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Hotel Soláň, Czech Republic. May 22-25, 2017

F. M. Dopico (U. Carlos III, Madrid) Backward errors polynomial eigenproblems May 23, 2017 1 / 52



Outline

1 Basics on Polynomial Eigenvalue Problems (PEPs)

2 Numerical solution of PEPs through linearizations

3 Other methods for solving PEPs without linearization

4 Global backward error problem for PEPs solved with linearizations

5 Block Kronecker pencils

6 The solution of the perturbation problem

7 The structured global backward error result

8 Conclusions

F. M. Dopico (U. Carlos III, Madrid) Backward errors polynomial eigenproblems May 23, 2017 2 / 52



Outline

1 Basics on Polynomial Eigenvalue Problems (PEPs)

2 Numerical solution of PEPs through linearizations

3 Other methods for solving PEPs without linearization

4 Global backward error problem for PEPs solved with linearizations

5 Block Kronecker pencils

6 The solution of the perturbation problem

7 The structured global backward error result

8 Conclusions

F. M. Dopico (U. Carlos III, Madrid) Backward errors polynomial eigenproblems May 23, 2017 3 / 52



The simplest form of a Polynomial Eigenvalue Problem (PEP)

Given a regular n× n matrix polynomial, that is,

P (λ) = Pdλ
d + · · ·+ P1λ+ P0 , Pi ∈ Cn×n,

with detP (λ) 6≡ 0,

a number λ0 ∈ C is called an eigenvalue of P (λ)

if there exists a nonzero vector v ∈ Cn, called eigenvector, such that

P (λ0) v = 0

This problem generalizes in a highly nontrivial way the standard matrix
eigenvalue problem (SMatEP)

Av = λ0v ⇐⇒ (λ0In −A) v = 0 , A ∈ Cn×n.
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Polynomial Eigenvalue Problems arise in many applications

Some applications are:
1 Vibration Analysis of Mechanical Structures,
2 Vibro-Acoustics: fluid-structure interaction problems,
3 Stability analysis in fluid mechanics,
4 Signal Processing,
5 Multivariable System Theory and Control Theory,
6 Computer-aided geometric design,
7 and, very recently, in Network (Graph) Analysis.

The applications of PEPs are often related to systems of d-Order
Differential (Algebraic) Equations with constant coefficients:

Pd
ddy(t)

dtd
+ · · ·+ P1

dy(t)

dt
+ P0y(t) = 0, Pi ∈ Cn×n,

and to look for solutions of the form y(t) = eλtv with v ∈ Cn.

As a consequence of the applications the numerical solution of PEPs
has received considerable attention in the last 15 years.
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How large is the degree of P (λ) = Pdλ
d + · · ·+ P1λ+ P0 in practice?

In most direct applications coming from vibrational problems in
mechanics d = 2: the quadratic eigenvalue problem (QEP).

Betcke, Higham, Mehrmann, Schröder and Tisseur report in “NLEVP: A
Collection of Nonlinear Eigenvalue Problems” (ACMTMathSoft, 2013) on
applications with

d = 4: Hamiltonian control problems with T-even structure,
homography-based method for calibrating a central cadioptric vision
system, spatial stability analysis of the Orr-Sommerfeld equation, and finite
element solution of the equation for the modes of a planar waveguide using
piecewise linear basis functions.
d = 3: modeling of drift instabilities in the plasma edge inside a Tokamak
reactor, and the five point relative pose problem in computer vision.

PEPs combined with interpolation are often used to solve approximately
other nonlinear eigenvalue problems. Then d can be much larger.
Kressner and Roman (Numer. Lin. Alg. Appl., 2014) report on d = 30
(3D Laplace eigenvalue problem on the Fichera corner) and d = 11 (nonlinear
eigenvalue problem coming from a 3D fluid-structure interaction problem).
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PEPs are “much” more difficult than Standard Matrix EPs (I)

Given the regular (detP (λ) 6≡ 0) matrix polynomial

P (λ) = Pdλ
d + · · ·+ P1λ+ P0 , Pi ∈ Cn×n,

then the related PEP P (λ0) v = 0, 0 6= v ∈ Cn

has at most dn finite eigenvalues since

detP (λ) = (detPd)λ
dn + lower degree terms in λ,

i.e., there may be much more eigenvalues in PEPs than in SMatEPs.

If detPd = 0, then the number of finite eigenvalues of the PEP is
degree (detP (λ)) and it is said that

the PEP has dn− degree (detP (λ)) infinite eigenvalues.

The eigenvectors of a PEP corresponding to different eigenvalues are
not necessarily linearly independent, since, in fact, we can have more
than n different eigenvalues. Stark contrast with Standard MatEP.
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The reversal polynomial and more on infinite eigenvalues

Another way to define the infinite eigenvalues of a PEP that can be
generalized to non-regular matrix polynomials is through the reversal
polynomial.

Given P (λ) = Pdλ
d + · · ·+ P1λ+ P0 , its reversal is

revP (λ) := λdP ( 1
λ ) = P0λ

d + · · ·+ Pd−1λ+ Pd .

Then the infinite eigenvalues of P (λ) correspond to the zero
eigenvalues of revP (λ).

Why the name infinite eigenvalues? A possible reason is that if a
polynomial with infinite eigenvalues, i.e., with Pd singular, is perturbed a
bit, then eigenvalues with very large absolute values often appears.

Of course, numerically the challenge is to decide whether or not a very
large eigenvalue should be considered as infinite, since exact singularity
of Pd is almost always lost in computations.

Infinite eigenvalues correspond to constraints in algebraic-differential
equations.
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Example 1

Let ε be a small parameter and consider the quadratic matrix polynomial

P (λ) =

[
(λ− 1)(λ− 2) 0

0 λ(ελ− 1)

]
= λ2

[
1 0
0 ε

]
+ λ

[
−3 0
0 −1

]
+

[
2 0
0 0

]
.

If ε 6= 0, then the eigenvalues are {1, 2, 0, 1/ε} , (very large if |ε| � 1).

If ε = 0, then the eigenvalues are {1, 2, 0,∞} .

Eigenvector of λ0 = 1: v1 =

[
1
0

]
.

Eigenvector of λ0 = 2: v2 =

[
1
0

]
.

The two eigenvectors are equal!!
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PEPs are “much” more difficult than Standard Matrix EPs (II)

An additional important step of difficulty is that PEPs can be singular,
which happens when

P (λ) = Pdλ
d + · · ·+ P1λ+ P0

is either rectangular or square with detP (λ) ≡ 0, i.e., zero for all λ.

Singular PEPs appear in applications (though not as often as regular).
In particular in Multivariable System Theory and Control Theory.

A key concept in singular PEPs is the normal rank (nrank), defined as
the size of the largest minor that is not identically zero.

It allows us to define eigenvalues for singular PEPs: λ0 ∈ C is said to be
a finite eigenvalue of a singular P (λ) if

rankP (λ0) < nrankP (λ) ,

and to say that P (λ) has an eigenvalue at infinity if 0 is an eigenvalue of
revP (λ).
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Example II

Consider the matrix polynomial of degree 4

P (λ) =

λ −λ4 0 0 0
0 0 1 −λ 0
0 0 0 1 −λ

 ∈ C[λ]3×5,

which has nrankP (λ) = 3 (pay attention to columns 2, 3, 4).

Note that 0 is an eigenvalue since rankP (0) = 2, and

that P (λ) has an eigenvalue at infinity since

revP (λ) =

λ3 −1 0 0 0
0 0 λ4 −λ3 0
0 0 0 λ4 −λ3

 ∈ C[λ]3×5

has rank (revP (0)) = 1 < 3, i.e., with “geometric multiplicity 2”.
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PEPs are “much” more difficult than Standard Matrix EPs (III)

Apart from eigenvalues, singular matrix polynomials have other
“interesting numbers” attached to them called minimal indices.

They are related to the fact that a singular m× n matrix polynomial P (λ)
has non-trivial left and/or right null-spaces over the field F(λ) of rational
functions:

N`(P ) :=
{
y(λ)T ∈ F(λ)1×m : y(λ)TP (λ) ≡ 0T

}
,

Nr(P ) :=
{
x(λ) ∈ F(λ)n×1 : P (λ)x(λ) ≡ 0

}
,

and N`(P ) and Nr(P ) have bases consisting entirely of vector
polynomials.

Definition (Minimal bases)

A right (resp. left) minimal basis of P (λ) is a basis of Nr(P ) (resp. N`(P ))

1 consisting of vector polynomials

2 whose sum of degrees is minimal among all bases of Nr(P ) (resp.
N`(P )) consisting of vector polynomials.

F. M. Dopico (U. Carlos III, Madrid) Backward errors polynomial eigenproblems May 23, 2017 12 / 52



PEPs are “much” more difficult than Standard Matrix EPs (III)

Apart from eigenvalues, singular matrix polynomials have other
“interesting numbers” attached to them called minimal indices.

They are related to the fact that a singular m× n matrix polynomial P (λ)
has non-trivial left and/or right null-spaces over the field F(λ) of rational
functions:

N`(P ) :=
{
y(λ)T ∈ F(λ)1×m : y(λ)TP (λ) ≡ 0T

}
,

Nr(P ) :=
{
x(λ) ∈ F(λ)n×1 : P (λ)x(λ) ≡ 0

}
,

and N`(P ) and Nr(P ) have bases consisting entirely of vector
polynomials.

Definition (Minimal bases)

A right (resp. left) minimal basis of P (λ) is a basis of Nr(P ) (resp. N`(P ))

1 consisting of vector polynomials

2 whose sum of degrees is minimal among all bases of Nr(P ) (resp.
N`(P )) consisting of vector polynomials.

F. M. Dopico (U. Carlos III, Madrid) Backward errors polynomial eigenproblems May 23, 2017 12 / 52



PEPs are “much” more difficult than Standard Matrix EPs (III)

Apart from eigenvalues, singular matrix polynomials have other
“interesting numbers” attached to them called minimal indices.

They are related to the fact that a singular m× n matrix polynomial P (λ)
has non-trivial left and/or right null-spaces over the field F(λ) of rational
functions:

N`(P ) :=
{
y(λ)T ∈ F(λ)1×m : y(λ)TP (λ) ≡ 0T

}
,

Nr(P ) :=
{
x(λ) ∈ F(λ)n×1 : P (λ)x(λ) ≡ 0

}
,

and N`(P ) and Nr(P ) have bases consisting entirely of vector
polynomials.

Definition (Minimal bases)

A right (resp. left) minimal basis of P (λ) is a basis of Nr(P ) (resp. N`(P ))

1 consisting of vector polynomials

2 whose sum of degrees is minimal among all bases of Nr(P ) (resp.
N`(P )) consisting of vector polynomials.

F. M. Dopico (U. Carlos III, Madrid) Backward errors polynomial eigenproblems May 23, 2017 12 / 52



PEPs are “much” more difficult than Standard Matrix EPs (III)

Apart from eigenvalues, singular matrix polynomials have other
“interesting numbers” attached to them called minimal indices.

They are related to the fact that a singular m× n matrix polynomial P (λ)
has non-trivial left and/or right null-spaces over the field F(λ) of rational
functions:

N`(P ) :=
{
y(λ)T ∈ F(λ)1×m : y(λ)TP (λ) ≡ 0T

}
,

Nr(P ) :=
{
x(λ) ∈ F(λ)n×1 : P (λ)x(λ) ≡ 0

}
,

and N`(P ) and Nr(P ) have bases consisting entirely of vector
polynomials.

Definition (Minimal bases)

A right (resp. left) minimal basis of P (λ) is a basis of Nr(P ) (resp. N`(P ))

1 consisting of vector polynomials

2 whose sum of degrees is minimal among all bases of Nr(P ) (resp.
N`(P )) consisting of vector polynomials.

F. M. Dopico (U. Carlos III, Madrid) Backward errors polynomial eigenproblems May 23, 2017 12 / 52



Minimal indices

There are infinitely many right minimal bases of P (λ) (if there is one), but...

Theorem (Forney, SIAM J. Control, 1975)

The ordered list of degrees of the vector polynomials in any minimal basis of
Nr(P ) is always the same.

Definition
These degrees are called the right minimal indices of P (λ).

Analogous definition for left minimal indices.
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Example III: right minimal bases and minimal indices

P (λ) =

λ −λ4 0 0 0
0 0 1 −λ 0
0 0 0 1 −λ

 ∈ C[λ]3×5

Nr(P ) = Span{


λ3

1
0
0
0


︸ ︷︷ ︸
u1

,


0
0
λ2

λ
1


︸ ︷︷ ︸
u2

} = Span{


λ3

1
λ3

λ2

λ


︸ ︷︷ ︸
w1

,


λ5

λ2

λ2

λ
1


︸ ︷︷ ︸
w2

}

Sum of degrees of {u1, u2} = 3 + 2 = 5 (right minimal bases of P (λ))

Sum of degrees of {w1, w2} = 3 + 5 = 8

Right minimal indices of P (λ) = {2, 3}
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The complete eigenstructure of a matrix polynomial

As a consequence of the previous discussion, we define:

Definition
The complete eigenstructure of an m× n matrix polynomial P (λ) is
comprised of:

its finite eigenvalues, together with their partial multiplicities,

its infinite eigenvalue, together with its partial multiplicities,

n− r right minimal indices ε1, . . . , εn−r, and

m− r left minimal indices η1, . . . , ηm−r,

where r is the normal rank of P (λ).

Remarks

Minimal indices only appear in singular polynomials.

The partial multiplicities are rigorously defined through the Smith form of
P (λ) and for matrices they are just the sizes of the Jordan blocks
associated to each eigenvalue.
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Linearizations of matrix polynomials

The most reliable methods for solving numerically PEPs are based on the
concept of linearization.

Definition (Linearizations of Matrix Polynomials)

A linearization L(λ) of a matrix polynomial P (λ) is a linear matrix
polynomial, or matrix pencil, such that

(1) L(λ) and P (λ) have the same number of right minimal indices.

(2) L(λ) and P (λ) have the same number of left minimal indices.

(3) L(λ) and P (λ) have the same finite eigenvalues with the same partial
multiplicities.

If, in addition,

(4) L(λ) and P (λ) have the same infinite eigenvalues with the same
partial multiplicities,

then L(λ) is called a strong linearization of P (λ).
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The most famous strong linearization (I)

The classical Frobenius companion form of the m× n matrix polynomial
P (λ) = Pdλ

d + · · ·+ P1λ+ P0 is

C1(λ) :=



λPd + Pd−1 Pd−2 · · · P1 P0

−In λIn
. . .

. . .

. . . λIn
−In λIn

 ∈ C[λ](m+n(d−1))×nd

Theorem (C1(λ) is much more than a strong linearization!!)

(a) If 0 ≤ ε1 ≤ · · · ≤ εp are the right minimal indices of P (λ), then the right
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The most famous strong linearization (II)

Theorem (recovery of eigenvectors from C1(λ))

Let P (λ) = Pdλ
d + · · ·+ P1λ+ P0 be a regular matrix polynomial, λ0 ∈ C be

a finite eigenvalue of P (λ), and C1(λ) be the Frobenius companion form of
P (λ). Then, any eigenvector z of C1(λ) associated to λ0 has the form

z =


λd−10 x
...

λ0 x
x

 =


λd−10
...
λ0
1

⊗ x
with x an eigenvector of P (λ) associated to λ0.

C1(λ) is one (among many others) strong linearization of P (λ) that
allows us to recover without computational cost the eigenvectors of the
polynomial from those of the linearization,

and, also, the minimal bases.
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Parenthesis: There are many other strong linearizations (I)

Since 2006 (Mackey, Mackey, Mehl, Mehrmann, SIMAX), many “new”
strong linearizations of matrix polynomials have been developed by
many authors all around the world

which also allow us to recover minimal indices via uniform shifts and
eigenvectors of regular PEPs without any computational cost.

One relevant motivation for developing new classes of linearizations is to
preserve structures appearing in applications, which is important for
saving operations in algorithms and for preserving properties of the
eigenvalues in floating point arithmetic.

For instance, if P (λ) = Pdλ
d + · · ·+ P1λ+ P0 is Hermitian, i.e., it has

Hermitian coefficients, the Frobenius companion form is not!!

C1(λ) :=



λPd + Pd−1 Pd−2 · · · P1 P0

−In λIn
. . .

. . .

. . . λIn
−In λIn


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Parenthesis: There are many other strong linearizations (II)

but

L̃(λ) =



λP1 + P0 λIn 0
λIn 0 In

In λP3 + P2 λIn
λIn 0 In

In λP5 + P4 λIn
λIn 0 In

0 In λP7 + P6


,

is a Hermitian strong linearization of the n× n Hermitian matrix
polynomial P (λ) = P7λ

7 + · · ·+ P1λ+ P0 (Antoniou & Vologiannidis
(ELA, 2004), Mackey & Mackey & Mehl & Mehrmann (LAA, 2010)).
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There are “excellent algorithms” for solving linear PEPs!!

(also called Generalized Eigenvalue Problems (GEP))

In summary, “good” strong linearizations of a matrix polynomial P (λ) are
linear matrix polynomials that have the same eigenvalues as P (λ) and
that allow us to recover the eigenvectors when P (λ) is regular, and the
minimal indices when P (λ) is singular.

They are very important for solving numerically PEPs

because there exist excellent algorithms for solving linear PEPs.

The fundamental proposed approach

“linearization + linear eigenvalue algorithm on the linearization”

for solving numerically PEPs can be traced back at least to
Van Dooren & De Wilde (LAA, 1983) and Van Dooren’s PhD Thesis in
1979.
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Algorithms for solving “not too large” GEPs A− λB

QZ algorithm for regular GEPs (det(A− λB) 6≡ 0)
(Moler & Stewart, SINUM, 1973).

QZ is implemented in MATLAB command eig(A,B) and cost O(n3).

Staircase or GUPTRI algorithm for singular GEPs
(Van Dooren, LAA, 1979; Demmel & Kågström, ACMTMathSoft., 1993).

It computes eigenvalues and minimal indices and there are
FORTRAN implementations.

QZ and GUPTRI are both backward stable since only use orthogonal
transformations.

The command polyeig of MATLAB computes all the eigenvalues of a
“not too large” regular PEP by applying QZ to the first companion form of
the matrix polynomial defining the PEP.
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A few words on algorithms for solving large-scale regular PEPs (I)

They are based on linearizations A− λB of the PEP

and on Krylov subspace methods on A− λB (Arnoldi on B−1A,
Rational-Krylov with shifts on (A− θjB)−1B) for computing a few
desired eigenvalues,

but the application of these Krylov methods is NOT direct,

since this would be very expensive in terms of memory and
orthogonalization costs, because

if P (λ) = Pdλ
d + · · ·+ P1λ+ P0 ∈ C[λ]n×n then its Frobenius companion

form (and any other strong linearization) has size nd× nd

C1(λ) :=



λPd + Pd−1 Pd−2 · · · P1 P0

−In λIn
. . .

. . .

. . . λIn
−In λIn

 ∈ C[λ]nd×nd .

So, if n is very large, then nd is very very large.
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A few words on algorithms for solving large-scale regular PEPs (II)

Therefore, Krylov subspace methods for PEPs take advantage of the
structure of the linearization and of the bases of their Krylov subspaces

to obtain memory and orthogonalization costs of the same order of
those of an n× n standard matrix problem.

The most stable and efficient methods in this family are
1 TOAR (Two level Orthogonal ARnoldi) for QEPs (Su & Bai & Lu,

2008 and SIMAX 2016) based on C1(λ),
2 CORK (COmpact Rational Krylov) for arbitrary PEPs (Van

Beeumen & Meerbergen & Michiels, SIMAX, 2015) very general, it
can use many linearizations and bases for expressing the PEP,

which are the “final optimal product” of previous pioneering algorithms:
1 SOAR (Second Order ARnoldi) for QEPs (Bai & Su, SIMAX, 2005),
2 Q-Arnoldi for QEPs (Meerbergen, SIMAX, 2008),
3 TOAR in Chebyshev basis and for arbitrary degree PEPs (Kressner

& Roman, Num. Lin. Alg. Appl, 2014), etc....

Available HPC software: parallel implementations of TOAR for any
degree (including symm. versions) in SLEPc (Campos & Roman, 2016).
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A few words on algorithms for solving large-scale regular PEPs (III)

The typical key result that is behind “memory-efficient” Krylov methods for PEPs is:

Theorem

Let P (λ) = Pdλ
d + · · ·+ P1λ+ P0 ∈ C[λ]n×n with Pd nonsingular and

C1(λ) =: A− λB ∈ Cnd×nd be its first Frobenius companion form. Let the columns of

Vj =


V

(1)
j

V
(2)
j

...

V
(d)
j

 ∈ Cnd×j be orthonormal basis of span{v,B−1Av, . . . , (B−1A)j−1v}.

where V (`)
j ∈ Cn×j . Then, rank [V

(1)
j V

(2)
j · · · V (d)

j ] < j + d.

This implies that there exists Qj ∈ Cn×rj with orthonormal columns and rj < d+ j s.t.

V
(`)
j = Qj R

(`)
j , for ` = 1, . . . , d and R

(`)
j ∈ Crj×j

and that Vj can be stored with < n(d+ j) + d(d+ j)j parameters instead of ndj.

Idea: to rewrite the Arnoldi iteration in terms of Qj and R(`)
j without using Vj .
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One can use for PEPs methods for general NLEPs

NLEP = “nonlinear eigenvalue problem”. In large-scale setting and/or with
refinement purposes, these methods can be applied to PEPs. Most of them
require to evaluate P (λ) and some very often.

(Quasi)-Newton methods for systems nonlinear equations on P (λ)v = 0
(classical topic, recent survey-results by Jarlebring et al. 2017).

Block Newton methods for approximating more than one eigenpair
simultaneously (Kressner, 2009; Effenberger, 2013).

Residual inverse iteration (Neumaier, 1985) (is a Quasi-Newton).

Nonlinear Rayleigh-Ritz iterative method (Liao, Bai, Lee, Ko, 2010).

Nonlinear Arnoldi, Nonlinear Jacobi-Davidson (Voss, Betcke, 2004, ...)

Contour integral methods for finding all eigenvalues inside a certain
region: good parallelism properties, if there are k eigenvalues the
problem is reduced to k × k linear problem via evaluation of two contour
integrals. (Sakurai et al., 2003, 2009, 2013; Beyn, 2012)

Available HPC software: parallel implementations of (block)-Newton,
polynomial Jacobi-Davidson in SLEPc (Campos & Roman, 2016).
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The Setting

We consider a general m× n matrix polynomial, square or
rectangular, regular or singular,

P (λ) = Pdλ
d + · · ·+ P1λ+ P0 , Pi ∈ Cm×n,

and we assume that its complete eigenstructure

has been computed by applying a backward stable algorithm
(QZ for regular, Staircase for singular)

to a strong linearization L(λ) of P (λ)

that allows us to recover the minimal indices of P (λ) from those of
L(λ) via uniform shifts.

In this talk, we restrict most of the results to the new wide class of
block Kronecker linearizations.
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Introduction: Backward stable algorithms on strong linearizations (I)

The computed complete eigenstructure of L(λ) is the exact complete
eigenstructure of a matrix pencil L(λ) + ∆L(λ) such that

‖∆L(λ)‖F
‖L(λ)‖F

= O(u),

where u ≈ 10−16 is the unit roundoff and

‖ · ‖F is the Frobenius norm, i.e., for any matrix polynomial

‖Qkλk + · · ·+Q1λ+Q0‖F =
√
‖Qk‖2F + · · ·+ ‖Q1‖2F + ‖Q0‖2F .

But, does this imply that (after shifting properly the minimal indices) the
computed complete eigenstructure of P (λ) is the exact complete
eigenstructure of a matrix polynomial of the same degree P (λ) + ∆P (λ)
such that

‖∆P (λ)‖F
‖P (λ)‖F

= O(u) ??

For solving this question, we pose the following theoretical problems of
matrix perturbation theory.
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The matrix perturbation problems to be solved

Data:
1 Matrix polynomial P (λ) of degree d.
2 Strong linearization L(λ) of P (λ) enjoying uniform shift-relations for

the minimal indices.
3 Perturbation pencil ∆L(λ).

Problem 1: To establish conditions on ‖∆L(λ)‖F such that
L(λ) + ∆L(λ) is a strong linearization for some matrix polynomial
P (λ) + ∆P (λ) of degree d, and such that

Problem 2: the shift-relations between minimal indices of L(λ) + ∆L(λ)
and P (λ) + ∆P (λ) are equal to those between L(λ) and P (λ).

Problem 3: To prove a perturbation bound

‖∆P (λ)‖F
‖P (λ)‖F

≤ CP,L
‖∆L(λ)‖F
‖L(λ)‖F

,

with CP,L a number depending on P (λ) and L(λ).

For those P (λ) and L(λ) s.t. CP,L is moderate, to use global backward
stable algorithms on L(λ) gives global backward stability for P (λ), i.e.,
from the polynomial point of view.
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The perturbation analysis we present for these problems...

...has a number of key features which are not present in any other analyses
published so far:

1 for the first time, it is NOT a first order analysis, since it is a rigorous
analysis valid for perturbations ∆L(λ) of finite norm,

2 it provides very detailed bounds, and not just vague big-O bounds as
other analyses do,

3 it is valid simultaneously for all the linearizations in the very large new
class of block Kronecker pencils, which includes Frobenius and many
other “famous linearizations” for which this type of backward error
analyses were not available before our work,

4 it establishes a framework that probably can be generalized to other
classes of linearizations.
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Previous works on this type of “global” backward error analyses

There are just a few: only first order results, only for Frobenius linearizations
or their counterparts in other bases, often only valid for regular polynomials,
or do not pay attention to minimal indices...

Van Dooren & De Wilde (LAA 1983).

Edelman & Murakami (Math. Comp. 1995).

Lawrence & Corless (SIMAX 2015).

Lawrence & Van Barel & Van Dooren (SIMAX 2016).

Noferini & Pérez (Math. Comp., 2017).
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A few comments on “local” backward error analyses of PEPs (I)

The QZ algorithm for regular GEPs A− λB gives a stronger backward
error result than mentioned before

since computes the complete set of eigenvalues of
(A+ ∆A)− λ(B + ∆B) with

‖∆A‖F
‖A‖F

= O(u) and
‖∆B‖F
‖B‖F

= O(u),

i.e., with “relative coefficientwise” backward stability.

Therefore, it might seem natural to ask for the same type of “relative
coefficientwise” backward stability in the numerical solution of higher
degrees PEPs,

but it has been proved that it is impossible to guarantee this stability
(Mastronardi & Van Dooren, ETNA, 2015):
“There does not exist any algorithm that computes in floating point
arithmetic the two roots of a quadratic scalar polynomial and that
guarantees a priori that the computed two roots are the exact two roots
of a nearby polynomial with a coefficientwise backward error of O(u).”
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A few comments on “local” backward error analyses of PEPs (II)

This is disappointing because there are applied regular PEPs (in
particular QEPs) with coefficients of very different magnitudes and
“relative coefficientwise” backward stability is desirable in such cases.

An option to circumvent this problem is to try to guarantee a priori only
tiny “local” “relative coefficientwise” backward errors, i.e.,

that each particular computed eigenpair is the exact eigenpair of a
nearby matrix polynomial with a coefficientwise backward error of O(u)

with a different nearby polynomial for each eigenpair.

Several authors have worked on this approach: Tisseur (LAA 2000),
Higham & Li & Tisseur (SIMAX 2007), Li & Lin & Wang (Numer. Math.
2010), Hammarling & Munro & Tisseur (ACMTMatSoftw 2013), Zeng &
Su (SIMAX, 2014).

With additional assumptions and scalings, solving twice the PEP with
QZ on two different linearizations, these algorithms and analyses may
guarantee a priori coefficient-wise “local” backward stability only for
regular QEPs.

The problem remains open in higher degrees.
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Two fundamental auxiliary matrix polynomials in the rest of the talk

Lk(λ) :=


−1 λ

−1 λ
. . .

. . .

−1 λ

 ∈ C[λ]k×(k+1),

Λk(λ)T :=
[
λk λk−1 · · · λ 1

]
∈ C[λ]1×(k+1),

and their Kronecker products by identities

Lk(λ)⊗ In :=


−In λIn

−In λIn
. . .

. . .

−In λIn

 ∈ C[λ]nk×n(k+1),

Λk(λ)T ⊗ In :=
[
λkIn λk−1In · · · λIn In

]
∈ C[λ]n×n(k+1).
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Revisiting the Frobenius companion form with these matrices at hand

The Frobenius companion form of the m× n matrix polynomial
P (λ) = Pdλ

d + · · ·+ P1λ+ P0 is

C1(λ) :=



λPd + Pd−1 Pd−2 · · · P1 P0

−In λIn
. . .

. . .

. . . λIn
−In λIn

 ,

and can be written as

C1(λ) :=

[
λPd + Pd−1 Pd−2 · · · P1 P0

Ld−1(λ)⊗ In

]
.
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Definition and key properties of Block Kronecker Pencils

Definition
Let λM1 +M0 be an arbitrary pencil. Then any pencil of the form

L(λ) =

[
λM1 +M0 Lη(λ)T ⊗ Im
Lε(λ)⊗ In 0

] }
(η+1)m

} εn︸ ︷︷ ︸
(ε+1)n

︸ ︷︷ ︸
ηm

,

is called a block Kronecker pencil (one-block row and column cases included).

Theorem (key theorem of block Kronecker pencils)

Any block Kronecker pencil L(λ) is a strong linearization of the matrix
polynomial

Q(λ) := (Λη(λ)T ⊗ Im)(λM1 +M0)(Λε(λ)⊗ In) ∈ C[λ]m×n ,

the right minimal indices of L(λ) are those of Q(λ) shifted by ε, and the left
minimal indices of L(λ) are those of Q(λ) shifted by η.
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The block Kronecker pencils of a prescribed matrix polynomial

Theorem

Let P (λ) =
∑d
k=0 Pkλ

k ∈ C[λ]m×n,

let L(λ) be a block Kronecker pencil with ε+ η + 1 = d, and

let us consider M0 and M1 partitioned into (η + 1)× (ε+ 1) blocks each
of size m× n.

If the sum of the blocks on the (d− k)th block antidiagonal of M0 plus
the sum of the blocks on the (d− k + 1)th block antidiagonal of M1 is
equal to Pk, for k = 0, . . . , d,

then L(λ) is a strong linearizations of P (λ) with uniform shift relations (ε
and η) for the minimal indices.
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Examples of block Kronecker pencils (I)

P (λ) = λ5P5 + λ4P4 + λ3P3 + λ2P2 + λP1 + P0 ∈ C[λ]m×n


λP5 + P4 0 0 −Im 0

0 λP3 + P2 0 λIm −Im
0 0 λP1 + P0 0 λIm
−In λIn 0 0 0

0 −In λIn 0 0


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Examples of block Kronecker pencils (II)

P (λ) = λ5P5 + λ4P4 + λ3P3 + λ2P2 + λP1 + P0 ∈ C[λ]m×n


λP5 λP4 λP3 −Im 0

0 0 λP2 λIm −Im
0 0 λP1 + P0 0 λIm
−In λIn 0 0 0

0 −In λIn 0 0


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Examples of block Kronecker pencils (III)

P (λ) = λ5P5 + λ4P4 + λ3P3 + λ2P2 + λP1 + P0 ∈ C[λ]m×n


λP5 A P2 −Im 0
λP4 −λA λB + P1 λIm −Im
λP3 −λB P0 0 λIm
−In λIn 0 0 0

0 −In λIn 0 0


for any matrices A and B.
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The main perturbation theorem

Theorem

Let L(λ) be a block Kronecker pencil for P (λ) =
∑d
i=0 Piλ

i ∈ C[λ]m×n, i.e.,

L(λ) =

[
λM1 +M0 Lη(λ)T ⊗ Im
Lε(λ)⊗ In 0

]
.

If ∆L(λ) is any pencil with the same size as L(λ) and such that

‖∆L(λ)‖F <
( π

16

)2 1

d5/2
1

1 + ‖λM1 +M0‖F
,

then L(λ) + ∆L(λ) is a strong linearization of a matrix poly P (λ) + ∆P (λ)
with grade d and such that

‖∆P (λ)‖F
‖P (λ)‖F

≤ 68 d5/2
‖L(λ)‖F
‖P (λ)‖F

(1 + ‖λM1 +M0‖F + ‖λM1 +M0‖2F )
‖∆L(λ)‖F
‖L(λ)‖F

.

In addition, the right (resp. left) minimal indices of L(λ) + ∆L(λ) are those of
P (λ) + ∆P (λ) shifted by ε (resp. η), i.e., the shift relations are preserved.
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How is this theorem proved? STEP 1. Restoring the zero block.

The perturbation destroys the (2, 2)-zero block and the block Kronecker
structure

L(λ) + ∆L(λ) =

[
λM1 +M0 + ∆L11(λ) Lη(λ)T ⊗ Im + ∆L12(λ)
Lε(λ)⊗ In + ∆L21(λ) ∆L22(λ)

]
.

Our first step restores the (2, 2)-zero block via a strict equivalence close
to the identity[
I(η+1)m 0
C Iεn

]
(L(λ) + ∆L(λ))

[
I(ε+1)n D

0 Iηm

]
=

[
λM1 +M0 + ∆L11(λ) Lη(λ)T ⊗ Im + ∆L̃12(λ)

Lε(λ)⊗ In + ∆L̃21(λ) 0

]
=: L(λ) + ∆L̃(λ).

C and D are solutions of an underdetermined quadratic system of
two matrix equations whose existence is proved and whose norms are
properly bounded.

Strict equivalences preserve complete eigenstructures of matrix pencils.
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How is this theorem proved? STEPS 2 and 3.

Step 2. We prove that

L(λ) + ∆L̃(λ) :=

[
λM1 +M0 + ∆L11(λ) Lη(λ)T ⊗ Im + ∆L̃12(λ)

Lε(λ)⊗ In + ∆L̃21(λ) 0

]

is a strong block minimal bases linearization of a matrix polynomial

P (λ) + ∆P (λ)

:=
(
Λη(λ)T ⊗ Im + ∆Rη(λ)T

)
(λM1 +M0 + ∆L11(λ)) (Λε(λ)⊗ In + ∆Rε(λ)) ,

where ‖∆Rη(λ)‖F and ‖∆Rε(λ)‖F are carefully bounded.

Step 3. ‖∆P (λ)‖F is finally bounded.
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Discussion of the perturbation bounds for block Kronecker pencils

L(λ) =

[
λM1 +M0 Lη(λ)T ⊗ Im
Lε(λ)⊗ In 0

]
.

‖∆P (λ)‖F
‖P (λ)‖F

≤ 68 d5/2
‖L(λ)‖F
‖P (λ)‖F

(1 + ‖λM1 +M0‖F + ‖λM1 +M0‖2F )︸ ︷︷ ︸
CP,L

‖∆L(λ)‖F
‖L(λ)‖F

.

It can be proved that if ‖P (λ)‖F � 1 or ‖P (λ)‖F � 1, then CP,L � 1,

and that, if ‖λM1 +M0‖F � 1, then CP,L � 1.

Therefore, for getting “backward stability” from Block Kronecker
linearizations, one needs to normalize the matrix poly ‖P (λ)‖F = 1 and
to use pencils such that ‖λM1 +M0‖F ≈ ‖P (λ)‖F , then

‖∆P (λ)‖F
‖P (λ)‖F

. d3
√
m+ n

‖∆L(λ)‖F
‖L(λ)‖F

.

For Fiedler and Frobenius linearizations ‖λM1 +M0‖F = ‖P (λ)‖F .
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Structured block Kronecker pencils

The PEPs appearing in applications have particular structures,

among them: Hermitian and skew-Hermitian, symmetric and
skew-symmetric, palindromic and anti-palindromic, and alternating.

For any structured matrix polynomial of odd degree d = 2k + 1 in
any of these classes, there exist (quasi) block Kronecker pencils
with the same structure (called structured block Kronecker
pencils),

which can be defined in an elegant unified way through Möbius
transformations,

and whose left and right minimal indices are those of the matrix
polynomial shifted by k.

In addition, such structured block Kronecker pencils can be
constructed easily from the coefficients of the matrix polynomial,

and satisfy an structured perturbation result, which is not easy to
prove.
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The structured perturbation theorem

Theorem
Let L(λ) be a structured block Kronecker pencil for any structured n× n
matrix polynomial P (λ) in the previous classes of odd degree d = 2k + 1

L(λ) =

[
λM1 +M0 L̃k(λ)T ⊗ In
Lk(λ)⊗ In 0

]
.

If ∆L(λ) is any pencil with the same size and structure as L(λ) and such that

‖∆L(λ)‖F <
( π

16

)2 1

d5/2
1

1 + ‖λM1 +M0‖F
,

then L(λ) + ∆L(λ) is a strong linearization of a matrix poly P (λ) + ∆P (λ)
with grade d, with the same structure as P (λ), and such that

‖∆P (λ)‖F
‖P (λ)‖F

≤ 68 d5/2
‖L(λ)‖F
‖P (λ)‖F

(1 + ‖λM1 +M0‖F + ‖λM1 +M0‖2F )
‖∆L(λ)‖F
‖L(λ)‖F

.

In addition, the right (resp. left) minimal indices of L(λ) + ∆L(λ) are those of
P (λ) + ∆P (λ) shifted by k (resp. k).
F. M. Dopico (U. Carlos III, Madrid) Backward errors polynomial eigenproblems May 23, 2017 50 / 52



Outline

1 Basics on Polynomial Eigenvalue Problems (PEPs)

2 Numerical solution of PEPs through linearizations

3 Other methods for solving PEPs without linearization

4 Global backward error problem for PEPs solved with linearizations

5 Block Kronecker pencils

6 The solution of the perturbation problem

7 The structured global backward error result

8 Conclusions

F. M. Dopico (U. Carlos III, Madrid) Backward errors polynomial eigenproblems May 23, 2017 51 / 52



Conclusions

We have proved that the computation of the complete eigenstructure of
a matrix polynomial P (λ) (regular or singular, square or rectangular)

applying a global backward stable algorithm to any block Kronecker
pencil of P (λ) is globally backward stable from the polynomial point
of view

if ‖P (λ)‖F = 1 and ‖λM1 +M0‖F ≈ ‖P (λ)‖F .

These results can be extended “in a structured way” to matrix
polynomials of odd degree in any of the following structured classes:
Hermitian and skew-Hermitian, symmetric and skew-symmetric,
palindromic and anti-palindromic, and alternating.

The new perturbation analysis presents a number of novel features and
establishes a framework that can be probably generalized to other
linearizations, including linearizations of matrix polynomials expressed in
other bases.
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