## Sylvester equations and the matrix symmetrizer problem

## Froilán M. Dopico and Frank Uhlig

> Departamento de Matemáticas Universidad Carlos III de Madrid, Spain and
> Department of Mathematics and Statistics Auburn University, AL, USA

19th International Linear Algebra Society Conference
Sungkyunkwan University, Seoul Campus Seoul, Korea. August 6-9, 2014

## Outline

(1) The history and the problems
(2) The set of all symmetrizers
(3) Algorithms for computing symmetrizers

4 Remarks on condition numbers of symmetrizers
(5) Conclusions

## Outline

(1) The history and the problems
(2) The set of all symmetrizers

3 Algorithms for computing symmetrizers

4 Remarks on condition numbers of symmetrizers
(5) Conclusions

## The starting point: Frobenius 1910

## Theorem

Let $A \in \mathbb{C}^{n \times n}$. There are matrices $B, C \in \mathbb{C}^{n \times n}$ such that $B=B^{T}, C=C^{T}$, and

$$
A=B C .
$$

Either $B$ or $C$ can be chosen to be nonsingular.

## Remarks

- The result remains valid for any field $\mathbb{F}$.


## The starting point: Frobenius 1910

## Theorem

Let $A \in \mathbb{C}^{n \times n}$. There are matrices $B, C \in \mathbb{C}^{n \times n}$ such that $B=B^{T}, C=C^{T}$, and

$$
A=B C .
$$

Either $B$ or $C$ can be chosen to be nonsingular.

## Remarks

- The result remains valid for any field $\mathbb{F}$.
- It can be found in standard books (Horn \& Johnson, Matrix Analysis).
- Olga Taussky paid attention to this result in "The role of symmetric matrices in the study of general matrices", LAA, 1972.


## The starting point: Frobenius 1910

## Theorem

Let $A \in \mathbb{C}^{n \times n}$. There are matrices $B, C \in \mathbb{C}^{n \times n}$ such that $B=B^{T}, C=C^{T}$, and

$$
A=B C .
$$

Either $B$ or $C$ can be chosen to be nonsingular.

## Remarks

- The result remains valid for any field $\mathbb{F}$.
- It can be found in standard books (Horn \& Johnson, Matrix Analysis).
- Olga Taussky paid attention to this result in "The role of symmetric matrices in the study of general matrices", LAA, 1972.


## The starting point: Frobenius 1910

## Theorem

Let $A \in \mathbb{C}^{n \times n}$. There are matrices $B, C \in \mathbb{C}^{n \times n}$ such that $B=B^{T}, C=C^{T}$, and

$$
A=B C .
$$

Either $B$ or $C$ can be chosen to be nonsingular.

## Remarks

- The result remains valid for any field $\mathbb{F}$.
- It can be found in standard books (Horn \& Johnson, Matrix Analysis).
- Olga Taussky paid attention to this result in "The role of symmetric matrices in the study of general matrices", LAA, 1972.


## Frobenius's result calls itself for extensions in several directions

## Theorem (Frobenius, 1910)

Let $A \in \mathbb{C}^{n \times n}$. There are matrices $B, C \in \mathbb{C}^{n \times n}$ such that $B=B^{T}, C=C^{T}$, and

$$
A=B C .
$$

Either $B$ or $C$ can be chosen to be nonsingular.

## Some relevant potential extensions:

- How many factorizations exist?: characterization of all possible symmetric factors $B$ and $C$


## Frobenius's result calls itself for extensions in several directions

## Theorem (Frobenius, 1910)

Let $A \in \mathbb{C}^{n \times n}$. There are matrices $B, C \in \mathbb{C}^{n \times n}$ such that $B=B^{T}, C=C^{T}$, and

$$
A=B C .
$$

Either $B$ or $C$ can be chosen to be nonsingular.

## Some relevant potential extensions:

- How many factorizations exist?: characterization of all possible symmetric factors $B$ and $C$.
- How to compute factors $B$ and $C$ ?
- "Either B or C can be chosen to be nonsingular" is a bit vague for present times. More informative would be "Either B or Can be cho.sen to have condition number as small as...". So, given $A$,


## Frobenius's result calls itself for extensions in several directions

## Theorem (Frobenius, 1910)

Let $A \in \mathbb{C}^{n \times n}$. There are matrices $B, C \in \mathbb{C}^{n \times n}$ such that $B=B^{T}, C=C^{T}$, and

$$
A=B C .
$$

Either $B$ or $C$ can be chosen to be nonsingular.

## Some relevant potential extensions:

- How many factorizations exist?: characterization of all possible symmetric factors $B$ and $C$.
- How to compute factors $B$ and $C$ ?
"Either B or C can be chosen to be nonsingular" is a bit vague for present times. More informative would be "Either B or C can be chosen to have condition number as small as...". So, given $A$,


## Frobenius's result calls itself for extensions in several directions

## Theorem (Frobenius, 1910)

Let $A \in \mathbb{C}^{n \times n}$. There are matrices $B, C \in \mathbb{C}^{n \times n}$ such that $B=B^{T}, C=C^{T}$, and

$$
A=B C .
$$

Either $B$ or $C$ can be chosen to be nonsingular.

## Some relevant potential extensions:

- How many factorizations exist?: characterization of all possible symmetric factors $B$ and $C$.
- How to compute factors $B$ and $C$ ?
- "Either B or C can be chosen to be nonsingular" is a bit vague for present times. More informative would be "Either B or C can be chosen to have condition number as small as...". So, given $A$,

What is the smallest possible cond. number of a nonsingular $C$ (or $B$ )?

The answers to these questions are easier by defining "symmetrizers"

- First, note that one only needs to determine the non-singular factor: take $C^{T}=C \in \mathbb{C}^{n \times n}$ in $A=B C$ to be nonsingular, then

$$
A=B C \Longleftrightarrow A C^{-1}=B
$$

- Second, note that it is easier to determine $X=C^{-1}$ since it is a nonsingular solution of a particular Sylvester equation with restrictions
- Solutions $X$ of these equations are called right symmetrizers of $A$.
- There are also left symmetrizers, which are right symmetrizers of $A^{T}$
- Baksalary \& Kala (LAA-1981) defined symmetrizers $X \neq X^{T}$ in a more general setting and characterized them via projectors and pseudoinverses (not via matrix equations)

The answers to these questions are easier by defining "symmetrizers"

- First, note that one only needs to determine the non-singular factor: take $C^{T}=C \in \mathbb{C}^{n \times n}$ in $A=B C$ to be nonsingular, then

$$
A=B C \Longleftrightarrow A C^{-1}=B
$$

- Second, note that it is easier to determine $X=C^{-1}$ since it is a nonsingular solution of a particular Sylvester equation with restrictions

$$
\begin{aligned}
A X-X^{T} A^{T} & =0 \\
X & =X^{T}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (equivalent to } B=B^{T} \text { ) } \\
& \text { (equivalent to } C=C^{T} \text { ) }
\end{aligned}
$$

- Solutions $X$ of these equations are called right symmetrizers of $A$
- There are also left symmetrizers, which are right symmetrizers of $A^{T}$
- Baksalary \& Kala (LAA-1981) defined symmetrizers $X \neq X^{T}$ in a more general setting and characterized them via projectors and pseudoinverses (not via matrix equations)


## The answers to these questions are easier by defining "symmetrizers"

- First, note that one only needs to determine the non-singular factor: take $C^{T}=C \in \mathbb{C}^{n \times n}$ in $A=B C$ to be nonsingular, then

$$
A=B C \Longleftrightarrow A C^{-1}=B
$$

- Second, note that it is easier to determine $X=C^{-1}$ since it is a nonsingular solution of a particular Sylvester equation with restrictions

$$
\begin{array}{rlrl}
A X-X^{T} A^{T} & =0 & & \text { (equivalent to } \left.B=B^{T}\right) \\
X & =X^{T} & \text { (equivalent to } \left.C=C^{T}\right)
\end{array}
$$

- Solutions
of these equations are called right symmetrizers of $A$
- There are also left symmetrizers, which are right symmetrizers of $A^{7}$
- Baksalary \& Kala (LAA-1981) defined symmetrizers $X \neq X^{T}$ in a more general setting and characterized them via projectors and pseudoinverses (not via matrix equations)


## The answers to these questions are easier by defining "symmetrizers"

- First, note that one only needs to determine the non-singular factor: take $C^{T}=C \in \mathbb{C}^{n \times n}$ in $A=B C$ to be nonsingular, then

$$
A=B C \Longleftrightarrow A C^{-1}=B
$$

- Second, note that it is easier to determine $X=C^{-1}$ since it is a nonsingular solution of a particular Sylvester equation with restrictions

$$
\begin{aligned}
A X-X^{T} A^{T} & =0 \\
X & =X^{T}
\end{aligned}
$$

$$
\text { (equivalent to } B=B^{T} \text { ) }
$$

$$
\text { (equivalent to } C=C^{T} \text { ) }
$$

- Solutions $X$ of these equations are called right symmetrizers of $A$.
- There are also left symmetrizers, which are right symmetrizers of $A^{2}$
- Baksalary \& Kala (LAA-1981) defined symmetrizers $X \neq X^{T}$ in a more general setting and characterized them via projectors and pseudoinverses (not via matrix equations)


## The answers to these questions are easier by defining "symmetrizers"

- First, note that one only needs to determine the non-singular factor: take $C^{T}=C \in \mathbb{C}^{n \times n}$ in $A=B C$ to be nonsingular, then

$$
A=B C \Longleftrightarrow A C^{-1}=B
$$

- Second, note that it is easier to determine $X=C^{-1}$ since it is a nonsingular solution of a particular Sylvester equation with restrictions

$$
\begin{aligned}
A X-X^{T} A^{T} & =0 \\
X & =X^{T}
\end{aligned}
$$

$$
\text { (equivalent to } B=B^{T} \text { ) }
$$

$$
\text { (equivalent to } C=C^{T} \text { ) }
$$

- Solutions $X$ of these equations are called right symmetrizers of $A$.
- There are also left symmetrizers, which are right symmetrizers of $A^{T}$.
- Baksalary \& Kala (LAA-1981) defined symmetrizers general setting and characterized them via projectors and pseudoinverses (not via matrix equations)


## The answers to these questions are easier by defining "symmetrizers"

- First, note that one only needs to determine the non-singular factor: take $C^{T}=C \in \mathbb{C}^{n \times n}$ in $A=B C$ to be nonsingular, then

$$
A=B C \Longleftrightarrow A C^{-1}=B
$$

- Second, note that it is easier to determine $X=C^{-1}$ since it is a nonsingular solution of a particular Sylvester equation with restrictions

$$
\begin{aligned}
A X-X^{T} A^{T} & =0 \\
X & =X^{T}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (equivalent to } B=B^{T} \text { ) } \\
& \text { (equivalent to } C=C^{T} \text { ) }
\end{aligned}
$$

- Solutions $X$ of these equations are called right symmetrizers of $A$.
- There are also left symmetrizers, which are right symmetrizers of $A^{T}$.
- Baksalary \& Kala (LAA-1981) defined symmetrizers $X \neq X^{T}$ in a more general setting and characterized them via projectors and pseudoinverses (not via matrix equations).


## My goals in this talk

Given $A \in \mathbb{C}^{n \times n}$ and the Sylvester equation with restrictions

$$
\begin{aligned}
A X-X^{T} A^{T} & =0 \\
X & =X^{T}
\end{aligned}
$$

- I will describe theoretically the set of all solutions using standard techniques. Easy problem but I have not found it in the literature.
- I will briefly mention the most recent algorithms for computing solutions (symmetrizers) in an stable way. Very difficult problem with relevant recent advances by Frank Uhlig.
- Comments on the smallest possible condition number of solutions. Very difficult completely open problem. Recent advances in joint work with Paul Van Dooren.


## My goals in this talk

Given $A \in \mathbb{C}^{n \times n}$ and the Sylvester equation with restrictions

$$
\begin{aligned}
A X-X^{T} A^{T} & =0 \\
X & =X^{T}
\end{aligned}
$$

- I will describe theoretically the set of all solutions using standard techniques. Easy problem but I have not found it in the literature.
- I will briefly mention the most recent algorithms for computing solutions (symmetrizers) in an stable way. Very difficult problem with relevant recent advances by Frank Uhlig.
- Comments on the smallest possible condition number of solutions. Very difficult completely open problem. Recent advances in joint work with Paul Van Dooren


## My goals in this talk

Given $A \in \mathbb{C}^{n \times n}$ and the Sylvester equation with restrictions

$$
\begin{aligned}
A X-X^{T} A^{T} & =0 \\
X & =X^{T}
\end{aligned}
$$

- I will describe theoretically the set of all solutions using standard techniques. Easy problem but I have not found it in the literature.
- I will briefly mention the most recent algorithms for computing solutions (symmetrizers) in an stable way. Very difficult problem with relevant recent advances by Frank Uhlig.
- Comments on the smallest possible condition number of solutions. Very difficult completely open problem. Recent advances in joint work with Paul Van Dooren.


## My goals in this talk

Given $A \in \mathbb{C}^{n \times n}$ and the Sylvester equation with restrictions

$$
\begin{aligned}
A X-X^{T} A^{T} & =0 \\
X & =X^{T}
\end{aligned}
$$

- I will describe theoretically the set of all solutions using standard techniques. Easy problem but I have not found it in the literature.
- I will briefly mention the most recent algorithms for computing solutions (symmetrizers) in an stable way. Very difficult problem with relevant recent advances by Frank Uhlig.
- Comments on the smallest possible condition number of solutions. Very difficult completely open problem. Recent advances in joint work with Paul Van Dooren.


## Applications of symmetrizers??

- To be honest, nowadays, I do not see any application for them.
- In the past (see Datta (1973), Venkaiah \& Sen (JCAM, 1988),...), it was said that symmetrizers allow us to transform a nonsymmetric standard eigenproblem into a generalized symmetric eigenproblem.
- Nonsingular left symmetrizers $Y$ are more convenient for this task
- But with present eigensolvers, I do not think that this transformation has any advantage.
- But "symmetrizers" are fun, classical, and a highly nontrivial problem!!


## Applications of symmetrizers??

- To be honest, nowadays, I do not see any application for them.
- In the past (see Datta (1973), Venkaiah \& Sen (JCAM, 1988),...), it was said that symmetrizers allow us to transform a nonsymmetric standard eigenproblem into a generalized symmetric eigenproblem.
- Nonsingular left symmetrizers $Y$ are more convenient for this task
- But with present eigensolvers, I do not think that this transformation has any advantage.
- But "symmetrizers" are fun, classical, and a highly nontrivial problem!!


## Applications of symmetrizers??

- To be honest, nowadays, I do not see any application for them.
- In the past (see Datta (1973), Venkaiah \& Sen (JCAM, 1988),...), it was said that symmetrizers allow us to transform a nonsymmetric standard eigenproblem into a generalized symmetric eigenproblem.
- Nonsingular left symmetrizers $Y$ are more convenient for this task

$$
A \mathbf{v}=\lambda \mathbf{v} \Longleftrightarrow(Y A) \mathbf{v}=\lambda Y \mathbf{v}
$$

- But with present eigensolvers, I do not think that this transformation has any advantage.
- But "symmetrizers" are fun, classical, and a highly nontrivial problem!


## Applications of symmetrizers??

- To be honest, nowadays, I do not see any application for them.
- In the past (see Datta (1973), Venkaiah \& Sen (JCAM, 1988),...), it was said that symmetrizers allow us to transform a nonsymmetric standard eigenproblem into a generalized symmetric eigenproblem.
- Nonsingular left symmetrizers $Y$ are more convenient for this task

$$
A \mathbf{v}=\lambda \mathbf{v} \Longleftrightarrow(Y A) \mathbf{v}=\lambda Y \mathbf{v},
$$

- But with present eigensolvers, I do not think that this transformation has any advantage.
- But "symmetrizers" are fun, classical, and a highly nontrivial problem!!


## Applications of symmetrizers??

- To be honest, nowadays, I do not see any application for them.
- In the past (see Datta (1973), Venkaiah \& Sen (JCAM, 1988),...), it was said that symmetrizers allow us to transform a nonsymmetric standard eigenproblem into a generalized symmetric eigenproblem.
- Nonsingular left symmetrizers $Y$ are more convenient for this task

$$
A \mathbf{v}=\lambda \mathbf{v} \Longleftrightarrow(Y A) \mathbf{v}=\lambda Y \mathbf{v}
$$

- But with present eigensolvers, I do not think that this transformation has any advantage.
- But "symmetrizers" are fun, classical, and a highly nontrivial problem!!


## Outline

(1) The history and the problems
(2) The set of all symmetrizers

3 Algorithms for computing symmetrizers

4 Remarks on condition numbers of symmetrizers
(5) Conclusions

## Some antecedents that I have found in the literature...

Given $A \in \mathbb{C}^{n \times n}$ and the Sylvester equation with restrictions

$$
\begin{aligned}
A X-X^{T} A^{T} & =0 \\
X & =X^{T}
\end{aligned}
$$

- Frobenius in 1910 noted that there are at least $n$ linearly independent solutions (just counting equations and unknowns).
- Taussky and Zassenhaus (Pacific. J. Math., 1959) proved that there are exactly $n$ linearly independent solutions if and only if $A$ is nonderogatory.
- Uhlig (LAA, 1974) describes implicitly the set of solutions for $A \in \mathbb{R}^{n \times n}$ and describes all possible inertias attained by solutions.


## Some antecedents that I have found in the literature...

Given $A \in \mathbb{C}^{n \times n}$ and the Sylvester equation with restrictions

$$
\begin{aligned}
A X-X^{T} A^{T} & =0 \\
X & =X^{T}
\end{aligned}
$$

- Frobenius in 1910 noted that there are at least $n$ linearly independent solutions (just counting equations and unknowns).
- Taussky and Zassenhaus (Pacific. J. Math., 1959) proved that there are exactly $n$ linearly independent solutions if and only if $A$ is nonderogatory.
- Unlig (LAA, 1974) describes implicitly the set of solutions for $A \in \mathbb{R}^{n \times n}$ and describes all possible inertias attained by solutions.


## Some antecedents that I have found in the literature...

Given $A \in \mathbb{C}^{n \times n}$ and the Sylvester equation with restrictions

$$
\begin{aligned}
A X-X^{T} A^{T} & =0 \\
X & =X^{T}
\end{aligned}
$$

- Frobenius in 1910 noted that there are at least $n$ linearly independent solutions (just counting equations and unknowns).
- Taussky and Zassenhaus (Pacific. J. Math., 1959) proved that there are exactly $n$ linearly independent solutions if and only if $A$ is nonderogatory.
- Uhlig (LAA, 1974) describes implicitly the set of solutions for $A \in \mathbb{R}^{n \times n}$ and describes all possible inertias attained by solutions.


## Some antecedents that I have found in the literature...

Given $A \in \mathbb{C}^{n \times n}$ and the Sylvester equation with restrictions

$$
\begin{aligned}
A X-X^{T} A^{T} & =0 \\
X & =X^{T}
\end{aligned}
$$

- Frobenius in 1910 noted that there are at least $n$ linearly independent solutions (just counting equations and unknowns).
- Taussky and Zassenhaus (Pacific. J. Math., 1959) proved that there are exactly $n$ linearly independent solutions if and only if $A$ is nonderogatory.
- Uhlig (LAA, 1974) describes implicitly the set of solutions for $A \in \mathbb{R}^{n \times n}$ and describes all possible inertias attained by solutions.


## General solution via the Jordan canonical form of $A$

- Standard technique for Sylvester eqs. (Gantmacher, Horn \& Johnson)
 where e-values are not necessarily pairwise different. Then


## General solution via the Jordan canonical form of $A$

- Standard technique for Sylvester eqs. (Gantmacher, Horn \& Johnson)
- Let

| $A$ | $=P J P^{-1}$ |  | with |
| ---: | :--- | ---: | :--- |
| $J$ | $=\operatorname{diag}\left(J_{n_{1}}\left(\lambda_{1}\right), \ldots, J_{n_{q}}\left(\lambda_{q}\right)\right)$ |  | Jordan canonical form (JCF) of $A$, |

where e-values are not necessarily pairwise different. Then

## General solution via the Jordan canonical form of $A$

- Standard technique for Sylvester eqs. (Gantmacher, Horn \& Johnson)
- Let

$$
\begin{aligned}
A & =P J P^{-1} & & \text { with } \\
J & =\operatorname{diag}\left(J_{n_{1}}\left(\lambda_{1}\right), \ldots, J_{n_{q}}\left(\lambda_{q}\right)\right) & & \text { Jordan canonical form (JCF) of } A,
\end{aligned}
$$

where e-values are not necessarily pairwise different. Then

$$
\begin{aligned}
A X-X^{T} A^{T} & =0 \\
X & =X^{T} \Longleftrightarrow\left(P J P^{-1}\right) X-X^{T}\left(P^{-T} J^{T} P^{T}\right) \\
X & =0 \\
X & X^{T}
\end{aligned}
$$

## General solution via the Jordan canonical form of $A$

- Standard technique for Sylvester eqs. (Gantmacher, Horn \& Johnson)
- Let

$$
\begin{array}{ll}
A=P J P^{-1} & \text { with } \\
J=\operatorname{diag}\left(J_{n_{1}}\left(\lambda_{1}\right), \ldots, J_{n_{q}}\left(\lambda_{q}\right)\right) & \\
\text { Jordan canonical form (JCF) of } A,
\end{array}
$$

where e-values are not necessarily pairwise different. Then

$$
\begin{aligned}
A X-X^{T} A^{T} & =0 \\
X & =X^{T} \Longleftrightarrow\left(P J P^{-1}\right) X-X^{T}\left(P^{-T} J^{T} P^{T}\right) \\
X & =0 \\
X & X^{T}
\end{aligned}
$$

$$
\Longleftrightarrow \quad \begin{aligned}
J\left(P^{-1} X P^{-T}\right)-\left(P^{-1} X^{T} P^{-T}\right) J^{T} & =0 \\
\left(P^{-1} X P^{-T}\right) & =\left(P^{-1} X^{T} P^{-T}\right)
\end{aligned}
$$

## General solution via the Jordan canonical form of $A$

- Standard technique for Sylvester eqs. (Gantmacher, Horn \& Johnson)
- Let

$$
A=P J P^{-1}
$$

$$
J=\operatorname{diag}\left(J_{n_{1}}\left(\lambda_{1}\right), \ldots, J_{n_{q}}\left(\lambda_{q}\right)\right) \quad \text { Jordan canonical form (JCF) of } A,
$$

where e-values are not necessarily pairwise different. Then

$$
\begin{aligned}
A X-X^{T} A^{T} & =0 \\
X & =X^{T} \Longleftrightarrow\left(P J P^{-1}\right) X-X^{T}\left(P^{-T} J^{T} P^{T}\right) \\
X & =0 \\
X & X^{T}
\end{aligned}
$$

$$
\Longleftrightarrow \quad \begin{aligned}
J\left(P^{-1} X P^{-T}\right)-\left(P^{-1} X^{T} P^{-T}\right) J^{T} & =0 \\
\left(P^{-1} X P^{-T}\right) & =\left(P^{-1} X^{T} P^{-T}\right)
\end{aligned}
$$

Define $Y:=\left(P^{-1} X P^{-T}\right)$ and get

$$
\begin{aligned}
J Y-Y^{T} J^{T} & =0 \\
Y & =Y^{T}
\end{aligned}
$$

"The theorem of the general solution" or "the set of all symmetrizers"

## Theorem (General solution)

Let $A=P \operatorname{diag}\left(J_{n_{1}}\left(\lambda_{1}\right), \ldots, J_{n_{q}}\left(\lambda_{q}\right)\right) P^{-1}$ be the JCF of $A \in \mathbb{C}^{n \times n}$. Then the general solution of

$$
\begin{aligned}
A X-X^{T} A^{T} & =0 \\
X & =X^{T}
\end{aligned}
$$

is given by the formula $X=P Y P^{T}$, where

$$
Y=\left(Y_{i j}\right)_{i, j=1}^{q}
$$

with
(a) $Y_{i j} \in \mathbb{C}^{n_{i} \times n_{j}}$,
(b) $Y_{i j}=Y_{j i}^{T}$,
(c) $Y_{i j}=0$ if $\lambda_{i} \neq \lambda_{j}$,
(d) $Y_{i j}$ is an upper antitriangular Hankel matrix if $\lambda_{i}=\lambda_{j}$

## Example for a "set of all symmetrizers"

Consider

$$
A=\operatorname{diag}\left(J_{3}(1), J_{2}(1), J_{3}(2)\right) .
$$

Then the set of all (right) symmetrizers of $A$ consists of the matrices of the form

$$
X=\left[\begin{array}{ccc|cc|ccc}
\mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathbf{e} & \mathrm{f} & 0 & 0 & 0 \\
\mathbf{b} & \mathrm{c} & 0 & \mathbf{f} & 0 & 0 & 0 & 0 \\
\mathrm{c} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \mathbf{e} & \mathbf{f} & 0 & \mathrm{~g} & \mathrm{~h} & 0 & 0 & 0 \\
\mathbf{f} & 0 & 0 & \mathrm{~h} & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & \mathrm{r} & \mathrm{~s} & \mathrm{t} \\
0 & 0 & 0 & 0 & 0 & \mathrm{~s} & \mathrm{t} & 0 \\
0 & 0 & 0 & 0 & 0 & \mathrm{t} & 0 & 0
\end{array}\right],
$$

where all the letters are free parameters.

## The dimension of the solution space

## Theorem (Dimension of the solution space)

Let $A=P \operatorname{diag}\left(J_{n_{1}}\left(\lambda_{1}\right), \ldots, J_{n_{q}}\left(\lambda_{q}\right)\right) P^{-1}$ be the JCF of $A \in \mathbb{C}^{n \times n}$. Then the space $\mathcal{S}$ of solutions of

$$
\begin{aligned}
A X-X^{T} A^{T} & =0 \\
X & =X^{T}
\end{aligned}
$$

has dimension

$$
\operatorname{dim} \mathcal{S}=\sum_{1 \leq i \leq j \leq q} \nu_{i j}, \quad \text { with } \quad \nu_{i j}= \begin{cases}0, & \text { if } \lambda_{i} \neq \lambda_{j} \\ \min \left\{n_{i}, n_{j}\right\} & \text { if } \lambda_{i}=\lambda_{j} .\end{cases}
$$

This dimension can be also expressed as follows: let $\Lambda(A)$ be the set of
distinct eigenvalues of $A$ and for each $\lambda \in \Lambda(A)$, let

## $n_{1}(\lambda) \geq n_{2}(\lambda) \geq \cdots \quad$ be the sizes of its Jordan blocks,



## The dimension of the solution space

## Theorem (Dimension of the solution space)

Let $A=P \operatorname{diag}\left(J_{n_{1}}\left(\lambda_{1}\right), \ldots, J_{n_{q}}\left(\lambda_{q}\right)\right) P^{-1}$ be the JCF of $A \in \mathbb{C}^{n \times n}$. Then the space $\mathcal{S}$ of solutions of

$$
\begin{aligned}
A X-X^{T} A^{T} & =0 \\
X & =X^{T}
\end{aligned}
$$

has dimension

$$
\operatorname{dim} \mathcal{S}=\sum_{1 \leq i \leq j \leq q} \nu_{i j}, \quad \text { with } \quad \nu_{i j}= \begin{cases}0, & \text { if } \lambda_{i} \neq \lambda_{j} \\ \min \left\{n_{i}, n_{j}\right\} & \text { if } \lambda_{i}=\lambda_{j}\end{cases}
$$

This dimension can be also expressed as follows: let $\Lambda(A)$ be the set of distinct eigenvalues of $A$ and for each $\lambda \in \Lambda(A)$, let

$$
n_{1}(\lambda) \geq n_{2}(\lambda) \geq \cdots \quad \text { be the sizes of its Jordan blocks, }
$$

then

$$
\operatorname{dim} \mathcal{S}=\sum_{\lambda \in \Lambda(A)}\left(n_{1}(\lambda)+2 n_{2}(\lambda)+3 n_{3}(\lambda)+\cdots\right)
$$

## Special case: symmetrizers of diagonalizable matrices

## Corollary (Diagonalizable matrices)

Let $A=V \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) V^{-1} \in \mathbb{C}^{n \times n}$ be diagonalizable. Then, all matrices of the form

$$
X=V D V^{T}, \quad \text { with } D \text { any arbitrary diagonal matrix }
$$

are solutions of $\quad \begin{aligned} A X-X^{T} A^{T} & =0 \\ X & =X^{T}\end{aligned}$
Moreover, if $\lambda_{i} \neq \lambda_{j}$ whenever $i \neq j$, then all solutions have this form.

## Remark

- Since the columns of $V$ are eigenvectors of $A$ and almost all matrices are diagonalizable, this result opens the possibility of computing symmetrizers just by taking $D=I$
...but other $D$ may be more convenient for good conditioning.


## Special case: symmetrizers of diagonalizable matrices

## Corollary (Diagonalizable matrices)

Let $A=V \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) V^{-1} \in \mathbb{C}^{n \times n}$ be diagonalizable. Then, all matrices of the form

$$
X=V D V^{T}, \quad \text { with } D \text { any arbitrary diagonal matrix }
$$

are solutions of $\begin{aligned} A X-X^{T} A^{T} & =0 \\ X & =X^{T}\end{aligned}$
Moreover, if $\lambda_{i} \neq \lambda_{j}$ whenever $i \neq j$, then all solutions have this form.

## Remark

- Since the columns of $V$ are eigenvectors of $A$ and almost all matrices are diagonalizable, this result opens the possibility of computing symmetrizers just by taking $D=I$
- ...but other $D$ may be more convenient for good conditioning.


## Special case: symmetrizers of diagonalizable matrices

## Corollary (Diagonalizable matrices)

Let $A=V \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) V^{-1} \in \mathbb{C}^{n \times n}$ be diagonalizable. Then, all matrices of the form

$$
X=V D V^{T}, \quad \text { with } D \text { any arbitrary diagonal matrix }
$$

are solutions of $\begin{aligned} A X-X^{T} A^{T} & =0 \\ X & =X^{T}\end{aligned}$
Moreover, if $\lambda_{i} \neq \lambda_{j}$ whenever $i \neq j$, then all solutions have this form.

## Remark

- Since the columns of $V$ are eigenvectors of $A$ and almost all matrices are diagonalizable, this result opens the possibility of computing symmetrizers just by taking $D=I_{n}$,


## - ...but other $D$ may be more convenient for good conditioning.

## Special case: symmetrizers of diagonalizable matrices

## Corollary (Diagonalizable matrices)

Let $A=V \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) V^{-1} \in \mathbb{C}^{n \times n}$ be diagonalizable. Then, all matrices of the form

$$
X=V D V^{T}, \quad \text { with } D \text { any arbitrary diagonal matrix }
$$

are solutions of $\begin{aligned} A X-X^{T} A^{T} & =0 \\ X & =X^{T}\end{aligned}$
Moreover, if $\lambda_{i} \neq \lambda_{j}$ whenever $i \neq j$, then all solutions have this form.

## Remark

- Since the columns of $V$ are eigenvectors of $A$ and almost all matrices are diagonalizable, this result opens the possibility of computing symmetrizers just by taking $D=I_{n}$,
- ...but other $D$ may be more convenient for good conditioning.


## The simplest symmetrizer of a non-diagonalizable matrix

## Corollary (The simplest symmetrizer)

Let $A=P \operatorname{diag}\left(J_{n_{1}}\left(\lambda_{1}\right), \ldots, J_{n_{q}}\left(\lambda_{q}\right)\right) P^{-1}$ be the JCF of $A \in \mathbb{C}^{n \times n}$ and let

$$
E_{i}=\left[\begin{array}{cccc}
0 & & 0 & 1 \\
& . \cdot & . & 0 \\
& \cdot & \cdot & 0 \\
0 & . \cdot & . & \\
1 & 0 & & 0
\end{array}\right] \in \mathbb{C}^{n_{i} \times n_{i}}
$$

be the reverse identity matrix. Then

$$
X=P\left[\begin{array}{llll}
E_{1} & & & \\
& E_{2} & & \\
& & \ddots & \\
& & & E_{q}
\end{array}\right] P^{T}
$$

is a solution of $\begin{aligned} A X-X^{T} A^{T} & =0 \\ X & =\end{aligned}$

## Outline

## (1) The history and the problems

2 The set of all symmetrizers
(3) Algorithms for computing symmetrizers

4 Remarks on condition numbers of symmetrizers
(5) Conclusions

## A brief history on computing symmetrizers

- There were attempts from early 1960s through 1970s to compute symmetrizers by several researchers
- J. Howland \& F. Farrel (1963),
- J. Howland (1971),
- B. N. Datta (1973),
- L. Trapp (1975), ...
- These attempts used Hessenberg reduction and they were unstable.
- The problem of computing symmetrizers lay dormant and has been reconsidered again recently by Frank Uhlig (LAMA, 2012) and in D. \& Frank Uhlig (Submitted, 2014)


## A brief history on computing symmetrizers

- There were attempts from early 1960s through 1970s to compute symmetrizers by several researchers
- J. Howland \& F. Farrel (1963),
- J. Howland (1971),
- B. N. Datta (1973),
- L. Trapp (1975), ...
- These attempts used Hessenberg reduction and they were unstable.
- The problem of computing symmetrizers lay dormant and has been reconsidered again recently by Frank Uhlig (LAMA, 2012) and in D. \& Frank Uhlig (Submitted, 2014)


## A brief history on computing symmetrizers

- There were attempts from early 1960s through 1970s to compute symmetrizers by several researchers
- J. Howland \& F. Farrel (1963),
- J. Howland (1971),
- B. N. Datta (1973),
- L. Trapp (1975), ...
- These attempts used Hessenberg reduction and they were unstable.
- The problem of computing symmetrizers lay dormant and has been reconsidered again recently by Frank Uhlig (LAMA, 2012) and in D. \& Frank Uhlig (Submitted, 2014).

The most important message on computing symmetrizers is...

- It is easy to compute symmetrizers in an stable and efficient way ( $O\left(n^{3}\right)$ cost),
- but, in difficult situations, it is not clear how to compute full-rank well-conditioned symmetrizers,
- but there are advances.
Remark
Comnute in difficult situations "sufficiently" well-conditioned symmetrizers isvery hard at present and one reason is that there are no yet theoreticalresults on the smallest condition number of the symmetrizers of a givenmatrix $A \in \mathbb{C}^{n \times n}$.

The most important message on computing symmetrizers is...

- It is easy to compute symmetrizers in an stable and efficient way ( $O\left(n^{3}\right)$ cost),
- but, in difficult situations, it is not clear how to compute full-rank well-conditioned symmetrizers,
- but there are advances.
$\square$
Remark
Compute in difficult situations "sufficiently" well-conditioned symmetrizers is very hard at present and one reason is that there are no yet theoretical results on the smallest condition number of the symmetrizers of a given matrix


## The most important message on computing symmetrizers is...

- It is easy to compute symmetrizers in an stable and efficient way ( $O\left(n^{3}\right)$ cost),
- but, in difficult situations, it is not clear how to compute full-rank well-conditioned symmetrizers,
- but there are advances.

> Remark
> Compute in difficult situations "sufficiently" well-conditioned symmetrizers is very hard at present and one reason is that there are no yet theoretical results on the smallest condition number of the symmetrizers of a given matrix

## The most important message on computing symmetrizers is...

- It is easy to compute symmetrizers in an stable and efficient way ( $O\left(n^{3}\right)$ cost),
- but, in difficult situations, it is not clear how to compute full-rank well-conditioned symmetrizers,
- but there are advances.


## Remark

Compute in difficult situations "sufficiently" well-conditioned symmetrizers is very hard at present and one reason is that there are no yet theoretical results on the smallest condition number of the symmetrizers of a given matrix $A \in \mathbb{C}^{n \times n}$.

## Computing Symmetrizers via eigenanalysis (I): basic approach

> Recall: if $A=V \Lambda V^{-1} \in \mathbb{C}^{n \times n}$ is diagonalizable, then, all matrices of the form $X=V D V^{T}$, with $D$ arbitrary diagonal matrix are symmetrizers of $A$.


## Computing Symmetrizers via eigenanalysis (I): basic approach

Recall: if $A=V \Lambda V^{-1} \in \mathbb{C}^{n \times n}$ is diagonalizable, then, all matrices of the form $X=V D V^{T}$, with $D$ arbitrary diagonal matrix are symmetrizers of $A$.

## MATLAB BASIC ALGORITHM

[V,Lamb] = eig(A)
$\mathrm{X}=\mathrm{V} * \mathrm{~V}$,

- eig command is Francis $\mathrm{QR}+$ computing eigenvectors, so $O\left(n^{3}\right)$ cost.
- This morks almost almave very well, but it was not used in the 1960 s 1970 s, ...: why waiting until D. \& Uhlig, 2014?
- We are taking $D=I$ (MATLAB gives columns of norm 1) but other options may be more convenient for good conditioning
- because if $V$ is very ill-conditioned
conditioned or even singular in floating point arithmetic.
- The residual errors can be proved to be very good


## Computing Symmetrizers via eigenanalysis (I): basic approach

Recall: if $A=V \Lambda V^{-1} \in \mathbb{C}^{n \times n}$ is diagonalizable, then, all matrices of the form $X=V D V^{T}$, with $D$ arbitrary diagonal matrix are symmetrizers of $A$.

## MATLAB BASIC ALGORITHM

[V,Lamb] = eig(A)
$\mathrm{X}=\mathrm{V} * \mathrm{~V}$,

- eig command is Francis QR + computing eigenvectors, so $O\left(n^{3}\right)$ cost.
- This works almost always very well, but it was not used in the 1960 s 1970s,...: why waiting until D. \& Uhlig, 2014?
- Me are taking $D=I$ (MATILAB gives columns of norm 1) but other options may be more convenient for good conditioning
- because if $V$ is very ill-conditioned
conditioned or even singular in floating point arithmetic.
- The residual errors can be proved to be very good


## Computing Symmetrizers via eigenanalysis (I): basic approach

Recall: if $A=V \Lambda V^{-1} \in \mathbb{C}^{n \times n}$ is diagonalizable, then, all matrices of the form $X=V D V^{T}$, with $D$ arbitrary diagonal matrix are symmetrizers of $A$.

## MATLAB BASIC ALGORITHM

[V,Lamb] = eig(A)
$\mathrm{X}=\mathrm{V} * \mathrm{~V}$,

- eig command is Francis QR + computing eigenvectors, so $O\left(n^{3}\right)$ cost.
- This works almost always very well, but it was not used in the 1960s, 1970s,...: why waiting until D. \& Uhlig, 2014?
- We are taking $D=I$ (MATLAB gives columns of norm 1) but other options may be more convenient for good conditioning
- because if $V$ is very ill-conditioned $X=\left(V V_{T}\right)$ can he also very ill conditioned or even singular in floating point arithmetic.
- The residual errors can be proved to be very good


## Computing Symmetrizers via eigenanalysis (I): basic approach

Recall: if $A=V \Lambda V^{-1} \in \mathbb{C}^{n \times n}$ is diagonalizable, then, all matrices of the form $X=V D V^{T}$, with $D$ arbitrary diagonal matrix are symmetrizers of $A$.

## MATLAB BASIC ALGORITHM

[V,Lamb] = eig(A)
$\mathrm{X}=\mathrm{V} * \mathrm{~V}$,

- eig command is Francis QR + computing eigenvectors, so $O\left(n^{3}\right)$ cost.
- This works almost always very well, but it was not used in the 1960s, 1970s,...: why waiting until D. \& Uhlig, 2014?
- We are taking $D=I$ (MATLAB gives columns of norm 1) but other options may be more convenient for good conditioning...
> - because if $V$ is very ill-conditioned
> conditioned or even singular in floating point arithmetic.
> - The recidual errors can he proved to he very good


## Computing Symmetrizers via eigenanalysis (I): basic approach

Recall: if $A=V \Lambda V^{-1} \in \mathbb{C}^{n \times n}$ is diagonalizable, then, all matrices of the form $X=V D V^{T}$, with $D$ arbitrary diagonal matrix are symmetrizers of $A$.

## MATLAB BASIC ALGORITHM

[V,Lamb] = eig(A)
$\mathrm{X}=\mathrm{V} * \mathrm{~V}$,

- eig command is Francis QR + computing eigenvectors, so $O\left(n^{3}\right)$ cost.
- This works almost always very well, but it was not used in the 1960s, 1970s,...: why waiting until D. \& Uhlig, 2014?
- We are taking $D=I$ (MATLAB gives columns of norm 1) but other options may be more convenient for good conditioning...
- because if $V$ is very ill-conditioned $X=\left(V V^{T}\right)$ can be also very ill conditioned or even singular in floating point arithmetic.
- The residual errors can be proved to be very good.


## Computing Symmetrizers via eigenanalysis (I): basic approach

Recall: if $A=V \Lambda V^{-1} \in \mathbb{C}^{n \times n}$ is diagonalizable, then, all matrices of the form $X=V D V^{T}$, with $D$ arbitrary diagonal matrix are symmetrizers of $A$.

## MATLAB BASIC ALGORITHM

[V,Lamb] = eig(A)
$\mathrm{X}=\mathrm{V} * \mathrm{~V}$,

- eig command is Francis QR + computing eigenvectors, so $O\left(n^{3}\right)$ cost.
- This works almost always very well, but it was not used in the 1960s, 1970s,...: why waiting until D. \& Uhlig, 2014?
- We are taking $D=I$ (MATLAB gives columns of norm 1) but other options may be more convenient for good conditioning...
- because if $V$ is very ill-conditioned $X=\left(V V^{T}\right)$ can be also very ill conditioned or even singular in floating point arithmetic.
- The residual errors can be proved to be very good.


## Computing Symmetrizers via eigenanalysis (II): errors in basic approach

## Theorem

Let $\widehat{V}$ be the eigenvector matrix of $A \in \mathbb{C}^{n \times n}$ computed by MATLAB and let $\widehat{X}=\mathrm{fl}\left(\widehat{V} D \widehat{V}^{T}\right)$ be the computed symmetrizer of $A$ for a diagonal matrix $D$, then

$$
\frac{\left\|A \widehat{X}-\widehat{X} A^{T}\right\|_{2}}{\|A\|_{2}\|\widehat{X}\|_{2}} \leq p(n) \mathbf{u} \frac{\left\|\widehat{V} D^{1 / 2}\right\|_{2}^{2}}{\|\widehat{X}\|_{2}},
$$

with $p(n)$ a low-degree polynomial and $\mathbf{u}$ the unit-roundoff of the computer.

## Remarks:

- The expected error in Sylvester equations is

- The extra factor is unavoidable in this approach, since it cames from computing
- but we have not observed it in the many many tests we have performed


## Computing Symmetrizers via eigenanalysis (II): errors in basic approach

## Theorem

Let $\widehat{V}$ be the eigenvector matrix of $A \in \mathbb{C}^{n \times n}$ computed by MATLAB and let $\widehat{X}=\mathrm{fl}\left(\widehat{V} D \widehat{V}^{T}\right)$ be the computed symmetrizer of $A$ for a diagonal matrix $D$, then

$$
\frac{\left\|A \widehat{X}-\widehat{X} A^{T}\right\|_{2}}{\|A\|_{2}\|\widehat{X}\|_{2}} \leq p(n) \mathbf{u} \frac{\left\|\widehat{V} D^{1 / 2}\right\|_{2}^{2}}{\|\widehat{X}\|_{2}},
$$

with $p(n)$ a low-degree polynomial and $\mathbf{u}$ the unit-roundoff of the computer.

## Remarks:

- The expected error in Sylvester equations is

$$
\frac{\left\|A \widehat{X}-\widehat{X} A^{T}\right\|_{2}}{\|A\|_{2}\|\widehat{X}\|_{2}} \leq p(n) \mathbf{u} .
$$

- The extra factor is unavoidable in this approach, since it cames from computing
- but we have not observed it in the many many tests we have performed


## Computing Symmetrizers via eigenanalysis (II): errors in basic approach

## Theorem

Let $\widehat{V}$ be the eigenvector matrix of $A \in \mathbb{C}^{n \times n}$ computed by MATLAB and let $\widehat{X}=\mathrm{fl}\left(\widehat{V} D \widehat{V}^{T}\right)$ be the computed symmetrizer of $A$ for a diagonal matrix $D$, then

$$
\frac{\left\|A \widehat{X}-\widehat{X} A^{T}\right\|_{2}}{\|A\|_{2}\|\widehat{X}\|_{2}} \leq p(n) \mathbf{u} \frac{\left\|\widehat{V} D^{1 / 2}\right\|_{2}^{2}}{\|\widehat{X}\|_{2}},
$$

with $p(n)$ a low-degree polynomial and $\mathbf{u}$ the unit-roundoff of the computer.

## Remarks:

- The expected error in Sylvester equations is

$$
\frac{\left\|A \widehat{X}-\widehat{X} A^{T}\right\|_{2}}{\|A\|_{2}\|\widehat{X}\|_{2}} \leq p(n) \mathbf{u} .
$$

- The extra factor is unavoidable in this approach, since it cames from computing $\widehat{X}=f\left(\widehat{V} D \widehat{V}^{T}\right)$,
- but we have not observed it in the many many tests we have performed


## Computing Symmetrizers via eigenanalysis (II): errors in basic approach

## Theorem

Let $\widehat{V}$ be the eigenvector matrix of $A \in \mathbb{C}^{n \times n}$ computed by MATLAB and let $\widehat{X}=\mathrm{fl}\left(\widehat{V} D \widehat{V}^{T}\right)$ be the computed symmetrizer of $A$ for a diagonal matrix $D$, then

$$
\frac{\left\|A \widehat{X}-\widehat{X} A^{T}\right\|_{2}}{\|A\|_{2}\|\widehat{X}\|_{2}} \leq p(n) \mathbf{u} \frac{\left\|\widehat{V} D^{1 / 2}\right\|_{2}^{2}}{\|\widehat{X}\|_{2}}
$$

with $p(n)$ a low-degree polynomial and $\mathbf{u}$ the unit-roundoff of the computer.

## Remarks:

- The expected error in Sylvester equations is

$$
\frac{\left\|A \widehat{X}-\widehat{X} A^{T}\right\|_{2}}{\|A\|_{2}\|\widehat{X}\|_{2}} \leq p(n) \mathbf{u} .
$$

- The extra factor is unavoidable in this approach, since it cames from computing $\widehat{X}=f\left(\widehat{V} D \widehat{V}^{T}\right)$,
- but we have not observed it in the many many tests we have performed.


## What to do if $f\left(\widehat{V} \widehat{V}^{T}\right)$ is very ill-conditioned?

- Choose another $D \neq I_{n}$ : We do not know yet how to choose $D$ to really get small as possible $\kappa_{2}\left(V D V^{T}\right)$.
- I discuss next very very briefly two available approaches:
- Still use eigenanalysis via orthonormal bases of principal subspaces of $A$ (subspaces generated by Jordan chains).
- Completely different approach via an iterative method developed by Uhlig (LAMA, 2013) based on Huang-Nong method (LAA, 2010) for solving finite dimensional linear operator equations.


## What to do if $f\left(\widehat{V} \widehat{V}^{T}\right)$ is very ill-conditioned?

- Choose another $D \neq I_{n}$ : We do not know yet how to choose $D$ to really get small as possible $\kappa_{2}\left(V D V^{T}\right)$.
- I discuss next very very briefly two available approaches:
- Still use eigenanalysis via orthonormal bases of principal subspaces of $A$ (subspaces generated by Jordan chains).
- Completely different approach via an iterative method developed by Uhlig (LAMA, 2013) based on Huang-Nong method (LAA, 2010) for solving finite dimensional linear operator equations.


## Method 1: Orthonormal bases of principal subspaces of $A$

- If the (scaled) eigenvector matrix $V$ of $A$ is ill-conditioned, then at least one eigenvalue $\lambda$ of $A$ is ill-conditioned (Stewart \& Sun, 1990), and
- $A$ is very close to a matrix with $\lambda$ as multiple evalue (Wilkinson, 1972)
- If one can identify well a "cluster" of computed multiple eigenvalues (of $A+E)$ and from them a "unique" multiple approx evalue of a $A$, then
- methods by Golub-Wilkinson (1976) + intricate developments allow us to compute reliably orthonormal bases of principal subspaces of $A$ and
- the Hessenberg matrices that represent $A$ in these bases.
- From here it is easy, to compute symmetrizers.
- Drawhack 1: The method cost $O\left(n^{4}\right)$ for complicated Jordan structures.
- Drawback 2: It only improves conditioning of symmetrizers if "multiple evalues" are well identified. Old open problem in Numerical Lin. Algebra.


## Method 1: Orthonormal bases of principal subspaces of $A$

- If the (scaled) eigenvector matrix $V$ of $A$ is ill-conditioned, then at least one eigenvalue $\lambda$ of $A$ is ill-conditioned (Stewart \& Sun, 1990), and
- $A$ is very close to a matrix with $\lambda$ as multiple evalue (Wilkinson, 1972).
- If one can identify well a "cluster" of computed multiple eigenvalues (of $A+E$ ) and from them a "unique" multiple approx evalue of a $A$, then
- methods by Golub-Wilkinson (1976) + intricate develonments allow us to compute reliably orthonormal bases of principal subspaces of $A$ and
- the Hessenberg matrices that represent $A$ in these bases.
- From here it is easy, to compute symmetrizers.
- Drawback 1: The method cost $O\left(n^{4}\right)$ for complicated Jordan structures.
- Drawback 2: It only improves conditioning of symmetrizers if "multiple evalues" are well identified. Old open problem in Numerical Lin. Algebra.


## Method 1: Orthonormal bases of principal subspaces of $A$

- If the (scaled) eigenvector matrix $V$ of $A$ is ill-conditioned, then at least one eigenvalue $\lambda$ of $A$ is ill-conditioned (Stewart \& Sun, 1990), and
- $A$ is very close to a matrix with $\lambda$ as multiple evalue (Wilkinson, 1972).
- If one can identify well a "cluster" of computed multiple eigenvalues (of $A+E$ ) and from them a "unique" multiple approx evalue of a $A$, then
- methods by Golub-Wilkinson (1976) + intricate developments allow us to compute reliably orthonormal bases of principal subspaces of $A$ and
- the Hessenberg matrices that represent $A$ in these bases.
- From here it is easy, to compute symmetrizers.
- Drawhack 1: The method cost $O\left(n^{4}\right)$ for complicated Jordan structures
- Drawback 2: It only improves conditioning of symmetrizers if "multiple evalues" are well identified. Old open problem in Numerical Lin. Algebra.


## Method 1: Orthonormal bases of principal subspaces of $A$

- If the (scaled) eigenvector matrix $V$ of $A$ is ill-conditioned, then at least one eigenvalue $\lambda$ of $A$ is ill-conditioned (Stewart \& Sun, 1990), and
- $A$ is very close to a matrix with $\lambda$ as multiple evalue (Wilkinson, 1972).
- If one can identify well a "cluster" of computed multiple eigenvalues (of $A+E$ ) and from them a "unique" multiple approx evalue of a $A$, then
- methods by Golub-Wilkinson (1976) + intricate developments allow us to compute reliably orthonormal bases of principal subspaces of $A$ and
- the Hessenberg matrices that represent $A$ in these bases.
- From here it is easy, to compute symmetrizers.
- Drawback 1: The method cost $O\left(n^{4}\right)$ for complicated Jordan structures
- Drawback 2: It only improves conditioning of symmetrizers if "multiple evalues" are well identified. Old open problem in Numerical Lin. Algebra


## Method 1: Orthonormal bases of principal subspaces of $A$

- If the (scaled) eigenvector matrix $V$ of $A$ is ill-conditioned, then at least one eigenvalue $\lambda$ of $A$ is ill-conditioned (Stewart \& Sun, 1990), and
- $A$ is very close to a matrix with $\lambda$ as multiple evalue (Wilkinson, 1972).
- If one can identify well a "cluster" of computed multiple eigenvalues (of $A+E$ ) and from them a "unique" multiple approx evalue of a $A$, then
- methods by Golub-Wilkinson (1976) + intricate developments allow us to compute reliably orthonormal bases of principal subspaces of $A$ and
- the Hessenberg matrices that represent $A$ in these bases.
- From here it is easy, to compute symmetrizers.
- Drawback 1: The method cost $O\left(n^{4}\right)$ for complicated Jordan structures
- Drawback 2: It only improves conditioning of symmetrizers if "multiple evalues" are well identified. Old open problem in Numerical Lin. Algebra


## Method 1: Orthonormal bases of principal subspaces of $A$

- If the (scaled) eigenvector matrix $V$ of $A$ is ill-conditioned, then at least one eigenvalue $\lambda$ of $A$ is ill-conditioned (Stewart \& Sun, 1990), and
- $A$ is very close to a matrix with $\lambda$ as multiple evalue (Wilkinson, 1972).
- If one can identify well a "cluster" of computed multiple eigenvalues (of $A+E$ ) and from them a "unique" multiple approx evalue of a $A$, then
- methods by Golub-Wilkinson (1976) + intricate developments allow us to compute reliably orthonormal bases of principal subspaces of $A$ and
- the Hessenberg matrices that represent $A$ in these bases.
- From here it is easy, to compute symmetrizers.
- Drawback 1: The method cost $O\left(n^{4}\right)$ for complicated Jordan structures
- Drawback 2: It only improves conditioning of symmetrizers if "multiple evalues" are well identified. Old onen problem in Numerical Lin. Algebra


## Method 1: Orthonormal bases of principal subspaces of $A$

- If the (scaled) eigenvector matrix $V$ of $A$ is ill-conditioned, then at least one eigenvalue $\lambda$ of $A$ is ill-conditioned (Stewart \& Sun, 1990), and
- $A$ is very close to a matrix with $\lambda$ as multiple evalue (Wilkinson, 1972).
- If one can identify well a "cluster" of computed multiple eigenvalues (of $A+E$ ) and from them a "unique" multiple approx evalue of a $A$, then
- methods by Golub-Wilkinson (1976) + intricate developments allow us to compute reliably orthonormal bases of principal subspaces of $A$ and
- the Hessenberg matrices that represent $A$ in these bases.
- From here it is easy, to compute symmetrizers.
- Drawback 1: The method cost $O\left(n^{4}\right)$ for complicated Jordan structures.
- Drawback 2: It only improves conditioning of symmetrizers if "multiple evalues" are well identified. Old open problem in Numerical Lin. Algebra


## Method 1: Orthonormal bases of principal subspaces of $A$

- If the (scaled) eigenvector matrix $V$ of $A$ is ill-conditioned, then at least one eigenvalue $\lambda$ of $A$ is ill-conditioned (Stewart \& Sun, 1990), and
- $A$ is very close to a matrix with $\lambda$ as multiple evalue (Wilkinson, 1972).
- If one can identify well a "cluster" of computed multiple eigenvalues (of $A+E$ ) and from them a "unique" multiple approx evalue of a $A$, then
- methods by Golub-Wilkinson (1976) + intricate developments allow us to compute reliably orthonormal bases of principal subspaces of $A$ and
- the Hessenberg matrices that represent $A$ in these bases.
- From here it is easy, to compute symmetrizers.
- Drawback 1: The method cost $O\left(n^{4}\right)$ for complicated Jordan structures.
- Drawback 2: It only improves conditioning of symmetrizers if "multiple evalues" are well identified. Old open problem in Numerical Lin. Algebra.


## Method 2: Iterative method

- Given $T: H_{1} \longrightarrow H_{2}$ linear operator on finite dimensional inner-product spaces, Huang \& Nong (LAA, 2010) developed an iterative algorithm for solving

$$
T(x)=f
$$

- Some features of this algorithm are
- It resembles BICG.
- It converges always in a finite number of steps.
- It works when there are infinite solutions.
- Uhlig (LAMA, 2012) adapts Huang \& Nong's algor in a non-trivial way to the symmetrizer problem by taking
- Positive property: It finds better conditioned symmetrizers in difficult situations than methods based on eigenanalysis. (Why????)


## Method 2: Iterative method

- Given $T: H_{1} \longrightarrow H_{2}$ linear operator on finite dimensional inner-product spaces, Huang \& Nong (LAA, 2010) developed an iterative algorithm for solving

$$
T(x)=f
$$

- Some features of this algorithm are
- It resembles BICG.
- It converges always in a finite number of steps.
- It works when there are infinite solutions.
- Uhlig (LAMA, 2012) adapts Huang \& Nong's algor in a non-trivial way to the symmetrizer problem by taking
- Positive property: It finds better conditioned symmetrizers in difficult situations than methods based on eigenanalysis. (Why????)


## Method 2: Iterative method

- Given $T: H_{1} \longrightarrow H_{2}$ linear operator on finite dimensional inner-product spaces, Huang \& Nong (LAA, 2010) developed an iterative algorithm for solving

$$
T(x)=f
$$

- Some features of this algorithm are
- It resembles BICG.
- It converges always in a finite number of steps.
- It works when there are infinite solutions.
- Uhlig (LAMA, 2012) adapts Huang \& Nong's algor in a non-trivial way to the symmetrizer problem by taking

$$
T(X)=\left[\begin{array}{c}
A X-X^{T} A^{T} \\
X-X^{T}
\end{array}\right], \quad f=0, \quad H_{1}=\mathbb{C}^{n \times n}, \quad H_{2}=\mathbb{C}^{2 n \times n}
$$

- Positive property: It finds better conditioned symmetrizers in difficult situations than methods based on eigenanalysis. (Why????)


## Method 2: Iterative method

- Given $T: H_{1} \longrightarrow H_{2}$ linear operator on finite dimensional inner-product spaces, Huang \& Nong (LAA, 2010) developed an iterative algorithm for solving

$$
T(x)=f
$$

- Some features of this algorithm are
- It resembles BICG.
- It converges always in a finite number of steps.
- It works when there are infinite solutions.
- Uhlig (LAMA, 2012) adapts Huang \& Nong's algor in a non-trivial way to the symmetrizer problem by taking

$$
T(X)=\left[\begin{array}{c}
A X-X^{T} A^{T} \\
X-X^{T}
\end{array}\right], \quad f=0, \quad H_{1}=\mathbb{C}^{n \times n}, \quad H_{2}=\mathbb{C}^{2 n \times n}
$$

- Positive property: It finds better conditioned symmetrizers in difficult situations than methods based on eigenanalysis. (Why????)


## Method 2: Iterative method

- Given $T: H_{1} \longrightarrow H_{2}$ linear operator on finite dimensional inner-product spaces, Huang \& Nong (LAA, 2010) developed an iterative algorithm for solving

$$
T(x)=f
$$

- Some features of this algorithm are
- It resembles BICG.
- It converges always in a finite number of steps.
- It works when there are infinite solutions.
- Uhlig (LAMA, 2012) adapts Huang \& Nong's algor in a non-trivial way to the symmetrizer problem by taking

$$
T(X)=\left[\begin{array}{c}
A X-X^{T} A^{T} \\
X-X^{T}
\end{array}\right], \quad f=0, \quad H_{1}=\mathbb{C}^{n \times n}, \quad H_{2}=\mathbb{C}^{2 n \times n}
$$

- Positive property: It finds better conditioned symmetrizers in difficult situations than methods based on eigenanalysis. (Why????)
- Negative property: It is very slow $O\left(n^{5}\right)$ up to $O\left(n^{7}\right)$ cost.


## Numerical test 1: random matrices

Averages on 10 random $100 \times 100$ and 10 random $200 \times 200$ matrices.

| $A$ | max eig <br> cond no | res. error | $\operatorname{cond}(X)$ | runtime <br> average |
| :---: | :---: | :---: | :---: | :---: |
| 100 by 100 |  |  |  |  |
| iter. method |  | $2.2 \mathrm{e}-9$ | $7.2 \mathrm{e}+03$ | 13.75 |
| eigenv. method | 32.6 | $9.2 \mathrm{e}-15$ | $9 \mathrm{e}+03$ | 0.028 |
| 200 by 200 |  |  |  |  |
| iter. method |  | $2.2 \mathrm{e}-7$ | $2.8 \mathrm{e}+04$ | 152.9 |
| eigenv. method | 49 | $1.5 \mathrm{e}-14$ | $2.97 \mathrm{e}+04$ | 0.116 |

## Numerical test 2: $35 \times 35$ Frank matrix

Well-known type of matrices with ill-conditioned eigenvalues.

| $F$ <br> 35 by 35 | max eig <br> cond no | res. error | $\operatorname{cond}(X)$ | $\operatorname{rank}(X)$ | runtime <br> average |
| :---: | :---: | :---: | :---: | :---: | :---: |
| iter. method |  | $8 \mathrm{e}-14$ | $7 \mathrm{e}+13$ | 35 | 0.8 |
| eigenv. method | $4.6 \mathrm{e}+8$ | $2 \mathrm{e}-10$ | $1.6 \mathrm{e}+17$ | 32 | 0.012 |

## Outline

## (1) The history and the problems

(2) The set of all symmetrizers
(3) Algorithms for computing symmetrizers

4 Remarks on condition numbers of symmetrizers
(5) Conclusions

## A $2 \times 2$ example

Recall: $A=V \Lambda V^{-1}$ diagonalizable, symmetrizers are $X=V D V^{T}$, with $D$ arbitrary diagonal.

## Consider the real diagonalization



For $|\delta| \ll 1$ eigenvector matrix very ill-conditioned. Any symmetrizer of $A$

## has the form


and


## A $2 \times 2$ example

Recall: $A=V \Lambda V^{-1}$ diagonalizable, symmetrizers are $X=V D V^{T}$, with $D$ arbitrary diagonal.
Consider the real diagonalization

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & \delta
\end{array}\right]\left[\begin{array}{ll}
\lambda_{1} & \\
& \lambda_{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & \delta
\end{array}\right]^{-1}
$$

For $|\delta| \ll 1$ eigenvector matrix very ill-conditioned. Any symmetrizer of $A$ has the form
and
attained with $d_{1}=-d_{2}\left(1+\delta^{2}\right)$

## A $2 \times 2$ example

Recall: $A=V \Lambda V^{-1}$ diagonalizable, symmetrizers are $X=V D V^{T}$, with $D$ arbitrary diagonal.

Consider the real diagonalization

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & \delta
\end{array}\right]\left[\begin{array}{ll}
\lambda_{1} & \\
& \lambda_{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & \delta
\end{array}\right]^{-1}
$$

For $|\delta| \ll 1$ eigenvector matrix very ill-conditioned. Any symmetrizer of $A$ has the form

$$
X\left(d_{1}, d_{2}\right)=\left[\begin{array}{ll}
1 & 1 \\
0 & \delta
\end{array}\right]\left[\begin{array}{ll}
d_{1} & \\
& d_{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & \delta
\end{array}\right]^{T}=\left[\begin{array}{cc}
\left(d_{1}+d_{2}\right) & d_{2} \delta \\
d_{2} \delta & d_{2} \delta^{2}
\end{array}\right]
$$

and
attained with $d_{1}=-d_{2}\left(1+\delta^{2}\right)$

## A $2 \times 2$ example

Recall: $A=V \Lambda V^{-1}$ diagonalizable, symmetrizers are $X=V D V^{T}$, with $D$ arbitrary diagonal.

Consider the real diagonalization

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & \delta
\end{array}\right]\left[\begin{array}{ll}
\lambda_{1} & \\
& \lambda_{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & \delta
\end{array}\right]^{-1}
$$

For $|\delta| \ll 1$ eigenvector matrix very ill-conditioned. Any symmetrizer of $A$ has the form

$$
X\left(d_{1}, d_{2}\right)=\left[\begin{array}{ll}
1 & 1 \\
0 & \delta
\end{array}\right]\left[\begin{array}{ll}
d_{1} & \\
& d_{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & \delta
\end{array}\right]^{T}=\left[\begin{array}{cc}
\left(d_{1}+d_{2}\right) & d_{2} \delta \\
d_{2} \delta & d_{2} \delta^{2}
\end{array}\right]
$$

and

$$
\kappa_{F}\left(X\left(d_{1}, d_{2}\right)\right)=\frac{\left|d_{1}+d_{2}\right|^{2}}{\left|d_{1}\right|\left|d_{2}\right|} \frac{1}{\delta^{2}}+\left(2+\delta^{2}\right) \frac{\left|d_{2}\right|}{\left|d_{1}\right|} .
$$

## A $2 \times 2$ example

Recall: $A=V \Lambda V^{-1}$ diagonalizable, symmetrizers are $X=V D V^{T}$, with $D$ arbitrary diagonal.

Consider the real diagonalization

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & \delta
\end{array}\right]\left[\begin{array}{ll}
\lambda_{1} & \\
& \lambda_{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & \delta
\end{array}\right]^{-1}
$$

For $|\delta| \ll 1$ eigenvector matrix very ill-conditioned. Any symmetrizer of $A$ has the form

$$
X\left(d_{1}, d_{2}\right)=\left[\begin{array}{ll}
1 & 1 \\
0 & \delta
\end{array}\right]\left[\begin{array}{ll}
d_{1} & \\
& d_{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & \delta
\end{array}\right]^{T}=\left[\begin{array}{cc}
\left(d_{1}+d_{2}\right) & d_{2} \delta \\
d_{2} \delta & d_{2} \delta^{2}
\end{array}\right]
$$

and

$$
\kappa_{F}\left(X\left(d_{1}, d_{2}\right)\right)=\frac{\left|d_{1}+d_{2}\right|^{2}}{\left|d_{1}\right|\left|d_{2}\right|} \frac{1}{\delta^{2}}+\left(2+\delta^{2}\right) \frac{\left|d_{2}\right|}{\left|d_{1}\right|} .
$$

$$
\min _{d_{1}, d_{2}} \kappa_{F}\left(X\left(d_{1}, d_{2}\right)\right)=2, \quad \text { attained with } d_{1}=-d_{2}\left(1+\delta^{2}\right)
$$

## Remarks

- Matrices with very ill-conditioned (scaled) eigenvector matrix may have perfectly conditioned symmetrizers.
- The minimun condition number attained in previous example is attained for any $2 \times 2$ diagonalizable matrix.
- For $n \times n$ matrices, we have examples of very-well conditioned symmetrizers of matrices with very ill-conditioned eigenvector matrices,
- but also lower bounds that guarantee that this is not always the case.
- How to get $\min _{D \operatorname{diag}} \kappa_{F}\left(V D V^{T}\right)$ ?


## Outline

(1) The history and the problems
(2) The set of all symmetrizers

3 Algorithms for computing symmetrizers

4 Remarks on condition numbers of symmetrizers
(5) Conclusions

## Conclusions

- We know how to compute symmetrizers in an stable and very efficient way (via Francis QR),
- most of the times they are well-conditioned,
- but for "difficult" matrices they are not, and we do not know yet which is the lowest condition number of a symmetrizer neither how to compute the corresponding symmetrizers,
- although iterative Frank Uhlig's method does a fair (slow) job (why??).

