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Introduction (I): The problem and the rules

To compute all the roots of a scalar polynomial

q(z) = bn z
n + bn−1 z

n−1 + · · ·+ b1 z + b0, bi ∈ C ,

with an algorithm which uses only floating point arithmetic (with unit
roundoff u, u ≈ 10−16 in IEEE double precision),

is efficient, that is, it has cost at most O(n3) operations (flops) and
ideally much less, and

enjoys guaranteed backward stability.
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What does “guaranteed backward stability” mean? (I)

Problem: Compute all the roots of a scalar polynomial

q(z) = bn z
n + bn−1 z

n−1 + · · ·+ b1 z + b0, bi ∈ C.

Loosely speaking: the computed roots are the exact roots of a nearby
polynomial

q̃(z) = b̃n z
n + b̃n−1 z

n−1 + · · ·+ b̃1 z + b̃0, b̃i ∈ C .

Rigorous meaning:

1. The whole ensemble of computed roots is the whole ensemble of
roots of q̃(z) and

‖q(z)− q̃(z)‖∞ = O(u) ‖q(z)‖∞,

where ‖q(z)‖∞ := max{|bn|, |bn−1|, . . . , |b1|, |b0|}, and the constant
involved in O(u) is a moderate low degree polynomial in n.
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What does “guaranteed backward stability” mean? (II)

Problem: Compute all the roots of a scalar polynomial

q(z) = bn z
n + bn−1 z

n−1 + · · ·+ b1 z + b0, bi ∈ C .

Several other possible rigorous meanings (not used in this talk):

2. The whole ensemble of computed roots is the whole ensemble of roots
of q̃(z) = b̃n z

n + b̃n−1 z
n−1 + · · ·+ b̃1 z + b̃0 and

|bi − b̃i| = O(u) |bi|, i = 1, . . . , n .

It has been proved by Mastronardi and Van Dooren, ETNA, 2015 that
there does not exist any algorithm that get this coefficient-wise backward
stability for quadratic polynomials −→ too strict!!

3. Each computed root λ̂ is the exact root of a nearby polynomial q̃λ(z)
(different for each λ̂ !!!!) and

|bi − (̃bλ)i| = O(u) |bi|, i = 1, . . . , n .

At present, algorithms with this type of coefficient-wise backward
stability are only known for cubic polynomials (Su, Lu, ICIAM, 2015).
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How does MATLAB compute all the roots of a polynomial? (simplified)

Step 1. Make the polynomial monic

q(z) = bn z
n + bn−1 z

n−1 + · · ·+ b1 z + b0 −→ p(z) := q(z)/bn .

p(z) = zn + an−1 z
n−1 + · · ·+ a1 z + a0 .

Step 2. Construct the first Frobenius Companion matrix of p(z)

C =


−an−1 · · · −a1 −a0

1
. . .

1

 ∈ Cn×n .

Step 3. Compute all the eigenvalues of C using the Francis-QR
algorithm.

Remark: C is the best known example of a companion matrix of p(z), that is,
a matrix easily constructible from p(z) and whose characteristic polynomial is
p(z). There are many other companion matrices, some developed very
recently.
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Main drawback of MATLAB’s approach

Compute with Francis-QR algorithm all the eigenvalues of

C =


−an−1 · · · −a1 −a0

1
. . .

1

 ∈ Cn×n .

O(n3) computational cost and O(n2) storage for only n input data.

TOO MUCH!!, though in practice MATLAB covers most of the interesting
cases, since the degrees often are not huge.

Long time dream started by C. Moler, Mathworks Newsletter, (1991):

“An algorithm designed specifically for polynomial roots might
use order n storage and n2 time”

and (community adds) to be as stable as MATLAB’s command roots.

After many tries the dream has been realized by Aurentz, Mach,
Vandebril, Watkins, SIMAX, 2015 via a highly structured version of
Francis-QR algorithm adapted to C (Will it be in MATLAB??).
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Accepted advantages of MATLAB’s “matrix” approach

Reliability in two senses.

1 Francis QR-algorithm is extremely robust. It enjoys “guaranteed
practical” convergence for all eigenvalues (roots).

2 Francis QR-algorithm is extremely stable. It enjoys perfect MATRIX
backward stability, that is, the computed roots of p(z) are the exact
eigenvalues of

C + E, with ‖E‖2 = O(u)‖C‖2,

where u(≈ 10−16) is the unit roundoff.
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Is this “the stability desired” for polynomial root-finding?

What kind of polynomial backward stability is provided by this perfect
matrix backward stability?

Note that for our monic poly p(z) = zn + an−1 z
n−1 + · · ·+ a1 z + a0,

cn ‖C‖2 ≤ ‖p‖∞ ≤ dn ‖C‖2,
for cn, dn low powers of n (note also ‖p‖∞ ≥ 1).

So, MATLAB computed roots of p(z) are the exact eigenvalues of

C + E, with ‖E‖2 = O(u)‖C‖2 = O(u)‖p‖∞,
or the exact roots of

p̃(z) = det(zI − (C + E)).

Van Dooren & DeWilde (1983), Edelman & Murakami (1995),
Lemmonier & Van Dooren (2003) proved

p̃(z) = p(z) + e(z), with ‖e(z)‖∞ = O(u)‖p(z)‖2∞,

which means that perfect matrix backward stability DOES NOT imply
perfect polynomial backward stability =⇒ there is a penalty.
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Reflections on this penalty

This penalty in the polynomial backward error is an intrinsic matrix
perturbation phenomenon, independent of the algorithm, and is
determined by

1 the particular properties of the Frobenius companion matrix C,

2 the magnitude of ‖E‖2 = O(u)‖C‖2(= O(u)‖p‖∞),

3 and the magnitude of

‖p̃(z)− p(z)‖∞ = ‖det(zI − (C + E))− det(zI − C)‖∞ .

A key reason for this penalty is that E is dense and does not respect the
structure of C.

F. M. Dopico (U. Carlos III, Madrid) Backward stability-Fiedler matrices November 16, 2015 9 / 42



Reflections on this penalty

This penalty in the polynomial backward error is an intrinsic matrix
perturbation phenomenon, independent of the algorithm, and is
determined by

1 the particular properties of the Frobenius companion matrix C,

2 the magnitude of ‖E‖2 = O(u)‖C‖2(= O(u)‖p‖∞),

3 and the magnitude of

‖p̃(z)− p(z)‖∞ = ‖det(zI − (C + E))− det(zI − C)‖∞ .

A key reason for this penalty is that E is dense and does not respect the
structure of C.

F. M. Dopico (U. Carlos III, Madrid) Backward stability-Fiedler matrices November 16, 2015 9 / 42



Reflections on this penalty

This penalty in the polynomial backward error is an intrinsic matrix
perturbation phenomenon, independent of the algorithm, and is
determined by

1 the particular properties of the Frobenius companion matrix C,

2 the magnitude of ‖E‖2 = O(u)‖C‖2(= O(u)‖p‖∞),

3 and the magnitude of

‖p̃(z)− p(z)‖∞ = ‖det(zI − (C + E))− det(zI − C)‖∞ .

A key reason for this penalty is that E is dense and does not respect the
structure of C.

F. M. Dopico (U. Carlos III, Madrid) Backward stability-Fiedler matrices November 16, 2015 9 / 42



Reflections on this penalty

This penalty in the polynomial backward error is an intrinsic matrix
perturbation phenomenon, independent of the algorithm, and is
determined by

1 the particular properties of the Frobenius companion matrix C,

2 the magnitude of ‖E‖2 = O(u)‖C‖2(= O(u)‖p‖∞),

3 and the magnitude of

‖p̃(z)− p(z)‖∞ = ‖det(zI − (C + E))− det(zI − C)‖∞ .

A key reason for this penalty is that E is dense and does not respect the
structure of C.

F. M. Dopico (U. Carlos III, Madrid) Backward stability-Fiedler matrices November 16, 2015 9 / 42



Reflections on this penalty

This penalty in the polynomial backward error is an intrinsic matrix
perturbation phenomenon, independent of the algorithm, and is
determined by

1 the particular properties of the Frobenius companion matrix C,

2 the magnitude of ‖E‖2 = O(u)‖C‖2(= O(u)‖p‖∞),

3 and the magnitude of

‖p̃(z)− p(z)‖∞ = ‖det(zI − (C + E))− det(zI − C)‖∞ .

A key reason for this penalty is that E is dense and does not respect the
structure of C.

F. M. Dopico (U. Carlos III, Madrid) Backward stability-Fiedler matrices November 16, 2015 9 / 42



But there are other companion matrices for p(z)!!

In the last years many new classes of companion matrices have been
developed.

This intense activity has been mainly motivated by the numerical
solution of polynomial eigenvalue problems.

One of the most relevant among these new families are the Fiedler
companion matrices, since they can be constructed very easily.

In this scenario, we have solved a similar perturbation problem for the
wider class of Fiedler companion matrices of p(z) (with the hope of
improving!!) and,

if Mσ is a Fiedler matrix, we consider more general perturbations of Mσ

‖E‖2 = O(u)α(p) ‖Mσ‖2,
where α(p) can be larger than one for backward errors of eigenvalue
algorithms faster than traditional Francis-QR, but which may NOT be
perfectly backward stable.

Goal of the talk: To present our recent backward stability results on
polynomial root-finding solved via eigenvalue algorithms applied on
Fiedler matrices.
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A summary of the main result for Fiedler matrices

Fiedler matrices also satisfy c̃n ‖Mσ‖2 ≤ ‖p‖∞ ≤ d̃n ‖Mσ‖2,

and we have proved that if

‖E‖2 = O(u)α(p)‖Mσ‖2 (= O(u)α(p)‖p‖∞),

then

‖p̃(z)− p(z)‖∞ = ‖det(zI − (Mσ + E))− det(zI −Mσ)‖∞

= O(u)α(p) ‖p(z)‖3∞,

if Mσ is not a Frobenius companion matrix.

So, the penalty in the transition from matrix to polynomial backward
errors is larger than for the classical Frobenius companion matrix,

but, note that all are satisfactory if ‖p‖∞ is moderate and none is if ‖p‖∞
is large.
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A fundamental remark

“...a general principle: a numerical process is more likely to be backward
stable when the number of outputs is small compared with the number of
inputs, so that there is an abundance of data onto which to “throw the
backward error”...”

N. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM,
2002, p.65.
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A final surprise: companion pencils and QZ algorithm (I)

Let us go back to the original nonmonic problem, i.e., to compute all the roots
of a scalar polynomial

q(z) = bn z
n + bn−1 z

n−1 + · · ·+ b1 z + b0, bi ∈ C ,

and define the first Frobenius companion pencil

C(z) = z


bn

1
. . .

1

−

−bn−1 · · · −b1 −b0

1
. . .

1

 ,
or any other Fiedler companion pencil

Fσ(z) = z


bn

1
. . .

1

−Mσ .

Both satisfy: q(z) = det(C(z)) = det(Fσ(z)) .
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A final surprise: companion pencils and QZ algorithm (II)

Alternative algorithms.

Step 1. Normalize the polynomial

q(z) = bn z
n + bn−1 z

n−1 + · · ·+ b1 z + b0 −→ s(z) := q(z)/‖q(z)‖∞ .

Step 2. Construct the Frobenius or any other Fiedler companion pencil
for s(z).

Step 3. Compute all the eigenvalues of the pencil using the QZ
algorithm for pencils.

Remark: This seems at a first glance a great way to WASTE CPU-time
because the number of flops used by the standard QZ algorithm is three
times the number of flops used by the QR algorithm,

but...
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A final surprise: companion pencils and QZ algorithm (III)

using the backward stability of the QZ algorithm applied on any regular
pencil zA−B, that is, the computed eigenvalues are the exact
eigenvalues of

z(A+EA)− (B+EB), with ‖EA‖2 = O(u)‖A‖2, ‖EB‖2 = O(u)‖B‖2,

and the normalization of the polynomial, ‖s(z)‖∞ = 1, which implies
that, for the pencils we are considering,

‖A‖2 ≤
√
2n and ‖B‖2 ≤

√
2n,

one can prove with a careful analysis that the whole ensemble of
computed roots is the whole ensemble of roots of q̃(z) with

‖q(z)− q̃(z)‖∞ = O(u) ‖q(z)‖∞,

that is, perfect polynomial backward stability!!!
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Jacobi formula and consequences (I)

Theorem (Jacobi)

Let A,E ∈ Cn×n. Then

p̃(z)− p(z) := det(zI − (A+ E))− det(zI −A)
= −trace( adj(zI −A)E) +O(‖E‖2),

where adj(zI −A) is the adjugate matrix (or classical adjoint) of zI −A, i.e.,
the transpose matrix of its cofactors.

Lemma (Gantmacher, 1959)

Let A ∈ Cn×n and p(z) := det(zI −A) = zn + an−1 z
n−1 + · · ·+ a1 z + a0.

Then

adj(zI −A) =
n−1∑
k=0

zkAk, Ak ∈ Cn×n,

and
An−1 = I, Ak = AAk+1 + ak+1I, for k = n− 2, n− 3, . . . , 0.
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Jacobi formula and consequences (II)

Theorem

Let A,E ∈ Cn×n,

p(z) := det(zI −A) = zn + an−1 z
n−1 + · · ·+ a1 z + a0,

p̃(z) := det(zI − (A+ E)) = zn + ãn−1 z
n−1 + · · ·+ ã1 z + ã0,

and

adj(zI −A) =
n−1∑
k=0

zkAk, Ak ∈ Cn×n.

Then

ãk − ak := −trace(Ak E) +O(‖E‖2), for k = 0, 1, . . . , n− 1.

Explicit formulas for trace(Ak E) obtained for

A = Frobenius companion matrix of p(z) by Edelman-Murakami (1995),

A =Mσ any other Fiedler companion matrix of p(z) in this talk.
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n−1 + · · ·+ ã1 z + ã0,
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Reminder: The Frobenius companion matrices

The best known companion matrices of a monic polynomial

p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0,

are the first and second Frobenius companion matrices of p(z):

C1 =


−an−1 · · · −a1 −a0

1
. . .

1

 , C2 =


−an−1 1

...
. . .

−a1 1
−a0

 ,
which have the property that

det(zI − C1) = det(zI − C2) = p(z) .
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Perturbation of the characteristic polynomial of C1

Theorem (Edelman, Murakami, 1995)

Let C1 ∈ Cn×n be the first Frobenius companion matrix of p(z), E ∈ Cn×n,
and

p(z) := det(zI − C1) = zn + an−1 z
n−1 + · · ·+ a1 z + a0,

p̃(z) := det(zI − (C1 + E)) = zn + ãn−1 z
n−1 + · · ·+ ã1 z + ã0.

Then, to first order in E:

ãk − ak =

k∑
s=0

n−k−1∑
j=1

asEj−s+k+1,j −
n∑

s=k+1

n∑
j=n−k

asEj−s+k+1,j .
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Penalty in polynomial backward errors from C1

Corollary

Let C1 ∈ Cn×n be the first Frobenius companion matrix of p(z), E ∈ Cn×n,
and

p(z) := det(zI − C1) = zn + an−1 z
n−1 + · · ·+ a1 z + a0,

p̃(z) := det(zI − (C1 + E)) = zn + ãn−1 z
n−1 + · · ·+ ã1 z + ã0.

If ‖E‖2 = O(u)α(p) ‖C1‖2 , then

‖p̃(z)− p(z)‖∞ = O(u)α(p) ‖p(z)‖2∞.

Even the “superstable” QR-algorithm applied to C1 does not lead to a
backward stable polynomial root-finding method. Yes if ‖p(z)‖∞ ≈ 1.

Edelman & Murakami provided numerical evidence that shows that if
balancing is used before the QR-algorithm is applied to C1, then

‖p̃(z)− p(z)‖∞ = O(u) ‖p(z)‖∞ .
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Definition of Fiedler matrices (Fiedler, LAA, 2003)

Given p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0, we define the following matrices

Mi :=


In−i−1

−ai 1
1 0

Ii−1

 ∈ Cn×n, i = 1, 2, . . . , n− 1

M0 :=

[
In−1 0
0 −a0

]
∈ Cn×n

For any permutation σ = (i0, i1, . . . , in−1) of (0, 1, . . . , n− 1), the Fiedler
companion matrix of p(z) associated to σ is

Mσ =Mi0Mi1 · · ·Min−1

Theorem (Fiedler, LAA, 2003)

For any monic polynomial p(z), all associated Fiedler matrices are similar to
each other, and their characteristic polynomials are equal to p(z).
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Examples of Fiedler matrices

p(z) = z6 + a5z
5 + a4z

4 + a3z
3 + a2z

2 + a1z + a0

First Frobenius companion matrix: C1 = M5M4M3M2M1M0

=


−a5 −a4 −a3 −a2 −a1 −a0

1
1

1
1

1


Second Frobenius companion matrix: C2 = M0M1M2M3M4M5

=


−a5 1
−a4 1
−a3 1
−a2 1
−a1 1
−a0


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Structural property 1 of Fiedler matrices

Every Fiedler matrix has exactly the same entries as the first Frobenius companion
matrix (in different positions).
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Examples of Fiedler matrices (II)

p(z) = z6 + a5z
5 + a4z

4 + a3z
3 + a2z

2 + a1z + a0

Special Fiedler matrices: Pentadiagonal matrices (there are 4 for each degree n).

P1 = (M0M2M4)(M1M3M5) =


−a5 1 0 0 0 0
−a4 0 −a3 1 0 0
1 0 0 0 0 0
0 0 −a2 0 −a1 1
0 0 1 0 0 0
0 0 0 0 −a0 0



Structural property 2 of Fiedler matrices

Frobenius companion matrices are the Fiedler matrices with largest bandwidth and
pentadiagonal Fiedler matrices are the ones with smallest bandwidth.
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Number of different Fiedler matrices

Recall that the Fiedler matrix Mσ associated with a permutation σ of
(0, 1, . . . , n− 1) is

Mσ =Mi0Mi1 · · ·Min−1

But MiMj =MjMi, for |i− j| 6= 1, and many permutations lead to the same
matrix.

This allows us to prove:

Lemma

There exist 2n−1 different Fiedler matrices associated with a monic
polynomial p(z) of degree n.
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Perturbation of the characteristic polynomial of a Fiedler matrix (I)

Theorem

Let Mσ ∈ Cn×n be a Fiedler matrix of p(z), E ∈ Cn×n, and

p(z) := det(zI −Mσ) = zn + an−1 z
n−1 + · · ·+ a1 z + a0,

p̃(z) := det(zI − (Mσ + E)) = zn + ãn−1 z
n−1 + · · ·+ ã1 z + ã0.

Then, to first order in E:

ãk − ak = −
n∑

i,j=1

p
(σ,k)
ij (a0, a1, . . . , an−1)Eij for k = 0, 1, . . . , n− 1,

where the functions p(σ,k)ij (a0, a1, . . . , an−1) are multivariable polynomials in
the coefficients of p(z) given by...
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the coefficients of p(z) given by...
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...the horror!!

(a) if vn−i = vn−j = 0 :

ak+iσ(n−j:n−i) ,

if j ≥ i and n− k − i+ 1 ≤ iσ(n− j : n− i) ≤ n− k;
−ak+1−iσ(n−i:n−j−1) ,

if j < i and k + 1 + i− n ≤ iσ(n− i : n− j − 1) ≤ k + 1;
0 , otherwise;

(b) if vn−i = vn−j = 1 :

ak+cσ(n−i:n−j) ,

if j ≤ i and n− k − j + 1 ≤ cσ(n− i : n− j) ≤ n− k;
−ak+1−cσ(n−j:n−i−1) ,

if j > i and k + 1 + j − n ≤ cσ(n− j : n− i− 1) ≤ k + 1;
0 , otherwise;

(c) if vn−i = 1 and vn−j = 0 :

1 , if iσ(0 : n− j − 1) + cσ(0 : n− i− 1) = k ,
0 , otherwise;
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...the horror!!

(d) if vn−i = 0 and vn−j = 1 :

l=min{k+1−cσ(n−j:n−i−1),i−1}∑
l=max{0,k+1+j−cσ(n−j:n−i−1)−n}

−(an+1−i+l ak+1−cσ(n−j:n−i−1)−l) ,

if j > i and k + 2 + j − i− n ≤ cσ(n− j : n− i− 1) ≤ k + 1;
l=min{k+1−iσ(n−i:n−j−1),j−1}∑

l=max{0,k+1+i−iσ(n−i:n−j−1)−n}

−(an+1−j+l ak+1−iσ(n−i:n−j−1)−l) ,

if j < i and k + 2 + i− j − n ≤ iσ(n− i : n− j − 1) ≤ k + 1;

0 , otherwise.
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Perturbation of the characteristic polynomial of a Fiedler matrix (II)

Theorem (Soft version)

Let Mσ ∈ Cn×n be a Fiedler matrix of p(z), E ∈ Cn×n, and

p(z) := det(zI −Mσ) = zn + an−1 z
n−1 + · · ·+ a1 z + a0,

p̃(z) := det(zI − (Mσ + E)) = zn + ãn−1 z
n−1 + · · ·+ ã1 z + ã0.

Then, to first order in E:

ãk − ak = −
n∑

i,j=1

p
(σ,k)
ij (a0, a1, . . . , an−1)Eij for k = 0, 1, . . . , n− 1,

where p(σ,k)ij (a0, a1, . . . , an−1) are multivariable polynomials such that

p
(σ,k)
ij (a0, a1, . . . , an−1) is a polynomial in ai with degree at most 2.

If Mσ = C1, C2, then all p(σ,k)ij (a0, a1, . . . , an−1) have degree 1.

If Mσ 6= C1, C2, then there is at least one k and some (i, j) such that
p
(σ,k)
ij (a0, a1, . . . , an−1) has degree 2.
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Penalty in polynomial backward errors from Fiedler matrices

Corollary

Let Mσ ∈ Cn×n be a Fiedler matrix of p(z), E ∈ Cn×n, and

p(z) := det(zI −Mσ) = zn + an−1 z
n−1 + · · ·+ a1 z + a0,

p̃(z) := det(zI − (Mσ + E)) = zn + ãn−1 z
n−1 + · · ·+ ã1 z + ã0.

If ‖E‖2 = O(u)α(p) ‖Mσ‖2 , then

For Mσ Frobenius companion matrix,

‖p̃(z)− p(z)‖∞ = O(u)α(p) ‖p(z)‖2∞.

For Mσ NOT Frobenius companion matrix,

‖p̃(z)− p(z)‖∞ = O(u)α(p) ‖p(z)‖3∞.

Remark: Only backward stability in polynomial root finding if ‖p(z)‖∞ ≈ 1.
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Scaling does not work: a key remark by V. Noferini (2014)

Let p(z) = zn +

n−1∑
i=0

ai z
i, with ‖p(z)‖∞ > 1.

Then

t(z) := βn p

(
z

β

)
= zn +

n−1∑
i=0

(ai β
n−i) zi,

and it is inmediate to choose β such that maxi
∣∣ai βn−i∣∣ = 1.

Moreover,

t(z0) = 0⇐⇒ p

(
z0
β

)
= 0 .

But, Vanni Noferini pointed out that this process does not lead to
“backward stability” in the original polynomial.

More precisely,

‖t̃(z)− t(z)‖∞ = O(u)⇒ ‖p̃(z)− p(z)‖∞ = O(u) max
i
|β|i−n = O(u)

(
1

|β|

)n
.
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Key points on balancing

Balancing any Fiedler matrix of p(z) before applying QR yields (very
often) perfect polynomial backward stability:

‖p̃(z)− p(z)‖∞ = O(u) ‖p(z)‖∞.

However, it is always possible to find p(z) for which balancing does not
improve backward stability.

The theoretical treatment of “balancing” Fiedler matrices from the point
of view of polynomial backward errors is trivial from our results, but

the expressions we get are not useful to predict the backward errors.
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How to deal with balancing?

Balancing a Fiedler matrix Mσ of p(z) consists in

Mσ −→ DMσD
−1, with D = diag(2t1 , . . . , 2tn)

such that ‖rowi(DMσD
−1)‖∞ ≈ ‖coli(DMσD

−1)‖∞ for all i.

Exact computation with cost O(n2).

QR on DMσD
−1 computes roots of p(z) which are the exact

eigenvalues of

DMσD
−1 + Ẽ, with ‖Ẽ‖2 = O(u) ‖DMσD

−1‖2

or, the exact roots of

p̃(z) = det(zI − (DMσD
−1 + Ẽ))

= det(zI − (Mσ +D−1ẼD))

We have already solved this problem!!
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= det(zI − (Mσ +D−1ẼD))
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The effect of balancing on polynomial backward error

Theorem
Let Mσ be a Fiedler matrix of p(z), D its diagonal balancing matrix,
Ẽ ∈ Cn×n, and

p(z) := det(zI −Mσ) = zn + an−1 z
n−1 + · · ·+ a1 z + a0,

p̃(z) := det(zI − (Mσ +D−1ẼD)) = zn + ãn−1 z
n−1 + · · ·+ ã1 z + ã0.

Then, to first order in Ẽ:

ãk − ak = −
n∑

i,j=1

p
(σ,k)
ij (a0, a1, . . . , an−1)

dj
di
Ẽij for k = 0, 1, . . . , n− 1,

where p(σ,k)ij (a0, a1, . . . , an−1) are the previous multivariable polynomials.

Moreover, if ‖Ẽ‖2 = O(u) ‖DMσD
−1‖2 , then

‖p̃(z)− p(z)‖∞ = O(u) max
i,j,k

(∣∣∣∣p(σ,k)ij (a0, . . . , an−1)
dj
di

∣∣∣∣) ‖DMσD
−1‖2.
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...but we cannot go further

‖p̃(z)− p(z)‖∞ = O(u) max
i,j,k

(∣∣∣∣p(σ,k)ij (a0, . . . , an−1)
dj
di

∣∣∣∣) ‖DMσD
−1‖2

because D is a very complicated function of a0, . . . , an−1, so

we cannot estimate neither

max
i,j,k

(∣∣∣∣p(σ,k)ij (a0, . . . , an−1)
dj
di

∣∣∣∣)
nor

‖DMσD
−1‖2

a priori,

while without balancing

max
i,j,k

(∣∣∣p(σ,k)ij (a0, . . . , an−1)
∣∣∣) ≤ n‖p(z)‖2∞, ‖Mσ‖2 ≈ ‖p(z)‖∞ .
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Goals and design of numerical experiments

The goals of the numerical experiments are
1 to show that our bounds correctly predict the dependence on the

norm of p(z) of the polynomial backward errors when the roots are
computed as the eigenvalues of a Fiedler matrix with QR, and

2 to study the effect of balancing the Fiedler companion matrices.

We proceed as follows:
1 We generate 500 random monic polys of degree 20 for each fixed

value ‖p‖∞.
2 We compute exactly (in quadruple precision) the polynomial

backward error corresponding to the roots computed by QR.
3 We do this for four different Fiedler matrices

Mσ1 = second classical Frobenius,
Mσ2 = a pentadiagonal,
Mσ3 = the second F-matrix,
Mσ4 = “another one”.
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Numerical experiments (without balancing)
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Numerical experiments (with balancing): surprise!!
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Perturbation of characteristic polynomials of general pencils

Theorem (Corollary of Theorem Jacobi)

Let A,B,E,G ∈ Cn×n, and

q(z) := det(zB −A) = bn z
n + bn−1 z

n−1 + · · ·+ b1 z + b0,

q̃(z) := det(z(B +G)− (A+ E)) = b̃nz
n + b̃n−1 z

n−1 + · · ·+ b̃1 z + b̃0.

Then

1

q̃(z)− q(z) = trace( adj(zB −A) (zG− E) ) +O(‖[EG]‖2),

2 and, if adj(zB −A) =
∑n−1
k=0 z

kPk, where Pk ∈ Cn×n,

b̃k − bk := trace(Pk−1G− Pk E) +O(‖[EG]‖2), for k = 0, 1, . . . , n,

with Pn = P−1 := 0.
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The case of Fiedler pencils

So, the key to bound |̃bk − bk| is to get expressions (or bounds on their
norms) for the matrices Pk in adj(zB −A) =

∑n−1
k=0 z

kPk.

In the particular case of Fiedler companion pencils Fσ(q) of q(z)
(including the classical Frobenius pencils), this problem can be reduced
to the already solved case of Fielder matrices Mσ as follows.

Define from q(z) the monic polynomial p(z) := q(z)/bn. Then, it can be
proved

Fσ(q) = Sσ(zI −Mσ(p))Tσ, with

Sσ := diag(bn, s2, . . . , sn), si = 1 or bn ,

Tσ := diag(1 , t2, . . . , tn), ti = 1 or b−1n ,

and SσTσ = diag(bn, 1, . . . , 1).

From here,

adjFσ(q) = adj(Tσ) adj(zI −Mσ(p)) adj(Sσ) .
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Final backward-error (perturbation) result for Fiedler pencils

Corollary

Let Fσ(z) = zMn −Mσ be a Fiedler pencil of q(z), E,G ∈ Cn×n, and

q(z) := det(zMn −Mσ) = bn z
n + bn−1 z

n−1 + · · ·+ b1 z + b0,

q̃(z) := det(z(Mn +G)− (Mσ + E)) = b̃n z
n + b̃n−1 z

n−1 + · · ·+ b̃1 z + b̃0.

If ‖G‖2 = O(u) ‖Mn‖2 and ‖E‖2 = O(u) ‖Mσ‖2 , then,

for Fσ(z) a Frobenius companion pencil,

‖q̃(z)− q(z)‖∞ = O(u) max{1, ‖q(z)‖2∞}.

for Fσ(z) NOT Frobenius companion pencil,

‖q̃(z)− q(z)‖∞ = O(u) max{1, ‖q(z)‖3∞}.

Remark: Backward stability for normalized polynomials ‖q(z)‖∞ = 1

and we can normalize!!!!!
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Conclusions

Assume that we apply to Fiedler and classical Frobenius companion
matrices of a monic polynomial p(z) the “same eigenvalue algorithm”
(or algorithms with similar matrix backward stability properties) for
computing its roots.

Proved: these approaches do NOT lead to guaranteed polynomial
backward stability, but from the point of view of polynomial backw-errors:

Proved: Unbalanced Fiedler matrices are as good as classical Frobenius
companion matrices if ‖p(z)‖∞ is moderate.

Proved: Unbalanced Fiedler matrices are worse than classical Frobenius
companion matrices if ‖p(z)‖∞ � 1, but both are bad.

From numerical experiments: Balanced Fiedler matrices are as good as
classical Frobenius companion matrices always, but none of them are
always good.

Proved: with Fiedler and classical Frobenius companion pencils+QZ
perfect polynomial backward stability is guaranteed, but it is
computationally more expensive (at present) and the effect of
conditioning needs to be investigated.
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