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Why this “symplectic” topic? (I)

I would like to talk on how Volker’s research has influenced my own
research, and

also on a topic where Volker’s achievements have had a strong impact.

Most Natural-Easiest-Option for me now would be to talk on
Linearizations of Matrix Polynomials because

1 I have published several papers on this subject, some have been
submitted recently,

2 and...
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Volker’s most cited papers (25-April, Web of Science, Thomson-Reuters)
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Why this “symplectic” topic? (II)

The top-two are the “famous” MMMM’s papers from 2006 on
Linearizations of Matrix Polynomials,

but I feel that the “M” who has had the deepest influence in my work
in this area belongs to Steve Mackey

who became 60 more or less one year ago,

so I decided to keep a linearization-talk for another occasion.

In addition, I have scheduled several talks on Matrix Polynomials for this
year, likely to be listened by some of you.
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Volker’s most cited papers again
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Why this “symplectic” topic? (III)

The top 4 and 6 (from 1986 and 1998) include the word symplectic in
the title,

and I did some research in this topic some years ago:

D. and Johnson, Parametrization of the matrix symplectic group
and applications, SIMAX 2009.
D. and Johnson, Complementary bases in symplectic matrices and
a proof that their determinant is one, LAA 2006.

which is strongly influenced by some “hidden” results by Volker,

even some of them are unpublished!!

So, I thought that this might be a good topic for VM60 conference.
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Volker’s works directly related to this talk

1 V. Mehrmann, Der SR-Algorithmus zur Berechnung der Eigenwerte
einer Matrix, Master Thesis, Universität Bielefeld, 1979.

2 V. Mehrmann, A symplectic orthogonal method for single input or single
output discrete time optimal quadratic control problems, SIMAX, 1988.

3 D. S. Mackey and N. Mackey, On the determinant of symplectic
matrices, unpublished, 2003.

4 D. S. Mackey, N. Mackey, and V. Mehrmann, Symplectic factorizations
and the determinant of symplectic matrices, unpublished, 2006.

Remarks

Surprise!! Paper 3 is NOT authored by Volker.

Half of Paper 3 is closely related to results in Volker’s Master Thesis.

Paper 4 considerably extends Paper 3 in length and scope.

Papers 3 and 4 are two of the nicest papers I have ever read.
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A few more reflections before real Maths

This is a “Matrix-Theoretical-Talk” influenced by-with impact on
applications and/or algorithms for symplectic matrices.

This “strategy” is one of the main features of Volker’s research.

The thread of the talk is: “to present structured preserving factorizations
of symplectic matrices revealing the simple property det(S) = +1 for all
symplectic matrices”.

det(S) = +1 is easy to state but not so easy to prove.

My apologies (1). I cannot cover all Volker’s work on symplectic
factorizations of symplectic or general matrices.

My apologies (2). Nor the work of many other authors: Benner,
Bunse-Gerstner, Elsner, Fassbender, Flaschka, Lin, Watkins, Xu,
Zywietz, ...
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Outline

1 Block LDU of symplectic matrices and consequences

2 Symplectic-Orthogonal factorizations of symplectic matrices

3 Products of Symplectic reflectors: back to Volker’s origins

4 Conclusions
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Basic definitions and notations

Definition

S ∈ R2n×2n is symplectic if
STJS = J,

where

J :=

[
0 In
−In 0

]
.

All partitions we consider have 2× 2 blocks of size n× n

S =

[
S11 S12

S21 S22

]
, with Sij ∈ Rn×n

From the definition, it is obvious that for every symplectic matrix

det(S) = ±1

We consider only real matrices in this talk.
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The 1988-SIMAX-paper by Volker
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Proposition 2.36 in 1988-SIMAX-paper by Volker

∗ −→ T
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Restatement and consequence of Proposition 2.36-1988

Block LDU of symplectic matrices (Prop. 2.36 , Mehrmann, SIMAX, 1988)
Let

S =

[
S11 S12

S21 S22

]
∈ R2n×2n

be symplectic and S11 be nonsingular. Then

S =

[
I 0

S21S
−1
11 I

] [
S11 0

0 S−T11

] [
I S−111 S12

0 I

]
,

where the three factors are symplectic, equivalently,
where S21S

−1
11 and S−111 S12 are symmetric matrices.

Proof. Easy.

Corollary

If S ∈ R2n×2n is symplectic and S11 is nonsingular, then

det(S) = +1
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And if S11 is singular??

The Complementary Bases Theorem (D. and Johnson, LAA, 2006)

Let S =

[
S11 S12

S21 S22

]
∈ R2n×2n be symplectic,

rankS11 = k < n, α ⊆ {1, . . . , n} with |α| = k, and α′ ∪ α = {1, . . . , n}.

Assume that

rankS11(α, :) = k

Then [
S11(α, :)
S21(α′, :)

]
∈ Rn×n is invertible

Example: 
1 0 0 0
0 0 0 1
0 0 1 0
0 −1 0 0


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Symplectic interchanges (used since the 70’s or before...)

Definition
Let 1 ≤ j ≤ n. The symplectic interchange matrix

Πj ∈ R2n×2n

is the matrix obtained

by interchanging the rows j and j + n of I2n

and multiplying the (j + n)th row by −1.

Example with n = 2 and j = 2: Π2 =


1 0 0 0
0 0 0 1
0 0 1 0
0 −1 0 0


Remarks

det(Πj) = +1 and Πj is symplectic.
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Example with n = 2 and j = 2: Π2 =


1 0 0 0
0 0 0 1
0 0 1 0
0 −1 0 0


Remarks

det(Πj) = +1 and Πj is symplectic.
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Block LDU parametrization of the set of symplectic matrices

Combining Prop. 2.36-Volker-1988 and Complementary Bases Thm. :

Theorem (D. and Johnson, SIMAX, 2009)

The set of 2n× 2n real symplectic matrices is

S =

Q
[
I 0
C I

] [
G 0
0 G−T

] [
I E
0 I

]
:

G ∈ Rn×n nonsingular
C = CT , E = ET

Q product of symp. interch.

 ,

and the four factors are symplectic with determinant +1. Also

S =

Q
[

G GE
CG G−T + CGE

]
:

G ∈ Rn×n nonsingular
C = CT , E = ET

Q product of symp. interch.


The number of needed symplectic interchanges ranges from 0 to n.

Corollary: det(S) = +1 for all symplectic matrices.
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Symplectic-orthogonal matrices

A main line in Mackey, Mackey, Mehrmann, unpublished, 2006
(MMM-2006) is

to present very simple and elegant proofs of

Proposition

If Q ∈ R2n×2n is symplectic and orthogonal, then detQ = +1.

(one of these proofs was presented previously in Bunse-Gerstner, Byers,
Mehrmann, SIMAX, 1992)

and, then, to present and prove (sometimes via new algorithmic ways) a
number of

factorizations of symplectic matrices as products of
symplectic-orthogonal matrices times a symplectic matrix which
displays transparently a determinant +1.
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Symplectic-Orthogonal factorizations of symplectics in MMM-2006

Symplectic QR-like Factorization. Any symplectic matrix S ∈ R2n×2n

can be factored as

S = Q

[
R Z
0 R−T

]
︸ ︷︷ ︸

symplectic

, with
{
Q symplectic orthogonal
R ∈ Rn×n upper triangular

(Bunse-Gerstner, LAA, 1986 and Byers, PhD Th., 1983)

Symplectic Polar Factorization. Any symplectic matrix S ∈ R2n×2n can
be factored as

S = QP, with
{
Q symplectic orthogonal
P = PT symplectic positive definite

(Meyer and Hall, Springer, 1991) and particular case of results in
(Mackey, Mackey, Tisseur, SIMAX, 2006)
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Symplectic-Orthogonal factorizations of symplectics in MMM-2006

Symplectic SVD. Any symplectic matrix S ∈ R2n×2n can be factored as

S = U

[
Ω 0
0 Ω−1

]
︸ ︷︷ ︸

symplectic

V T , with

 U, V symplectic orthogonal
Ω = diag(ω1, . . . , ωn)

ω1 ≥ · · · ≥ ωn ≥ 1

(Xu, LAA, 2003)
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MMM-2006 and Volker’s Master Thesis

A considerable part of MMM-2006 is devoted to symplectic analogues of
Householder reflectors, called symplectic reflectors.

Symplectic reflectors were used in Volker’s Master Thesis (1979) to
construct an SR-algorithm for the eigenproblem of general matrices.

Symplectic reflectors are used in classic books of Abstract Algebra:
Artin (1957), Jacobson (1974),... to prove some properties of the
Symplectic Group.

These properties are proved in MMM-2006 (and in V-Master-Thesis) via
algorithms that use symplectic reflectors to create zeros in
symplectic matrices.
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Symplectic reflectors and Symplectic-Triangular-form

Proposition

For all 0 6= u ∈ R2n and 0 6= β ∈ R, the matrix

G = I + β uuT J ∈ R2n×2n

is symplectic and det(G) = +1. G is called a symplectic reflector.

Theorem (Volker’s Master Thesis 1979)

Any symplectic matrix S ∈ R2n×2n can be factored as

S = G1G2 · · · Gm

[
R Z
0 R−T

]
︸ ︷︷ ︸

symplectic

, with

 Gi symplectic reflector
m ≤ 2n
R ∈ Rn×n unit upper triangular
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Symplectic reflectors generate the Symplectic Group

One can insert further zeros using symplectic reflectors in the
triangular-like-symplectic factor via a procedure suggested in
(Flaschka, Mehrmann, Zywietz, RAIRO, 1991) and get the classic result:

Theorem (first proved by ????)

Any symplectic matrix S ∈ R2n×2n can be factored as

S = G1G2 · · · Gm

with Gi symplectic reflectors and m ≤ 4n.
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Conclusions

I think that we should convince Steve, Nil, and Volker to finish and
submit their nice survey/expository (with new proofs) paper on
symplectic-determinant-revealing factorizations of symplectic matrices.

For Volker: Thank you very much for many illuminating discussions and
advices along many years on symplectic, Hamiltonian matrices, on
matrix polynomials, and on many many other topics
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