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Different classes of regular matrix eigenvalue problems (I)

The basic eigenvalue problem (BEP). Given A ∈ Cn×n, compute scalars λ
(eigenvalues) and nonzero vectors v ∈ Cn (eigenvectors) such that

Av = λv ⇐⇒ (λIn −A) v = 0

It arises in many applications. For instance, if one looks for solutions of
the form y(t) = eλtv in the system of first order ODEs

dy(t)

dt
= Ay(t) =⇒ λv = Av

There are stable algorithms for its numerical solution.

QR algorithm (Francis-Kublanovskaya 1961) for small to medium size
dense matrices.

Arnoldi method (1951) and (many) other variants of Krylov methods for
large-scale problems and sparse matrices.

Easy to use software. For instance MATLAB’s commands eig(A) or
eigs(A).
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Different classes of regular matrix eigenvalue problems (II)

The GENERALIZED eigenvalue problem (GEP). Given A,B ∈ Cn×n,
compute scalars λ (eigenvalues) and nonzero vectors v ∈ Cn (eigenvectors)
such that

Av = λBv ⇐⇒ (λB −A) v = 0 ,

under the regularity assumption det(zB −A) is not zero for all z ∈ C.

It arises in many applications. For instance, if one looks for solutions
y(t) = eλtv in the system of first order ALGEBRAIC-ODEs

B
dy(t)

dt
= Ay(t) =⇒ λBv = Av

There are stable algorithms for its numerical solution.

QZ algorithm (Moler-Stewart 1973) for small to medium size dense
matrices.

Different (rational) Krylov methods (Ruhe, 1984-1998) for large-scale
problems and sparse matrices.

Easy to use software. For instance MATLAB’s commands eig(A,B) or
eigs(A,B).
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Different classes of regular matrix eigenvalue problems (III)

The POLYNOMIAL eigenvalue problem (PEP). Given P0, . . . , Pd ∈ Cn×n,
compute scalars λ (eigenvalues) and nonzero vectors v ∈ Cn (eigenvectors)
such that

(Pdλ
d + · · ·+ P1λ+ P0)v = 0 ,

under the regularity assumption det(Pdz
d + · · ·+ P1z + P0) 6≡ 0.

It arises in many applications. For instance, if one looks for solutions
y(t) = eλtv in the system of dth order ALGEBRAIC-ODEs

Pd
ddy(t)

dtd
+ · · ·+ P1

dy(t)

dt
+ P0y(t) = 0 =⇒ (Pdλ

d + · · ·+ P1λ+ P0)v = 0

There are stable (? debatable) algorithms for its numerical solution.

Easy to use software for small to medium size dense matrices:
MATLAB’s commands polyeig(P0,P1,...,Pd) (Van Dooren, 1979).

Different specific-structured Krylov methods for large-scale problems
and sparse matrix coefficients (Su-Bai-Lu, 2008, 2016), (Van
Beeumen-Meerbergen-Michiels, 2015).

HPC implementations of these methods in SLEPc (Roman, UPV).
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Different classes of regular matrix eigenvalue problems (IV)

The RATIONAL eigenvalue problem (REP). Given a rational matrix
G(z) ∈ C(z)n×n, i.e.,

G : C → Cn×n
z 7→ G(z),

such that G(z)ij is a scalar rational function of z ∈ C, for 1 ≤ i, j ≤ n,
compute scalars λ (eigenvalues) and nonzero vectors v ∈ Cn (eigenvectors)
such that λ is not a pole of any G(z)ij and

G(λ)v = 0 ,

under the regularity assumption det(G(z)) 6≡ 0.

It arises in applications either directly (multivariable system theory and
control theory) or as an approximation.

There are algorithms for its numerical solution (stability analysis open).

For small to medium size dense matrices (Su-Bai, 2011).

For large-scale problems and sparse matrix coefficients (Van
Beeumen-Meerbergen-Michiels, 2015), (D & González-Pizarro, 2018).

HPC implementations of some methods in SLEPc (Roman, UPV).
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Different classes of regular matrix eigenvalue problems (V)

The NONLINEAR eigenvalue problem (NEP). Given a non-empty open set
Ω ⊆ C and a matrix-valued function

F : Ω → Cn×n
z 7→ F (z),

compute scalars λ ∈ Ω (eigenvalues) and nonzero vectors v ∈ Cn
(eigenvectors) such that

F (λ)v = 0 ,

under the regularity assumption det(F (z)) 6≡ 0.

It arises in applications. For instance, if one looks for solutions
y(t) = eλtv in the system of first order DELAYED differential equations

dy(t)

dt
+Ay(t) +By(t− 1) = 0 =⇒ (λIn +A+Be−λ)v = 0

Usually F (z) is assumed to be holomorphic in Ω.
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Different classes of regular matrix eigenvalue problems (V) (continued)

F : Ω → Cn×n
z 7→ F (z)

F (λ)v = 0

There are different algorithms for the numerical solution of NEP.

One of the most important family of algorithms is based on the following
two step strategy

1 Approximate F (z) by a rational matrix G(z) with poles outside Ω.
2 Solve the REP associated to G(z).

There is software available for NEPs developed by the authors of some
key papers that follow the previous strategy:

1 NLEIGS (Güttel, Van Beeumen, Meerbergen, Michiels, 2014) (not
easy to use).

2 Automatic Rational Approximation and Linearization of NEP
(Lietaert, Pérez, Vandereycken, Meerbergen, 2018) (the authors
claim that is easy to use and good).
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1st KEY IDEA on matrix eigenvalue problems

1 BEP: (λIn −A) v = 0

2 GEP: (λB −A) v = 0

3 PEP: (Pdλ
d + · · ·+ P1λ+ P0)v = 0

4 REP: G(λ)v = 0

5 NEP: F (λ)v = 0

1st KEY IDEA: ALL THESE PROBLEMS CAN BE SOLVED BY
TRANSFORMING THE PROBLEM INTO A GEP→ LINEARIZATION.

For PEPs and REPs, this transformation is exact.

For NEPs, this transformation requires to approximate the NEP by a
REP, but all current methods for NEPs require some approximation.

The use of linearizations is (probably) the MOST RELIABLE approach
to solve numerically these problems.
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2nd KEY IDEA on matrix eigenvalue problems

1 BEP: (λIn −A) v = 0

2 GEP: (λB −A) v = 0

3 PEP: (Pdλ
d + · · ·+ P1λ+ P0)v = 0

4 REP: G(λ)v = 0

5 NEP: F (λ)v = 0

2nd KEY IDEA: usual methods for transforming a PEP or a REP into a
GEP, produce highly structured GEPs.

These structures must be used, in particular in large-scale problems,
for developing efficient algorithms for PEPs or REPs.
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Outline

1 The “flavor” of applied PEPs, REPs, NEPs: examples

2 Additional “difficulties” of GEPs, PEPs, and REPs over BEPs

3 Linearizations and numerical solution of PEPs

4 Linearizations and numerical solution of REPs

5 Global backward stability of PEPs solved with linearizations

6 Global backward stability of REPs solved with linearizations

7 Conclusions
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3rd KEY IDEA: applications usually lead to very shorts “split forms”

Every matrix F (z) defining an n× n PEP, REP or NEP can be written in
“split form” with at most n2 terms, i.e.,

F (z) = f1(z)C1 + f2(z)C2 + · · ·+ f`(z)C`,

where fi : C→ C, Ci ∈ Cn×n, and ` ≤ n2.

This result is, of course, a triviality,[
ez z2 + 1
1
z+1

sin(z)

]
= ez

[
1 0
0 0

]
+(z2+1)

[
0 1
0 0

]
+

1

z + 1

[
0 0
1 0

]
+sin(z)

[
0 0
0 1

]

The 3rd KEY IDEA is that in most applications `� n2,

this is not important in theoretical developments, but yes in the
development of algorithms and in the practical approximation of NEPs by
REPs or PEPs.

Our scenario is large matrices Ci and very few scalar functions fi(z).
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How large is the degree of P (z) = Pdz
d + · · ·+ P1z + P0 in practical PEPs?

In most direct applications coming from vibrational problems in
mechanics d = 2: the quadratic eigenvalue problem (QEP)

(z2M + zC +K)v = 0,

while M,C,K ∈ Cn×n with n = 103,104,105,106, ....

Betcke, Higham, Mehrmann, Schröder, Tisseur,“NLEVP: A Collection of
Nonlinear Eigenvalue Problems”, (2013) reports on applications with

d = 4: Hamiltonian control problems, homography-based method for
calibrating a central cadioptric vision system, spatial stability analysis of the
Orr-Sommerfeld equation, and finite element solution of the equation for
the modes of a planar waveguide using piecewise linear basis functions.
d = 3: modeling of drift instabilities in the plasma edge inside a Tokamak
reactor, and the five point relative pose problem in computer vision.

PEPs used to approximate other NEPs. Then d can be much larger.
Kressner and Roman (2014) report on d = 30,n = 10000 and
d = 11,n = 6223.
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A few examples of “direct” applied REPs

Change of notation z → λ

Loaded elastic string (Betcke et al., NLEVP-collection, (2013)):

G(λ) = A− λB +
λ

λ− σ
E = (A+ E)− λB +

σ

λ− σ
E,

which almost shows the polynomial and the strictly proper parts of G(λ).
Only 3 functions (terms) in split form, A,B ∈ Rn×n symmetric tridiagonal
matrices, E only one nonzero entry in (n, n) position. n ≥ 103 large.

Damped vibration of a viscoelastic structure (Mehrmann & Voss, (2004)):

G(λ) = λ2M +K −
k∑
i=1

1

1 + biλ
∆Gi,

which shows the polynomial and the strictly proper parts of G(λ). Only
k + 2 functions in split form, M,K positive definite, n = 10704 large.
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An example of “approximating” applied REPs

NLEIGS-REPs coming from linear rational interpolation of NEPs (Güttel,
Van Beeumen, Meerbergen, Michiels (2014)):

QN (λ) = b0(λ)D0 + b1(λ)D1 + · · ·+ bN (λ)DN ,

with Dj ∈ Cn×n,

bj(λ) =
1

β0

j∏
k=1

λ− σk−1
βk(1− λ/ξk)

,

j = 0, 1, . . . , N, rational scalar functions, with the poles ξi all distinct
from the nodes σj . N ≤ 140, n = 16281.
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“Approximating” REPs have been used to approximate...

among many others, the following NEPs:

The radio-frequency gun cavity problem:[
(K − λM) + i

√
λ− σ2

1 W1 + i
√
λ− σ2

2 W2

]
v = 0,

where M,K,W1,W2 are real sparse symmetric 9956× 9956 matrices
(only 4 scalar functions involved in split form).

Bound states in semiconductor devices problems:(H − λI) +

80∑
j=0

ei
√
λ−αj Sj

 v = 0,

where H,Sj ∈ R16281×16281, H symmetric and the matrices Sj have low
rank (only 83 scalar functions involved in split form).

....
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For the rest of the talk...

since NEPs can be approximated by REPs, I will focus on PEPs and
REPs.

Though PEPs are mathematically a particular case of REPs,

PEPs and REPs have been always considered separately from the point
of view of numerical algorithms,

because PEPs are very important by themselves in applications (the
quadratic PEP in mechanical problems, in particular), and also

because PEPs are numerically simpler and “better” specific algorithms
can be developed for them.
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Outline

1 The “flavor” of applied PEPs, REPs, NEPs: examples

2 Additional “difficulties” of GEPs, PEPs, and REPs over BEPs

3 Linearizations and numerical solution of PEPs

4 Linearizations and numerical solution of REPs

5 Global backward stability of PEPs solved with linearizations

6 Global backward stability of REPs solved with linearizations

7 Conclusions
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GEPs-PEPs-REPs have more spectral “structural” data than BEPs

1 BEP: (λIn −A) v = 0

2 GEP: (λB −A) v = 0

3 PEP: (Pdλ
d + · · ·+ P1λ+ P0)v = 0

4 REP: G(λ)v = 0

So far, we have only considered finite eigenvalues, but

regular GEPs, PEPs, REPs may have also infinite eigenvalues.

GEPs, PEPs, REPs may be singular (BEPs are always regular) and to
have, in addition to eigenvalues, minimal indices.

REPs have poles. In modern applications, the poles are usually known
(even chosen in approximating NEPs by REPs), but in other applications
(Control), poles are not known and must be computed.

We illustrate informally some of these concepts on matrix polynomials...
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Infinite eigenvalues in PEPs

Given the regular (detP (λ) 6≡ 0) polynomial matrix

P (λ) = Pdλ
d + · · ·+ P1λ+ P0 , Pi ∈ Cn×n,

then the eigenvalues of the PEP P (λ0) v = 0, 0 6= v ∈ Cn are the

roots of the scalar polynomial detP (λ) .

Thus, P (λ) has at most dn finite eigenvalues since

detP (λ) = (detPd)λ
dn + lower degree terms in λ .

If detPd = 0, then the number of finite eigenvalues of the PEP is
degree (detP (λ)) and it is said that

the PEP has dn− degree (detP (λ)) infinite eigenvalues.

F. M. Dopico (U. Carlos III, Madrid) Polynomial and rational eigenproblems July 12, 2018 21 / 76



Infinite eigenvalues in PEPs

Given the regular (detP (λ) 6≡ 0) polynomial matrix

P (λ) = Pdλ
d + · · ·+ P1λ+ P0 , Pi ∈ Cn×n,

then the eigenvalues of the PEP P (λ0) v = 0, 0 6= v ∈ Cn are the

roots of the scalar polynomial detP (λ) .

Thus, P (λ) has at most dn finite eigenvalues since

detP (λ) = (detPd)λ
dn + lower degree terms in λ .

If detPd = 0, then the number of finite eigenvalues of the PEP is
degree (detP (λ)) and it is said that

the PEP has dn− degree (detP (λ)) infinite eigenvalues.

F. M. Dopico (U. Carlos III, Madrid) Polynomial and rational eigenproblems July 12, 2018 21 / 76



Infinite eigenvalues in PEPs

Given the regular (detP (λ) 6≡ 0) polynomial matrix

P (λ) = Pdλ
d + · · ·+ P1λ+ P0 , Pi ∈ Cn×n,

then the eigenvalues of the PEP P (λ0) v = 0, 0 6= v ∈ Cn are the

roots of the scalar polynomial detP (λ) .

Thus, P (λ) has at most dn finite eigenvalues since

detP (λ) = (detPd)λ
dn + lower degree terms in λ .

If detPd = 0, then the number of finite eigenvalues of the PEP is
degree (detP (λ)) and it is said that

the PEP has dn− degree (detP (λ)) infinite eigenvalues.

F. M. Dopico (U. Carlos III, Madrid) Polynomial and rational eigenproblems July 12, 2018 21 / 76



Infinite eigenvalues in PEPs

Given the regular (detP (λ) 6≡ 0) polynomial matrix

P (λ) = Pdλ
d + · · ·+ P1λ+ P0 , Pi ∈ Cn×n,

then the eigenvalues of the PEP P (λ0) v = 0, 0 6= v ∈ Cn are the

roots of the scalar polynomial detP (λ) .

Thus, P (λ) has at most dn finite eigenvalues since

detP (λ) = (detPd)λ
dn + lower degree terms in λ .

If detPd = 0, then the number of finite eigenvalues of the PEP is
degree (detP (λ)) and it is said that

the PEP has dn− degree (detP (λ)) infinite eigenvalues.

F. M. Dopico (U. Carlos III, Madrid) Polynomial and rational eigenproblems July 12, 2018 21 / 76



The reversal polynomial and more on infinite eigenvalues

Another way to define infinite eigenvalues of a PEP that can be
generalized to non-regular or singular polynomial matrices is through
the reversal polynomial.

Given P (λ) = Pdλ
d + · · ·+ P1λ+ P0 , its reversal is

revP (λ) := λdP ( 1
λ ) = P0λ

d + · · ·+ Pd−1λ+ Pd .

Then the infinite eigenvalues of P (λ) correspond to the zero
eigenvalues of revP (λ).

Why the name infinite eigenvalues? A possible reason is that if a
polynomial with infinite eigenvalues, i.e., with Pd singular, is perturbed a
bit, then eigenvalues with very large absolute values often appears.
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Example 1

Let ε be a small parameter and consider the quadratic matrix polynomial

P (λ) =

[
(λ− 1)(λ− 2) 0

0 λ(ελ− 1)

]
= λ2

[
1 0
0 ε

]
+ λ

[
−3 0
0 −1

]
+

[
2 0
0 0

]
.

If ε 6= 0, then the eigenvalues are {1, 2, 0, 1/ε} , (very large if |ε| � 1).

If ε = 0, then the eigenvalues are {1, 2, 0,∞} .
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Singular PEPs (I)

An additional high step of difficulty is that PEPs can be singular, which
happens when

P (λ) = Pdλ
d + · · ·+ P1λ+ P0

is either rectangular or square with detP (λ) ≡ 0, i.e., zero for all λ.

Singular PEPs also appear in applications, in particular in
Multivariable System Theory and Control Theory.
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Singular PEPs (II)

In addition to eigenvalues, singular matrix polynomials have other
“interesting numbers” attached to them called minimal indices.

Recall that eigenvalues are related to the existence of nontrivial null
spaces. For instance, Nr(λ0In −A) 6= {0} in BEPs.

Minimal indices are related to the fact that a singular m× n matrix
polynomial P (λ) has non-trivial left and/or right null-spaces over the field
C(λ) of rational functions:

N`(P ) :=
{
y(λ)T ∈ F(λ)1×m : y(λ)TP (λ) ≡ 0T

}
,

Nr(P ) :=
{
x(λ) ∈ F(λ)n×1 : P (λ)x(λ) ≡ 0

}
,

which have bases consisting entirely of vector polynomials.

Looking for polynomials bases with “minimal degree”, in a certain sense,
leads to the concepts of minimal bases and indices.
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Example III: right minimal bases and right minimal indices

P (λ) =

λ −λ4 0 0 0
0 0 1 −λ 0
0 0 0 1 −λ

 ∈ C[λ]3×5

Nr(P ) = Span{


λ3

1
0
0
0


︸ ︷︷ ︸
u1

,


0
0
λ2

λ
1


︸ ︷︷ ︸
u2

} = Span{


λ3

1
λ3

λ2

λ


︸ ︷︷ ︸
w1

,


λ5

λ2

λ2

λ
1


︸ ︷︷ ︸
w2

}

Sum of degrees of {u1, u2} = 3 + 2 = 5 (right minimal bases of P (λ))

Sum of degrees of {w1, w2} = 3 + 5 = 8

Right minimal indices of P (λ) = {2, 3}
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Example III: right minimal bases and right minimal indices
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The complete “eigenstructure” of a polynomial matrix

As a consequence of the previous discussion, we define:

Definition
The complete “eigenstructure” of a polynomial matrix P (λ) is comprised
of:

its finite eigenvalues, together with their partial multiplicities,

its infinite eigenvalue, together with its partial multiplicities,

its right minimal indices, and

its left minimal indices.

Remarks

The partial multiplicities are rigorously defined through the Smith form of
P (λ) and for matrices they are just the sizes of the Jordan blocks
associated to each eigenvalue.
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The complete “eigenstructure” of a rational matrix

Analogously, we define:

Definition
The complete “eigenstructure” of a rational matrix G(λ) is comprised of:

its finite zeros and poles, together with their partial multiplicities,

its infinite zeros and poles, together with its partial multiplicities,

its right minimal indices, and

its left minimal indices.

Remarks

The partial multiplicities are rigorously defined through the
Smith-McMillan form of G(λ).

The eigenvalues of G(λ) are those zeros that are not poles.
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Definition: strong linearizations of polynomial matrices

As said before, the most reliable methods for solving numerically PEPs are
based on the concept of linearization.

Definition

A linear polynomial matrix (or matrix pencil) L(λ) is a linearization
of P (λ) = Pd λ

d + · · ·+ P1λ+ P0 if there exist unimodular polynomial
matrices U(λ), V (λ) such that

U(λ)L(λ)V (λ) =

[
Is 0
0 P (λ)

]
.

L(λ) is a strong linearization of P (λ) if, in addition, revL(λ) is a
linearization for revP (λ).
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Spectral characterization of linearizations of polynomial matrices

Theorem
A matrix pencil L(λ) is a linearization of a polynomial matrix P (λ) if and
only if

(1) L(λ) and P (λ) have the same number of right minimal indices.

(2) L(λ) and P (λ) have the same number of left minimal indices.

(3) L(λ) and P (λ) have the same finite eigenvalues with the same partial
multiplicities.

L(λ) is a strong linearization of P (λ) if and only if (1), (2), (3) and

(4) L(λ) and P (λ) have the same infinite eigenvalues with the same
partial multiplicities.
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The most famous strong linearization (I)

The classical Frobenius companion form of the m× n matrix polynomial

P (λ) = Pdλ
d + · · ·+ P1λ+ P0

is

C1(λ) :=



λPd + Pd−1 Pd−2 · · · P1 P0

−In λIn
. . .

. . .

. . . λIn
−In λIn

 ∈ C[λ](m+n(d−1))×nd

Additional property of C1(λ): Example of strong linearization whose
right (resp. left) minimal indices allow us to recover the ones of the
polynomial via addition of a constant.
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The most famous strong linearization (II)

Theorem (recovery of eigenvectors from C1(λ))

Let P (λ) = Pdλ
d + · · ·+ P1λ+ P0 be a regular matrix polynomial, λ0 ∈ C be

a finite eigenvalue of P (λ), and C1(λ) be the Frobenius companion form of
P (λ). Then, any eigenvector v of C1(λ) associated to λ0 has the form

v =


λd−10 x
...

λ0 x
x

 =


λd−10
...
λ0
1

⊗ x
with x an eigenvector of P (λ) associated to λ0.

C1(λ) is one (among many others) strong linearization of P (λ) that
allows us to recover without computational cost the eigenvectors of the
polynomial from those of the linearization.
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Parenthesis: There are many other strong linearizations of PEPs (I)

Since 2006 (Mackey, Mackey, Mehl, Mehrmann), many “new” strong
linearizations of matrix polynomials have been developed by many
authors all around the world

which also allow us to recover minimal indices and eigenvectors of PEPs
without any computational cost.

One relevant motivation for developing new classes of linearizations is to
preserve structures appearing in applications, which is important for
saving operations in algorithms and for preserving properties of the
eigenvalues in floating point arithmetic.

For instance, if P (λ) = Pdλ
d + · · ·+ P1λ+ P0 is Hermitian, i.e., it has

Hermitian coefficients, the Frobenius companion form is not!!

C1(λ) :=



λPd + Pd−1 Pd−2 · · · P1 P0

−In λIn
. . .

. . .

. . . λIn
−In λIn
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Parenthesis: There are many other strong linearizations of PEPs (II)

but

L̃(λ) =



λP1 + P0 λIn 0
λIn 0 In

In λP3 + P2 λIn
λIn 0 In

In λP5 + P4 λIn
λIn 0 In

0 In λP7 + P6


,

is a Hermitian strong linearization of the n× n Hermitian matrix
polynomial P (λ) = P7λ

7 + · · ·+ P1λ+ P0 (Antoniou-Vologiannidis 2004;
De Terán-D-Mackey 2010; Mackey-Mackey-Mehl-Mehrmann 2010).
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Linearizations transform PEPs into GEPs (P (λ) −→ λB −A)

“Good” strong linearizations of a matrix polynomial P (λ) are linear
matrix polynomials (matrix pencils) that have the same eigenvalues as
P (λ) and that allow us to recover the eigenvectors when P (λ) is regular,
and the minimal indices when P (λ) is singular.

They allow to solve numerically PEPs because there exist excellent
algorithms for solving linear PEPs, i.e., GEPs.

The fundamental proposed approach

“linearization + linear eigenvalue algorithm on the linearization”

for solving numerically PEPs can be traced back at least to
Van Dooren-De Wilde (1983) and Van Dooren’s PhD Thesis (1979).
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Algorithms for solving “not too large” GEPs λB −A

QZ algorithm for regular GEPs (Moler-Stewart 1973).

QZ is implemented in MATLAB command eig(A,B) and cost O(n3).

Staircase or GUPTRI algorithm for singular GEPs
(Van Dooren 1979; Demmel-Kågström, 1993).

It computes eigenvalues and minimal indices and there are
FORTRAN public implementations.

QZ and Staircase are both backward stable algorithms.

The command polyeig of MATLAB computes all the eigenvalues of a
“not too large” regular PEP by applying QZ to the first Frobenius
companion form of the matrix polynomial defining the PEP.
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A few words on algorithms for solving large-scale regular PEPs (I)

Many are based on linearizations λB −A of the PEP

and on Krylov subspace methods on λB −A (Arnoldi on B−1A,
Rational-Krylov with shifts on (A− θjB)−1B) for computing a few
desired eigenvalues,

but the application of these Krylov methods is NOT direct,

since this would be very expensive in terms of memory and
orthogonalization costs, because

if P (λ) = Pdλ
d + · · ·+ P1λ+ P0 ∈ C[λ]n×n then its Frobenius companion

form (and any other strong linearization) has size nd× nd

C1(λ) :=



λPd + Pd−1 Pd−2 · · · P1 P0

−In λIn
. . .

. . .

. . . λIn
−In λIn

 ∈ C[λ]nd×nd .

So, if n is very large, then nd is very very large.
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A few words on algorithms for solving large-scale regular PEPs (II)

Therefore, Krylov subspace methods for PEPs take advantage, in a
sophisticated way, of the structure of the linearization and of the bases
of their Krylov subspaces

to obtain memory and orthogonalization costs of the same order of
those of an n× n standard matrix problem (almost no influence of d).

The most stable and efficient methods in this family are
1 TOAR (Two level Orthogonal ARnoldi) for QEPs (Su-Bai-Lu, 2008

and 2016) based on C1(λ),
2 CORK (COmpact Rational Krylov) for arbitrary PEPs (Van

Beeumen-Meerbergen-Michiels, 2015) very general, it can use
many linearizations and bases for expressing the PEP.

Available HPC software: parallel implementations of TOAR for any
degree (including symm. versions) in SLEPc (Roman, UPV, 2016).
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The most stable and efficient methods in this family are
1 TOAR (Two level Orthogonal ARnoldi) for QEPs (Su-Bai-Lu, 2008

and 2016) based on C1(λ),
2 CORK (COmpact Rational Krylov) for arbitrary PEPs (Van

Beeumen-Meerbergen-Michiels, 2015) very general, it can use
many linearizations and bases for expressing the PEP.

Available HPC software: parallel implementations of TOAR for any
degree (including symm. versions) in SLEPc (Roman, UPV, 2016).
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Block minimal bases linearizations of polynomial matrices (I)

Most of the linearizations of polynomial matrices available in the literature are
inside (or very closely connected to) the following class of pencils.

Definition (D, Lawrence, Pérez, Van Dooren, Numer. Math., 2018)
A matrix pencil

L(λ) =

[
M(λ) K2(λ)T

K1(λ) 0

]
is a block minimal bases pencil (BMBP) if K1(λ) and K2(λ) are minimal
bases. If, in addition, the row degrees of K1(λ) and K2(λ) are all one, and
the row degrees of each of their dual minimal bases N1(λ) and N2(λ) are all
equal, then L(λ) is a strong block minimal bases pencil (SBMBP).

Theorem (D, Lawrence, Pérez, Van Dooren, Numer. Math., 2018)

If L(λ) is a BMBP (resp. SBMBP), then it is a linearization (resp. strong
linearization) of the matrix polynomial

Q(λ) = N2(λ)M(λ)N1(λ)T .
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These definitions are not restrictive (Van Dooren, D, Lin. Alg., 2018)

In the complex linear space of matrix pencils of size m× n with m < n
endowed with the Euclidean metric, the set of pencils that are minimal
bases is open and dense,

even more is the complement of a proper algebraic set.

If m = (n−m)η with η integer, then the set of pencils that are minimal
bases with all their row degrees equal to one and with their dual minimal
bases having all the row degrees equal to η is open and dense, even
more is the complement of a proper algebraic set.
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Examples of SBMBP: block-Kronecker pencils (I)

Two fundamental auxiliary matrix polynomials in the rest of the talk are
the pair of dual minimal bases

Lk(λ) :=


−1 λ

−1 λ
. . .

. . .

−1 λ

 ∈ C[λ]k×(k+1),

Λk(λ)T :=
[
λk λk−1 · · · λ 1

]
∈ C[λ]1×(k+1),

and their Kronecker products by identities

Lk(λ)⊗ In :=


−In λIn

−In λIn
. . .

. . .

−In λIn

 ∈ C[λ]nk×n(k+1),

Λk(λ)T ⊗ In :=
[
λkIn λk−1In · · · λIn In

]
∈ C[λ]n×n(k+1),

which are also dual minimal bases.
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Examples of SBMBP: block-Kronecker pencils (II)

The Frobenius companion form of the m× n matrix polynomial
P (λ) = Pdλ

d + · · ·+ P1λ+ P0 is

C1(λ) :=



λPd + Pd−1 Pd−2 · · · P1 P0

−In λIn
. . .

. . .

. . . λIn
−In λIn

 ,

and can be compactly written with the polynomials defined above as

C1(λ) :=

[
λPd + Pd−1 Pd−2 · · · P1 P0

Ld−1(λ)⊗ In

]
.
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Examples of SBMBP: block-Kronecker pencils (III)

Definition (D, Lawrence, Pérez, Van Dooren, Numer. Math., 2018)

Let M(λ) be an arbitrary pencil. Then any pencil of the form

L(λ) =

[
M(λ) Lη(λ)T ⊗ Im

Lε(λ)⊗ In 0

] }
(η+1)m

} εn︸ ︷︷ ︸
(ε+1)n

︸ ︷︷ ︸
ηm

,

is called a block Kronecker pencil (one-block row and column cases included).

Theorem (D, Lawrence, Pérez, Van Dooren, Numer. Math., 2018)

Any block Kronecker pencil L(λ) is a SBMBP and, so, a strong linearization of
the matrix polynomial

Q(λ) := (Λη(λ)T ⊗ Im)M(λ)(Λε(λ)⊗ In) ∈ C[λ]m×n .
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Examples of block Kronecker pencils (I)

P (λ) = λ5P5 + λ4P4 + λ3P3 + λ2P2 + λP1 + P0 ∈ C[λ]m×n


λP5 + P4 0 0 −Im 0

0 λP3 + P2 0 λIm −Im
0 0 λP1 + P0 0 λIm
−In λIn 0 0 0

0 −In λIn 0 0
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Examples of block Kronecker pencils (II)

P (λ) = λ5P5 + λ4P4 + λ3P3 + λ2P2 + λP1 + P0 ∈ C[λ]m×n


λP5 λP4 λP3 −Im 0

0 0 λP2 λIm −Im
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Outline

1 The “flavor” of applied PEPs, REPs, NEPs: examples

2 Additional “difficulties” of GEPs, PEPs, and REPs over BEPs

3 Linearizations and numerical solution of PEPs

4 Linearizations and numerical solution of REPs

5 Global backward stability of PEPs solved with linearizations

6 Global backward stability of REPs solved with linearizations

7 Conclusions

F. M. Dopico (U. Carlos III, Madrid) Polynomial and rational eigenproblems July 12, 2018 46 / 76



First comments on linearizations of REPs

A difference between REPs and PEPs is that there is no agreement
yet on what is a linearization of a rational matrix.

Many authors have developed “linearizations” of rational matrices, but
they very rarely prove that properties analogous to those of linearizations
of polynomial matrices are satisfied→ MORE DIFFICULT PROBLEM.

Pioneering works on linearizations of rational matrices:
1 Van Dooren and Verghese in late 70s & early 80s construct pencils

that have exactly the same eigenstructure as any given rational
matrix. The constructions require numerical computations.

2 Su and Bai, 2011, construct a Frobenius-like linearization from a
representation of G(λ) as polynomial + state-space realization.

The definitions in this talk are those in Amparan, D, Marcaida, and
Zaballa, Strong linearizations of rational matrices, MIMS Eprint (2016).

Another approach for defining (non-strong) linearizations of rational
matrices can be found in Alam-Behera, 2016.
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Polynomial and strictly proper parts of a rational matrix. Reversal.

Any rational matrix G(λ) can be uniquely expressed as

G(λ)=D(λ) +Gsp(λ),

where
1 D(λ) is a polynomial matrix (polynomial part of G(λ)), and
2 the rational matrix Gsp(λ) is strictly proper (strictly proper part of
G(λ)), i.e., lim

λ→∞
Gsp(λ) = 0.

Let d = deg(D) if D(λ) 6= 0 and d = 0 otherwise. We define the reversal
of G(λ) as

revG(λ) = λdG

(
1

λ

)
.
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Minimal polynomial system matrices of rational matrices

Definition (Rosenbrock, 1970)

Let G(λ) ∈ C(λ)p×m be a rational matrix. The polynomial matrix

P (λ) =

[
A(λ) B(λ)
−C(λ) D(λ)

]
∈ C[λ](n+p)×(n+m)

is a polynomial system matrix of G(λ) if

G(λ) = D(λ) + C(λ)A(λ)−1B(λ).

If, in addition,
[
A(λ)
−C(λ)

]
and

[
A(λ) B(λ)

]
do not have finite eigenvalues,

then P (λ) is a minimal polynomial system matrix of G(λ).

Theorem (Rosenbrock, 1970)

Each rational matrix has infinitely many minimal polynomial system matrices
and, in particular, has minimal polynomial system matrices in space-state
form, i.e.,

A(λ) = λIn −A, B(λ) = B, C(λ) = C .
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Minimal polynomial system matrices contain the whole finite structure

Theorem (Rosenbrock, 1970)

If

P (λ) =

[
A(λ) B(λ)
−C(λ) D(λ)

]
∈ C[λ](n+p)×(n+m)

is a minimal polynomial system matrix of G(λ) = D(λ) + C(λ)A(λ)−1B(λ),
then:

1 The finite eigenvalue structure of P (λ) (including all types of
multiplicities) coincides exactly with the finite zero structure of G(λ).

2 The finite eigenvalue structure of A(λ) (including all types of
multiplicities) coincides exactly with the finite pole structure of G(λ).

Remark:

Nothing can be guaranteed on the structure at infinity.
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Linearization of a rational matrix

Definition (Amparan, D, Marcaida, Zaballa, 2016)

A linearization of G(λ) ∈ C(λ)p×m is a matrix pencil

L(λ) =

[
A1λ+A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
∈ C[λ](n+(p+s))×(n+(m+s))

such that:

(a) L(λ) is a minimal polynomial system matrix of

Ĝ(λ) = (D1λ+D0) + (C1λ+ C0)(A1λ+A0)−1(B1λ+B0),

and

(b) there exist unimodular matrices U1(λ), U2(λ) such that

U1(λ) diag(G(λ), Is)U2(λ) = Ĝ(λ).
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Linearization at infinity of a rational matrix

Definition (D, Marcaida, Quintana, Van Dooren, in progress, 2018)

A linearization at infinity of G(λ) ∈ C(λ)p×m is a matrix pencil

L(λ) =

[
A1λ+A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
∈ C[λ](n+(p+s))×(n+(m+s))

such that:

(a) if n > 0, then A1 is invertible, and

(b) if Ĝ(λ) = (D1λ+D0) + (C1λ+ C0)(A1λ+A0)−1(B1λ+B0), then there
exist rational matrices invertible at λ = 0, R1(λ), R2(λ) (that is, Ri(λ)
does not have poles at λ = 0 and detRi(0) 6= 0) such that

R1(λ) diag(revG(λ), Is)R2(λ) = rev Ĝ(λ).
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Strong linearization of a rational matrix

Definition (Amparan, D, Marcaida, Zaballa, 2016)

A strong linearization of G(λ) ∈ C(λ)p×m is a matrix pencil L(λ) such that

1 L(λ) is a linearization of G(λ), and

2 L(λ) is a linearization at infinity of G(λ).

Remark
If G(λ) is a polynomial matrix, then linearizations and strong linearizations of
G(λ) according to the definitions above are linearizations and strong
linearizations of G(λ) according to the polynomial definition.
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Strong linearizations contain the whole zero/pole structure

Theorem (Amparan, D, Marcaida, Zaballa, 2016)

If

L(λ) =

[
A1λ+A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
∈ C[λ](n+(p+s))×(n+(m+s))

is a strong linearization of G(λ) ∈ C(λ)p×m then:

The finite eigenvalue structure of L(λ) coincides exactly with the finite
zero structure of G(λ).

The finite eigenvalue structure of A1λ+A0 coincides exactly with the
finite pole structure of G(λ).

The infinite eigenvalue structure of L(λ) allows us to recover exactly the
infinite zero/pole structure of G(λ) via a uniform shift.

L(λ) and G(λ) have the same number of left and the same number of
right minimal indices.
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There exist many strong linearizations of rational matrices

This is a consequence of the theorem in the next slide,

which requires to know a state-space realization of the strictly proper
part of the rational matrix.

Such realizations can be obtained easily in many modern applications
and, in any case, there are classical algorithms for computing them.

Extensions to other scenarios are in progress D, Marcaida, Quintana,
Van Dooren (2018) to cope with some pencils used by Güttel, Van
Beeumen, Meerbergen, Michiels (2014), Lietaert, Pérez, Vandereycken,
Meerbergen, (2018) in the approximation of NEPs with REPs.
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Strong block minimal bases linearizations of rational matrices (RSBMBL)

Theorem (Amparan, D, Marcaida, Zaballa, 2016)

Let [
M(λ) K2(λ)T

K1(λ) 0

]
be a SBMBP and N1(λ), N2(λ) be minimal bases dual to K1(λ),K2(λ). Consider for
i = 1, 2 unimodular matrices

Ui(λ) =

[
Ki(λ)

K̂i

]
and Ui(λ)−1 =

[
N̂i(λ)T Ni(λ)T

]
and a linear minimal polynomial system matrix

L(λ) =

 (λIn −A) BK̂1 0

− K̂T
2 C M(λ) K2(λ)T

0 K1(λ) 0

 .
Then L(λ) is a strong linearization of the rational matrix

G(λ) = N2(λ)M(λ)N1(λ)T︸ ︷︷ ︸
poly. part

+C(λIn −A)−1B︸ ︷︷ ︸
strict. proper. part

.
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Example 1 of RSBMBL. Strong linearization based on Frobenius

companion linearization for polynomials of Su & Bai (2011)

Given rational matrix:

G(λ) = Ddλ
d + · · ·+D1λ+D0 + C(λIn −A)−1B ∈ C(λ)p×m.

Strong linearization (originally introduced by Su & Bai (SIMAX, 2011)
without minimal order requirement and without strong nature):

L(λ) =



λIn −A 0 0 · · · 0 B
−C λDd +Dd−1 Dd−2 · · · D1 D0

0 −Im λIm
...

. . .
. . .

...
. . . λIm

0 −Im λIm
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Example 2 of RSBMBL. Strong linearization based on another block

Kronecker pencil (Amparan, D., Marcaida, Zaballa, 2016)

Given rational matrix:

G(λ) = λ5D5+λ4D4+λ3D3+λ2D2+λD1+D0+C(λIn −A)−1B ∈ C(λ)p×m

Strong linearization:

L(λ) =


λIn −A 0 0 B 0 0

0 λP5 + P4 0 0 −Ip 0
0 0 λP3 + P2 0 λIp −Ip
−C 0 0 λP1 + P0 0 λIp
0 −Im λIm 0 0 0
0 0 −Im λIm 0 0
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Algorithms for solving REPs G(λ)v = 0 with linearizations

Step 1. Construct one of the previous (strong) linearizations L(λ) of
G(λ).

Step 2. For computing the zeros (and minimal indices, if singular):

Step 2.1 Apply to L(λ) the QZ algorithm for not too large
regular problems.

Step 2.2 Apply to L(λ) the Staircase algorithm for not too
large singular problems.

Step 2.3 Apply to L(λ) the structured rational Krylov
algorithm R-CORK (D, González-Pizarro, 2018)
for large-scale regular problems.

Step 3. If the poles are unknown and desired:

Step 3.1 Apply to the (1,1)-block of L(λ) the QZ algorithm
for not too large regular problems.

Step 3.2 Apply to the (1,1)-block of L(λ) a rational Krylov
algorithm for large-scale pencils.
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Outline

1 The “flavor” of applied PEPs, REPs, NEPs: examples

2 Additional “difficulties” of GEPs, PEPs, and REPs over BEPs

3 Linearizations and numerical solution of PEPs

4 Linearizations and numerical solution of REPs

5 Global backward stability of PEPs solved with linearizations

6 Global backward stability of REPs solved with linearizations

7 Conclusions
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The Setting

We consider a general m× n polynomial matrix of degree d

P (λ) = Pdλ
d + · · ·+ P1λ+ P0 , Pi ∈ Cm×n,

and we assume that its complete eigenstructure

has been computed by applying a backward stable algorithm
(QZ for regular, Staircase for singular)

to a strong linearization L(λ) in the wide class of block Kronecker
linearizations of P (λ).
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Backward stable algorithms on strong linearizations and question

The computed complete eigenstructure of L(λ) is the exact complete
eigenstructure of a matrix pencil L(λ) + ∆L(λ) such that

‖∆L(λ)‖F
‖L(λ)‖F

= O(u),

where u ≈ 10−16 is the unit roundoff and

‖ · ‖F is the Frobenius norm, i.e., for any matrix polynomial

‖Qkλk + · · ·+Q1λ+Q0‖F =
√
‖Qk‖2F + · · ·+ ‖Q1‖2F + ‖Q0‖2F .

But, does this imply that the computed complete eigenstructure of P (λ)
is the exact complete eigenstructure of a polynomial matrix of the same
degree P (λ) + ∆P (λ) such that

‖∆P (λ)‖F
‖P (λ)‖F

= O(u) ??
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Why is not obvious to answer this question?

because block Kronecker linearizations are highly structured pencils
and perturbations destroy the structure!!

Example: The Frobenius Companion Form

C1(λ) :=



λPd + Pd−1 Pd−2 · · · P1 P0

−In λIn
. . .

. . .

. . . λIn
−In λIn


C1(λ) + ∆L(λ) =

λ(Pd + E11) + (Pd−1 + F11) λE12 + Pd−2 + F12 · · · λE1,d−1 + P1 + F1,d−1 · · ·
λE21 − In + F21 λ(In + E22) + F22 λE23 + F23

λE31 + F31 λE32 + F32

. . .

...
...

. . . λ(In + Ed−1,d−1) + Fd−1,d−1
λEd1 + Fd1 λEd2 + Fd2 λEd,d−1 + Fd,d−1 − In · · ·
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The matrix perturbation problems to be solved

Problem 1: To establish conditions on ‖∆L(λ)‖F such that
L(λ) + ∆L(λ) is a strong linearization for some polynomial matrix
P (λ) + ∆P (λ) of degree d.

Problem 2: To prove a perturbation bound

‖∆P (λ)‖F
‖P (λ)‖F

≤ CP,L
‖∆L(λ)‖F
‖L(λ)‖F

,

with CP,L a number depending on P (λ) and L(λ).

For those P (λ) and L(λ) s.t. CP,L is moderate, to use global backward
stable algorithms on L(λ) gives global backward stability for P (λ).

F. M. Dopico (U. Carlos III, Madrid) Polynomial and rational eigenproblems July 12, 2018 64 / 76



The matrix perturbation problems to be solved

Problem 1: To establish conditions on ‖∆L(λ)‖F such that
L(λ) + ∆L(λ) is a strong linearization for some polynomial matrix
P (λ) + ∆P (λ) of degree d.

Problem 2: To prove a perturbation bound

‖∆P (λ)‖F
‖P (λ)‖F

≤ CP,L
‖∆L(λ)‖F
‖L(λ)‖F

,

with CP,L a number depending on P (λ) and L(λ).

For those P (λ) and L(λ) s.t. CP,L is moderate, to use global backward
stable algorithms on L(λ) gives global backward stability for P (λ).

F. M. Dopico (U. Carlos III, Madrid) Polynomial and rational eigenproblems July 12, 2018 64 / 76



The matrix perturbation problems to be solved

Problem 1: To establish conditions on ‖∆L(λ)‖F such that
L(λ) + ∆L(λ) is a strong linearization for some polynomial matrix
P (λ) + ∆P (λ) of degree d.

Problem 2: To prove a perturbation bound

‖∆P (λ)‖F
‖P (λ)‖F

≤ CP,L
‖∆L(λ)‖F
‖L(λ)‖F

,

with CP,L a number depending on P (λ) and L(λ).

For those P (λ) and L(λ) s.t. CP,L is moderate, to use global backward
stable algorithms on L(λ) gives global backward stability for P (λ).

F. M. Dopico (U. Carlos III, Madrid) Polynomial and rational eigenproblems July 12, 2018 64 / 76



Previous works on this type of backward error analyses

1 There are just a few previous analysis of this type:

Van Dooren & De Wilde (LAA 1983).
Edelman & Murakami (Math. Comp. 1995).
Lawrence & Corless (SIMAX 2015).
Lawrence & Van Barel & Van Dooren (SIMAX 2016).
Noferini & Pérez (Math. Comp., 2017).

2 Our analysis improve considerably these analyses, because

3 previous analyses are only valid to first order for infinitesimal
perturbations, are very particular since are only valid for classical
Frobenius linearizations or closely connected linearizations, and often
are only valid for regular polynomial matrices.
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The main perturbation theorem

Theorem (D, Lawrence, Pérez, Van Dooren, Numer. Math., 2018)

Let L(λ) be a block Kronecker pencil for P (λ) =
∑d
i=0 Piλ

i ∈ C[λ]m×n, i.e.,

L(λ) =

[
M(λ) Lη(λ)T ⊗ Im

Lε(λ)⊗ In 0

]
.

If ∆L(λ) is any pencil with the same size as L(λ) and such that

‖∆L(λ)‖F <
(
√

2− 1)2

d5/2
1

1 + ‖M(λ)‖F
,

then L(λ) + ∆L(λ) is a strong linearization of a polynomial matrix
P (λ) + ∆P (λ) with grade d and such that

‖∆P (λ)‖F
‖P (λ)‖F

≤ 14 d5/2
‖L(λ)‖F
‖P (λ)‖F

(1 + ‖M(λ)‖F + ‖M(λ)‖2F )
‖∆L(λ)‖F
‖L(λ)‖F

.
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Discussion of the perturbation bounds for block Kronecker pencils

L(λ) =

[
M(λ) Lη(λ)T ⊗ Im

Lε(λ)⊗ In 0

]
.

‖∆P (λ)‖F
‖P (λ)‖F

≤ 14 d5/2
‖L(λ)‖F
‖P (λ)‖F

(1 + ‖M(λ)‖F + ‖M(λ)‖2F )︸ ︷︷ ︸
CP,L

‖∆L(λ)‖F
‖L(λ)‖F

.

It can be proved that if ‖P (λ)‖F � 1 or ‖P (λ)‖F � 1, then CP,L � 1,

and that, if ‖M(λ)‖F � 1, then CP,L � 1.

Therefore, for getting “backward stability” from Block Kronecker
linearizations, one needs to normalize the matrix poly ‖P (λ)‖F = 1 and
to use pencils such that ‖M(λ)‖F ≈ ‖P (λ)‖F , then

‖∆P (λ)‖F
‖P (λ)‖F

. d3
√
m+ n

‖∆L(λ)‖F
‖L(λ)‖F

.

For Fiedler, Frobenius, etc linearizations ‖M(λ)‖F = ‖P (λ)‖F .
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to use pencils such that ‖M(λ)‖F ≈ ‖P (λ)‖F , then

‖∆P (λ)‖F
‖P (λ)‖F

. d3
√
m+ n

‖∆L(λ)‖F
‖L(λ)‖F

.

For Fiedler, Frobenius, etc linearizations ‖M(λ)‖F = ‖P (λ)‖F .
F. M. Dopico (U. Carlos III, Madrid) Polynomial and rational eigenproblems July 12, 2018 67 / 76



Discussion of the perturbation bounds for block Kronecker pencils

L(λ) =

[
M(λ) Lη(λ)T ⊗ Im

Lε(λ)⊗ In 0

]
.

‖∆P (λ)‖F
‖P (λ)‖F

≤ 14 d5/2
‖L(λ)‖F
‖P (λ)‖F

(1 + ‖M(λ)‖F + ‖M(λ)‖2F )︸ ︷︷ ︸
CP,L

‖∆L(λ)‖F
‖L(λ)‖F

.

It can be proved that if ‖P (λ)‖F � 1 or ‖P (λ)‖F � 1, then CP,L � 1,

and that, if ‖M(λ)‖F � 1, then CP,L � 1.

Therefore, for getting “backward stability” from Block Kronecker
linearizations, one needs to normalize the matrix poly ‖P (λ)‖F = 1 and
to use pencils such that ‖M(λ)‖F ≈ ‖P (λ)‖F , then

‖∆P (λ)‖F
‖P (λ)‖F

. d3
√
m+ n

‖∆L(λ)‖F
‖L(λ)‖F

.

For Fiedler, Frobenius, etc linearizations ‖M(λ)‖F = ‖P (λ)‖F .
F. M. Dopico (U. Carlos III, Madrid) Polynomial and rational eigenproblems July 12, 2018 67 / 76



Discussion of the perturbation bounds for block Kronecker pencils

L(λ) =

[
M(λ) Lη(λ)T ⊗ Im

Lε(λ)⊗ In 0

]
.

‖∆P (λ)‖F
‖P (λ)‖F

≤ 14 d5/2
‖L(λ)‖F
‖P (λ)‖F

(1 + ‖M(λ)‖F + ‖M(λ)‖2F )︸ ︷︷ ︸
CP,L

‖∆L(λ)‖F
‖L(λ)‖F

.

It can be proved that if ‖P (λ)‖F � 1 or ‖P (λ)‖F � 1, then CP,L � 1,

and that, if ‖M(λ)‖F � 1, then CP,L � 1.

Therefore, for getting “backward stability” from Block Kronecker
linearizations, one needs to normalize the matrix poly ‖P (λ)‖F = 1 and
to use pencils such that ‖M(λ)‖F ≈ ‖P (λ)‖F , then

‖∆P (λ)‖F
‖P (λ)‖F

. d3
√
m+ n

‖∆L(λ)‖F
‖L(λ)‖F

.

For Fiedler, Frobenius, etc linearizations ‖M(λ)‖F = ‖P (λ)‖F .
F. M. Dopico (U. Carlos III, Madrid) Polynomial and rational eigenproblems July 12, 2018 67 / 76



Outline

1 The “flavor” of applied PEPs, REPs, NEPs: examples

2 Additional “difficulties” of GEPs, PEPs, and REPs over BEPs

3 Linearizations and numerical solution of PEPs

4 Linearizations and numerical solution of REPs

5 Global backward stability of PEPs solved with linearizations

6 Global backward stability of REPs solved with linearizations

7 Conclusions

F. M. Dopico (U. Carlos III, Madrid) Polynomial and rational eigenproblems July 12, 2018 68 / 76



The setting

We consider a general p×m rational matrix expressed as

G(λ) = Ddλ
d + · · ·+D1λ+D0 + C(λIn −A)−1B ,

and we assume that its complete ZERO and minimal index structure

has been computed by applying a backward stable algorithm
(QZ for regular, Staircase for singular)

to a strong linearization L(λ) in the wide class of Rational block
Kronecker linearizations of G(λ).

Is this process backward stable from the point of view of rational
matrices?

This question is completely open in the literature.

Joint WORK IN PROGRESS with M.C. Quintana and P. Van Dooren. I
present just an idea of preliminary results
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Reminder on rational block Kronecker strong linearizations

These are

L(λ) =

 λIn −A B(eTε+1 ⊗ Im) 0

− (eη+1 ⊗ Ip)C M(λ) Lη(λ)T ⊗ Ip
0 Lε(λ)⊗ Im 0

 .
An example we have already seen is for

G(λ) = λ5D5 + λ4D4 + λ3D3 + λ2D2 + λD1 +D0 + C(λIn −A)−1B

the strong linerization

L(λ) =


λIn −A 0 0 B 0 0

0 λP5 + P4 0 0 −Ip 0
0 0 λP3 + P2 0 λIp −Ip
−C 0 0 λP1 + P0 0 λIp
0 −Im λIm 0 0 0
0 0 −Im λIm 0 0
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Some auxiliary definitions

Given G(λ) =
∑d
i=0 λ

iDi + C(λIn −A)−1B, we define

‖G(λ)‖F =

√√√√ d∑
i=0

‖Di‖2F + ‖C‖2F + ‖In‖2F + ‖A‖2F + ‖B‖2F ,

which is the norm of the polynomial system matrix of G(λ)

P (λ) =

[
λIn −A B

−C
∑d
i=0 λ

iDi

]
.

Given a perturbation of G(λ), Ĝ(λ) =
∑d
i=0 λ

iD̂i + Ĉ(λIn − Â)−1B̂, we
define (it is a definition!!)

‖G(λ)− Ĝ(λ)‖F := ‖∆G(λ)‖F

:=

√√√√ d∑
i=0

‖Di − D̂i‖2F + ‖C − Ĉ‖2F + ‖A− Â‖2F + ‖B − B̂‖2F ,

which is the norm of the difference of the polynomial system matrices of
G(λ) and Ĝ(λ).
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define (it is a definition!!)
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The RATIONAL first order perturbation theorem

Theorem (D, Quintana, Van Dooren, in progress, 2018)

Let L(λ) be a rational block Kronecker strong linearization of

G(λ) =

d∑
i=0

λiDi + C(λIn −A)−1B ∈ C(λ)p×m.

If ∆L(λ) is any sufficiently small pencil with the same size as L(λ), then the
EIGENVALUE AND MINIMAL INDEX STRUCTURE OF L(λ) + ∆L(λ) corresponds
exactly to the ZERO AND MINIMAL INDEX STRUCTURE of a rational matrix

Ĝ(λ) =
d∑
i=0

λiD̂i + Ĉ(λIn − Â)−1B̂ ∈ C(λ)p×m,

such that, to first order in ‖∆L(λ)‖F ,

‖∆G(λ)‖F
‖G(λ)‖F

≤ p(d)
‖L(λ)‖F
‖G(λ)‖F

CG (1 + ‖M(λ)‖F + ‖M(λ)‖2F )
‖∆L(λ)‖F
‖L(λ)‖F

,

where
CG = ‖C‖2 + ‖A‖max{ε,η}

2 + ‖B‖2 .
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There is a penalty with respect to the polynomial case!!!

CG = ‖C‖2 + ‖A‖max{ε,η}
2 + ‖B‖2 depends on the particular state-space

realization of the strictly proper part that is used, which is natural since
there are infinitely many of such realizations:

G(λ) =
∑d
i=0 λ

iDi + CT−1(λIn − TAT−1)−1TB.

This effect has been observed in numerical tests!! (next slide)

However, for block Kronecker strong linearizations such that
‖M(λ)‖F ≈ ‖D(λ)‖F , we have proved that:

1 There exists a scaling, Gs(λs) = dr G(dλλ), and
2 and a balancing diagonal T ,

that transform the original REP into another REP such that

‖L(λ)‖F
‖G(λ)‖F

CG (1 + ‖M(λ)‖F + ‖M(λ)‖2F ) ≈ f(d, p,m),

with f(d, p,m) a slowing increasing function of d, p, and m.
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Numerical test on backward errors for zeros of REPs
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Conclusions

There are many matrix eigenvalue problems in addition to the basic one
that are attracting a lot of attention in the last 15 years.

There are still many open problems in this area: development of
algorithms, approximation of NEPs by REPs, theoretical understanding
of REPs, and stability analyses.

We have developed new classes of linearizations of PEPs that unify and
extend the previous ones and, for the first time in the literature, a theory
of strong linearizations of REPs.

We have have performed a backward stability analysis of PEPs solved
with linearizations that improve previous analyses in generality and
quality, but more general analyses, including PEPs represented in other
bases, are necessary.

We have performed for the first time in the literature a backward stability
analysis of REPs solved with linearizations, which confirms (from
another perspective) that REPs are more difficult than PEPs, but this is
just the beginning of these analyses...
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