9e+03 0.028

200 by 200
iter. method 2.2e-7 2.8e+04 152.9

eigenv. method 49 1.5e-14 2.97e+04 0.116

F. M. Dopico (U. Carlos III, Madrid) Sylvester equations and symmetrizers August 7, 2014 22 / 26



Numerical test 2: 35× 35 Frank matrix

Well-known type of matrices with ill-conditioned eigenvalues.

F max eig res. error cond(X) rank(X) runtime
35 by 35 cond no average

iter. method 8e-14 7e+13 35 0.8
eigenv. method 4.6e+8 2e-10 1.6e+17 32 0.012
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A 2× 2 example

Recall: A = V ΛV −1 diagonalizable, symmetrizers are X = V D V T , with
D arbitrary diagonal.

Consider the real diagonalization

A =

[
1 1
0 δ

] [
λ1

λ2

] [
1 1
0 δ

]−1

For |δ| � 1 eigenvector matrix very ill-conditioned. Any symmetrizer of A
has the form

X(d1, d2) =

[
1 1
0 δ

] [
d1

d2

] [
1 1
0 δ

]T
=

[
(d1 + d2) d2δ
d2δ d2δ

2

]
and

κF (X(d1, d2)) =
|d1 + d2|2

|d1| |d2|
1

δ2
+ (2 + δ2)

|d2|
|d1|

.

min
d1,d2

κF (X(d1, d2)) = 2 , attained with d1 = −d2 (1 + δ2)

F. M. Dopico (U. Carlos III, Madrid) Sylvester equations and symmetrizers August 7, 2014 24 / 26



A 2× 2 example

Recall: A = V ΛV −1 diagonalizable, symmetrizers are X = V D V T , with
D arbitrary diagonal.

Consider the real diagonalization

A =

[
1 1
0 δ

] [
λ1

λ2

] [
1 1
0 δ

]−1

For |δ| � 1 eigenvector matrix very ill-conditioned. Any symmetrizer of A
has the form

X(d1, d2) =

[
1 1
0 δ

] [
d1

d2

] [
1 1
0 δ

]T
=

[
(d1 + d2) d2δ
d2δ d2δ

2

]
and

κF (X(d1, d2)) =
|d1 + d2|2

|d1| |d2|
1

δ2
+ (2 + δ2)

|d2|
|d1|

.

min
d1,d2

κF (X(d1, d2)) = 2 , attained with d1 = −d2 (1 + δ2)

F. M. Dopico (U. Carlos III, Madrid) Sylvester equations and symmetrizers August 7, 2014 24 / 26



A 2× 2 example

Recall: A = V ΛV −1 diagonalizable, symmetrizers are X = V D V T , with
D arbitrary diagonal.

Consider the real diagonalization

A =

[
1 1
0 δ

] [
λ1

λ2

] [
1 1
0 δ

]−1

For |δ| � 1 eigenvector matrix very ill-conditioned. Any symmetrizer of A
has the form

X(d1, d2) =

[
1 1
0 δ

] [
d1

d2

] [
1 1
0 δ

]T
=

[
(d1 + d2) d2δ
d2δ d2δ

2

]
and

κF (X(d1, d2)) =
|d1 + d2|2

|d1| |d2|
1

δ2
+ (2 + δ2)

|d2|
|d1|

.

min
d1,d2

κF (X(d1, d2)) = 2 , attained with d1 = −d2 (1 + δ2)

F. M. Dopico (U. Carlos III, Madrid) Sylvester equations and symmetrizers August 7, 2014 24 / 26



A 2× 2 example

Recall: A = V ΛV −1 diagonalizable, symmetrizers are X = V D V T , with
D arbitrary diagonal.

Consider the real diagonalization

A =

[
1 1
0 δ

] [
λ1

λ2

] [
1 1
0 δ

]−1

For |δ| � 1 eigenvector matrix very ill-conditioned. Any symmetrizer of A
has the form

X(d1, d2) =

[
1 1
0 δ

] [
d1

d2

] [
1 1
0 δ

]T
=

[
(d1 + d2) d2δ
d2δ d2δ

2

]
and

κF (X(d1, d2)) =
|d1 + d2|2

|d1| |d2|
1

δ2
+ (2 + δ2)

|d2|
|d1|

.

min
d1,d2

κF (X(d1, d2)) = 2 , attained with d1 = −d2 (1 + δ2)

F. M. Dopico (U. Carlos III, Madrid) Sylvester equations and symmetrizers August 7, 2014 24 / 26



A 2× 2 example

Recall: A = V ΛV −1 diagonalizable, symmetrizers are X = V D V T , with
D arbitrary diagonal.

Consider the real diagonalization

A =

[
1 1
0 δ

] [
λ1

λ2

] [
1 1
0 δ

]−1

For |δ| � 1 eigenvector matrix very ill-conditioned. Any symmetrizer of A
has the form

X(d1, d2) =

[
1 1
0 δ

] [
d1

d2

] [
1 1
0 δ

]T
=

[
(d1 + d2) d2δ
d2δ d2δ

2

]
and

κF (X(d1, d2)) =
|d1 + d2|2

|d1| |d2|
1

δ2
+ (2 + δ2)

|d2|
|d1|

.

min
d1,d2

κF (X(d1, d2)) = 2 , attained with d1 = −d2 (1 + δ2)

F. M. Dopico (U. Carlos III, Madrid) Sylvester equations and symmetrizers August 7, 2014 24 / 26



Remarks

Matrices with very ill-conditioned (scaled) eigenvector matrix may
have perfectly conditioned symmetrizers.

The minimun condition number attained in previous example is attained
for any 2× 2 diagonalizable matrix.

For n× n matrices, we have examples of very-well conditioned
symmetrizers of matrices with very ill-conditioned eigenvector matrices,

but also lower bounds that guarantee that this is not always the case.

How to get min
D diag

κF (V D V T ) ?
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Conclusions

We know how to compute symmetrizers in an stable and very efficient
way (via Francis QR),

most of the times they are well-conditioned,

but for “difficult” matrices they are not, and we do not know yet which is
the lowest condition number of a symmetrizer neither how to compute
the corresponding symmetrizers,

although iterative Frank Uhlig’s method does a fair (slow) job (why??).
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