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Definition

Definition (Lévy (1881)...)

The matrix A ∈ Rn×n is ROW DIAGONALLY DOMINANT (rdd) if∑
j 6=i

|aij | ≤ |aii|, i = 1, 2, . . . , n.

A ∈ Rn×n is COLUMN DIAGONALLY DOMINANT (cdd) if AT is row
diagonally dominant.

Example

A =

−4 2 2
1 6 4
1 −2 5

 (rdd), B =

−4 1 1
2 −3 2
−2 1 5

 (cdd).
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Famous Example (I): Second difference matrix

Kn =



2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

. . . . . . . . .
−1 2 −1

−1 2


This matrix arises by discretizing one-dimensional boundary value
problems (second derivatives).

Numerical methods for solving elliptic PDEs are a source of many linear
systems of equations whose coefficients form diagonally dominant
matrices.
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Famous Example (II): Collocation matrices in cubic splines

To compute the cubic spline (with parabolic boundary conditions) of a set of
points

(x1, y1), (x2, y2), . . . , (xn, yn), with x1 < x2 < · · · < xn ,

one needs to solve a system of equations whose coefficient matrix is

1 1
h2 2(h1 + h2) h1

h3 2(h2 + h3) h2
. . . . . . . . .

hn−1 2(hn−2 + hn−1) hn−2
1 1


,

where hk = xk+1 − xk > 0.

In applications the entries of matrices are not always given explicitly!!
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Other examples of dd matrices and applications...

Markov chains.

Graph Laplacians.

Applications include:

Social sciences,
Biology,
Economy,
Physics,
Engineering ...

Sparse Symmetric dd linear systems have received considerable
attention in the last years from the point of view of randomized
algorithms for computing their solution in "Nearly-Linear" time, via graph
preconditioners,...(D. Spielman, S. H. Teng)

DD matrices are a very important class of matrices from many
points of view: theory, algorithms, and applications
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Selected results for diagonally dominant matrices (I)

Theorem (Lévy-Desplanques Theorem, 1881-1886)

Let the matrix A ∈ Rn×n be strictly row diagonally dominant, that is,∑
j 6=i

|aij |<|aii|, i = 1, 2, . . . , n.

Then A is nonsingular.

Theorem

Let the matrix A ∈ Rn×n be strictly row diagonally dominant. Then the
number of eigenvalues of A with positive (resp. negative) real part is equal to
the number of positive (resp. negative) diagonal entries of A

Example

A =

−4 2 1
1 6 2
1 −2 5

 (rdd), eigenvalues ={−4.2702, 5.6351± 1.8363 i}
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Selected results for diagonally dominant matrices (II)

Theorem

Let A ∈ Rn×n be row or column diagonally dominant. Then all the Schur
complements of A have the same kind of diagonal dominance as A.

In plain words, all matrices arising if we apply Gaussian elimination to A
(without pivoting) have the same kind of diagonal dominance as A.

Example

A =


−4 2 1 −1
1 6 2 −2
1 −2 5 1
3 −4 2 −10

 (rdd) ∼


−4 2 1 −1
0 6.5 2.25 −2.25
0 −1.5 5.25 0.75
0 −2.5 2.75 −10.75


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Parenthesis: Errors in Gaussian elimination (GE) (I)

Theorem (Wilkinson, 1961)

Let B ∈ Rn×n be ANY nonsingular matrix, let b ∈ Rn, and let

x̂

be the approximate solution of
Bx = b

computed by GE in a computer in double precision. Then

(B + ∆B)x̂ = b,
‖∆B‖∞
‖B‖∞

≤ 6 · n3 · 10−16 · ρn,

where

ρn =
maxijk |a(k)ij |
maxij |aij |

,

is the growth factor of Gaussian elimination. Here A(1) := A,A(2), . . . , A(n)

are the matrices appearing in the Gaussian elimination process.
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Parenthesis: Errors in Gaussian elimination (GE) (II)

Example (Growth factor)

A =


−4 2 1 −1
1 6 2 −2
1 −2 5 1
3 −4 2 −10

 ∼ A(2) =


−4 2 1 −1
0 6.5 2.25 −2.25
0 −1.5 5.25 0.75
0 −2.5 2.75 −10.75

 ∼

A(3) =


−4 2 1 −1
0 6.5 2.25 −2.25
0 0 5.77 0.23
0 0 3.62 −11.62

 ∼ A(4) =


−4 2 1 −1
0 6.5 2.25 −2.25
0 0 5.77 0.23
0 0 0 −11.76



ρ =
11.76

10
= 1.1760
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Selected results for diagonally dominant matrices (III)

(B + ∆B)x̂ = b,
‖∆B‖∞
‖B‖∞

≤ 6 · n3 · 10−16 · ρn,

Wilkinson (1961)- Wendroff (1966) proved

Class of matrix Method Bound on ρn

General GE without pivoting unbounded
General GE with partial pivoting 2n−1 (huge, but usually small)
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Wilkinson (1961)- Wendroff (1966) proved

Class of matrix Method Bound on ρn

General GE without pivoting unbounded
General GE with partial pivoting 2n−1 (huge, but usually small)

diag. dominant GE without pivoting 2
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Selected results for diagonally dominant matrices (IV)

Theorem

If A ∈ Rn×n is row or column diagonally dominant, then the Gaussian
elimination algorithm without pivoting for solving Ax = b is backward
stable. More precisely, the computed solution x̂ satisfies

(A+ ∆A)x̂ = b,
‖∆A‖∞
‖A‖∞

≤ 12 · n3 · 10−16

Remark
Very important for preserving simultaneously structures and backward stab.

Example


2 −1
−4 5 −1

−1 2 −1
−1 2

 ∼ (only one row operation) ∼


2 −1

3 −1
−1 2 −1

−1 2


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but...

Theorem

If A ∈ Rn×n row or column diag. dominant, then GE algor. without pivoting
for Ax = b is backward stable, i.e., the computed solution x̂ satisfies

(A+ ∆A)x̂ = b,
‖∆A‖∞
‖A‖∞

≤ 12 · n3 · 10−16

only implies
‖x− x̂‖∞
‖x‖∞

≤ κ(A) · 12 · n3 · 10−16, where κ(A) = ‖A‖∞‖A−1‖∞

Example

A =

 1016 −108/5 1/10
1016/3 108 −1/10
1016/3 −108/5 1

 and b = A

1
1
1


‖x− x̂‖∞
‖x‖∞

= 0.14 and κ(A) ≈ 1.6 · 1016
(
‖Ax̂− b‖∞
‖A‖∞‖x̂‖∞

= 1.3 · 10−16
)
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Last basic concept on GE of dd matrices: LU (LDU) factorization (I)

Example

A =


−4 2 1 −1
1 6 2 −2
1 −2 5 1
3 −4 2 −10

 ∼ A(4) =


−4 2 1 −1
0 6.5 2.25 −2.25
0 0 5.77 0.23
0 0 0 −11.76



A =


1 0 0 0

−0.25 1 0 0
−0.25 −0.23 1 0
−0.75 −0.38 0.63 1



−4 2 1 −1
0 6.5 2.25 −2.25
0 0 5.77 0.23
0 0 0 −11.76

 ≡ LU
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A rdd =⇒ U rdd.

A cdd =⇒ L cdd.
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Last basic concept on GE dd matrices: LU (LDU) factorization (II)

Example

A =


1 0 0 0

−0.25 1 0 0
−0.25 −0.23 1 0
−0.75 −0.38 0.63 1



−4 2 1 −1
0 6.5 2.25 −2.25
0 0 5.77 0.23
0 0 0 −11.76

 ≡ LU

A =


1 0 0 0

−0.25 1 0 0
−0.25 −0.23 1 0
−0.75 −0.38 0.63 1



−4

6.5
5.77

−11.76




1 −0.5 −0.25 0.25
0 1 0.35 −0.35
0 0 1 0.04
0 0 0 1

 ≡ LDU
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Outline

1 Introduction

2 My motivation to study diagonally dominant matrices

3 Looking at DD matrices with other eyes!!!

4 Perturbation theory for the inverse

5 Perturbation theory for linear systems

6 Perturbation theory for LDU factorization

7 Perturbation theory for eigenvalues of symmetric matrices

8 Perturbation theory for singular values

9 Perturbation of simple eigenvalues of nonsymmetric matrices

10 Conclusions and open problems
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Motivation (I)

Q. Ye, in Computing singular values of diagonally dominant matrices to
high relative accuracy, Math. Comp. (2008),

developed a very ingenuous algorithm for computing accurately? in
2n3 flops the LDU factorization (Gaussian Elimination) with complete
pivoting or column diagonal dominance pivoting of row diagonally
dominant matrices

that are parameterized in a particular way, but...
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Motivation (II)

best error bounds that Q. Ye proved after a direct error analysis that
requires considerable efforts are

‖L− L̂‖∞
‖L‖∞

≤ 6n 8(n−1)ε,
‖U − Û‖∞
‖U‖∞

≤ 6 · 8(n−1)ε, |dii − d̂ii|
|dii|

≤ 5 · 8(n−1)ε,

where n× n is the size of the matrix and ε the unit roundoff.

ε = 2−53 ≈ 10−16 in double precision, so the bounds are > 1 for
n > 20...

However, there are no condition numbers in the bounds and numerical
experiments indicated accuracy.

Can we prove better bounds?
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‖U‖∞

≤ 6 · 8(n−1)ε, |dii − d̂ii|
|dii|

≤ 5 · 8(n−1)ε,

where n× n is the size of the matrix and ε the unit roundoff.

ε = 2−53 ≈ 10−16 in double precision, so the bounds are > 1 for
n > 20...

However, there are no condition numbers in the bounds and numerical
experiments indicated accuracy.

Can we prove better bounds?

F. M. Dopico (U. Carlos III, Madrid) Diagonally dominant matrices Manchester. April, 2014 19 / 56



Motivation (III)

Using a structured perturbation theory of LDU factorization of
Diagonally Dominant matrices and intricate error analysis, we proved
(D. and Koev, Numer. Math, 2011)

‖L− L̂‖M
‖L‖M

≤ 14n3ε,
‖U − Û‖M
‖U‖M

≤ 14n3ε,
|dii − d̂ii|
|dii|

≤ 14n3ε ∀i

for the errors of Q. Ye’s algorithm (here ‖A‖M = maxij |aij |)

with complete pivoting.
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Motivation (IV)

Fundamental consequences: Q. Ye’s algorithm + other existing implicit
algorithms for factorized matrices allow us to compute for Diagonally
Dominant matrices with guaranteed high relative accuracy

1 solutions of linear systems for most right-hand-sides (D. and
Molera, IMA Journal of Numerical Analysis, 2012),

2 solutions of least square problems for most right-hand-sides
(Castro, Ceballos, D., Molera, SIMAX, 2013),

3 SVD (Demmel, Gu, Eisenstat, Slapničar, Veselić, Drmač , LAA
1999),

4 Eigenvalues-vectors of symmetric matrices (D., Koev, Molera,
Numer. Math., 2009),

in O(n3) flops and for arbitrarily ill-conditioned Diagonally Dominant
matrices.
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Goal of the talk

No algorithms, no error analysis!!! (difficult)

To present a family of new perturbation bounds under certain
structured perturbations for several magnitudes corresponding to
Diagonally Dominant matrices: inverses, solutions of linear systems,
LDU factorization, singular values, eigenvalues.

Common key point in (almost all) these perturbation bounds: they are
always tiny for tiny structured perturbations in this class, even for
extremely ill conditioned matrices (independent of traditional condition
numbers).
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Parameterizing row diagonally dominant matrices (Q. Ye) (I)

We will assume that A ∈ Rn×n satisfies aii ≥ 0 for all i, unless
otherwise stated.

(No restriction for inverses, linear systems, least square problems,
SVD, but yes for eigenvalues).

Example

A =

−4 2 1
1 6 2
1 −2 5

 =⇒ B =

−1
1

1

A =

4 −2 −1
1 6 2
1 −2 5


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Parameterizing row diagonally dominant matrices (Q. Ye) (II)

Define the diagonally dominant parts of A and store them in a column
vector v = (v1, v2, . . . , vn)T where

vi := aii −
∑
j 6=i

|aij |

A is row diagonally dominant if and only if vi ≥ 0 for all i.

AD :=

{
0 for i = j
aij for i 6= j

The pair (AD, v) allows us to recover the matrix A and we parameterize
the set of n× n matrices through pairs of this type. A matrix A
parameterized is this way will be denoted as

A = D(AD, v)
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Diagonally dominant parts of collocation matrices in cubic splines

To compute the cubic spline (with parabolic b. c.) of a set of points

(x1, y1), (x2, y2), . . . , (xn, yn), with x1 < x2 < · · · < xn ,

one needs to solve a system of equations whose coefficient matrix is

1 1
h2 2(h1 + h2) h1

h3 2(h2 + h3) h2
. . . . . . . . .

hn−1 2(hn−2 + hn−1) hn−2
1 1


,

where hk = xk+1 − xk > 0.

v1 = 0, v2 = h1 + h2, . . . , vn−1 = hn−2 + hn−1, vn = 0

Diagonally dominant parts can be computed accurately (without the
entries) directly from the parameters defining the problem!!

This happens in many other applications.
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v1 = 0, v2 = h1 + h2, . . . , vn−1 = hn−2 + hn−1, vn = 0

Diagonally dominant parts can be computed accurately (without the
entries) directly from the parameters defining the problem!!

This happens in many other applications.
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Key features of Q. Ye’s algorithm for LDU of dd matrices

INPUT: D(AD, v) with v ≥ 0 (not the entries of the matrix A)!!!.

It performs Gaussian elimination with complete pivoting or column
diagonal dominance pivoting.

If we denote A(1) := A and A(k) is the matrix obtained after k − 1 steps
of Gaussian elimination are performed, then the algorithm iterates

D(A
(1)
D , v(1))→ D(A

(2)
D , v(2))→ · · · → D(A

(k)
D , v(k))→ · · ·

v(k+1) is obtained from D(A
(k)
D , v(k)) as a sum of nonnegative terms.

There are no cancellation errors in this part!!

A
(k+1)
D is computed from D(A

(k)
D , v(k)) by applying the usual Gaussian

elimination process. So cancellation errors may appear but they are
bounded in an absolute sense.
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Fundamental point: updating diagonally dominant parts

v
(k)
i := a

(k)
ii −

∑
j 6=i

|a(k)ij |

Lemma (Q. Ye, 2008)
For k + 1 ≤ i ≤ n,

v
(k+1)
i = v

(k)
i +

n∑
j=k+1, j 6=i

(1− s(k)ij ) |a(k)ij |

+
|a(k)ik |
|a(k)kk |

v(k)k +

n∑
j=k+1

(1− t(k)ij )|a(k)kj |

 ,

where s(k)ij = sign
(
a
(k+1)
ij a

(k)
ij

)
and t(k)ij =

 −sign
(
a
(k+1)
ij a

(k)
ik a

(k)
kj

)
, i 6= j

sign
(
a
(k)
ik a

(k)
ki

)
, i = j

Sum of positive terms and v
(k+1)
i ≥ v(k)i
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Example of updating diagonally dominant parts

A(1) =


4 −2 −1 1
1 6 2 −2
1 −2 5 1
−3 4 −2 10

 , v(1) =


0
1
1
1

 ∼

A(2) =


4 −2 −1 1
0 6.5 2.25 −2.25
0 −1.5 5.25 0.75
0 2.5 −2.75 10.75

 , v(2) =


0
2
3

5.5

 ∼

A(3) =


4 −2 −1 1
0 6.5 2.25 −2.25
0 0 5.77 0.23
0 0 −3.62 11.62

 , v(3) =


0
2

5.54
8

 ∼

A(4) =


4 −2 −1 1
0 6.5 2.25 −2.25
0 0 5.77 0.23
0 0 0 11.76

 , v(4) =


0
2

5.54
11.76


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What happens if the vector v in D(AD, v) is not known?

If only the entries of the starting matrix A are known, then one can
compute with the usual recursive summation method

vi := aii −
∑
j 6=i

|aij | for all i,

but it may produce large relative cancellation errors if aii ≈
∑

j 6=i |aij |
and this would spoil the accuracy of the whole computation.

In case of severe cancellation, one can compute the vi with doubly
compensated summation (Priest, 1992) that computes the sum of n
numbers with relative error 2 · 10−16 with cost of 10(n− 1) flops.

F. M. Dopico (U. Carlos III, Madrid) Diagonally dominant matrices Manchester. April, 2014 31 / 56



What happens if the vector v in D(AD, v) is not known?

If only the entries of the starting matrix A are known, then one can
compute with the usual recursive summation method

vi := aii −
∑
j 6=i

|aij | for all i,

but it may produce large relative cancellation errors if aii ≈
∑

j 6=i |aij |
and this would spoil the accuracy of the whole computation.

In case of severe cancellation, one can compute the vi with doubly
compensated summation (Priest, 1992) that computes the sum of n
numbers with relative error 2 · 10−16 with cost of 10(n− 1) flops.

F. M. Dopico (U. Carlos III, Madrid) Diagonally dominant matrices Manchester. April, 2014 31 / 56



What happens if the vector v in D(AD, v) is not known?

If only the entries of the starting matrix A are known, then one can
compute with the usual recursive summation method

vi := aii −
∑
j 6=i

|aij | for all i,

but it may produce large relative cancellation errors if aii ≈
∑

j 6=i |aij |
and this would spoil the accuracy of the whole computation.

In case of severe cancellation, one can compute the vi with doubly
compensated summation (Priest, 1992) that computes the sum of n
numbers with relative error 2 · 10−16 with cost of 10(n− 1) flops.

F. M. Dopico (U. Carlos III, Madrid) Diagonally dominant matrices Manchester. April, 2014 31 / 56



Example: Good perturbation properties of this parametrization (I)

Example: Two small relative componentwise perturbations of a row diag.
dominant matrix A. Both preserve the diag. dominant structure.

A =

 3 −1.5 1.5
−1 2.002 1
2 0.5 2.5


B =

 3 −1.5 1.5
−1 2.001 1
2 0.5 2.5

 and C =

3.0015 −1.5015 1.5
−1 2.002002 1
2 0.5 2.5


‖A−B‖2
‖A‖2

= 2.2 · 10−4 and
‖A− C‖2
‖A‖2

= 4.6 · 10−4

For all 1 ≤ i, j ≤ 3,

|aij − bij | ≤ 6 · 10−4|aij | and |aij − cij | ≤ 8 · 10−4|aij |

From now on, we will write

|A−B| ≤ 6 · 10−4|A| and |A− C| ≤ 8 · 10−4|A|
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Example: Good perturbation properties of this parametrization (II)

Example: Two small relative componentwise perturbations of a row
diagonally dominant matrix A:

A =

 3 −1.5 1.5
−1 2.002 1
2 0.5 2.5

 , v(A) =

 0
0.002

0


B =

 3 −1.5 1.5
−1 2.001 1
2 0.5 2.5

 , v(B) =

 0
0.001

0

 , |v(A)− v(B)| = 0.5 |v(A)|

C=

3.0015 −1.5015 1.5
−1 2.002002 1
2 0.5 2.5

 , v(C)=

 0
0.002002

0

 , |v(A)− v(C)| = 10−3 |v(A)|

Singular values of A, B and C

A B C

σ1 4.641 4.640 4.642
σ2 2.910 2.909 2.910

σ3 6.663 · 10−4 3.332 · 10−4 6.673 · 10−4
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Only one main point...

“Every lecture should make only one main point.”

From Gian-Carlo Rota, “Ten lessons I wish I had been taught”, Notices
of the AMS, 44 (1997) 22-25.
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1 Introduction

2 My motivation to study diagonally dominant matrices

3 Looking at DD matrices with other eyes!!!

4 Perturbation theory for the inverse

5 Perturbation theory for linear systems

6 Perturbation theory for LDU factorization

7 Perturbation theory for eigenvalues of symmetric matrices

8 Perturbation theory for singular values
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10 Conclusions and open problems
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Bounds for the inverse under structured perturbations

Theorem

Let A = D(AD, v) ∈ Rn×n and Ã = D(ÃD, ṽ) ∈ Rn×n be row diagonally
dominant matrices such that

|ṽ − v| ≤ δ v and |ÃD −AD| ≤ δ|AD|, with δ < 1.

Then

A is nonsingular if and only if Ã is nonsingular.

‖Ã−1 −A−1‖
‖A−1‖

≤ n(3n− 2)δ

1− 2nδ
, for 1-, 2-,∞-norms.

To be compared with

‖Ã−1 −A−1‖
‖A−1‖

.
(
‖A‖‖A−1‖

) ‖Ã−A‖
‖A‖
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|ṽ − v| ≤ δ v and |ÃD −AD| ≤ δ|AD|, with δ < 1.

Then

A is nonsingular if and only if Ã is nonsingular.
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Bounds for the solution of linear systems under structured perturbations

Theorem

Let A = D(AD, v) ∈ Rn×n and Ã = D(ÃD, ṽ) ∈ Rn×n be row diagonally
dominant nonsingular matrices such that

|ṽ − v| ≤ δ v and |ÃD −AD| ≤ δ|AD|, with δ < 1.

Consider the systems
Ax = b and Ã x̃ = b̃

with ‖b− b̃‖ ≤ δ‖b‖. If 2nδ < 1, then in the 1-, 2-, and∞-norms,

‖x̃− x‖
‖x‖

≤
(

(3n2 − 2n+ 1)δ + (3n2 − 4n)δ2

1− 2nδ

)
‖A−1‖ ‖b‖
‖x‖

To be compared with

‖x̃− x‖
‖x‖

.
(
‖A‖‖A−1‖

) (‖Ã−A‖
‖A‖

+
‖b̃− b‖
‖b‖

)
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For most vectors b, ‖A−1‖ ‖b‖/‖x‖ is a moderate number and for A
ill-conditioned,

‖A−1‖ ‖b‖/‖x‖ � κ(A)
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Pivoting in row dd matrices (I)

The dd structure is preserved by performing the same permutations in
rows and columns, i.e., by any diagonal pivoting strategy.

Other pivoting strategies destroy the dd structure.

The element with largest absolute value in a dd matrix is on the diagonal.

Complete pivoting in dd matrices is a diagonal pivoting strategy.

Every row dd matrix has at least one column which is diagonally
dominant.

A =

 −4 1 3
0 6 5
1 −2 7

 (rdd).

The column diagonal dominance pivoting strategy chooses at each step
of GE the entry with largest absolute value among those corresponding
to the columns which are diagonally dominant.
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Pivoting in row dd matrices (II)

Both complete and column diagonal dominance pivoting give a row
diagonally dominant factor U in A = LDU , and so

κ∞(U) := ‖U‖∞ ‖U−1‖∞ ≤ 2n.

Column diagonal dominance pivoting also produce a column
diagonally dominant factor L, and so

κ1(L) ≤ 2n.

To have both condition numbers bounded is relevant for computations
with guaranteed high relative accuracy via rank-revealing
decompositions.
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Bounds for the LDU factors under structured perturbations

Theorem

Let A = D(AD, v) ∈ Rn×n and Ã = D(ÃD, ṽ) ∈ Rn×n be row diagonally
dominant matrices, and A = LDU and Ã = L̃ D̃ Ũ be their factorizations.
If

|ṽ − v| ≤ δ v and |ÃD −AD| ≤ δ|AD|, with δ < 1,

then

For i = 1 : n and any pivoting strategy,

|d̃ii − dii| ≤
2nδ

1− 2nδ
|dii|

For any pivoting strategy,

‖Ũ − U‖∞
‖U‖∞

≤ 3n2δ
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Bounds for the L factor

Theorem (continuation)

For complete pivoting,

‖L̃− L‖∞
‖L‖∞

≤ nδ

1− nδ

(
3 +

2nδ

1− nδ

)
For column diagonal dominance pivoting,

‖L̃− L‖1
‖L‖1

≤ n(8n− 2) δ

1− (12n+ 1)δ
.
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Complete or column diag pivoting are essential for good behavior of L:

Example

Matrix ordered according to a pivoting strategy designed to make the factor
L column diagonally dominant and as much as possible.

A =

1000 100 500
0 0.1 0.05

100 10 120

 , v(A) =

400
0.05
10


A =

 1
0 1

0.1 0 1

1000
0.1

70

1 0.1 0.5
1 0.5

1


Example: δ ≈ 10−2 perturbation in D(AD, v).

Ã =

1000 101 500
0 0.1 0.05

100 10 120

 , v(A) =

399
0.05
10


Ã =

 1
0 1

0.1 −1 1

1000
0.1

70.05

1 0.101 0.5
1 0.5

1


F. M. Dopico (U. Carlos III, Madrid) Diagonally dominant matrices Manchester. April, 2014 43 / 56



Complete or column diag pivoting are essential for good behavior of L:

Example

Matrix ordered according to a pivoting strategy designed to make the factor
L column diagonally dominant and as much as possible.

A =

1000 100 500
0 0.1 0.05

100 10 120

 , v(A) =

400
0.05
10


A =

 1
0 1

0.1 0 1

1000
0.1

70

1 0.1 0.5
1 0.5

1


Example: δ ≈ 10−2 perturbation in D(AD, v).
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Ã =

 1
0 1

0.1 −1 1

1000
0.1

70.05

1 0.101 0.5
1 0.5

1


F. M. Dopico (U. Carlos III, Madrid) Diagonally dominant matrices Manchester. April, 2014 43 / 56



Complete or column diag pivoting are essential for good behavior of L:

Example

Matrix ordered according to a pivoting strategy designed to make the factor
L column diagonally dominant and as much as possible.

A =

1000 100 500
0 0.1 0.05

100 10 120

 , v(A) =

400
0.05
10


A =

 1
0 1

0.1 0 1

1000
0.1

70

1 0.1 0.5
1 0.5

1


Example: δ ≈ 10−2 perturbation in D(AD, v).
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Complete or column diag pivoting are essential for good behavior of L:
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Bounds for eigenvalues of symmetric positive semidefinite matrices

Theorem (Q. Ye, SIMAX, 2009)

Let A = D(AD, v) ∈ Rn×n and Ã = D(ÃD, ṽ) ∈ Rn×n be diagonally dominant
symmetric matrices with nonnegative diagonal entries such that

|ṽ − v| ≤ δ v and |ÃD −AD| ≤ δ|AD|, with δ < 1.

Let λ1 ≥ · · · ≥ λn ≥ 0 and λ̃1 ≥ · · · ≥ λ̃n ≥ 0 be, respectively, the eigenvalues
of A = D(AD, v) and Ã = D(ÃD, ṽ) . Then

|λ̃i − λi| ≤ δ |λi|, i = 1, . . . , n.

To be compared with

|λ̃i − λi| ≤
(
‖A‖2‖A−1‖2

) ‖Ã−A‖2
‖A‖2

|λi|
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Parameterizing row dd matrices with diagonal entries of any sign

Let A ∈ Rn×n.

Define v = (v1, v2, . . . , vn) where

vi := |aii| −
∑
j 6=i

|aij |

A is row diagonally dominant if and only if vi ≥ 0 for all i.

AD :=

{
0 for i = j
aij for i 6= j

Define S = diag(sign(a11), . . . , sign(ann)) (sign(0) := 1).

The triplet (AD, v, S) allows us to recover the matrix A and we
parameterize the set of n× n matrices through triplets of this type. Any
matrix A parameterized is this way will be denoted as

A = D(AD, v, S)
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Bounds for eigenvalues of symmetric indefinite matrices

Theorem

Let A = D(AD, v, S) ∈ Rn×n and Ã = D(ÃD, ṽ, S) ∈ Rn×n be diagonally
dominant symmetric matrices such that

|ṽ − v| ≤ δ v and |ÃD −AD| ≤ δ|AD|, with δ < 1.

Let λ1 ≥ · · · ≥ λn and λ̃1 ≥ · · · ≥ λ̃n be, respectively, the eigenvalues of
A = D(AD, v, S) and Ã = D(ÃD, ṽ, S) .

Assume 2n2(n+ 2)δ < 1 and define ν :=
2n2(n+ 1)δ

1− nδ
.

Then

|λ̃i − λi| ≤ (2ν + ν2) |λi|

≈ ( 4n3δ +O(δ2) ) |λi|, i = 1, . . . , n
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Bounds for singular values under structured perturbations

Theorem

Let A = D(AD, v) ∈ Rn×n and Ã = D(ÃD, ṽ) ∈ Rn×n be row diagonally
dominant matrices with nonnegative diagonal entries such that

|ṽ − v| ≤ δ v and |ÃD −AD| ≤ δ|AD|, with δ < 1.

Let σ1 ≥ · · · ≥ σn ≥ 0 and σ̃1 ≥ · · · ≥ σ̃n ≥ 0 be, respectively, the singular
values of A = D(AD, v) and Ã = D(ÃD, ṽ) .
Define

ν :=
4n3

√
2(n+ 1)

1− (12n+ 1) δ
δ .

If 0 ≤ ν < 1, then

|σ̃i − σi| ≤ (2ν + ν2) σi, i = 1, . . . , n.
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Comments for general matrices

Let λ be a simple eigenvalue of A ∈ Rn×n with right and left eigenvectors x
and y. Then Ã = A+ E has an eigenvalue λ̃ such that

λ̃− λ =
y∗Ex

y∗x
+O

(
‖E‖22

)
|λ̃− λ| ≤ sec θ(y, x)‖E‖2 +O

(
‖E‖22

)
,

where sec θ(y, x) =
‖y‖2‖x‖2
|y∗x|

. The relative perturbation bound is:

|λ̃− λ|
|λ|

≤
(

sec θ(y, x)
‖A‖2
|λ|

)
‖E‖2
‖A‖2

+O
(
‖E‖22

)
.

It can be large as a consequence of two facts:

‖A‖2/|λ| can be large and/or

sec θ(y, x) can be large.

For parameterized perturb of rdd matriced, we will remove ‖A‖2/|λ|.
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Perturbation of eigenvalues of nonsymmetric rdd matrices

Theorem

Let A = D(AD, v, S) ∈ Rn×n be s.t. v ≥ 0 and let λ be an eigenvalue of A with
a right eigenvector x. Let Ã = D(ÃD, ṽ, S) ∈ Rn×n be such that

|ṽ − v| ≤ δv and |ÃD −AD| ≤ δ|AD|, for some 0 ≤ δ < 1,

and let λ̃ be an eigenvalue of Ã with a left eigenvector ỹ such that ỹ∗x 6= 0.
If (13n+ 7n3 sec θ(ỹ, x)) δ < 1, then

|λ̃− λ| ≤ 8n7/2 + 7n3

1− (13n+ 7n3 sec θ(ỹ, x)) δ
sec θ(ỹ, x) δ |λ| ,

where
sec θ(ỹ, x) =

‖ỹ‖2‖x‖2
|ỹ∗x|
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Example: Good perturbation properties of eigenvalues of nonsymmetric

row diagonally dominant matrices

Two types of small (≈ 10−3) relative componentwise perturbations of a rDD matrix A:

A =

 3 −1.5 1.5
−1 2.002 1
3 1.5 4.5

 , v(A) =

 0
0.002
0



B =

 3 −1.5 1.5
−1 2.001 1
3 1.5 4.5

 , v(B) =

 0
0.001
0


C =

3.0015 −1.5015 1.5
−1 2.002002 1
3 1.5 4.5

 , v(C) =

 0
0.002002

0


Eigenvalues and condition numbers:

A B C sec θ(y, x)

λ1 8.5686 · 10−4 4.2850 · 10−4 8.5803 · 10−4 1.035

λ2 3.5011 3.5006 3.5023 1.080

λ3 6.0000 6.0000 6.0003 1.086
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General advices

To work with matrices only through their entries may be not convenient,
even in the case we force the preservation of structures.

To parameterize important classes of matrices in order to preserve
explicitly their structure may be important both in theory and in
applications.

A good set of parameters should have better perturbation properties
than the entries.

A good set of parameters should allow us to work numerically with the
matrices, that is, to construct algorithms based on these parameters for
the fundamental tasks of Numerical Linear Algebra.

This is easy to say, but it might be hard to do.
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Conclusions and open problems

We have presented structured perturbation results of rDD matrices for
many basic problems in Numerical Linear Algebra, except least square
problems and eigenvectors.

Except in the case of eigenvalues of nonsymmetric matrices, the
perturbation bounds that we have obtained are rigorous and we
have proved that are always tiny for tiny perturbations.

Numerical methods to perform accurate and efficient dense
Numerical Linear Algebra with parameterized rDD matrices are
available, except in the case of eigenvalues of nonsymmetric
matrices (open problem!!).
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