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The complete eigenstructure of a matrix polynomial

Definition
The complete eigenstructure of an m× n matrix polynomial P (λ) of rank r is
given by:

r invariant polynomials p1(λ), . . . , pr(λ),

(equivalently the finite eigenvalues of P (λ) and their Jordan structures),

r infinite partial multiplicities γ1, . . . , γr,

(equivalently the Jordan structure of the infinite eigenvalue of P (λ)),

n− r right minimal indices ε1, . . . , εn−r, and

m− r left minimal indices η1, . . . , ηm−r.

Remark
The complete eigenstructure is composed by the regular and the singular
structures. This talk is focused on the singular structure.
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The complete inverse eigenstructure problem of matrix polynomials

If a complete eigenstructure and a degree d are prescribed, one wants

1 to find necessary and sufficient conditions for the existence of a matrix
polynomial P (λ) with precisely this eigenstructure and this degree,

2 to construct such P (λ),
3 and, ideally, to construct P (λ) in such a way that reveals “as simply as

possible” the realized complete eigenstructure or a significant part of it.

Remarks:

If the degree is not prescribed, the problem is trivial: d = 1 via the KCF.

Goals 1 and 2 achieved in De Terán, D, Van Dooren, SIMAX, 2015 and
the solution is heavily based on dual minimal bases.

Goal 3 still under development −→ see key advances in Van Dooren’s
talk and more to come soon.

Fundamental tool in Goal 3: Polynomial Zigzag Matrices for

solving the inverse row-degree problem for dual minimal bases

(De Terán, D, Mackey, Van Dooren, LAA, in press)
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Part of a long tradition on prescribed degree “partial” inverse

eigenstructure problems for matrix polynomials

Marques de Sá, LAA 1979: regular polys with nonsingular leading
coefficient, arbitrary degree.

Gohberg, Lancaster, Rodman, book, 1982: regular monic polys,
arbitrary degree.

Taslaman, Tisseur, Zaballa, LAA, 2013: general polys, arbitrary degree,
only finite and infinite elementary divisors are prescribed.

Johansson, Kågström, Van Dooren, LAA 2013: general polys with full
rank (having only left or right minimal indices), arbitrary degree.

Steve Mackey, unpublished, as a consequence of quasi-canonical
forms: only for degree 2 but complete eigenstructure is prescribed.

Other related non-general structured works: Lancaster & Prells (J.
Sound Vib., 2005), Lancaster (SIMAX, 2007), Lancaster & Tisseur (LAA,
2012), Lancaster & Zaballa (SIMAX, 2014), Batzke & Mehl (LAA, 2014),
De Terán & D& Mackey & Perović (in progress), Mackey & Tisseur (in
progress), ...
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Outline

1 Preliminary concepts

2 The inverse row-degree problem for dual minimal bases

3 Polynomial Zigzag Matrices

4 Solving the inverse row-degree problem for dual minimal bases

5 Conclusions
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Minimal indices of pencils

Definition (Minimal Indices of a Matrix Pencil)

Let A− λB be a matrix pencil with Kronecker Canonical Form

U(A− λB)V =Lε1 ⊕ · · · ⊕ Lεp ⊕ LTη1 ⊕ · · · ⊕ L
T
ηq

⊕ Jk1(λ− λ1)⊕ · · · ⊕ Jkf (λ− λf )⊕N`1(λ)⊕ · · · ⊕N`s(λ),

where

Lε =

 1 λ
. . .

. . .

1 λ


ε×(ε+1)

, LTη =


1

λ
. . .

. . . 1
λ


(η+1)×η

.

Then ε1, . . . , εp are the right minimal indices of A− λB and η1, . . . , ηq are
the left minimal indices of A− λB.

To extend the notion of minimal indices to matrix polynomials of arbitrary
degree requires some additional concepts.
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Rational vector spaces and subspaces

In this talk:

F is an arbitrary field and

F[λ] is the ring of polynomials with coefficients in F.

In addition, F(λ) is the field of rational functions over F and

F(λ)n is the vector space over F(λ) of n-tuples with entries in F(λ).

Example: 
λ+ 2

λ2

1

(λ+ 1)3

 ∈ R(λ)2

F(λ)n is said to be a rational vector space and its subspaces are
rational vector subspaces. (Wolovich-1974, Forney-1975)
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Minimal bases of rational vector subspaces

Any rational subspace V ⊆ F(λ)n has bases consisting entirely of vector
polynomials.

Example:
λ+ 2

λ2

1

(λ+ 1)3

 ∈ V =⇒ λ2 (λ+ 1)3


λ+ 2

λ2

1

(λ+ 1)3

 =

 (λ+ 2)(λ+ 1)3

λ2

 ∈ V

Definition (Minimal basis)

A minimal basis of the rational subspace V ∈ F(λ)n is a basis

1 consisting of vector polynomials

2 whose sum of degrees is minimal among all bases of V consisting of
vector polynomials.
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Minimal indices of rational vector subspaces

There are infinitely many minimal bases of a rational subspace V ⊆ F(λ)n ,
but...

Theorem (Forney, 1975. Gantmacher, 1959...probably known before)

The ordered list of degrees of the vector polynomials in any minimal basis of
V ⊆ F(λ)n is always the same.

Definition
These degrees are called the minimal indices of V ⊆ F(λ)n.

Minimal bases and indices were introduced by Plemelj-1908, Muskhelishvili
and Vekua-1943, but Forney-1975 made this concept very important in
Multivariable Linear System Theory, then appeared in the book by
Kailath-1980, ...
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Minimal indices and bases of matrix polynomials

An m× n matrix polynomial P (λ) whose rank r is smaller than m and/or n
has non-trivial left and/or right rational null-spaces (over the field F(λ) of
rational functions):

N`(P ) :=
{
y(λ)T ∈ F(λ)1×m : y(λ)TP (λ) ≡ 0T

}
,

Nr(P ) :=
{
x(λ) ∈ F(λ)n×1 : P (λ)x(λ) ≡ 0

}
.

Definition (Right minimal bases and indices of P (λ))

The right minimal bases and indices of P (λ) are those of Nr(P ).

Analogous definitions for left minimal bases and indices.
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Example of right minimal basis and indices of a matrix polynomial

P (λ) =

1 −λ3
1 −λ

1 −λ

 ∈ R[λ]3×5

Nr(P ) = Span{


λ3

1
0
0
0


︸ ︷︷ ︸
u1

,


0
0
λ2

λ
1


︸ ︷︷ ︸
u2

} = Span{


λ3

1
λ3

λ2

λ


︸ ︷︷ ︸
w1

,


λ5

λ2

λ2

λ
1


︸ ︷︷ ︸
w2

}

Sum of degrees of {u1, u2} = 3 + 2 = 5 (right minimal bases of P (λ))

Sum of degrees of {w1, w2} = 3 + 5 = 8

Right minimal indices of P (λ) = {2, 3}
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Practical characterization of minimal bases

REMARK: We often arrange minimal bases as the rows of matrices and
call “basis” to the matrix.
Theorem (Forney 1975...probably known before)

The rows of a matrix polynomial N(λ) over a field F are a minimal basis of the
subspace they span if and only if

(a) N(λ0) has full row rank for all λ0 ∈ F, and

(b) the highest-row-degree coefficient matrix of N(λ) has also full row rank.

Example (of minimal basis)

N(λ) =

[
λ3 1 0 0 0
0 0 λ2 λ 1

]

N(λ) satisfies (a) by the 1’s.

N(λ) satisfies (b) since its highest-row-degree coefficient matrix is[
1 0 0 0 0
0 0 1 0 0

]
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Outline

1 Preliminary concepts

2 The inverse row-degree problem for dual minimal bases

3 Polynomial Zigzag Matrices

4 Solving the inverse row-degree problem for dual minimal bases

5 Conclusions
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Dual Minimal Bases

Definition (Dual Minimal Bases. (Forney, 1975))

Matrix polynomials M(λ) ∈ F[λ]m×n and N(λ) ∈ F[λ]k×n are said to be dual
minimal bases if

(a) both are minimal bases,

(b) m+ k = n,

(c) and M(λ)N(λ)T = 0.

Remark

Dual minimal bases have classical applications in Linear System Theory
for constructing left and right coprime factorizations of transfer functions,

and modern applications for constructing strong linearizations and
`-ifications of matrix polynomials, solving inverse eigenstructure
problems for matrix polynomials, and performing backward
error-analyses of polynomial eigenvalue problems solved by
linearizations...
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Dual Minimal Bases: Example and comments

Example (M(λ)N(λ)T = 0)

M(λ) =

 1 λ
1 λ

1 λ

 ∈ F[λ]3×4

N(λ) =
[
λ3 −λ2 λ −1

]
∈ F[λ]1×4

Remarks

In general, for dual minimal bases M(λ)N(λ)T = 0:

M(λ) is a left minimal basis of N(λ)T (so, the row-degrees of M(λ) are
the left minimal indices of N(λ)T ) and

N(λ)T is a right minimal basis of M(λ) (so, the row-degrees of N(λ) are
the right minimal indices of M(λ)).
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Forney’s theorem and the inverse row-degree problem

Theorem (Forney 1975, but probably known before)

Let M(λ) ∈ F[λ]m×n and N(λ) ∈ F[λ]k×n be dual minimal bases with row
degrees (η1, . . . , ηm) and (ε1, . . . , εk), respectively. Then

m∑
i=1

ηi =

k∑
j=1

εj .

GOAL OF THE TALK: Solve the corresponding INVERSE PROBLEM

Given any two lists of nonnegative integers (η1, . . . , ηm) and (ε1, . . . , εk) that
have the same sum:

do there exist dual minimal bases having these numbers as their row
degrees?

can we explicitly construct such dual minimal bases?

can we do it in such a way that M(λ) reveals transparently (ε1, . . . , εk)
and vice versa?

F. M. Dopico (U. Carlos III, Madrid) Inverse problems for matrix polynomials October 26, 2015 17 / 33



Forney’s theorem and the inverse row-degree problem

Theorem (Forney 1975, but probably known before)

Let M(λ) ∈ F[λ]m×n and N(λ) ∈ F[λ]k×n be dual minimal bases with row
degrees (η1, . . . , ηm) and (ε1, . . . , εk), respectively. Then

m∑
i=1

ηi =

k∑
j=1

εj .

GOAL OF THE TALK: Solve the corresponding INVERSE PROBLEM

Given any two lists of nonnegative integers (η1, . . . , ηm) and (ε1, . . . , εk) that
have the same sum:

do there exist dual minimal bases having these numbers as their row
degrees?

can we explicitly construct such dual minimal bases?

can we do it in such a way that M(λ) reveals transparently (ε1, . . . , εk)
and vice versa?

F. M. Dopico (U. Carlos III, Madrid) Inverse problems for matrix polynomials October 26, 2015 17 / 33



Forney’s theorem and the inverse row-degree problem

Theorem (Forney 1975, but probably known before)

Let M(λ) ∈ F[λ]m×n and N(λ) ∈ F[λ]k×n be dual minimal bases with row
degrees (η1, . . . , ηm) and (ε1, . . . , εk), respectively. Then

m∑
i=1

ηi =

k∑
j=1

εj .

GOAL OF THE TALK: Solve the corresponding INVERSE PROBLEM

Given any two lists of nonnegative integers (η1, . . . , ηm) and (ε1, . . . , εk) that
have the same sum:

do there exist dual minimal bases having these numbers as their row
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can we explicitly construct such dual minimal bases? YES
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Polynomial Zigzag Matrices

Example of forward Zigzag matrix:

Z(λ) =


1 λ2 λ7 λ8

1 λ3

1 λ λ4 λ8 λ15

1 λ2 λ3


Definition

Z(λ) ∈ Fm×n with m < n is a forward-zigzag matrix, if

(a) each row of Z(λ) is of the form[
0 . . . 0︸ ︷︷ ︸ 1 λp1 λp2 . . . λpk 0 . . . 0︸ ︷︷ ︸ ] ,

Maybe none Maybe none

with 0 < p1 < p2 < · · · < pk and k ≥ 1.

(b) Z(λ) is in a double-echelon form: the last nonzero entry of each row and
the first nonzero entry of the row just below are in the same column.

(c) Z(λ) has no zero columns.
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0 . . . 0︸ ︷︷ ︸ 1 λp1 λp2 . . . λpk 0 . . . 0︸ ︷︷ ︸ ] ,

Maybe none Maybe none

with 0 < p1 < p2 < · · · < pk and k ≥ 1.

(b) Z(λ) is in a double-echelon form: the last nonzero entry of each row and
the first nonzero entry of the row just below are in the same column.

(c) Z(λ) has no zero columns.

F. M. Dopico (U. Carlos III, Madrid) Inverse problems for matrix polynomials October 26, 2015 19 / 33



Polynomial Zigzag Matrices

Example of forward Zigzag matrix:

Z(λ) =


1 λ2 λ7 λ8

1 λ3

1 λ λ4 λ8 λ15

1 λ2 λ3


Definition

Z(λ) ∈ Fm×n with m < n is a forward-zigzag matrix, if

(a) each row of Z(λ) is of the form[
0 . . . 0︸ ︷︷ ︸ 1 λp1 λp2 . . . λpk 0 . . . 0︸ ︷︷ ︸ ] ,

Maybe none Maybe none

with 0 < p1 < p2 < · · · < pk and k ≥ 1.

(b) Z(λ) is in a double-echelon form: the last nonzero entry of each row and
the first nonzero entry of the row just below are in the same column.

(c) Z(λ) has no zero columns.

F. M. Dopico (U. Carlos III, Madrid) Inverse problems for matrix polynomials October 26, 2015 19 / 33



Basic properties of Forward-Zigzag Matrices

Example of forward Zigzag matrix:

Z(λ) =


1 λ2 λ7 λ8

1 λ3

1 λ λ4 λ8 λ15

1 λ2 λ3


Every zigzag matrix is a minimal basis.

Zigzag matrices generalize, in a nontrivial way, to degrees larger than 1
right singular blocks of the KCF of pencils, which are the unique zigzag
matrices that have all the row-degrees equal to 1.
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Tools for describing Forward-Zigzag Matrices

Example of forward Zigzag matrix:

Z(λ) =


1 λ2 λ7 λ8

1 λ3

1 λ λ4 λ8 λ15

1 λ2 λ3


Unit column sequence of a forward-zigzag matrix. In the example

U,N,N,U,U,N,N,N,U,N,N

Degree-gap sequence of a forward-zigzag matrix. In the example

2, 5, 1, 3, 1, 3, 4, 7, 2, 1

Structure sequence of a forward-zigzag matrix. In the example[
U 2 N 5 N 1 U 3 U 1 N 3 N 4 N 7 U 2 N 1 N

]
From the structure sequence we can construct Z(λ) .
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Backward-Zigzag Polynomial Matrices

Example of backward Zigzag matrix:

Ẑ(λ) =



λ2 1
λ5 1

λ5 λ4 λ 1
λ3 1

λ4 1
λ9 λ2 1

λ 1


Backward Zigzag matrices are obtained by reversing the order of rows
and columns of forward Zigzag matrices.

Similar properties and tools as for forward Zigzag matrices.

In the example, the structure sequence is[
N 2 U 5 U 1 N 3 N 1 U 3 U 4 U 7 N 2 U 1 U

]
.
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Dual Zigzag Matrices

Definition
Suppose

1 Z(λ) ∈ F[λ]m×n is a forward-zigzag matrix and

2 Z♦(λ) ∈ F[λ]k×n is a backward-zigzag matrix

with the same number of columns. Then Z(λ) and Z♦(λ) are said to be dual
zigzag matrices, if they have

(a) the same degree-gap sequence, but

(b) complementary unit column sequences, where U and N are each other’s
complement.
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Example of Dual Zigzag Matrices

Z(λ) =


1 λ2 λ7 λ8

1 λ3

1 λ λ4 λ8 λ15

1 λ2 λ3



Z♦(λ) =



λ2 1
λ5 1

λ5 λ4 λ 1
λ3 1

λ4 1
λ9 λ2 1

λ 1



Both have the same degree-gap sequence:

2, 5, 1, 3, 1, 3, 4, 7, 2, 1

F. M. Dopico (U. Carlos III, Madrid) Inverse problems for matrix polynomials October 26, 2015 24 / 33



Example of Dual Zigzag Matrices

Z(λ) =


1 λ2 λ7 λ8

1 λ3

1 λ λ4 λ8 λ15

1 λ2 λ3



Z♦(λ) =



λ2 1
λ5 1

λ5 λ4 λ 1
λ3 1

λ4 1
λ9 λ2 1

λ 1


Both have the same degree-gap sequence:

2, 5, 1, 3, 1, 3, 4, 7, 2, 1

F. M. Dopico (U. Carlos III, Madrid) Inverse problems for matrix polynomials October 26, 2015 24 / 33



Example of Dual Zigzag Matrices

Z(λ) =


1 λ2 λ7 λ8

1 λ3

1 λ λ4 λ8 λ15

1 λ2 λ3



Z♦(λ) =



λ2 1
λ5 1

λ5 λ4 λ 1
λ3 1

λ4 1
λ9 λ2 1

λ 1


Both have the same degree-gap sequence:

2, 5, 1, 3, 1, 3, 4, 7, 2, 1

F. M. Dopico (U. Carlos III, Madrid) Inverse problems for matrix polynomials October 26, 2015 24 / 33



First Key result on Dual Zigzag Matrices: they “are” Dual Minimal Bases

Theorem (from dual Zigzag to dual minimal bases)

Suppose

Z(λ) ∈ F[λ]m×n and Z♦(λ) ∈ F[λ](n−m)×n are dual Zigzag matrices, and

Σn := diag(1,−1, 1,−1, . . . , (−1)n−1).

Then Z(λ) and (Z♦(λ) · Σn) are dual minimal bases.
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From dual Zigzag matrices to dual minimal bases

Z(λ) =


1 λ2 λ7 λ8

1 λ3

1 λ λ4 λ8 λ15

1 λ2 λ3



Z♦(λ) · Σn =



λ2 −1
−λ5 1

λ5 −λ4 λ −1
−λ3 1

λ4 −1
−λ9 λ2 −1

−λ 1


Both have the same degree-gap sequence:

2, 5, 1, 3, 1, 3, 4, 7, 2, 1
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Second Key result on Dual Zigzag Matrices: Z(λ) reveals transparently

the row degrees of its dual

, i.e., Z(λ) reveals transparently its right minimal indices.

Lemma

Suppose Z(λ) ∈ F[λ]m×n is a forward-zigzag matrix with structure sequence

S =
[

S1
δ1 S2

δ2 . . . Sn−1
δn−1 Sn

]
.

Then its dual, Z♦(λ), has row degrees equal to the partial sums of degree
gaps before the first N and between any two consecutive N’s.
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Example: Row degrees of a zigzag matrix and its dual

Example of forward Zigzag matrix:

Z(λ) =


1 λ2 λ7 λ8

1 λ3

1 λ λ4 λ8 λ15

1 λ2 λ3


S =

[
U 2 N 5 N 1 U 3 U 1 N 3 N 4 N 7 U 2 N 1 N

]

Row degrees Z[λ]

(2 + 5 + 1 , 3 , 1 + 3 + 4 + 7 , 2 + 1) = (8, 3, 15, 3) .

Row degrees Z♦[λ] = Right Minimal Indices of Z[λ]

(2, 5, 1 + 3 + 1, 3, 4, 7 + 2, 1) = (2, 5, 5, 3, 4, 9, 1) .
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Solution of the inverse row-degree problem for dual minimal bases

The two key properties of dual Zigzag matrices and the simplicity of
Zigzag matrices allow us

to solve the inverse row-degree problem

Given any two lists of nonnegative integers (η1, . . . , ηm) and (ε1, . . . , εk) that
have the same sum:

do there exist dual minimal bases M(λ) and N(λ) having these numbers
as their row degrees? Yes.

can we explicitly construct such dual minimal bases? Yes.

can we do it in such a way that M(λ) reveals transparently (ε1, . . . , εk)
and vice versa? Yes.

easily in such a way that M(λ) and N(λ) are constructed as (direct
sums of) dual Zigzag matrices via a simple algorithm.
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Solving the inverse problem for dual Zigzag matrices: Construction

Example: (η1, η2, η3, η4) = (8, 3, 15, 3), (ε1, ε2, . . . , ε7) = (2, 5, 5, 3, 4, 9, 1).
(1) Define the partial sums `0 := 0,

`α :=

α∑
i=1

ηi, α = 1, 2, 3, and rβ :=

β∑
i=1

εi, β = 1, . . . , 7.

(2) Order them in two lists[
`0 `1 `2 `3
0 8 11 26

]
and

[
r1 r2 r3 r4 r5 r6 r7
2 7 12 15 19 28 29

]
.

(3) Merge both lists in one ordered list[
`0 r1 r2 `1 `2 r3 r4 r5 `3 r6 r7
0 2 7 8 11 12 15 19 26 28 29

]
.

(4) Replacements `i → U, rj → N gives unit column sequence of Z(λ):

U,N,N,U,U,N,N,N,U,N,N

(5) Differences of consecutive terms gives the degree gap sequence of Z(λ):

2, 5, 1, 3, 1, 3, 4, 7, 2, 1
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Conclusions

We have found an explicit simple solution of the inverse row degree
problem for dual minimal bases via the new class of Zigzag matrices.

This solution has been used (or is being used) by us and others
(Lawrence, Pérez, Van Barel, ...) for:

constructing strong linearizations and `-ifications of matrix polynomials
with certain desired properties,

in backward error analyses of numerical algorithms for solving
polynomial eigenvalue problems via linearizations, and

in spectral-structure-revealing solutions of complete inverse
eigenstructure problems for matrix polynomials.
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