Structured linearizations that preserve the sign characteristic of Hermitian matrix polynomials

María I. Bueno, Froilán M. Dopico, and Susana Furtado

Departamento de Matemáticas
Universidad Carlos III de Madrid
Spain

Beijing, China, August 10-14, 2015
We consider matrix polynomials of degree k

$$P(\lambda) = \lambda^k A_k + \cdots + \lambda A_1 + A_0, \quad A_i \in \mathbb{C}^{n \times n}, \quad A_k \neq 0.$$

A linearization for $P(\lambda)$ is an $nk \times nk$ linear matrix polynomial (or matrix pencil) $L(\lambda)$, such that,

$$U(\lambda)L(\lambda)V(\lambda) = \begin{bmatrix} I_{n(k-1)} & P(\lambda) \end{bmatrix} \quad (U(\lambda), V(\lambda) \text{ unimodular}).$$

Property: $P(\lambda)$ and $L(\lambda)$ have the same finite spectral structure.

$L(\lambda)$ is a “strong linearization” if, in addition, $\text{rev } L(\lambda)$ is a linearization for $\text{rev } P(\lambda)$, where

$$\text{rev } P(\lambda) := \lambda^k A_0 + \cdots + \lambda A_{k-1} + A_k.$$

Property: $P(\lambda)$ and $L(\lambda)$ have the same finite and infinite spectral structures.
We consider matrix polynomials of degree k

$$P(\lambda) = \lambda^k A_k + \cdots + \lambda A_1 + A_0, \quad A_i \in \mathbb{C}^{n \times n}, \quad A_k \neq 0.$$

A linearization for $P(\lambda)$ is an $nk \times nk$ linear matrix polynomial (or matrix pencil) $L(\lambda)$, such that,

$$U(\lambda)L(\lambda)V(\lambda) = \begin{bmatrix} I_{n(k-1)} & P(\lambda) \end{bmatrix} \quad (U(\lambda), V(\lambda) \text{ unimodular}).$$

Property: $P(\lambda)$ and $L(\lambda)$ have the same finite spectral structure.

$L(\lambda)$ is a “strong linearization” if, in addition, rev $L(\lambda)$ is a linearization for rev $P(\lambda)$, where

$$\text{rev } P(\lambda) := \lambda^k A_0 + \cdots + \lambda A_{k-1} + A_k.$$

Property: $P(\lambda)$ and $L(\lambda)$ have the same finite and infinite spectral structures.
Basic concepts: matrix polynomials and their linearizations

- We consider **matrix polynomials** of degree k

\[P(\lambda) = \lambda^k A_k + \cdots + \lambda A_1 + A_0, \quad A_i \in \mathbb{C}^{n \times n}, \quad A_k \neq 0. \]

- A **linearization** for $P(\lambda)$ is an $nk \times nk$ linear matrix polynomial (or **matrix pencil**) $L(\lambda)$, such that,

\[U(\lambda)L(\lambda)V(\lambda) = \begin{bmatrix} \text{I}_{n(k-1)} & P(\lambda) \end{bmatrix} \quad (U(\lambda), V(\lambda) \text{ unimodular}). \]

Property: $P(\lambda)$ and $L(\lambda)$ have the same finite spectral structure.

- $L(\lambda)$ is a “**strong linearization**” if, in addition, $\text{rev } L(\lambda)$ is a linearization for $\text{rev } P(\lambda)$, where

\[\text{rev } P(\lambda) := \lambda^k A_0 + \cdots + \lambda A_{k-1} + A_k. \]

Property: $P(\lambda)$ and $L(\lambda)$ have the same finite and infinite spectral structures.
Most algorithms for computing eigenvalues of matrix polynomials are based on solving the eigenvalue problem for a linearization via well established methods as QZ, (memory efficient) Arnoldi...

Most matrix polynomials appearing in applications have particular structures

and in order to preserve numerically via structured algorithms the symmetries imposed in the spectrum by these structures:

“\textit{It would be preferable if the structural properties of the polynomial were faithfully reflected in the linearization...}”

Also \textit{"good" linearizations in applications should be easily constructible without performing operations}, should allow us to recover easily eigenvectors, minimal indices/bases of $P(\lambda)$, should lead to polynomial backward errors, should not increase eigenvalue condition numbers...
Importance and ideal properties of linearizations

- Most algorithms for computing eigenvalues of matrix polynomials are based on solving the eigenvalue problem for a linearization via well established methods as QZ, (memory efficient) Arnoldi...

- Most matrix polynomials appearing in applications have particular structures

- and in order to preserve numerically via structured algorithms the symmetries imposed in the spectrum by these structures:

 - “It would be preferable if the structural properties of the polynomial were faithfully reflected in the linearization…”

- Also "good" linearizations in applications should be easily constructible without performing operations, should allow us to recover easily eigenvectors, minimal indices/bases of $P(\lambda)$, should lead to polynomial backward errors, should not increase eigenvalue condition numbers...
Importance and ideal properties of linearizations

Most algorithms for computing eigenvalues of matrix polynomials are based on solving the eigenvalue problem for a linearization via well established methods as QZ, (memory efficient) Arnoldi...

Most matrix polynomials appearing in applications have particular structures

and in order to preserve numerically via structured algorithms the symmetries imposed in the spectrum by these structures:

“\textit{It would be preferable if the structural properties of the polynomial were faithfully reflected in the linearization...}”

Also "good" linearizations in applications should be \textit{easily constructible without performing operations}, should allow us to recover easily eigenvectors, minimal indices/bases of $P(\lambda)$, should lead to polynomial backward errors, should not increase eigenvalue condition numbers...
Importance and ideal properties of linearizations

- Most algorithms for computing eigenvalues of matrix polynomials are based on solving the eigenvalue problem for a linearization via well-established methods as QZ, (memory efficient) Arnoldi...

- Most matrix polynomials appearing in applications have particular structures

- and in order to preserve numerically via structured algorithms the symmetries imposed in the spectrum by these structures:

- “It would be preferable if the structural properties of the polynomial were faithfully reflected in the linearization…”

- Also "good" linearizations in applications should be easily constructible without performing operations, should allow us to recover easily eigenvectors, minimal indices/bases of $P(\lambda)$, should lead to polynomial backward errors, should not increase eigenvalue condition numbers...
Importance and ideal properties of linearizations

- Most algorithms for computing eigenvalues of matrix polynomials are based on solving the eigenvalue problem for a linearization via well-established methods as QZ, (memory efficient) Arnoldi...

- Most matrix polynomials appearing in applications have particular structures

- and in order to preserve numerically via structured algorithms the symmetries imposed in the spectrum by these structures:

 "It would be preferable if the structural properties of the polynomial were faithfully reflected in the linearization..."

- Also "good" linearizations in applications should be easily constructible without performing operations, should allow us to recover easily eigenvectors, minimal indices/bases of $P(\lambda)$, should lead to polynomial backward errors, should not increase eigenvalue condition numbers...
The “Linearization Rush”: achievements, surprises, open problems...

- MMMM’s landmark paper triggered intense research on linearizations all over the world: Amiraslani, Alam, Antoniou, Behera, Bueno, Corless, De Terán, D, Fiedler, Furtado, Higham, Lancaster, Lawrence, R-C. Li, Lin, Mackey\(^2\), Meerbergen, Mehl, Mehrmann, Michiels, Nakatsukasa, Noferini, Pérez, Tisseur, Townsed, Van Beeumen, Van Dooren, Vologiannidis,...

- and many new classes of linearizations (many of them structure-preserving) have been developed and studied since 2006.

- Some unexpected surprises have emerged. In particular
 “There are structured matrix polynomials arising in applications (Hermitian, symmetric, alternating, palindromic,...) of even degree which do not have a linearization with the same structure.” (DTDM, MMMM)

- \(\ell\)-ifications (De Terán, D, Mackey, LAA, 2014).

- Many problems still remain open on linearizations:
 - For many linearizations “no polynomial backward error” results are available (very recent amazing progress by Van Dooren et al.),
 - and the...
The “Linearization Rush”: achievements, surprises, open problems...

- MMMM’s landmark paper triggered intense research on linearizations all over the world: Amiraslani, Alam, Antoniou, Behera, Bueno, Corless, De Terán, D, Fiedler, Furtado, Higham, Lancaster, Lawrence, R-C. Li, Lin, Mackey\(^2\), Meerbergen, Mehl, Mehrmann, Michiels, Nakatsukasa, Noferini, Pérez, Tisseur, Townsed, Van Beeumen, Van Dooren, Vologiannidis,...

- and many new classes of linearizations (many of them structure-preserving) have been developed and studied since 2006.

- Some unexpected surprises have emerged. In particular “There are structured matrix polynomials arising in applications (Hermitian, symmetric, alternating, palindromic,...) of even degree which do not have a linearization with the same structure.” (DTDM, MMMM)

- \(\ell\)-ifications (De Terán, D, Mackey, LAA, 2014).

- Many problems still remain open on linearizations:
 - For many linearizations “no polynomial backward error” results are available (very recent amazing progress by Van Dooren et al.),
 - and the...
The “Linearization Rush”: achievements, surprises, open problems...

- MMMM’s landmark paper triggered **intense research on linearizations all over the world**: AmirAslani, Alam, Antoniou, Behera, Bueno, Corless, De Terán, D, Fiedler, Furtado, Higham, Lancaster, Lawrence, R-C. Li, Lin, Mackey\(^2\), Meerbergen, Mehl, Mehrmann, Michiels, Nakatsukasa, Noferini, Pérez, Tisseur, Townsed, Van Beeumen, Van Dooren, Vologiannidis, ...

- and **many new classes of linearizations (many of them structure-preserving) have been developed and studied** since 2006.

- Some **unexpected surprises** have emerged. In particular
 - “There are **structured matrix polynomials** arising in applications (Hermitian, symmetric, alternating, palindromic,...) **of even degree** which do not have a linearization with the same structure.” (DTDM, MMMM)

- → **ℓ-ifications** (De Terán, D, Mackey, LAA, 2014).

- Many problems still remain open on linearizations:
 - For many linearizations “no polynomial backward error” results are available (very recent amazing progress by Van Dooren et al.), ...
 - and the...
The “Linearization Rush”: achievements, surprises, open problems...

- MMMM’s landmark paper triggered intense research on linearizations all over the world: Amiraslani, Alam, Antoniou, Behera, Bueno, Corless, De Terán, D, Fiedler, Furtado, Higham, Lancaster, Lawrence, R-C. Li, Lin, Mackey², Meerbergen, Mehl, Mehrmann, Michiels, Nakatsukasa, Noferini, Pérez, Tisseur, Townsed, Van Beeumen, Van Dooren, Vologiannidis,...

- and many new classes of linearizations (many of them structure-preserving) have been developed and studied since 2006.

- Some unexpected surprises have emerged. In particular
 “There are structured matrix polynomials arising in applications (Hermitian, symmetric, alternating, palindromic,...) of even degree which do not have a linearization with the same structure.” (DTDM, MMMM)

- → ℓ-ifications (De Terán, D, Mackey, LAA, 2014).

- Many problems still remain open on linearizations:
 - For many linearizations “no polynomial backward error” results are available (very recent amazing progress by Van Dooren et al.),
 - and the...
The “Linearization Rush”: achievements, surprises, open problems...

• MMMM’s landmark paper triggered intense research on linearizations all over the world: Amiraslani, Alam, Antoniou, Behera, Bueno, Corless, De Terán, D, Fiedler, Furtado, Higham, Lancaster, Lawrence, R-C. Li, Lin, Mackey\(^2\), Meerbergen, Mehl, Mehrmann, Michiels, Nakatsukasa, Noferini, Pérez, Tisseur, Townsed, Van Beeumen, Van Dooren, Vologiannidis,...

• and many new classes of linearizations (many of them structure-preserving) have been developed and studied since 2006.

• Some unexpected surprises have emerged. In particular
 “There are structured matrix polynomials arising in applications (Hermitian, symmetric, alternating, palindromic,...) of even degree which do not have a linearization with the same structure.” (DTDM, MMMM)

• \(\ell\)-ifications (De Terán, D, Mackey, LAA, 2014).

• Many problems still remain open on linearizations:
 • For many linearizations “no polynomial backward error” results are available (very recent amazing progress by Van Dooren et al.),
 • and the...
Suggested by F. Tisseur at ICIAM 2011-Minisymposium on “Nonlinear Eigenvalue Problems”.

“Many Hermitian linearizations of (the very important in applications) Hermitian matrix polynomials have been devised in the literature, but only one is guaranteed to have the same sign-characteristic as the original matrix polynomial (Al-Ammari, Tisseur, LAA 2012).

Can we identify more interesting Hermitian linearizations of Hermitian matrix polynomials preserving the sign-characteristic?”

The “one” is the last pencil in the canonical basis of $DL(P)$ (MMM 2006; Higham, M, M, Tisseur, 2006) and Al-Ammari & Tisseur’s proof is only valid for Hermitian matrix polys with semisimple real eigenvalues.

In this talk, we find infinitely many of such linearizations (without restricting to semisimple real eigenvalues) which can be constructed very easily: some of them previously known (without guarantee that they preserve Sign Characteristic), others new.
Sign-characteristic problem for linearizations of Hermitian matrix polys

Suggested by F. Tisseur at ICIAM 2011-Minisymposium on “Nonlinear Eigenvalue Problems”.

“Many Hermitian linearizations of (the very important in applications) Hermitian matrix polynomials have been devised in the literature, but only one is guaranteed to have the same sign-characteristic as the original matrix polynomial (Al-Ammari, Tisseur, LAA 2012).

Can we identify more interesting Hermitian linearizations of Hermitian matrix polynomials preserving the sign-characteristic?”

The “one” is the last pencil in the canonical basis of $DL(P)$ (Higham, M, M, Tisseur, 2006) and Al-Ammari & Tisseur’s proof is only valid for Hermitian matrix polys with semisimple real eigenvalues.

In this talk, we find infinitely many of such linearizations (without restricting to semisimple real eigenvalues) which can be constructed very easily: some of them previously known (without guarantee that they preserve Sign Characteristic), others new.
Suggested by F. Tisseur at ICIAM 2011-Minisymposium on “Nonlinear Eigenvalue Problems”.

“Many Hermitian linearizations of (the very important in applications) Hermitian matrix polynomials have been devised in the literature, but only one is guaranteed to have the same sign-characteristic as the original matrix polynomial (Al-Ammari, Tisseur, LAA 2012).

Can we identify more interesting Hermitian linearizations of Hermitian matrix polynomials preserving the sign-characteristic?”

The “one” is the last pencil in the canonical basis of $DL(P)$ (MMM 2006; Higham, M, M, Tisseur, 2006) and Al-Ammari & Tisseur’s proof is only valid for Hermitian matrix polys with semisimple real eigenvalues.

In this talk, we find infinitely many of such linearizations (without restricting to semisimple real eigenvalues) which can be constructed very easily: some of them previously known (without guarantee that they preserve Sign Characteristic), others new.
Suggested by F. Tisseur at ICIAM 2011-Minisymposium on “Nonlinear Eigenvalue Problems”.

“Many Hermitian linearizations of (the very important in applications) Hermitian matrix polynomials have been devised in the literature, but only one is guaranteed to have the same sign-characteristic as the original matrix polynomial (Al-Ammari, Tisseur, LAA 2012).

Can we identify more interesting Hermitian linearizations of Hermitian matrix polynomials preserving the sign-characteristic?”

The “one” is the last pencil in the canonical basis of $\mathbb{D}_L(P)$ (Higham, M, M, Tisseur, 2006) and Al-Ammari & Tisseur’s proof is only valid for Hermitian matrix polys with semisimple real eigenvalues.

In this talk, we find infinitely many of such linearizations (without restricting to semisimple real eigenvalues) which can be constructed very easily: some of them previously known (without guarantee that they preserve Sign Characteristic), others new.
Suggested by F. Tisseur at ICIAM 2011-Minisymposium on “Nonlinear Eigenvalue Problems”.

“Many Hermitian linearizations of (the very important in applications) Hermitian matrix polynomials have been devised in the literature, but only one is guaranteed to have the same sign-characteristic as the original matrix polynomial (Al-Ammari, Tisseur, LAA 2012).

Can we identify more interesting Hermitian linearizations of Hermitian matrix polynomials preserving the sign-characteristic?”

The “one” is the last pencil in the canonical basis of $DL(P)$ (Higham, M, M, Tisseur, 2006) and Al-Ammari & Tisseur’s proof is only valid for Hermitian matrix polys with semisimple real eigenvalues.

In this talk, we find infinitely many of such linearizations (without restricting to semisimple real eigenvalues) which can be constructed very easily: some of them previously known (without guarantee that they preserve Sign Characteristic), others new.
Outline

1. The sign characteristic (SC) of Hermitian matrix polynomials
2. Characterizations of linearizations that preserve the SC
3. The canonical basis of $\mathcal{DL}(P)$ and the SC
4. The simplest Hermitian linearization preserves the SC
5. FPR and HGFPR pencils that preserve the SC
6. Conclusions and ongoing work
1. The sign characteristic (SC) of Hermitian matrix polynomials

2. Characterizations of linearizations that preserve the SC

3. The canonical basis of $\mathbb{DL}(P)$ and the SC

4. The simplest Hermitian linearization preserves the SC

5. FPR and HGFPR pencils that preserve the SC

6. Conclusions and ongoing work
General assumption of the talk

- We consider **Hermitian** matrix polynomials of degree k, i.e.,

$$P(\lambda) = \lambda^k A_k + \cdots + \lambda A_1 + A_0,$$

with A_k nonsingular.

- This restriction is required in Gohberg, Lancaster, Rodman’s SC-Theory (Annals of Mathematics, 1980; book, 2005) and it implies:
 1. Only regular matrix polynomials without infinite eigenvalues are considered, and
 2. linearizations \equiv strong linearizations.

- We are looking forward the still unpublished unifying extended SC-Theory by Al-Ammari, Mehrmann, Nakatsukasa, Noferini, Tisseur, Xu including infinite eigenvalues, singular polynomials, and other structured matrix polynomials.
We consider Hermitian matrix polynomials of degree k, i.e.,

$$P(\lambda) = \lambda^k A_k + \cdots + \lambda A_1 + A_0, \quad A_i = A_i^* \in \mathbb{C}^{n \times n},$$

with A_k nonsingular.

This restriction is required in Gohberg, Lancaster, Rodman’s SC-Theory (Annals of Mathematics, 1980; book, 2005) and it implies:

1. Only regular matrix polynomials without infinite eigenvalues are considered, and
2. linearizations \equiv strong linearizations.

We are looking forward the still unpublished unifying extended SC-Theory by Al-Ammari, Mehrmann, Nakatsukasa, Noferini, Tisseur, Xu including infinite eigenvalues, singular polynomials, and other structured matrix polynomials.
We consider Hermitian matrix polynomials of degree k, i.e.,
\[P(\lambda) = \lambda^k A_k + \cdots + \lambda A_1 + A_0, \quad A_i \in \mathbb{C}^{n \times n}, \]
with A_k nonsingular.

This restriction is required in Gohberg, Lancaster, Rodman’s SC-Theory (Annals of Mathematics, 1980; book, 2005) and it implies:

1. Only regular matrix polynomials without infinite eigenvalues are considered, and
2. linearizations \equiv strong linearizations.

We are looking forward the still unpublished unifying extended SC-Theory by Al-Ammari, Mehrmann, Nakatsukasa, Noferini, Tisseur, Xu including infinite eigenvalues, singular polynomials, and other structured matrix polynomials.
General assumption of the talk

We consider Hermitian matrix polynomials of degree k, i.e.,

$$P(\lambda) = \lambda^k A_k + \cdots + \lambda A_1 + A_0, \quad A_i = A_i^* \in \mathbb{C}^{n \times n},$$

with A_k nonsingular.

This restriction is required in Gohberg, Lancaster, Rodman’s SC-Theory (Annals of Mathematics, 1980; book, 2005) and it implies:

1. Only regular matrix polynomials without infinite eigenvalues are considered, and
2. linearizations \equiv strong linearizations.

We are looking forward the still unpublished unifying extended SC-Theory by Al-Ammari, Mehrmann, Nakatsukasa, Noferini, Tisseur, Xu including infinite eigenvalues, singular polynomials, and other structured matrix polynomials.
The

The elementary divisors (Jordan blocks) of a Hermitian matrix polynomial corresponding to its nonreal eigenvalues are paired up:

\((\lambda - \lambda_0)^{m_1}, (\lambda - \overline{\lambda_0})^{m_1}, \ldots, (\lambda - \lambda_0)^{m_g}, (\lambda - \overline{\lambda_0})^{m_g}\)

The SC of a Hermitian matrix polynomial \(P(\lambda)\) is a set of signs attached to the elementary divisors of \(P(\lambda)\) associated to its real eigenvalues.

If \(\lambda_0 \in \mathbb{R}\) is a simple eigenvalue of \(P(\lambda)\) (i.e., \(\lambda_0\) has only one elementary divisor of degree one) with eigenvector \(x\), then the corresponding sign is

\[\text{sign} \left(x^* P'(\lambda_0) x \right) \]

Parenthesis: this allows us to construct interesting examples...
The elementary divisors (Jordan blocks) of a Hermitian matrix polynomial corresponding to its nonreal eigenvalues are paired up:

\[(\lambda - \lambda_0)^{m_1}, (\lambda - \overline{\lambda_0})^{m_1}, \ldots, (\lambda - \lambda_0)^{m_g}, (\lambda - \overline{\lambda_0})^{m_g} \]

The SC of a Hermitian matrix polynomial \(P(\lambda) \) is a set of signs attached to the elementary divisors of \(P(\lambda) \) associated to its real eigenvalues.

If \(\lambda_0 \in \mathbb{R} \) is a simple eigenvalue of \(P(\lambda) \) (i.e., \(\lambda_0 \) has only one elementary divisor of degree one) with eigenvector \(x \), then the corresponding sign is

\[\text{sign} \left(x^* P'(\lambda_0) x \right) \]

Parenthesis: this allows us to construct interesting examples...
The elementary divisors (Jordan blocks) of a Hermitian matrix polynomial corresponding to its nonreal eigenvalues are paired up:

\[(\lambda - \lambda_0)^{m_1}, (\lambda - \overline{\lambda_0})^{m_1}, \ldots, (\lambda - \lambda_0)^{m_g}, (\lambda - \overline{\lambda_0})^{m_g}\]

The SC of a Hermitian matrix polynomial \(P(\lambda)\) is a set of signs attached to the elementary divisors of \(P(\lambda)\) associated to its real eigenvalues.

If \(\lambda_0 \in \mathbb{R}\) is a simple eigenvalue of \(P(\lambda)\) (i.e., \(\lambda_0\) has only one elementary divisor of degree one) with eigenvector \(x\), then the corresponding sign is

\[
\text{sign} \left(x^* P'(\lambda_0) x \right)
\]

Parenthesis: this allows us to construct interesting examples...
The elementary divisors (Jordan blocks) of a Hermitian matrix polynomial corresponding to its nonreal eigenvalues are paired up:

\[(\lambda - \lambda_0)^{m_1}, (\lambda - \overline{\lambda_0})^{m_1}, \ldots, (\lambda - \lambda_0)^{m_g}, (\lambda - \overline{\lambda_0})^{m_g}\]

The SC of a Hermitian matrix polynomial \(P(\lambda)\) is a set of signs attached to the elementary divisors of \(P(\lambda)\) associated to its real eigenvalues.

If \(\lambda_0 \in \mathbb{R}\) is a simple eigenvalue of \(P(\lambda)\) (i.e., \(\lambda_0\) has only one elementary divisor of degree one) with eigenvector \(x\), then the corresponding sign is

\[\text{sign} \left(x^* P'(\lambda_0)x \right)\]

Parenthesis: this allows us to construct interesting examples...
Parenthesis: Hermitian linearizations may NOT preserve the SC

Example: \(p(\lambda) = \lambda^2 - 3\lambda + 2 = (\lambda - 1)(\lambda - 2) \) is \(1 \times 1 \) Hermitian.

- Eigenvalues of \(p(\lambda) \) and SC:

\[\text{eigs} = \{1, 2\} \rightarrow \text{SC}(p) = (\text{sign}(p'(1)), \text{sign}(p'(2))) = (-1, +1). \]

- Two Hermitian linearizations of \(p(\lambda) \):

\[L(\lambda) = \begin{bmatrix} \lambda - 1 & 0 \\ 0 & \lambda - 2 \end{bmatrix} \quad \text{and} \quad \tilde{L}(\lambda) = \begin{bmatrix} -\lambda + 1 & 0 \\ 0 & \lambda - 2 \end{bmatrix}. \]

It is tempting to say that \(L(\lambda) \) is the most natural one, but

\[\text{SC}(L) = (+1, +1) \quad \text{and} \quad \text{SC}(\tilde{L}) = (-1, +1). \]
Parenthesis: Hermitian linearizations may NOT preserve the SC

Example: \(p(\lambda) = \lambda^2 - 3\lambda + 2 = (\lambda - 1)(\lambda - 2) \) is 1 x 1 Hermitian.

- **Eigenvalues of** \(p(\lambda) \) and SC:

 \[\text{eigs} = \{1, 2\} \implies \text{SC}(p) = (\text{sign}(p'(1)), \text{sign}(p'(2))) = (-1, +1). \]

- **Two Hermitian linearizations of** \(p(\lambda) \):

 \[
 L(\lambda) = \begin{bmatrix}
 \lambda - 1 & 0 \\
 0 & \lambda - 2
 \end{bmatrix}
 \quad \text{and} \quad
 \tilde{L}(\lambda) = \begin{bmatrix}
 -\lambda + 1 & 0 \\
 0 & \lambda - 2
 \end{bmatrix}.
 \]

 It is tempting to say that \(L(\lambda) \) is the most natural one, but

 \[
 \text{SC}(L) = (+1, +1) \quad \text{and} \quad \text{SC}(\tilde{L}) = (-1, +1).
 \]
Parenthesis: Hermitian linearizations may NOT preserve the SC

Example: $p(\lambda) = \lambda^2 - 3\lambda + 2 = (\lambda - 1)(\lambda - 2)$ is 1×1 Hermitian.

- **Eigenvalues of $p(\lambda)$ and SC:**

 $\text{eigs} = \{1, 2\} \quad \rightarrow \quad \text{SC}(p) = (\text{sign}(p'(1)), \text{sign}(p'(2))) = (-1, +1)$.

- **Two Hermitian linearizations of $p(\lambda)$:**

 $L(\lambda) = \begin{bmatrix} \lambda - 1 & 0 \\ 0 & \lambda - 2 \end{bmatrix}$ and $\tilde{L}(\lambda) = \begin{bmatrix} -\lambda + 1 & 0 \\ 0 & \lambda - 2 \end{bmatrix}$.

 It is tempting to say that $L(\lambda)$ is the most natural one, but

 $\text{SC}(L) = (+1, +1)$ and $\text{SC}(\tilde{L}) = (-1, +1)$.
Parenthesis: Hermitian linearizations may NOT preserve the SC

Example: \(p(\lambda) = \lambda^2 - 3\lambda + 2 = (\lambda - 1)(\lambda - 2) \) is 1 \(\times \) 1 Hermitian.

- **Eigenvalues of** \(p(\lambda) \) **and SC:**

 \[
 \text{eigs} = \{1, 2\} \rightarrow \text{SC}(p) = (\text{sign}(p'(1)), \text{sign}(p'(2))) = (-1, +1).
 \]

- **Two Hermitian linearizations of** \(p(\lambda) \):

 \[
 L(\lambda) = \begin{bmatrix} \lambda - 1 & 0 \\ 0 & \lambda - 2 \end{bmatrix} \quad \text{and} \quad \tilde{L}(\lambda) = \begin{bmatrix} -\lambda + 1 & 0 \\ 0 & \lambda - 2 \end{bmatrix}.
 \]

 It is tempting to say that \(L(\lambda) \) is the most natural one, but

 \[
 \text{SC}(L) = (+1, +1) \quad \text{and} \quad \text{SC}(\tilde{L}) = (-1, +1).
 \]
Example: \(p(\lambda) = \lambda^2 - 3\lambda + 2 = (\lambda - 1)(\lambda - 2) \) is 1 \(\times \) 1 Hermitian.

- **Eigenvalues of** \(p(\lambda) \) **and SC:**

 \[
 \text{eigs} = \{1, 2\} \quad \longrightarrow \quad \text{SC}(p) = (\text{sign}(p'(1)), \text{sign}(p'(2))) = (-1, +1).
 \]

- **Two Hermitian linearizations of** \(p(\lambda) \):

 \[
 L(\lambda) = \begin{bmatrix} \lambda - 1 & 0 \\ 0 & \lambda - 2 \end{bmatrix} \quad \text{and} \quad \tilde{L}(\lambda) = \begin{bmatrix} -\lambda + 1 & 0 \\ 0 & \lambda - 2 \end{bmatrix}.
 \]

 It is tempting to say that \(L(\lambda) \) is the most natural one, but

 \[
 \text{SC}(L) = (+1, +1) \quad \text{and} \quad \text{SC}(\tilde{L}) = (-1, +1).
 \]
There are several equivalent ways to define in general the SC of Hermitian matrix polys and we adopt one convenient for our purposes.

The definitions and results used in this part can be found in Gohberg, Lancaster, Rodman, *Indefinite Linear Algebra and Applications* (2005).

We need to deal first with **pairs of matrices** and in particular with

Definition (Selfadjoint pair)

A pair of matrices \((T, N)\), where \(T, N \in \mathbb{C}^{n \times n}\) and \(N = N^*\) is nonsingular Hermitian, is said to be selfadjoint if

\[
T^* = NTN^{-1}.
\]

In other words,

- if \(T\) is selfadjoint with respect to the (possibly indefinite) inner product defined by \(N\) \((\langle x, y \rangle_N := x^* Ny)\).
There are several equivalent ways to define in general the SC of Hermitian matrix polys and we adopt one convenient for our purposes.

The definitions and results used in this part can be found in Gohberg, Lancaster, Rodman, *Indefinite Linear Algebra and Applications* (2005).

We need to deal first with **pairs of matrices** and in particular with

Definition (Selfadjoint pair)

A pair of matrices \((T, N)\), where \(T, N \in \mathbb{C}^{n \times n}\) and \(N = N^*\) is nonsingular Hermitian, is said to be selfadjoint if

\[T^* = NTN^{-1}. \]

In other words,

- if \(T\) is selfadjoint with respect to the (possibly indefinite) inner product defined by \(N\) \((\langle x, y \rangle_N := x^*N y)\).
There are several equivalent ways to define in general the SC of Hermitian matrix polys and we adopt one convenient for our purposes.

The definitions and results used in this part can be found in Gohberg, Lancaster, Rodman, *Indefinite Linear Algebra and Applications* (2005).

We need to deal first with **pairs of matrices** and in particular with

Definition (Selfadjoint pair)

A pair of matrices \((T, N)\), where \(T, N \in \mathbb{C}^{n \times n}\) and \(N = N^*\) is nonsingular Hermitian, is said to be selfadjoint if

\[
T^* = NTN^{-1}.
\]

In other words,

- if \(T\) is selfadjoint with respect to the (possibly indefinite) inner product defined by \(N\) \((\langle x, y \rangle_N := x^* N y)\).
There are several equivalent ways to define in general the SC of Hermitian matrix polys and we adopt one convenient for our purposes.

The definitions and results used in this part can be found in Gohberg, Lancaster, Rodman, *Indefinite Linear Algebra and Applications* (2005).

We need to deal first with **pairs of matrices** and in particular with

Definition (Selfadjoint pair)

A pair of matrices \((T, N)\), where \(T, N \in \mathbb{C}^{n \times n}\) and \(N = N^*\) is nonsingular Hermitian, is said to be selfadjoint if

\[
T^* = NTN^{-1}.
\]

In other words,

- if \(T\) is selfadjoint with respect to the (possibly indefinite) inner product defined by \(N \ (\langle x, y \rangle_N := x^*N y)\).
There are several equivalent ways to define in general the SC of Hermitian matrix polys and we adopt one convenient for our purposes.

The definitions and results used in this part can be found in Gohberg, Lancaster, Rodman, *Indefinite Linear Algebra and Applications* (2005).

We need to deal first with **pairs of matrices** and in particular with

Definition (Selfadjoint pair)

A pair of matrices \((T, N)\), where \(T, N \in \mathbb{C}^{n \times n}\) and \(N = N^*\) is nonsingular Hermitian, is said to be selfadjoint if

\[
T^* = NTN^{-1}.
\]

In other words,

- if \(T\) is selfadjoint with respect to the (possibly indefinite) inner product defined by \(N\) \((\langle x, y \rangle_N := x^* N y)\).
Definition (Unitary Similarity of Selfadjoint Matrix Pairs)

Two selfadjoint pairs of the same size \((T_1, N_1)\) and \((T_2, N_2)\) are unitarily similar if there exists a nonsingular matrix \(H\) such that

\[
T_1 = H^{-1}T_2H, \quad N_1 = H^*N_2H.
\]

- It is an equivalence relation in the set of selfadjoint matrix pairs.
- There is a canonical form of selfadjoint matrix pairs under unitary similarity.
- For describing this canonical form we need

\[
R_m := \begin{bmatrix}
0 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
1 & \cdots & 0
\end{bmatrix}
\quad \text{and} \quad
J_k(\mu) := \begin{bmatrix}
\mu & 1 & \cdots & 0 \\
\mu & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \mu \\
\mu & \cdots & 1 & \mu
\end{bmatrix}.
\]
Definition (Unitary Similarity of Selfadjoint Matrix Pairs)

Two selfadjoint pairs of the same size \((T_1, N_1)\) and \((T_2, N_2)\) are unitarily similar if there exists a nonsingular matrix \(H\) such that

\[
T_1 = H^{-1}T_2H, \quad N_1 = H^*N_2H.
\]

- It is an equivalence relation in the set of selfadjoint matrix pairs.
- There is a canonical form of selfadjoint matrix pairs under unitary similarity.
- For describing this canonical form we need

\[
\mathcal{R}_m := \begin{bmatrix} 0 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 0 \end{bmatrix} \quad \text{and} \quad J_k(\mu) := \begin{bmatrix} \mu & 1 & \cdots & 0 \\ \mu & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ \mu & \cdots & 1 & \mu \end{bmatrix}.
\]
Definition (Unitary Similarity of Selfadjoint Matrix Pairs)

Two selfadjoint pairs of the same size \((T_1, N_1)\) and \((T_2, N_2)\) are unitarily similar if there exists a nonsingular matrix \(H\) such that

\[
T_1 = H^{-1}T_2H, \quad N_1 = H^*N_2H.
\]

- It is an equivalence relation in the set of selfadjoint matrix pairs.
- There is a canonical form of selfadjoint matrix pairs under unitary similarity.
- For describing this canonical form we need

\[
R_m := \begin{bmatrix}
0 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
1 & \cdots & 0
\end{bmatrix}
\quad \text{and} \quad
J_k(\mu) := \begin{bmatrix}
\mu & 1 & \cdots & 0 \\
\mu & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
\mu & \cdots & \cdots & 1
\end{bmatrix}.
\]
Definition (Unitary Similarity of Selfadjoint Matrix Pairs)

Two selfadjoint pairs of the same size \((T_1, N_1)\) and \((T_2, N_2)\) are unitarily similar if there exists a nonsingular matrix \(H\) such that

\[
T_1 = H^{-1}T_2H, \quad N_1 = H^*N_2H.
\]

- It is an equivalence relation in the set of selfadjoint matrix pairs.
- There is a canonical form of selfadjoint matrix pairs under unitary similarity.
- For describing this canonical form we need

\[
\mathcal{R}_m := \begin{bmatrix} 0 & \ldots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \ldots & 0 \end{bmatrix} \quad \text{and} \quad J_k(\mu) := \begin{bmatrix} \mu & 1 & \ldots & 0 \\ \mu & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ \mu & \ddots & \ddots & \mu \end{bmatrix}.
\]
Theorem (Canonical form under Unitary Similarity of Selfadjoint Pairs)

Any selfadjoint pair \((T, N)\) is unitarily similar to \((J, P_{\epsilon, J})\), where

\[
J = J_{l_1}(\lambda_1) \oplus \cdots \oplus J_{l_r}(\lambda_r) \oplus (J_{k_1}(\mu_1) \oplus J_{k_1}(\overline{\mu}_1)) \oplus \cdots \oplus (J_{k_c}(\mu_c) \oplus J_{k_c}(\overline{\mu}_c))
\]

is a Jordan normal form for \(T\), \(\lambda_1, \ldots, \lambda_r\) are the real eigenvalues of \(T\), and \(\mu_1, \overline{\mu}_1, \ldots, \mu_c, \overline{\mu}_c\), are the nonreal eigenvalues of \(T\); and

\[
P_{\epsilon, J} = \epsilon_1 \mathcal{R}_{l_1} \oplus \cdots \oplus \epsilon_r \mathcal{R}_{l_r} \oplus \mathcal{R}_{2k_1} \oplus \cdots \oplus \mathcal{R}_{2k_c},
\]

where

\[
\epsilon = \{\epsilon_1, \ldots, \epsilon_r\}
\]

is an ordered set of signs \(\pm 1\) uniquely determined by \((T, N)\) up to permutation of signs corresponding to equal Jordan blocks.

Definition (SC of a Selfadjoint Pair)

The set of signs \(\epsilon = \{\epsilon_1, \ldots, \epsilon_r\}\) is the SC of the selfadjoint pair \((T, N)\).
Theorem (Standard triples of Hermitian matrix polynomials)

Let \(P(\lambda) = \sum_{i=0}^{k} A_i \lambda^i \) be an \(n \times n \) Hermitian matrix polynomial with \(A_k \) nonsingular. Then:

- For any standard triple \((X, T, Y)\) of \(P(\lambda) \), there exists a unique nonsingular Hermitian matrix \(N \) such that the matrix pair \((T, N)\) is selfadjoint.
- All these infinitely many selfadjoint pairs associated to \(P(\lambda) \) have the same SC.

Definition (Sign characteristic of Hermitian matrix polynomials)

The SC of the Hermitian matrix polynomial \(P(\lambda) = \sum_{i=0}^{k} A_i \lambda^i \) with \(A_k \) nonsingular is the SC of any of its associated selfadjoint pairs \((T, N)\).
Theorem (Standard triples of Hermitian matrix polynomials)

Let $P(\lambda) = \sum_{i=0}^{k} A_i \lambda^i$ be an $n \times n$ Hermitian matrix polynomial with A_k nonsingular. Then:

- For any standard triple (X, T, Y) of $P(\lambda)$, there exists a unique nonsingular Hermitian matrix N such that the matrix pair (T, N) is selfadjoint.

- All these infinitely many selfadjoint pairs associated to $P(\lambda)$ have the same SC.

Definition (Sign characteristic of Hermitian matrix polynomials)

The SC of the Hermitian matrix polynomial $P(\lambda) = \sum_{i=0}^{k} A_i \lambda^i$ with A_k nonsingular is the SC of any of its associated selfadjoint pairs (T, N).
Corollary (Explicit characterization of the SC of Hermitian polynomials)

Let $P(\lambda) = A_k \lambda^k + \cdots + A_1 \lambda + A_0$ be a Hermitian matrix polynomial with A_k nonsingular and let us define

$$C_P := \begin{bmatrix} 0 & I_n & 0 & \cdots & 0 \\ 0 & 0 & I_n & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ -A_k^{-1} A_0 & -A_k^{-1} A_1 & \cdots & \cdots & -A_k^{-1} A_{k-1} \\ -A_k^{-1} A_0 & -A_k^{-1} A_1 & \cdots & \cdots & -A_k^{-1} A_{k-1} \end{bmatrix},$$

$$B_P := \begin{bmatrix} A_1 & A_2 & \cdots & A_k \\ A_2 & \vdots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ A_k & 0 \end{bmatrix}.$$

Then the sign characteristic of $P(\lambda)$ is the sign characteristic of the selfadjoint pair (C_P, B_P).

F. M. Dopico (U. Carlos III, Madrid)
Why is the SC important?

- It determines important features of the **structured eigenvalue perturbation theory of Hermitian matrix polynomials**. For example:
 - Two equal (or extremely close) real simple eigenvalues can become nonreal under structured perturbations only if they have opposite signs in the SC.

- So, structured and unstructured eigenvalue perturbation theories are very different for “colliding” eigenvalues,

- and SC would explain different behaviours of backward stable structured and unstructured algorithms.

- SC is useful to classify different families of Hermitian matrix polynomials appearing in applications: hyperbolic, quasihyperbolic, gyroscopically stabilized, overdamped quadratics,....
Why is the SC important?

- It determines important features of the **structured eigenvalue perturbation theory of Hermitian matrix polynomials**. For example:
 - **Two equal** (or extremely close) **real simple eigenvalues** can become **nonreal** under structured perturbations **only if** they have opposite signs in the **SC**.

- So, structured and unstructured eigenvalue perturbation theories are very different for “colliding” eigenvalues,

- and **SC would explain different behaviours** of backward stable structured and unstructured algorithms.

- **SC is useful to classify** different families of Hermitian matrix polynomials appearing in applications: hyperbolic, quasihyperbolic, gyroscopically stabilized, overdamped quadratics,....
It determines important features of the **structured eigenvalue perturbation theory of Hermitian matrix polynomials**. For example:

- Two equal (or extremely close) real simple eigenvalues can become nonreal under structured perturbations only if they have opposite signs in the SC.

So, structured and unstructured eigenvalue perturbation theories are very different for “colliding” eigenvalues,

and SC would explain different behaviours of backward stable structured and unstructured algorithms.

SC is useful to classify different families of Hermitian matrix polynomials appearing in applications: hyperbolic, quasihyperbolic, gyroscopically stabilized, overdamped quadratics,....
Why is the SC important?

- It determines important features of the **structured eigenvalue perturbation theory of Hermitian matrix polynomials**. For example:

 - **Two equal (or extremely close) real simple eigenvalues can become nonreal under structured perturbations only if they have opposite signs in the SC.**

- So, structured and unstructured eigenvalue perturbation theories are very different for “colliding” eigenvalues,

- and SC would explain different behaviours of backward stable structured and unstructured algorithms.

- SC is useful to classify different families of Hermitian matrix polynomials appearing in applications: hyperbolic, quasihyperbolic, gyroscopically stabilized, overdamped quadratics,....
Why is the SC important?

It determines important features of the structured eigenvalue perturbation theory of Hermitian matrix polynomials. For example:

- Two equal (or extremely close) real simple eigenvalues can become nonreal under structured perturbations only if they have opposite signs in the SC.

So, structured and unstructured eigenvalue perturbation theories are very different for “colliding” eigenvalues,

and SC would explain different behaviours of backward stable structured and unstructured algorithms.

SC is useful to classify different families of Hermitian matrix polynomials appearing in applications: hyperbolic, quasihyperbolic, gyroscopically stabilized, overdamped quadratics,...
1. The sign characteristic (SC) of Hermitian matrix polynomials

2. Characterizations of linearizations that preserve the SC

3. The canonical basis of $\mathbb{DL}(P)$ and the SC

4. The simplest Hermitian linearization preserves the SC

5. FPR and HGFPR pencils that preserve the SC

6. Conclusions and ongoing work
We consider **matrix polynomials** of degree \(k \)

\[
P(\lambda) = \lambda^k A_k + \cdots + \lambda A_1 + A_0 , \quad A_i \in \mathbb{C}^{n \times n} , \quad A_k \neq 0.
\]

A **linearization** for \(P(\lambda) \) is an \(nk \times nk \) **linear matrix polynomial** (or matrix pencil) \(L(\lambda) \), such that,

\[
U(\lambda)L(\lambda)V(\lambda) = \begin{bmatrix} I_{n(k-1)} & P(\lambda) \end{bmatrix} \quad (U(\lambda), V(\lambda) \text{ unimodular}).
\]

Property: \(P(\lambda) \) and \(L(\lambda) \) have the same finite spectral structure.
Theorem (Odd degree case)

Let \(P(\lambda) = A_k \lambda^k + \cdots + A_1 \lambda + A_0 \) be a Hermitian \(n \times n \) matrix polynomial with \(A_k \) nonsingular and \(k \) odd, and \(L(\lambda) \) be a Hermitian \(nk \times nk \) matrix pencil. Then,

\[
L(\lambda) \text{ is a linearization of } P(\lambda) \text{ with the same SC}
\]

if and only if

there exists a unimodular matrix polynomial \(V(\lambda) \) such that

\[
V(\lambda)L(\lambda)V(\lambda)^* = \begin{bmatrix}
I_{n(k-1)/2} & -I_{n(k-1)/2} \\
-I_{n(k-1)/2} & P(\lambda)
\end{bmatrix}.
\]

Remark

\((V_q \lambda^q + \cdots + V_1 \lambda + V_0)^* := V_q^* \lambda^q + \cdots + V_1^* \lambda + V_0^*\).
Theorem (Odd degree case)

Let \(P(\lambda) = A_k \lambda^k + \cdots + A_1 \lambda + A_0 \) be a Hermitian \(n \times n \) matrix polynomial with \(A_k \) nonsingular and \(k \) odd, and \(L(\lambda) \) be a Hermitian \(nk \times nk \) matrix pencil. Then,

\[
L(\lambda) \text{ is a linearization of } P(\lambda) \text{ with the same SC if and only if}
\]

there exists a unimodular matrix polynomial \(V(\lambda) \) such that

\[
V(\lambda)L(\lambda)V(\lambda)^* = \begin{bmatrix} I_{n(k-1)/2} & -I_{n(k-1)/2} \\ \end{bmatrix} \begin{bmatrix} P(\lambda) \end{bmatrix}.
\]

Remark

\[
(V_q \lambda^q + \cdots + V_1 \lambda + V_0)^* \equiv V_q^* \lambda^q + \cdots + V_1^* \lambda + V_0^*.
\]
Theorem (Even degree case)

Let \(P(\lambda) = A_k \lambda^k + \cdots + A_1 \lambda + A_0 \) be a Hermitian \(n \times n \) matrix polynomial with \(A_k \) nonsingular and \(k \) even, and \(L(\lambda) \) be a Hermitian \(nk \times nk \) matrix pencil. Then,

\[
L(\lambda) \text{ is a linearization of } P(\lambda) \text{ with the same SC if and only if there exists a unimodular matrix polynomial } V(\lambda) \text{ such that}
\]

\[
V(\lambda)L(\lambda)V(\lambda)^* = \begin{bmatrix}
I_{n(k-2)/2} & -I_{n(k-2)/2} & \cdots & -I_{n(k-2)/2} \\
& I_{neg} & & \\
& & \ddots & \\
& & & I_{neg}
\end{bmatrix},
\]

where \(A_k \) is strictly congruent to \(\text{diag}(-I_{neg}, I_{pos}) \).
Lemma

Let \(P(\lambda) = A_k \lambda^k + \cdots + A_1 \lambda + A_0 \) be a Hermitian matrix polynomial with \(A_k \) nonsingular and let

\[
D_k(\lambda, P) := \lambda \begin{bmatrix}
0 & \cdots & \cdots & 0 & A_k \\
\vdots & \ddots & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & \vdots \\
A_k & A_{k-1} & A_{k-2} & \cdots & A_1
\end{bmatrix} - \begin{bmatrix}
0 & \cdots & 0 & A_k \\
\vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & \vdots \\
A_k & A_{k-1} & A_{k-2} & \cdots & A_1
\end{bmatrix}.
\]

Then \(D_k(\lambda, P) \) is a Hermitian linearization of \(P(\lambda) \) that preserves the sign characteristic of \(P(\lambda) \).

- \(D_k(\lambda, P) \) is the “one” considered by Al-Ammari & Tisseur (2012) for semisimple eigenvalues.
- This lemma follows from proving that the selfadjoint pairs \((C_P, B_P)\) and \((C_{D_k}, B_{D_k})\) of \(P(\lambda) \) and \(D_k(\lambda, P) \), respectively, are unitarily similar.
Lemma

Let \(P(\lambda) = A_k \lambda^k + \cdots + A_1 \lambda + A_0 \) be a Hermitian matrix polynomial with \(A_k \) nonsingular and let

\[
D_k(\lambda, P) := \lambda \begin{bmatrix}
0 & \cdots & \cdots & 0 & A_k \\
\vdots & \ddots & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots \\
0 & \cdots & \cdots & \ddots & \vdots \\
A_k & A_{k-1} & A_{k-2} & \cdots & A_1
\end{bmatrix}
- \begin{bmatrix}
0 & \cdots & 0 & A_k \\
\vdots & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & \ddots \\
A_k & A_{k-1} & \cdots & A_2 & -A_0
\end{bmatrix}.
\]

Then \(D_k(\lambda, P) \) is a Hermitian linearization of \(P(\lambda) \) that preserves the sign characteristic of \(P(\lambda) \).

- \(D_k(\lambda, P) \) is the “one” considered by Al-Ammari & Tisseur (2012) for semisimple eigenvalues.

- This lemma follows from proving that the selfadjoint pairs \((C_P, B_P) \) and \((C_{D_k}, B_{D_k}) \) of \(P(\lambda) \) and \(D_k(\lambda, P) \), respectively, are unitarily similar.
Lemma

Let \(P(\lambda) = A_k \lambda^k + \cdots + A_1 \lambda + A_0 \) be a Hermitian matrix polynomial with \(A_k \) nonsingular and let

\[
D_k(\lambda, P) := \lambda \begin{bmatrix}
0 & \cdots & \cdots & 0 & A_k \\
\vdots & \ddots & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots \\
0 & \cdots & \cdots & \cdots & \vdots \\
A_k & A_{k-1} & A_{k-2} & \cdots & A_1
\end{bmatrix} - \begin{bmatrix}
0 & \cdots & 0 & A_k \\
\vdots & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & \cdots \\
A_k & A_{k-1} & A_{k-2} & \cdots & A_1
\end{bmatrix}^{-1}
\]

Then \(D_k(\lambda, P) \) is a Hermitian linearization of \(P(\lambda) \) that preserves the sign characteristic of \(P(\lambda) \).

- \(D_k(\lambda, P) \) is the “one” considered by Al-Ammari & Tisseur (2012) for semisimple eigenvalues.

- This lemma follows from proving that the selfadjoint pairs \((C_P, B_P)\) and \((C_{D_k}, B_{D_k})\) of \(P(\lambda) \) and \(D_k(\lambda, P) \), respectively, are unitarily similar.
Theorem

Let \(P(\lambda) = \sum_{i=0}^{k} A_i \lambda^i \) be an \(n \times n \) Hermitian matrix polynomial with \(A_k \) nonsingular, \(D_k(\lambda, P) \) be the pencil defined in the previous slide, and \(L(\lambda) \) be an \(nk \times nk \) pencil. Then,

\[
L(\lambda) \text{ is a Hermitian linearization of } P(\lambda) \text{ that preserves the SC of } P(\lambda)
\]

if and only if

\[
L(\lambda) \text{ is } \ast \text{congruent to } D_k(\lambda, P),
\]

i.e., if and only if

\[
L(\lambda) = S \ D_k(\lambda, P) \ S^*,
\]

for a nonsingular constant matrix \(S \).

- Any nonsingular \(S \) provides a SC-preserving linearization of \(P(\lambda) \),
- but we only want those easily constructible from the coefficients of \(P(\lambda) \) and to build them is an art. We have constructed/characterized many!!
Theorem

Let $P(\lambda) = \sum_{i=0}^{k} A_i \lambda^i$ be an $n \times n$ Hermitian matrix polynomial with A_k nonsingular, $D_k(\lambda, P)$ be the pencil defined in the previous slide, and $L(\lambda)$ be an $nk \times nk$ pencil. Then,

$L(\lambda)$ is a Hermitian linearization of $P(\lambda)$ that preserves the SC of $P(\lambda)$ if and only if

$L(\lambda)$ is *congruent to $D_k(\lambda, P)$,

i.e., if and only if

$L(\lambda) = S D_k(\lambda, P) S^*$,

for a nonsingular constant matrix S.

- Any nonsingular S provides a SC-preserving linearization of $P(\lambda)$,
 - but we only want those easily constructible from the coefficients of $P(\lambda)$ and to build them is an art. We have constructed/characterized many!!
Theorem

Let \(P(\lambda) = \sum_{i=0}^{k} A_i \lambda^i \) be an \(n \times n \) Hermitian matrix polynomial with \(A_k \) nonsingular, \(D_k(\lambda, P) \) be the pencil defined in the previous slide, and \(L(\lambda) \) be an \(nk \times nk \) pencil. Then,

\[
L(\lambda) \text{ is a Hermitian linearization of } P(\lambda) \text{ that preserves the SC of } P(\lambda) \text{ if and only if } \\
L(\lambda) \text{ is } \ast \text{congruent to } D_k(\lambda, P),
\]

i.e., if and only if

\[
L(\lambda) = S \ D_k(\lambda, P) \ S^*,
\]

for a nonsingular constant matrix \(S \).

- Any nonsingular \(S \) provides a SC-preserving linearization of \(P(\lambda) \),
- but we only want those easily constructible from the coefficients of \(P(\lambda) \) and to build them is an art. We have constructed/characterized many!!
Outline

1. The sign characteristic (SC) of Hermitian matrix polynomials
2. Characterizations of linearizations that preserve the SC
3. The canonical basis of $DL(P)$ and the SC
4. The simplest Hermitian linearization preserves the SC
5. FPR and HGFPR pencils that preserve the SC
6. Conclusions and ongoing work
The canonical basis of $\mathbb{DL}(P)$ (I)

- Given a regular Hermitian matrix polynomial of degree k, then
 - the pencil $D_k(\lambda, P)$ is the last pencil in the canonical basis of the vector space of Hermitian pencils $\mathbb{DL}(P)$ (Mackey\(^2\), Mehl, Mehrmann, SIMAX 2006 & Higham, Mackey\(^2\), Tisseur, SIMAX 2006).
 - $\mathbb{DL}(P)$ has dimension k and “almost all” their elements are Hermitian strong linearizations of $P(\lambda)$.
 - The canonical basis of $\mathbb{DL}(P)$ is denoted by
 $$\{D_1(\lambda, P), D_2(\lambda, P), \ldots, D_k(\lambda, P)\},$$
 and all its pencils are immediately constructible from the coefficients of $P(\lambda)$.
 - They are also particular examples of Fiedler Pencils with Repetition (Vologiannidis & Antoniou, MCSS, 2011).
 - They are...
The canonical basis of $\mathbb{DL}(P) (I)$

- Given a regular Hermitian matrix polynomial of degree k, then
- the pencil $D_k(\lambda, P)$ is the last pencil in the canonical basis of the vector space of Hermitian pencils $\mathbb{DL}(P)$ (Mackey², Mehl, Mehrmann, SIMAX 2006 & Higham, Mackey², Tisseur, SIMAX 2006).
- $\mathbb{DL}(P)$ has dimension k and “almost all” their elements are Hermitian strong linearizations of $P(\lambda)$.
- The canonical basis of $\mathbb{DL}(P)$ is denoted by
 \[
 \{D_1(\lambda, P), D_2(\lambda, P), \ldots, D_k(\lambda, P)\},
 \]
 and all its pencils are immediately constructible from the coefficients of $P(\lambda)$.
- They are also particular examples of Fiedler Pencils with Repetition (Vologiannidis & Antoniou, MCSS, 2011).
- They are...
Given a regular Hermitian matrix polynomial of degree k, then

the pencil $D_k(\lambda, P)$ is the last pencil in the canonical basis of the vector space of Hermitian pencils $\mathbb{DL}(P)$ (Mackey2, Mehl, Mehrmann, SIMAX 2006 & Higham, Mackey2, Tisseur, SIMAX 2006).

$\mathbb{DL}(P)$ has dimension k and “almost all” their elements are Hermitian strong linearizations of $P(\lambda)$.

The canonical basis of $\mathbb{DL}(P)$ is denoted by

$$\{D_1(\lambda, P), D_2(\lambda, P), \ldots, D_k(\lambda, P)\},$$

and all its pencils are immediately constructible from the coefficients of $P(\lambda)$.

They are also particular examples of Fiedler Pencils with Repetition (Vologiannidis & Antoniou, MCSS, 2011).

They are...
The canonical basis of $\mathcal{DL}(P)$ (I)

- Given a regular Hermitian matrix polynomial of degree k, then
- the pencil $D_k(\lambda, P)$ is the last pencil in the canonical basis of the vector space of Hermitian pencils $\mathcal{DL}(P)$ (Mackey2, Mehl, Mehrmann, SIMAX 2006 & Higham, Mackey2, Tisseur, SIMAX 2006).
- $\mathcal{DL}(P)$ has dimension k and "almost all" their elements are Hermitian strong linearizations of $P(\lambda)$.
- The canonical basis of $\mathcal{DL}(P)$ is denoted by

$$\{D_1(\lambda, P), D_2(\lambda, P), \ldots, D_k(\lambda, P)\},$$

and all its pencils are immediately constructible from the coefficients of $P(\lambda)$.

- They are also particular examples of Fiedler Pencils with Repetition (Vologiannidis & Antoniou, MCSS, 2011).
- They are...
The canonical basis of $\mathcal{DL}(P)$ (I)

- Given a regular Hermitian matrix polynomial of degree k, then
- the pencil $D_k(\lambda, P)$ is the last pencil in the canonical basis of the vector space of Hermitian pencils $\mathcal{DL}(P)$ (Mackey2, Mehl, Mehrmann, SIMAX 2006 & Higham, Mackey2, Tisseur, SIMAX 2006).
- $\mathcal{DL}(P)$ has dimension k and “almost all” their elements are Hermitian strong linearizations of $P(\lambda)$.
- The canonical basis of $\mathcal{DL}(P)$ is denoted by
 \[
 \{D_1(\lambda, P), D_2(\lambda, P), \ldots, D_k(\lambda, P)\},
 \]
 and all its pencils are immediately constructible from the coefficients of $P(\lambda)$.
- They are also particular examples of Fiedler Pencils with Repetition (Vologiannidis & Antoniou, MCSS, 2011).

They are...
The canonical basis of $\mathbb{DL}(P)$ (I)

- Given a regular Hermitian matrix polynomial of degree k, then
- the pencil $D_k(\lambda, P)$ is the last pencil in the canonical basis of the vector space of Hermitian pencils $\mathbb{DL}(P)$ (Mackey2, Mehl, Mehrmann, SIMAX 2006 & Higham, Mackey2, Tisseur, SIMAX 2006).
- $\mathbb{DL}(P)$ has dimension k and “almost all” their elements are Hermitian strong linearizations of $P(\lambda)$.
- The canonical basis of $\mathbb{DL}(P)$ is denoted by
 $$\{D_1(\lambda, P), D_2(\lambda, P), \ldots, D_k(\lambda, P)\},$$
 and all its pencils are immediately constructible from the coefficients of $P(\lambda)$.
- They are also particular examples of Fiedler Pencils with Repetition (Vologiannidis & Antoniou, MCSS, 2011).
- They are...
The canonical basis of $\mathbb{D}(P)$ (II)

$$P(\lambda) = A_4\lambda^4 + A_3\lambda^3 + A_2\lambda^2 + A_1\lambda + A_0$$

$$D_1(\lambda, P) = \lambda \begin{bmatrix} A_4 & -A_2 & -A_1 & -A_0 \\ -A_1 & -A_0 & -A_0 & -A_0 \\ -A_0 & -A_0 & -A_0 & -A_0 \end{bmatrix} - \begin{bmatrix} -A_3 & -A_2 & -A_1 & -A_0 \\ -A_2 & -A_1 & -A_0 & -A_0 \\ -A_1 & -A_0 & -A_0 & -A_0 \\ -A_0 & -A_0 & -A_0 & -A_0 \end{bmatrix}$$

$$D_2(\lambda, P) = \lambda \begin{bmatrix} A_4 \\ A_4 \\ A_4 \end{bmatrix} \begin{bmatrix} A_4 & -A_1 & -A_0 \\ -A_1 & -A_0 & -A_0 \\ -A_0 & -A_0 & -A_0 \end{bmatrix} - \begin{bmatrix} A_4 \\ A_4 \\ A_4 \end{bmatrix} \begin{bmatrix} -A_2 & -A_1 & -A_0 \\ -A_1 & -A_0 & -A_0 \\ -A_0 & -A_0 & -A_0 \end{bmatrix}$$
The canonical basis of $\mathcal{DL}(P)$ (II)

$$P(\lambda) = A_4 \lambda^4 + A_3 \lambda^3 + A_2 \lambda^2 + A_1 \lambda + A_0$$

$$D_3(\lambda, P) = \lambda \begin{bmatrix} A_4 & A_4 \\ A_4 & A_3 \end{bmatrix} - \begin{bmatrix} A_4 & A_4 \\ A_4 & A_3 \\ A_4 & A_2 \\ A_4 & A_1 \end{bmatrix}$$

$$D_4(\lambda, P) = \lambda \begin{bmatrix} A_4 & A_4 \\ A_4 & A_3 \end{bmatrix} - \begin{bmatrix} A_4 & A_4 \\ A_4 & A_3 \\ A_4 & A_2 \\ A_4 & A_1 \end{bmatrix}$$
When $D_m(\lambda, P)$ preserve the SC?

Theorem

Let $P(\lambda) = \sum_{i=0}^{k} A_i \lambda^i$ be a Hermitian matrix polynomial of degree k with A_k nonsingular. Let $D_m(\lambda, P)$ be the mth pencil in the canonical basis of $\mathbb{DL}(P)$ for $m = 1, \ldots, k$ and suppose A_0 is nonsingular if $m \neq k$.

If $k - m$ is even, then $D_m(\lambda, P)$ is a Hermitian linearization of $P(\lambda)$ with the same sign characteristic as $P(\lambda)$.

Remark: If $k - m$ is odd, the preservation of SC depends on $P(\lambda)$ in a nontrivial way: for some $P(\lambda)$ we have preservation, but not for others.
When $D_m(\lambda, P)$ preserve the SC?

Theorem

Let $P(\lambda) = \sum_{i=0}^{k} A_i \lambda^i$ be a Hermitian matrix polynomial of degree k with A_k nonsingular. Let $D_m(\lambda, P)$ be the mth pencil in the canonical basis of $\mathbb{DL}(P)$ for $m = 1, \ldots, k$ and suppose A_0 is nonsingular if $m \neq k$.

If $k - m$ is even, then $D_m(\lambda, P)$ is a Hermitian linearization of $P(\lambda)$ with the same sign characteristic as $P(\lambda)$.

Remark: If $k - m$ is odd, the preservation of SC depends on $P(\lambda)$ in a nontrivial way: for some $P(\lambda)$ we have preservation, but not for others.
Preservation of SC for arbitrary pencils in $\mathbb{DL}(P)$

- Ongoing work by Breen, Bueno, Ford & Furtado (not including me).
- Given the Hermitian matrix polynomial $P(\lambda) = A_k\lambda^k + \cdots + A_1\lambda + A_0$, then we define the space of associated pencils

$$\mathbb{DL}(P) := \{v_1D_1(\lambda, P) + v_2D_2(\lambda, P) + \cdots + v_kD_k(\lambda, P) : v_i \in \mathbb{R}\}$$

- Arbitrary pencils in $\mathbb{DL}(P)$ are not as nice as $D_j(\lambda, P)$ pencils, because they are constructed via operations that may be affected by errors.

Theorem (Breen, Bueno, Ford & Furtado, 2015...in progress)

Let $L(\lambda) := v_1D_1(\lambda, P) + v_2D_2(\lambda, P) + \cdots + v_kD_k(\lambda, P)$. Assume that A_k is nonsingular and the roots of

$$q(x; v) = v_1x^{k-1} + v_2x^{k-2} + \cdots + v_{k-1}x + v_k$$

are not eigenvalues of $P(\lambda)$. If $q(\lambda_i; v) > 0$ for any λ_i real eigenvalue of $P(\lambda)$, then $L(\lambda)$ is a Hermitian linearization of $P(\lambda)$ preserving its SC.

- An “if and only if” condition has been proved. It requires to know in advance detailed spectral information of $P(\lambda)$.
Preservation of SC for arbitrary pencils in $\mathbb{DL}(P)$

- Ongoing work by Breen, Bueno, Ford & Furtado (not including me).
- Given the Hermitian matrix polynomial $P(\lambda) = A_k\lambda^k + \cdots + A_1\lambda + A_0$, then we define the space of associated pencils

$$\mathbb{DL}(P) := \{ v_1D_1(\lambda, P) + v_2D_2(\lambda, P) + \cdots + v_kD_k(\lambda, P) : v_i \in \mathbb{R} \}$$

- Arbitrary pencils in $\mathbb{DL}(P)$ are not as nice as $D_j(\lambda, P)$ pencils, because they are constructed via operations that may be affected by errors.

Theorem (Breen, Bueno, Ford & Furtado, 2015...in progress)

Let $L(\lambda) := v_1D_1(\lambda, P) + v_2D_2(\lambda, P) + \cdots + v_kD_k(\lambda, P)$. Assume that A_k is nonsingular and the roots of

$$q(x; v) = v_1x^{k-1} + v_2x^{k-2} + \cdots + v_{k-1}x + v_k$$

are not eigenvalues of $P(\lambda)$. If $q(\lambda_i; v) > 0$ for any λ_i real eigenvalue of $P(\lambda)$, then $L(\lambda)$ is a Hermitian linearization of $P(\lambda)$ preserving its SC.

- An “if and only if” condition has been proved. It requires to know in advance detailed spectral information of $P(\lambda)$.

F. M. Dopico (U. Carlos III, Madrid)
Sign characteristic and linearizations
ICIAM 2015
26 / 34
Preservation of SC for arbitrary pencils in $\mathbb{D}L(P)$

- Ongoing work by Breen, Bueno, Ford & Furtado (not including me).
- Given the Hermitian matrix polynomial $P(\lambda) = A_k \lambda^k + \cdots + A_1 \lambda + A_0$, then we define the space of associated pencils

$$\mathbb{D}L(P) := \{v_1 D_1(\lambda, P) + v_2 D_2(\lambda, P) + \cdots + v_k D_k(\lambda, P) : v_i \in \mathbb{R}\}$$

- Arbitrary pencils in $\mathbb{D}L(P)$ are not as nice as $D_j(\lambda, P)$ pencils, because they are constructed via operations that may be affected by errors.

Theorem (Breen, Bueno, Ford & Furtado, 2015...in progress)

Let $L(\lambda) := v_1 D_1(\lambda, P) + v_2 D_2(\lambda, P) + \cdots + v_k D_k(\lambda, P)$. Assume that A_k is nonsingular and the roots of

$$q(x; v) = v_1 x^{k-1} + v_2 x^{k-2} + \cdots + v_{k-1} x + v_k$$

are not eigenvalues of $P(\lambda)$. If $q(\lambda_i; v) > 0$ for any λ_i real eigenvalue of $P(\lambda)$, then $L(\lambda)$ is a Hermitian linearization of $P(\lambda)$ preserving its SC.

- An “if and only if” condition has been proved. It requires to know in advance detailed spectral information of $P(\lambda)$.
Preservation of SC for arbitrary pencils in $\mathbb{DL}(P)$

- Ongoing work by Breen, Bueno, Ford & Furtado (not including me).
- Given the Hermitian matrix polynomial $P(\lambda) = A_k\lambda^k + \cdots + A_1\lambda + A_0$, then we define the space of associated pencils

$$\mathbb{DL}(P) := \{ v_1 D_1(\lambda, P) + v_2 D_2(\lambda, P) + \cdots + v_k D_k(\lambda, P) : v_i \in \mathbb{R} \}$$

- Arbitrary pencils in $\mathbb{DL}(P)$ are not as nice as $D_j(\lambda, P)$ pencils, because they are constructed via operations that may be affected by errors.

Theorem (Breen, Bueno, Ford & Furtado, 2015...in progress)

Let $L(\lambda) := v_1 D_1(\lambda, P) + v_2 D_2(\lambda, P) + \cdots + v_k D_k(\lambda, P)$. Assume that A_k is nonsingular and the roots of

$$q(x; v) = v_1 x^{k-1} + v_2 x^{k-2} + \cdots + v_{k-1} x + v_k$$

are not eigenvalues of $P(\lambda)$. If $q(\lambda_i; v) > 0$ for any λ_i real eigenvalue of $P(\lambda)$, then $L(\lambda)$ is a Hermitian linearization of $P(\lambda)$ preserving its SC.

- An “if and only if” condition has been proved. It requires to know in advance detailed spectral information of $P(\lambda)$.

F. M. Dopico (U. Carlos III, Madrid)
Sign characteristic and linearizations
ICIAM 2015
26 / 34
Ongoing work by Breen, Bueno, Ford & Furtado (not including me).

Given the Hermitian matrix polynomial \(P(\lambda) = A_k \lambda^k + \cdots + A_1 \lambda + A_0 \), then we define the space of associated pencils

\[
\mathbb{DL}(P) := \{ v_1 D_1(\lambda, P) + v_2 D_2(\lambda, P) + \cdots + v_k D_k(\lambda, P) : v_i \in \mathbb{R} \}
\]

Arbitrary pencils in \(\mathbb{DL}(P) \) are not as nice as \(D_j(\lambda, P) \) pencils, because they are constructed via operations that may be affected by errors.

Theorem (Breen, Bueno, Ford & Furtado, 2015...in progress)

Let \(L(\lambda) := v_1 D_1(\lambda, P) + v_2 D_2(\lambda, P) + \cdots + v_k D_k(\lambda, P) \). Assume that \(A_k \) is nonsingular and the roots of

\[
q(x; v) = v_1 x^{k-1} + v_2 x^{k-2} + \cdots + v_{k-1} x + v_k
\]

are not eigenvalues of \(P(\lambda) \). If \(q(\lambda_i; v) > 0 \) for any \(\lambda_i \) real eigenvalue of \(P(\lambda) \), then \(L(\lambda) \) is a Hermitian linearization of \(P(\lambda) \) preserving its SC.

An “if and only if” condition has been proved. It requires to know in advance detailed spectral information of \(P(\lambda) \).
1. The sign characteristic (SC) of Hermitian matrix polynomials

2. Characterizations of linearizations that preserve the SC

3. The canonical basis of $\mathbb{DL}(P)$ and the SC

4. The simplest Hermitian linearization preserves the SC

5. FPR and HGFPR pencils that preserve the SC

6. Conclusions and ongoing work
The famous block tridiagonal linearization for odd degree preserves SC

Theorem

Let $P(\lambda) = A_k \lambda^k + \cdots + A_1 \lambda + A_0$ be any matrix polynomial of odd degree and define (the generalized Fiedler pencil)

$$L(\lambda) := \begin{bmatrix}
\lambda A_1 + A_0 & \lambda I \\
\lambda I & 0 & I \\
I & \lambda A_3 + A_2 & \lambda I \\
& \ddots & \ddots & \ddots \\
I & \lambda A_{k-2} + A_{k-3} & \lambda I \\
& & \lambda I & 0 & I \\
& & I & \lambda A_{k-1} + A_{k-1}
\end{bmatrix}.$$

Then (Antoniou-Vologiannidis, 04; Mackey, Mehl, Mehrmann, 10):

- $L(\lambda)$ is always a strong linearization of $P(\lambda)$.
- If $P(\lambda)$ is Hermitian, then $L(\lambda)$ is also Hermitian,
- and (new), in addition, if A_k is nonsingular, then $L(\lambda)$ always has the same SC as $P(\lambda)$.
The famous block tridiagonal linearization for odd degree preserves SC

Theorem

Let $P(\lambda) = A_k \lambda^k + \cdots + A_1 \lambda + A_0$ be any matrix polynomial of odd degree and define (the generalized Fiedler pencil)

$$L(\lambda) := \begin{bmatrix}
\lambda A_1 + A_0 & \lambda I & & & \\
\lambda I & 0 & I & & \\
I & \lambda A_3 + A_2 & \lambda I & & \\
& \ddots & \ddots & \ddots & \\
& & I & \lambda A_{k-2} + A_{k-3} & \lambda I \\
& & \lambda I & 0 & I \\
& & I & \lambda A_k + A_{k-1} & \end{bmatrix}.$$

Then (Antoniou-Vologiannidis, 04; Mackey^2, Mehl, Mehrmann, 10):

- $L(\lambda)$ is always a strong linearization of $P(\lambda)$.
- If $P(\lambda)$ is Hermitian, then $L(\lambda)$ is also Hermitian,
- and (new), in addition, if A_k is nonsingular, then $L(\lambda)$ always has the same SC as $P(\lambda)$.
The famous block tridiagonal linearization for odd degree preserves SC

Theorem

Let $P(\lambda) = A_k \lambda^k + \cdots + A_1 \lambda + A_0$ be any matrix polynomial of **odd degree** and define (the **generalized Fiedler pencil**)

$$L(\lambda) := \begin{bmatrix}
\lambda A_1 + A_0 & \lambda I \\
\lambda I & 0 & I \\
I & \lambda A_3 + A_2 & \lambda I \\
\vdots & \vdots & \ddots & \vdots \\
I & \lambda A_{k-2} + A_{k-3} & \lambda I & \lambda I \\
\lambda I & 0 & I & \vdots \\
I & \lambda A_k + A_{k-1} & I & \cdots
\end{bmatrix}.$$

Then (Antoniou-Vologiannidis, 04; Mackey\(^2\), Mehl, Mehrmann, 10):

- $L(\lambda)$ is always a strong linearization of $P(\lambda)$.
- If $P(\lambda)$ is Hermitian, then $L(\lambda)$ is also Hermitian,
- and (new), in addition, if A_k is nonsingular, then $L(\lambda)$ always has the same SC as $P(\lambda)$.

The famous block tridiagonal linearization for odd degree preserves SC.

Theorem

Let \(P(\lambda) = A_k \lambda^k + \cdots + A_1 \lambda + A_0 \) be any matrix polynomial of odd degree and define (the generalized Fiedler pencil)

\[
L(\lambda) := \begin{bmatrix}
\lambda A_1 + A_0 & \lambda I \\
\lambda I & 0 & I \\
I & \lambda A_3 + A_2 & \lambda I \\
& & \ddots & \ddots & \ddots \\
& & I & \lambda A_{k-2} + A_{k-3} & \lambda I \\
& & \lambda I & 0 & I \\
& & I & \lambda A_k + A_{k-1}
\end{bmatrix}.
\]

Then (Antoniou-Vologiannidis, 04; Mackey\(^2\), Mehl, Mehrmann, 10):

- \(L(\lambda) \) is always a strong linearization of \(P(\lambda) \).
- If \(P(\lambda) \) is Hermitian, then \(L(\lambda) \) is also Hermitian,
- and (new), in addition, if \(A_k \) is nonsingular, then \(L(\lambda) \) always has the same SC as \(P(\lambda) \).
1. The sign characteristic (SC) of Hermitian matrix polynomials
2. Characterizations of linearizations that preserve the SC
3. The canonical basis of $\mathbb{D}L(P)$ and the SC
4. The simplest Hermitian linearization preserves the SC
5. FPR and HGFPR pencils that preserve the SC
6. Conclusions and ongoing work
We have characterized many families of **Fiedler Pencils with Repetition (FPR)** and

Hermitian Generalized Fiedler Pencils with Repetition (HGFPR)

which are Hermitian linearizations that preserve the SC of Hermitian matrix polynomials.

We restrict to show a couple of examples since the complete definitions of FPR and HGFPR pencils require considerable additional notation, although are all them are easily constructible from the coefficients of the polynomial.
We have characterized many families of Fiedler Pencils with Repetition (FPR) and

Hermitian Generalized Fiedler Pencils with Repetition (HGFPR)

which are Hermitian linearizations that preserve the SC of Hermitian matrix polynomials.

We restrict to show a couple of examples since the complete definitions of FPR and HGFPR pencils require considerable additional notation, although are all them are easily constructible from the coefficients of the polynomial.
We have characterized many families of Fiedler Pencils with Repetition (FPR) and Hermitian Generalized Fiedler Pencils with Repetition (HGFPR) which are Hermitian linearizations that preserve the SC of Hermitian matrix polynomials.

We restrict to show a couple of examples since the complete definitions of FPR and HGFPR pencils require considerable additional notation, although are all them are easily constructible from the coefficients of the polynomial.
We have characterized many families of Fiedler Pencils with Repetition (FPR) and

Hermitian Generalized Fiedler Pencils with Repetition (HGFPR)

which are Hermitian linearizations that preserve the SC of Hermitian matrix polynomials.

We restrict to show a couple of examples since the complete definitions of FPR and HGFPR pencils require considerable additional notation, although are all them are easily constructible from the coefficients of the polynomial.
Example 1: HGFPR based on $D_2(\lambda, P)$

\[P(\lambda) = A_6 \lambda^6 + \cdots + A_1 \lambda + A_0, \text{ with } A_i = A_i^* \in \mathbb{C}^{n \times n} \text{ and } A_6 \text{ nonsingular.} \]

Let $X_1, X_2, X_3, X_4 \in \mathbb{C}^{n \times n}$ be arbitrary Hermitian matrices and define the family of pencils $F_2(P)$ as

\[
\begin{bmatrix}
0 & A_6 & 0 & 0 & 0 & 0 \\
A_6 & A_5 & 0 & 0 & 0 & 0 \\
0 & 0 & -A_3 & X_3 & X_2 & X_1 \\
0 & 0 & X_3 & -A_1 & X_4 & 0 \\
0 & 0 & X_2 & X_4 & 0 & 0 \\
0 & 0 & X_1 & 0 & 0 & 0 \\
\end{bmatrix} - \begin{bmatrix}
A_6 & 0 & 0 & 0 & 0 & 0 \\
0 & -A_4 & -A_3 & X_3 & X_2 & X_1 \\
0 & -A_3 & -A_2 & -A_1 & X_4 & 0 \\
0 & X_3 & -A_1 & -A_0 & 0 & 0 \\
0 & X_2 & X_4 & 0 & 0 & 0 \\
0 & X_1 & 0 & 0 & 0 & 0 \\
\end{bmatrix}.
\]

Theorem

Any pencil in $F_2(P)$ such that X_1 and X_4 are nonsingular Hermitian matrices is a Hermitian linearization of $P(\lambda)$ with the same SC as $P(\lambda)$.

F. M. Dopico (U. Carlos III, Madrid)
Example 1: HGFPR based on $D_2(\lambda, P)$

\[P(\lambda) = A_6 \lambda^6 + \cdots + A_1 \lambda + A_0, \text{ with } A_i = A_i^* \in \mathbb{C}^{n \times n} \text{ and } A_6 \text{ nonsingular.} \]

Let $X_1, X_2, X_3, X_4 \in \mathbb{C}^{n \times n}$ be arbitrary Hermitian matrices and define the family of pencils $F_2(P)$ as

\[
\begin{bmatrix}
0 & A_6 & 0 & 0 & 0 & 0 & 0 \\
A_6 & A_5 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -A_3 & X_3 & X_2 & X_1 & 0 \\
0 & 0 & X_3 & -A_1 & X_4 & 0 & 0 \\
0 & 0 & X_2 & X_4 & 0 & 0 & 0 \\
0 & 0 & X_1 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
-
\begin{bmatrix}
A_6 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -A_4 & -A_3 & X_3 & X_2 & X_1 & 0 \\
0 & -A_3 & -A_2 & -A_1 & X_4 & 0 & 0 \\
0 & X_3 & -A_1 & -A_0 & 0 & 0 & 0 \\
0 & X_2 & X_4 & 0 & 0 & 0 & 0 \\
0 & X_1 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}.
\]

Theorem

Any pencil in $F_2(P)$ such that X_1 and X_4 are nonsingular Hermitian matrices is a Hermitian linearization of $P(\lambda)$ with the same SC as $P(\lambda)$.
Example 1: HGFPR based on $D_2(\lambda, P)$

$$P(\lambda) = A_6\lambda^6 + \cdots + A_1\lambda + A_0, \text{ with } A_i = A_i^* \in \mathbb{C}^{n \times n} \text{ and } A_6 \text{ nonsingular.}$$

Let $X_1, X_2, X_3, X_4 \in \mathbb{C}^{n \times n}$ be arbitrary Hermitian matrices and define the family of pencils $F_2(P)$ as

$$
\lambda
\begin{bmatrix}
0 & A_6 & 0 & 0 & 0 & 0 & 0 \\
A_6 & A_5 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -A_3 & X_3 & X_2 & X_1 & 0 \\
0 & 0 & X_3 & -A_1 & X_4 & 0 & 0 \\
0 & 0 & X_2 & X_4 & 0 & 0 & 0 \\
0 & 0 & X_1 & 0 & 0 & 0 & 0
\end{bmatrix}
-
\begin{bmatrix}
A_6 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -A_4 & -A_3 & X_3 & X_2 & X_1 & 0 \\
0 & -A_3 & -A_2 & -A_1 & X_4 & 0 & 0 \\
0 & X_3 & -A_1 & -A_0 & 0 & 0 & 0 \\
0 & X_2 & X_4 & 0 & 0 & 0 & 0 \\
0 & X_1 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}.
$$

Theorem

Any pencil in $F_2(P)$ such that X_1 and X_4 are nonsingular Hermitian matrices is a Hermitian linearization of $P(\lambda)$ with the same SC as $P(\lambda)$.

F. M. Dopico (U. Carlos III, Madrid)
Sign characteristic and linearizations
ICIAM 2015
31 / 34
Example 2: one pencil in the family of simple FPR

\[P(\lambda) = A_{10}\lambda^{10} + \cdots + A_1\lambda + A_0, \text{ with } A_i = A_i^* \in \mathbb{C}^{n \times n} \text{ and } A_{10} \text{ nonsingular.} \]

Define the pencil \(\lambda L_1 - L_0 \) with

\[
L_1 = \begin{bmatrix}
0 & 0 & A_{10} \\
0 & 0 & 0 & 0 & I_n \\
A_{10} & 0 & A_9 & 0 & A_8 \\
0 & 0 & 0 & 0 & I_n \\
I_n & A_8 & 0 & A_7 & A_6 \\
I_n & I_n & A_6 & A_5 \\
I_n & I_n & I_n & I_n & I_n \\
\end{bmatrix},
\]

\[
L_0 = \begin{bmatrix}
A_{10} & 0 & I_n & I_n \\
I_n & 0 & I_n & I_n \\
I_n & A_8 & 0 & I_n \\
I_n & I_n & A_6 & I_n \\
\end{bmatrix},
\]

Then \(\lambda L_1 - L_0 \) is a Hermitian linearization of \(P(\lambda) \) with the same SC as \(P(\lambda) \).
Example 2: one pencil in the family of simple FPR

\[P(\lambda) = A_{10} \lambda^{10} + \cdots + A_1 \lambda + A_0, \text{ with } A_i = A_i^* \in \mathbb{C}^{n \times n} \text{ and } A_{10} \text{ nonsingular.} \]

Define the pencil \(\lambda L_1 - L_0 \) with

\[
L_1 = \begin{bmatrix}
0 & 0 & A_{10} & 0 & 0 & I_n \\
0 & 0 & 0 & 0 & 0 & I_n \\
A_{10} & 0 & A_9 & 0 & A_8 & I_n \\
0 & 0 & 0 & 0 & 0 & I_n \\
I_n & A_8 & 0 & A_7 & A_6 & I_n \\
I_n & I_n & A_6 & A_5 & & &
\end{bmatrix},
\]

\[
L_0 = \begin{bmatrix}
A_{10} & 0 & I_n & 0 & 0 & I_n \\
0 & I_n & A_8 & 0 & 0 & I_n \\
I_n & I_n & A_6 & 0 & 0 & I_n \\
I_n & I_n & A_5 & 0 & 0 & I_n \\
\end{bmatrix},
\]

\[
\begin{bmatrix}
-A_3 & I_n & \\
I_n & 0 & \\
\end{bmatrix}, \quad \begin{bmatrix}
-A_1 & I_n & \\
I_n & 0 &
\end{bmatrix}, \quad \begin{bmatrix}
-A_4 & -A_3 & I_n & \\
-A_3 & -A_2 & 0 & -A_1 & I_n & \\
-A_3 & -A_2 & 0 & -A_1 & I_n & \\
-A_3 & -A_2 & 0 & -A_1 & I_n & \\
\end{bmatrix}
\]

Then \(\lambda L_1 - L_0 \) is a Hermitian linearization of \(P(\lambda) \) with the same SC as \(P(\lambda) \).
Example 2: one pencil in the family of simple FPR

\[P(\lambda) = A_{10}\lambda^{10} + \cdots + A_1\lambda + A_0, \text{ with } A_i = A_i^* \in \mathbb{C}^{n \times n} \text{ and } A_{10} \text{ nonsingular.} \]

Define the pencil \(\lambda L_1 - L_0 \) with

\[
L_1 = \begin{bmatrix}
0 & 0 & A_{10} \\
0 & 0 & 0 & 0 & I_n \\
A_{10} & 0 & A_9 & 0 & A_8 \\
0 & 0 & 0 & 0 & I_n \\
I_n & A_8 & 0 & A_7 & A_6 \\
I_n & I_n & A_6 & A_5 \\
\end{bmatrix},
\]

\[
L_0 = \begin{bmatrix}
A_{10} & 0 & I_n \\
0 & I_n & A_8 \\
I_n & A_6 \\
\end{bmatrix},
\]

Then \(\lambda L_1 - L_0 \) is a Hermitian linearization of \(P(\lambda) \) with the same SC as \(P(\lambda) \).
1. The sign characteristic (SC) of Hermitian matrix polynomials

2. Characterizations of linearizations that preserve the SC

3. The canonical basis of $\mathbb{DL}(P)$ and the SC

4. The simplest Hermitian linearization preserves the SC

5. FPR and HGFPR pencils that preserve the SC

6. Conclusions and ongoing work
Conclusions and ongoing developments

- We have now available infinitely many linearizations of Hermitian matrix polynomials which reflect faithfully all the structural properties of the original polynomials including their sign characteristics.

- According to preliminary outgoing work, among these linearizations, the "famous block tridiagonal one" seems to be the best from the point of view of coefficientwise eigenvalue backward errors and condition numbers,

- but it is only valid for odd degree polynomials. For even degree, we do not have yet a clear "winner".
Conclusions and ongoing developments

- We have now available infinitely many linearizations of Hermitian matrix polynomials which reflect faithfully all the structural properties of the original polynomials including their sign characteristics.

- According to preliminary outgoing work, among these linearizations, the “famous block tridiagonal one” seems to be the best from the point of view of coefficientwise eigenvalue backward errors and condition numbers,

- but it is only valid for odd degree polynomials. For even degree, we do not have yet a clear “winner”.
We have now available infinitely many linearizations of Hermitian matrix polynomials which reflect faithfully all the structural properties of the original polynomials including their sign characteristics.

According to preliminary outgoing work, among these linearizations, the “famous block tridiagonal one” seems to be the best from the point of view of coefficientwise eigenvalue backward errors and condition numbers,

but it is only valid for odd degree polynomials. For even degree, we do not have yet a clear “winner”.