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Abstract (I)

Computing the roots of a monic polynomial

p(z) = zn + an−1 z
n−1 + · · ·+ a1 z + a0, ai ∈ C

as the eigenvalues of a companion matrix is a standard procedure.

A ∈ Cn×n is a companion matrix of p(z) if is easily constructible from
p(z) and its characteristic polynomial is p(z).

This is MATLAB’s approach by applying the QR-algorithm to the
(balanced) classical Frobenius companion matrix C of p(z).

Drawbacks of MATLAB: O(n3) computational cost and O(n2) storage.

Advantages of MATLAB: Reliability in several senses. In particular
1 Perfect matrix backward stability: the computed roots of p(z) are

the exact eigenvalues of

C + E, with ‖E‖2 = O(u)‖C‖2,

where u ≈ 10−16 is the unit roundoff.
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Abstract (II)

What kind of polynomial backward stability is provided by this perfect
matrix backward stability?

Given q(z) = bn z
n + bn−1 z

n−1 + · · ·+ b1 z + b0,

‖q(z)‖∞ := max{|bn|, |bn−1|, . . . , |b1|, |b0|},
so ‖p‖∞ ≥ 1 and cn ‖C‖2 ≤ ‖p‖∞ ≤ dn ‖C‖2, for cn, dn low powers of n.

So, MATLAB computed roots of p(z) are the exact eigenvalues of

C + E, with ‖E‖2 = O(u)‖C‖2 = O(u)‖p‖∞,
or the exact roots of

p̃(z) = det(zI − (C + E)).

Van Dooren & DeWilde (1983), Edelman & Murakami (1995),
Lemmonier & Van Dooren (2003) proved

p̃(z) = p(z) + e(z), with ‖e(z)‖∞ = O(u)‖p(z)‖2∞,

which means that perfect matrix backward stability DOES NOT imply
perfect polynomial backward stability =⇒ there is a penalty
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Abstract (III)

This penalty in the polynomial backward error is an intrinsic matrix
perturbation phenomenon, independent of the algorithm, and it is
determined by

1 The particular properties of the Frobenius companion matrix C,
2 The magnitude of ‖E‖2 = O(u)‖C‖2(= O(u)‖p‖∞),
3 and the magnitude of

‖p̃(z)− p(z)‖∞ = ‖det(zI − (C + E))− det(zI − C)‖∞

A key reason for this penalty is that E is dense and does not respect the
structure of C.

In this talk, we solve a similar perturbation problem for the wider class of
Fiedler companion matrices of p(z) (the hope was to improve!!) and,

if Mσ is a Fiedler matrix, we consider more general perturbations of Mσ

‖E‖2 = O(u)α(p) ‖Mσ‖2,

where α(p) can be larger than one for backward errors of algorithms
faster than QR, but which may NOT be perfectly backward stable.
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Abstract (IV)

Fiedler matrices also satisfy c̃n ‖Mσ‖2 ≤ ‖p‖∞ ≤ d̃n ‖Mσ‖2,

and we have proved that if

‖E‖2 = O(u)α(p)‖Mσ‖2 (= O(u)α(p)‖p‖∞),

then

‖p̃(z)− p(z)‖∞ = ‖det(zI − (Mσ + E))− det(zI −Mσ)‖∞

= O(u)α(p) ‖p(z)‖3∞,

if Mσ is not a Frobenius companion matrix.

So, the penalty in the transition from matrix to polynomial backward
errors is larger than for the classical Frobenius companion matrix,

but, note that all are satisfactory if ‖p‖∞ is moderate and and none is if
‖p‖∞ is large.
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A fundamental remark

“...a general principle: a numerical process is more likely to be backward
stable when the number of outputs is small compared with the number of
inputs, so that there is an abundance of data onto which to “throw the
backward error”...”

N. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., p.65.
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Jacobi formula and consequences (I)

Theorem (Jacobi)

Let A,E ∈ Cn×n. Then

p̃(z)− p(z) := det(zI − (A+ E))− det(zI −A)
= −trace( adj(zI −A)E) +O(‖E‖2),

where adj(zI −A) is the adjugate matrix (or classical adjoint) of zI −A, i.e.,
the transpose matrix of its cofactors.

Lemma (Gantmacher, 1959)

Let A ∈ Cn×n and p(z) := det(zI −A) = zn + an−1 z
n−1 + · · ·+ a1 z + a0.

Then

adj(zI −A) =
n−1∑
k=0

zkAk, Ak ∈ Cn×n,

and
An−1 = I, Ak = AAk+1 + ak+1I, for k = n− 2, n− 3, . . . , 0
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Jacobi formula and consequences (II)

Theorem

Let A,E ∈ Cn×n,

p(z) := det(zI −A) = zn + an−1 z
n−1 + · · ·+ a1 z + a0,

p̃(z) := det(zI − (A+ E)) = zn + ãn−1 z
n−1 + · · ·+ ã1 z + ã0,

and

adj(zI −A) =
n−1∑
k=0

zkAk, Ak ∈ Cn×n.

Then

ãk − ak := −trace(Ak E) +O(‖E‖2), for k = 0, 1, . . . , n− 1

Explicit formulas for trace(Ak E) obtained for

A = Frobenius companion matrix of p(z) by Edelman-Murakami (1995),

A =Mσ any other Fiedler companion matrix of p(z) in this talk.
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The Frobenius companion matrices

The best known companion matrices of a monic polynomial

p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0,

are the first and second Frobenius companion matrices of p(z):

C1 =


−an−1 · · · −a1 −a0

1
. . .

1

 , C2 =


−an−1 1

...
. . .

−a1 1
−a0

 ,
which have the property that

det(zI − C1) = det(zI − C2) = p(z)
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Perturbation of the characteristic polynomial of C1

Theorem (Edelman, Murakami, 1995)

Let C1 ∈ Cn×n be the first Frobenius companion matrix of p(z), E ∈ Cn×n,
and

p(z) := det(zI − C1) = zn + an−1 z
n−1 + · · ·+ a1 z + a0,

p̃(z) := det(zI − (C1 + E)) = zn + ãn−1 z
n−1 + · · ·+ ã1 z + ã0.

Then, to first order in E:

ãk − ak =

k∑
s=0

n−k−1∑
j=1

asEj−s+k+1,j −
n∑

s=k+1

n∑
j=n−k

asEj−s+k+1,j .
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Penalty in polynomial backward errors from C1

Corollary

Let C1 ∈ Cn×n be the first Frobenius companion matrix of p(z), E ∈ Cn×n,
and

p(z) := det(zI − C1) = zn + an−1 z
n−1 + · · ·+ a1 z + a0,

p̃(z) := det(zI − (C1 + E)) = zn + ãn−1 z
n−1 + · · ·+ ã1 z + ã0.

If ‖E‖2 = O(u)α(p) ‖C1‖2 , then

‖p̃(z)− p(z)‖∞ = O(u)α(p) ‖p(z)‖2∞.

Even the “superstable” QR-algorithm applied to C1 does not lead to a
backward stable polynomial root-finding method. Yes if ‖p(z)‖∞ ≈ 1

Edelman & Murakami provided numerical evidence that shows that if
balancing is used before the QR-algorithm is applied to C1, then

‖p̃(z)− p(z)‖∞ = O(u) ‖p(z)‖∞
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Definition of Fiedler matrices (Fiedler, LAA, 2003)

Given p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0, we define the following matrices

Mi :=


In−i−1

−ai 1
1 0

Ii−1

 ∈ Cn×n, i = 1, 2, . . . , n− 1

M0 :=

[
In−1 0
0 −a0

]
∈ Cn×n

For any permutation σ = (i0, i1, . . . , in−1) of (0, 1, . . . , n− 1), the Fiedler
companion matrix of p(z) associated to σ is

Mσ =Mi0Mi1 · · ·Min−1

Theorem (Fiedler, LAA, 2003)

For any monic polynomial p(z), all associated Fiedler matrices are similar to
each other, and their characteristic polynomials are equal to p(z).
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Examples of Fiedler matrices

p(z) = z6 + a5z
5 + a4z

4 + a3z
3 + a2z

2 + a1z + a0

First Frobenius companion matrix: C1 = M5M4M3M2M1M0

=


−a5 −a4 −a3 −a2 −a1 −a0

1
1

1
1

1


Second Frobenius companion matrix: C2 = M0M1M2M3M4M5

=


−a5 1
−a4 1
−a3 1
−a2 1
−a1 1
−a0


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Structural property 1 of Fiedler matrices

Every Fiedler matrix has exactly the same entries as the first Frobenius companion
matrix (in different positions).
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Examples of Fiedler matrices (II)

p(z) = z6 + a5z
5 + a4z

4 + a3z
3 + a2z

2 + a1z + a0

Special Fiedler matrices: Pentadiagonal matrices (there are 4 for each degree n).

P1 = (M0M2M4)(M1M3M5) =


−a5 1 0 0 0 0
−a4 0 −a3 1 0 0
1 0 0 0 0 0
0 0 −a2 0 −a1 1
0 0 1 0 0 0
0 0 0 0 −a0 0



Structural property 2 of Fiedler matrices

Frobenius companion matrices are the Fiedler matrices with largest bandwidth and
pentadiagonal Fiedler matrices are the ones with smallest bandwidth.
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Number of different Fiedler matrices

Recall that the Fiedler matrix Mσ associated with a permutation σ of
(0, 1, . . . , n− 1) is

Mσ =Mi0Mi1 · · ·Min−1

But MiMj =MjMi, for |i− j| 6= 1, and many permutations lead to the same
matrix.

This allows us to prove:

Lemma

There exist 2n−1 different Fiedler matrices associated with a monic
polynomial p(z) of degree n.
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Perturbation of the characteristic polynomial of a Fiedler matrix (I)

Theorem

Let Mσ ∈ Cn×n be a Fiedler matrix of p(z), E ∈ Cn×n, and

p(z) := det(zI −Mσ) = zn + an−1 z
n−1 + · · ·+ a1 z + a0,

p̃(z) := det(zI − (Mσ + E)) = zn + ãn−1 z
n−1 + · · ·+ ã1 z + ã0.

Then, to first order in E:

ãk − ak = −
n∑

i,j=1

p
(σ,k)
ij (a0, a1, . . . , an−1)Eij for k = 0, 1, . . . , n− 1,

where the functions p(σ,k)ij (a0, a1, . . . , an−1) are multivariable polynomials in
the coefficients of p(z) given by...
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...the horror!!

(a) if vn−i = vn−j = 0 :

ak+iσ(n−j:n−i) ,

if j ≥ i and n− k − i+ 1 ≤ iσ(n− j : n− i) ≤ n− k;
−ak+1−iσ(n−i:n−j−1) ,

if j < i and k + 1 + i− n ≤ iσ(n− i : n− j − 1) ≤ k + 1;
0 , otherwise;

(b) if vn−i = vn−j = 1 :

ak+cσ(n−i:n−j) ,

if j ≤ i and n− k − j + 1 ≤ cσ(n− i : n− j) ≤ n− k;
−ak+1−cσ(n−j:n−i−1) ,

if j > i and k + 1 + j − n ≤ cσ(n− j : n− i− 1) ≤ k + 1;
0 , otherwise;

(c) if vn−i = 1 and vn−j = 0 :

1 , if iσ(0 : n− j − 1) + cσ(0 : n− i− 1) = k ,
0 , otherwise;
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...the horror!!

(d) if vn−i = 0 and vn−j = 1 :

l=min{k+1−cσ(n−j:n−i−1),i−1}∑
l=max{0,k+1+j−cσ(n−j:n−i−1)−n}

−(an+1−i+l ak+1−cσ(n−j:n−i−1)−l) ,

if j > i and k + 2 + j − i− n ≤ cσ(n− j : n− i− 1) ≤ k + 1;
l=min{k+1−iσ(n−i:n−j−1),j−1}∑

l=max{0,k+1+i−iσ(n−i:n−j−1)−n}

−(an+1−j+l ak+1−iσ(n−i:n−j−1)−l) ,

if j < i and k + 2 + i− j − n ≤ iσ(n− i : n− j − 1) ≤ k + 1;

0 , otherwise.
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Perturbation of the characteristic polynomial of a Fiedler matrix (II)

Theorem (Soft version)

Let Mσ ∈ Cn×n be a Fiedler matrix of p(z), E ∈ Cn×n, and

p(z) := det(zI −Mσ) = zn + an−1 z
n−1 + · · ·+ a1 z + a0,

p̃(z) := det(zI − (Mσ + E)) = zn + ãn−1 z
n−1 + · · ·+ ã1 z + ã0.

Then, to first order in E:

ãk − ak = −
n∑

i,j=1

p
(σ,k)
ij (a0, a1, . . . , an−1)Eij for k = 0, 1, . . . , n− 1,

where p(σ,k)ij (a0, a1, . . . , an−1) are multivariable polynomials such that

p
(σ,k)
ij (a0, a1, . . . , an−1) is a polynomial in ai with degree at most 2.

If Mσ = C1, C2, then all p(σ,k)ij (a0, a1, . . . , an−1) have degree 1.

If Mσ 6= C1, C2, then there is at least one k and some (i, j) such that
p
(σ,k)
ij (a0, a1, . . . , an−1) has degree 2.

F. M. Dopico (U. Carlos III, Madrid) Backward stability-Fiedler matrices September 11, 2014 20 / 30



Perturbation of the characteristic polynomial of a Fiedler matrix (II)
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Penalty in polynomial backward errors from Fiedler matrices

Corollary

Let Mσ ∈ Cn×n be a Fiedler matrix of p(z), E ∈ Cn×n, and

p(z) := det(zI −Mσ) = zn + an−1 z
n−1 + · · ·+ a1 z + a0,

p̃(z) := det(zI − (Mσ + E)) = zn + ãn−1 z
n−1 + · · ·+ ã1 z + ã0.

If ‖E‖2 = O(u)α(p) ‖Mσ‖2 , then

For Mσ Frobenius companion matrix,

‖p̃(z)− p(z)‖∞ = O(u)α(p) ‖p(z)‖2∞.

For Mσ NOT Frobenius companion matrix,

‖p̃(z)− p(z)‖∞ = O(u)α(p) ‖p(z)‖3∞.

Remark: Only backward stability in polynomial root finding if ‖p(z)‖∞ ≈ 1.
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If ‖E‖2 = O(u)α(p) ‖Mσ‖2 , then

For Mσ Frobenius companion matrix,

‖p̃(z)− p(z)‖∞ = O(u)α(p) ‖p(z)‖2∞.

For Mσ NOT Frobenius companion matrix,

‖p̃(z)− p(z)‖∞ = O(u)α(p) ‖p(z)‖3∞.

Remark: Only backward stability in polynomial root finding if ‖p(z)‖∞ ≈ 1.

F. M. Dopico (U. Carlos III, Madrid) Backward stability-Fiedler matrices September 11, 2014 21 / 30



Scaling does not work: a key remark by V. Noferini

Let p(z) = zn +

n−1∑
i=0

ai z
i.

Then

q(z) := βn p

(
z

β

)
= zn +

n−1∑
i=0

(ai β
n−i) zi,

and it is inmediate to choose β such that
∣∣ai βn−i∣∣ ≤ 1, for all i.

Moreover,

q(z0) = 0⇐⇒ p

(
z0
β

)
= 0

But, Vanni Noferini has pointed out that this proccess does not lead to
“backward stability” in the original polynomial.

More precisely,

‖q̃(z)− q(z)‖∞ = O(u)⇒ ‖p̃(z)− p(z)‖∞ = O(u) max
i
|β|i−n
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Key points on balancing

Balancing any Fiedler matrix of p(z) before applying QR yields (very
often) perfect polynomial backward stability:

‖p̃(z)− p(z)‖∞ = O(u) ‖p(z)‖∞.

However, it is always possible to find p(z) for which balancing does not
improve backward stability.

The theoretical treatment of “balancing” Fiedler matrices from the point
of view of polynomial backward errors is trivial from our results, but

the expressions we get are not useful to predict the backward errors.
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How to deal with balancing?

Balancing a Fiedler matrix Mσ of p(z) consists in

Mσ −→ DMσD
−1, with D = diag(2t1 , . . . , 2tn)

such that ‖rowi(DMσD
−1)‖∞ ≈ ‖coli(DMσD

−1)‖∞ for all i.

Exact computation with cost O(n2).

QR on DMσD
−1 computes roots of p(z) which are the exact

eigenvalues of

DMσD
−1 + Ẽ, with ‖Ẽ‖2 = O(u) ‖DMσD

−1‖2

or, the exact roots of

p̃(z) = det(zI − (DMσD
−1 + Ẽ))

= det(zI − (Mσ +D−1ẼD))

We have already solved this problem!!
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= det(zI − (Mσ +D−1ẼD))
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The effect of balancing on polynomial backward error

Theorem
Let Mσ be a Fiedler matrix of p(z), D its diagonal balancing matrix,
Ẽ ∈ Cn×n, and

p(z) := det(zI −Mσ) = zn + an−1 z
n−1 + · · ·+ a1 z + a0,

p̃(z) := det(zI − (Mσ +D−1ẼD)) = zn + ãn−1 z
n−1 + · · ·+ ã1 z + ã0.

Then, to first order in Ẽ:

ãk − ak = −
n∑

i,j=1

p
(σ,k)
ij (a0, a1, . . . , an−1)

dj
di
Ẽij for k = 0, 1, . . . , n− 1,

where p(σ,k)ij (a0, a1, . . . , an−1) are the previous multivariable polynomials.

Moreover, if ‖Ẽ‖2 = O(u) ‖DMσD
−1‖2 , then

‖p̃(z)− p(z)‖∞ = O(u) max
i,j,k

(∣∣∣∣p(σ,k)ij (a0, . . . , an−1)
dj
di

∣∣∣∣) ‖DMσD
−1‖2.
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...but we cannot go further

‖p̃(z)− p(z)‖∞ = O(u) max
i,j,k

(∣∣∣∣p(σ,k)ij (a0, . . . , an−1)
dj
di

∣∣∣∣) ‖DMσD
−1‖2

because D is a very complicated function of a0, . . . , an−1, so

we cannot estimate neither

max
i,j,k

(∣∣∣∣p(σ,k)ij (a0, . . . , an−1)
dj
di

∣∣∣∣)
nor

‖DMσD
−1‖2

a priori,

while without balancing

max
i,j,k

(∣∣∣p(σ,k)ij (a0, . . . , an−1)
∣∣∣) ≤ n‖p(z)‖2∞, ‖Mσ‖2 ≈ ‖p(z)‖∞
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Goals and design of numerical experiments

The goals of the numerical experiments are
1 to show that our bounds correctly predict the dependence on the

norm of p(z) of the polynomial backward errors when the roots are
computed as the eigenvalues of a Fiedler matrix with QR, and

2 to study the effect of balancing the Fiedler companion matrices.

We proceed as follows:
1 We generate 500 random monic polys for each fixed value ‖p‖∞.
2 We compute exactly (in quadruple precision) the polynomial

backward error corresponding to the roots computed by QR.
3 We do this for four different Fiedler matrices

Mσ1 = second classical Frobenius,
Mσ2 = a pentadiagonal,
Mσ3 = the second F-matrix,
Mσ4 = “another one”.
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Numerical experiments (without balancing)
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Numerical experiments (with balancing): surprise!!
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Conclusions

Assume that we apply to Fiedler and classical Frobenius companion
matrices of a monic polynomial p(z) the “same eigenvalue algorithm” (or
algorithms with similar matrix backward stability properties) for
computing its roots.

Then, from the point of view of polynomial backward errors:

Proved: Unbalanced Fiedler matrices are as good as classical Frobenius
companion matrices if ‖p(z)‖∞ is moderate.

Proved: Unbalanced Fiedler matrices are worse than classical Frobenius
companion matrices if ‖p(z)‖∞ � 1, but both are bad.

From numerical experiments: Balanced Fiedler matrices are as good as
classical Frobenius companion matrices always.
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