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A few words on Rational Eigenvalue Problems (REPs)

Given a nonsingular rational matrix G(λ) ∈ C(λ)p×p the REP consists in
computing numbers λ0 ∈ C and non-zero vectors x0 ∈ Cp such that

G(λ0)x0 = 0.

REPs have arisen in applications, directly or as approximations of
nonlinear eigenvalue problems (NEP), (surveys Mehrmann-Voss (2004),
Betcke et al., NLEVP, (2013), Güttel-Tisseur, (2017)),

but REPs have been studied since the 60s and 70s in Linear Systems
and Control and the more general problem of computing all the structural
data of a Rational Matrix was solved using linearizations by Van Dooren
in his PhD Thesis (1979) and papers in early 80s for dense problems.

A first key difference between REPs and polynomial eigenvalue
problems (PEPs) is that, once a scalar polynomial basis is chosen, a
PEP is completely determined by the coefficients, while REPs are not
determined by the election of a basis and appear in many different forms.

This is related to the classic theory and computation of realizations of
rational matrices in linear systems theory (Rosenbrock (1970), Kailath
(1980), Antoulas (2005), etc).
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A few examples of “modern” REPs with different representations (I)

Loaded elastic string (Betcke et al., NLEVP-collection, (2013)):

G(λ) = A− λB +
λ

λ− σ
E = (A+ E)− λB +

σ

λ− σ
E,

which almost shows the polynomial and the strictly proper parts of G(λ).

Damped vibration of a structure (Mehrmann & Voss, (2004)):

G(λ) = λ2M +K −
k∑
i=1

1

1 + biλ
∆Gi,

which shows the polynomial and the strictly proper parts of G(λ).
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A few examples of “modern” REPs with different representations (II)

NLEIGS-REPs coming from linear rational interpolation of NEPs (Güttel, Van
Beeumen, Meerbergen, Michiels (2014)):

QN (λ) = b0(λ)D0 + b1(λ)D1 + · · ·+ bN (λ)DN ,

with Dj ∈ Cm×m and bj(λ) =
1

β0

j∏
k=1

λ− σk−1

βk(1− λ/ξk)
, j = 0, 1, . . . , N, a sequence

of rational scalar functions, with the poles ξi all distinct from the nodes σj . Some
poles ξi can be infinite.
REPs coming from “Automatic Approximation of NEPs” (Lietaert, Pérez,
Vandereycken, Meerbergen, 2018 (see Meerbergen’s Talk this Minisymposium)):

R(λ) =

k−1∑
i=0

(Ai − λBi)fi(λ) +
s∑
i=1

(Ci − λDi)aTi (Ei − λFi)−1bi,

where fi(λ) are scalar polynomial or rational functions satisfying a linear relation
(f0(λ) = 1), ai, bi ∈ Cli are vectors, Ai, Bi, Ci, Di matrices, and li × li matrices

Ei =



w1 w2 · · · wli−1 wli
−z1 z2

−z2
. . .

. . . zli−1

−zli−1 zli


and Fi =



0 0 · · · 0 0
1 −1

1
. . .

. . . −1
1 −1

 .
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REPs different representations and (apparently) different “linearizations”

A second key difference between REPs and PEPs is that there is no
agreement on what is a linearization of a rational matrix.

For regular matrix polynomials, linearizations are just regular pencils
with exactly the same finite elementary divisors (same finite eigenvalues
with same multiplicities, geometric, algebraic, partial). If a linearization
has the same infinite elementary divisors, then it is a strong linearization.

There are well-known and compact characterizations of linearizations of
matrix polys in terms of unimodular transformations.

In contrast, many authors have developed “linearizations” of rational
matrices, but they very rarely prove that such pencils satisfy properties
analogous to those of linearizations of matrix polynomials.

REPs are more difficult than PEPs, so, perhaps, we need to be flexible
and to admit “different types of linearizations in REPs” (sometimes
weaker) that in PEPs, and, in my opinion, each type should have a
different name and their properties should be clearly stated.

This talk is a first step in this direction.
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Some previous works on “linearizations” of rational matrices

Pioneering works on linearizations of rational matrices:
1 Works by P. Van Dooren and G. Verghese in late 70s & early 80s,

where they construct pencils that have exactly the same structural
data as any given rational matrix, including minimal indices. The
constructions require some numerical computations.

2 Y. Su and Z. Bai, SIMAX, 2011, construct a Frobenius-like
linearization from a representation of G(λ) as polynomial +
state-space realization.

The definitions in this talk are based on and extend those in Amparan, D,
Marcaida, and Zaballa, Strong linearizations of rational matrices, MIMS
Eprint (2016).

Another approach for defining (non-strong) linearizations of rational
matrices can be found in Alam & Behera, SIMAX, 2016.

NLEIGS linearizations (Güttel, Van Beeumen, Meerbergen, Michiels,
SISC (2014)), Automatic Approximation of NEPs (Lietaert, Pérez,
Vandereycken, Meerbergen, 2018), Padé Linearization (Bai, this mini),...
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Outline

1 Basics on rational matrices

2 Linearizations of rational matrices: strong, in a set, at infinity

3 Block minimal bases linearizations of rational matrices: strong, in a
set, at infinity

4 The NLEIGS “linearizations” inside this framework

5 The “Automatic linearizations” inside this framework
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Polynomial and strictly proper parts of a rational matrix. Reversal.

Any rational matrix G(λ) can be uniquely expressed as

G(λ)=D(λ) +Gsp(λ),

where
1 D(λ) is a polynomial matrix (polynomial part of G(λ)), and
2 the rational matrix Gsp(λ) is strictly proper (strictly proper part of
G(λ)), i.e., lim

λ→∞
Gsp(λ) = 0.

Let d = deg(D) if D(λ) 6= 0 and d = 0 otherwise. We define the reversal
of G(λ) as

revG(λ) = λdG

(
1

λ

)
.
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Smith-McMillan form, zeros, poles, and eigenvalues of a Rational Matrix

Definition (finite zeros, finite poles, finite eigenvalues)

Given the Smith-McMillan form of a rational matrix G(λ) ∈ C(λ)p×m:

U(λ)G(λ)V (λ) = diag
(
ε1(λ)

ψ1(λ)
, . . . ,

εr(λ)

ψr(λ)
, 0(p−r)×(m−r)

)
,

where U(λ), V (λ) are unimodular matrices and ε1(λ)| · · · |εr(λ),
ψr(λ)| · · · |ψ1(λ) are polynomials:

The finite zeros of G(λ) are the roots of the numerators εi(λ) and the
finite poles of G(λ) are the roots of the denominators ψi(λ).

The finite eigenvalues of G(λ) are the finite zeros that are not poles.

Definition (structural indices or partial multiplicities)

Given any c ∈ C, one can write for each i = 1, . . . , r,

εi(λ)

ψi(λ)
= (λ− c)σi(c) ε̃i(λ)

ψ̃i(λ)
, with ε̃i(c) 6= 0, ψ̃i(c) 6= 0.

The structural indices ofG(λ) at c areS(G, c) = (σ1(c) ≤ σ2(c) ≤ · · · ≤ σr(c)) .
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Smith-McMillan form, zeros, poles, and eigenvalues of a Rational Matrix
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Structure at infinity of a Rational Matrix

Definition
The structural indices of G(λ) at λ =∞ are the structural indices of G(1/λ) at
λ = 0.

F. M. Dopico (U. Carlos III, Madrid) Different linearizations of REPs May 4, 2018 11 / 41



Minimal polynomial system matrices of rational matrices

Definition (Rosenbrock, 1970)

Let G(λ) ∈ C(λ)p×m be a rational matrix. The polynomial matrix

P (λ) =

[
A(λ) B(λ)
−C(λ) D(λ)

]
∈ C[λ](n+p)×(n+m)

is a polynomial system matrix of G(λ) if

G(λ) = D(λ) + C(λ)A(λ)−1B(λ).

If, in addition,
[
A(λ)
−C(λ)

]
and

[
A(λ) B(λ)

]
do not have finite eigenvalues,

then P (λ) is a minimal polynomial system matrix of G(λ).

Theorem (Rosenbrock, 1970)

Each rational matrix has infinitely many minimal polynomial system matrices.

The position of A(λ) is not important: it may be anywhere, the point is to take
the Schur complement with respect to that block.
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Minimal polynomial system matrices contain the whole finite structure

Theorem (Rosenbrock, 1970)

If

P (λ) =

[
A(λ) B(λ)
−C(λ) D(λ)

]
∈ C[λ](n+p)×(n+m)

is a minimal polynomial system matrix of G(λ) = D(λ) + C(λ)A(λ)−1B(λ),
then:

1 The nontrivial (those different from 1) invariant polynomials of P (λ) are
the nontrivial numerators of the Smith-McMillan form of G(λ).

2 The nontrivial invariant polynomials of A(λ) are the nontrivial
denominators of the Smith-McMillan form of G(λ).

...in plain words

The finite eigenvalue structure of P (λ) (resp. A(λ)) (including all types of
multiplicities, geometric, algebraic, partial...) coincides exactly with the
finite zero (resp. pole) structure of G(λ).

Nothing can be guaranteed on the structure at infinity.
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Example: minimality is essential

G(λ) =
λ2 − 1

λ+ 2
∈ C(λ)1×1 has one finite pole at −2 and two finite zeros

at +1 and −1.

Minimal polynomial system matrix of G(λ):

P (λ) =

[
λ+ 2 1
−3 λ− 2

]
,

since G(λ) = (λ− 2) + 3 1
λ+2 . Note that detP (λ) = λ2 − 1 .

Non-minimal polynomial system matrix of G(λ) for any a ∈ C:

P̂ (λ) =

 λ+ a 0 0
0 λ+ 2 1
0 −3 λ− 2

 ,
and since det P̂ (λ) = (λ+ a)(λ2 − 1) , P̂ (λ) has an spurious eigenvalue.

Minimality is a generic condition, since rectangular matrix polynomials
do not have generically eigenvalues (see Dmytryshyn’s talk next
Monday).
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Minimal polynomial system matrices in a set

Definition (D., Marcaida, Quintana, Van Dooren, 2018)

Let G(λ) ∈ C(λ)p×m be a rational matrix and

P (λ) =

[
A(λ) B(λ)
−C(λ) D(λ)

]
∈ C[λ](n+p)×(n+m)

be a polynomial system matrix of G(λ). If
[
A(λ)
−C(λ)

]
and

[
A(λ) B(λ)

]
do not

have finite eigenvalues in Σ ⊆ C, then P (λ) is a minimal polynomial system
matrix in Σ of G(λ).

Theorem (D., Marcaida, Quintana, Van Dooren, 2018)

If P (λ) is a minimal polynomial system matrix in Σ of G(λ), then
The finite eigenvalue structure in Σ of P (λ) (including all types of
multiplicities, geometric, algebraic, partial...) coincides exactly with the
finite zero structure in Σ of G(λ).
The finite eigenvalue structure in Σ of A(λ) (including all types of
multiplicities, geometric, algebraic, partial...) coincides exactly with the
finite pole structure in Σ of G(λ).
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Outline

1 Basics on rational matrices

2 Linearizations of rational matrices: strong, in a set, at infinity

3 Block minimal bases linearizations of rational matrices: strong, in a
set, at infinity

4 The NLEIGS “linearizations” inside this framework

5 The “Automatic linearizations” inside this framework
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Linearization of a rational matrix

Definition (Amparan, D., Marcaida, Zaballa, 2016)

A linearization of G(λ) ∈ C(λ)p×m is a matrix pencil

L(λ) =

[
A1λ+A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
∈ C[λ](n+(p+s))×(n+(m+s))

such that:

(a) L(λ) is a minimal polynomial system matrix of

Ĝ(λ) = (D1λ+D0) + (C1λ+ C0)(A1λ+A0)−1(B1λ+B0)

(the second term is not present if n = 0), and

(b) there exist unimodular matrices U1(λ), U2(λ) such that

U1(λ) diag(G(λ), Is)U2(λ) = Ĝ(λ).

Remark: In order to guarantee that a pencil is a linearizarion of a rational
matrix, it may be several ways to choose the block A1λ+A0. Even more,
different selections may have different sizes.
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Linearization at infinity of a rational matrix

Definition (D., Marcaida, Quintana, Van Dooren, 2018)

A linearization at infinity of G(λ) ∈ C(λ)p×m is a matrix pencil

L(λ) =

[
A1λ+A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
∈ C[λ](n+(p+s))×(n+(m+s))

such that:

(a) if n > 0, then A1 is invertible, and

(b) if Ĝ(λ) = (D1λ+D0) + (C1λ+ C0)(A1λ+A0)−1(B1λ+B0), then there
exist rational matrices invertible at λ = 0, R1(λ), R2(λ) (that is, Ri(λ)
does not have poles at λ = 0 and detRi(0) 6= 0) such that

R1(λ) diag(revG(λ), Is)R2(λ) = rev Ĝ(λ).

F. M. Dopico (U. Carlos III, Madrid) Different linearizations of REPs May 4, 2018 18 / 41



Strong linearization of a rational matrix

Definition (Amparan, D., Marcaida, Zaballa, 2016)

A strong linearization of G(λ) ∈ C(λ)p×m is a matrix pencil L(λ) such that

1 L(λ) is a linearization of G(λ), and

2 L(λ) is a linearization at infinity of G(λ).

Remark
If G(λ) is a polynomial matrix, then linearizations and strong linearizations of
G(λ) according to the definitions above are standard linearizations and strong
linearizations of the polynomial matrix G(λ).
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Linearization of a rational matrix in a set

Definition (D., Marcaida, Quintana, Van Dooren, 2018)

A linearization of G(λ) ∈ C(λ)p×m in Σ ⊆ C is a matrix pencil

L(λ) =

[
A1λ+A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
∈ C[λ](n+(p+s))×(n+(m+s))

such that:

(a) L(λ) is a minimal polynomial system matrix in Σ of

Ĝ(λ) = (D1λ+D0) + (C1λ+ C0)(A1λ+A0)−1(B1λ+B0),

(b) and, there exist rational matrices invertible in Σ, W1(λ), W2(λ) such that

W1(λ) diag(G(λ), Is)W2(λ) = Ĝ(λ).

Remark: If Σ = C, then a linearization in C is just a linearization as defined
above.
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Linearizations (in Σ) contain the whole finite structure (in Σ)

Theorem (Amparan, D., Marcaida, Zaballa, 2016, D., Marcaida, Quintana,
Van Dooren, 2018)

If

L(λ) =

[
A1λ+A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
∈ C[λ](n+(p+s))×(n+(m+s))

is a linearization of G(λ) ∈ C(λ)p×m (resp. a linearization in Σ ⊆ C), then:

The finite eigenvalue structure (resp. in Σ) of L(λ) (including all types of
multiplicities, geometric, algebraic, partial...) coincides exactly with the
finite zero structure (resp. in Σ) of G(λ).
The finite eigenvalue structure (resp. in Σ) of A1λ+A0 (including all
types of multiplicities, geometric, algebraic, partial...) coincides exactly
with the finite pole structure (resp. in Σ) of G(λ).
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Linearizations at infinity contain the whole structure at infinity

Theorem (Amparan, D., Marcaida, Zaballa, 2016)

If

L(λ) =

[
A1λ+A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
∈ C[λ](n+(p+s))×(n+(m+s))

is a linearization at infinity of G(λ) ∈ C(λ)p×m, then the structural indices at
infinity of G(λ) can be obtained from the rank(G) largest partial multiplicities
at infinity of L(λ) through a constant shift.

More precisely, if e1, . . . , er are these rank(G) partial multiplicities of L(λ) and
revG(λ) = λdG(1/λ), then the structural indices at infinity of G(λ) are

1 e1 − d, . . . , er − d, if D1 + C1A
−1
1 B1 6= 0,

2 e1 − d− 1, . . . , er − d− 1, if D1 + C1A
−1
1 B1 = 0 and n > 0,

3 all equal to −d, if n = 0 and D1 = 0.

Corollary

Strong linearizations of a rational matrix G(λ) contain the whole finite
and infinite zero and pole structures of G(λ).
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Block minimal bases linearizations of polynomial matrices

Definition (D., Lawrence, Pérez, Van Dooren, Numer. Math, to appear)
A matrix pencil

L(λ) =

[
M(λ) K2(λ)T

K1(λ) 0

]
is a block minimal bases pencil (BMBP) if K1(λ) and K2(λ) are minimal
bases. If, in addition, the row degrees of K1(λ) and K2(λ) are all one, and
the row degrees of each of their dual minimal bases N1(λ) and N2(λ) are all
equal, then L(λ) is a strong block minimal bases pencil (SBMBP).

Theorem (D., Lawrence, Pérez, Van Dooren, Numer. Math, to appear)

With the notation of the previous definition, if L(λ) is a BMBP (resp. SBMBP),
then it is a linearization (resp. strong linearization) of the matrix polynomial

Q(λ) = N2(λ)M(λ)N1(λ)T .

Remark: Frobenius companion linearizations, colleague linearizations in
Chebyshev bases and others, Fiedler, Generalized Fiedler lins., etc, are all
SBMBP, and their properties can be explained with just one simple theory.
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then it is a linearization (resp. strong linearization) of the matrix polynomial

Q(λ) = N2(λ)M(λ)N1(λ)T .

Remark: Frobenius companion linearizations, colleague linearizations in
Chebyshev bases and others, Fiedler, Generalized Fiedler lins., etc, are all
SBMBP, and their properties can be explained with just one simple theory.
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Strong block minimal bases linearizations of rational matrices (RSBMBL)

Theorem (Amparan, D, Marcaida, Zaballa, 2016; Quintana, V. Dooren, 18)
Let [

M(λ) K2(λ)T

K1(λ) 0

]
be a SBMBP and N1(λ), N2(λ) be minimal bases dual to K1(λ),K2(λ).
Consider for i = 1, 2 unimodular matrices

Ui(λ) =

[
Ki(λ)

K̂i

]
and Ui(λ)−1 =

[
N̂i(λ)T Ni(λ)T

]
and a linear minimal polynomial system matrix

L(λ) =

 (λIn −A) B(λ)K̂1 0

− K̂T
2 C(λ) M(λ) K2(λ)T

0 K1(λ) 0

 .
Then L(λ) is a strong linearization of the rational matrix

G(λ) = N2(λ)M(λ)N1(λ)T + C(λ)(λIn −A)−1B(λ) .
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Example 1 of RSBMBL. Strong linearization based on Frobenius

companion linearization for polynomials of Su & Bai (2011)

Given rational matrix:

G(λ) = Ddλ
d + · · ·+D1λ+D0 + C(λIn −A)−1B ∈ C(λ)p×m.

Strong linearization (originally introduced by Su & Bai (SIMAX, 2011)
without minimal order requirement and without strong nature):

L(λ) =



λIn −A 0 0 · · · 0 B
−C λDd +Dd−1 Dd−2 · · · D1 D0

0 −Im λIm
...

. . .
. . .

...
. . . λIm

0 −Im λIm
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Example 2 of RSBMBL. Strong linearization based on Chebyshev

colleague linearization for polynomials (Amparan, D., et al, 2016)

Given rational matrix:

G(λ) = Dd Ud(λ) + · · ·+D1 U1(λ) +D0 + C(λIn −A)−1B ∈ C(λ)p×m,

with polynomial part expressed in Chebyshev basis of the second kind.

Strong linearization:

L(λ) =



λIn −A 0 0 0 · · · B
−C 2λDd +Dd−1 Dd−2 −Dd Dd−3 · · · D0

0 −Im 2λIm −Im
...

. . .
. . .

. . .
... −Im 2λIm −Im
0 −Im 2λIm
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Example 3 of RSBMBL. Strong linearization based on another block

Kronecker pencil (Amparan, D., Marcaida, Zaballa, 2016)

Given rational matrix:

G(λ) = λ5D5+λ4D4+λ3D3+λ2D2+λD1+D0+C(λIn−A)−1B ∈ F(λ)p×m

Strong linearization:

L(λ) =


λIn −A 0 0 B 0 0

0 λP5 + P4 0 0 −Ip 0
0 0 λP3 + P2 0 λIp −Ip
−C 0 0 λP1 + P0 0 λIp
0 −Im λIm 0 0 0
0 0 −Im λIm 0 0
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Rational block minimal bases linearizations in a set

Theorem (D., Marcaida, Quintana, Van Dooren, 2018)
Let [

M(λ) K2(λ)T

K1(λ) 0

]
be a BMBP and N1(λ), N2(λ) be minimal bases dual to K1(λ), K2(λ).
Consider a linear polynomial system matrix

L(λ) =

 A(λ) B(λ) 0

− C(λ) M(λ) K2(λ)T

0 K1(λ) 0

 . (1)

Let Ω := {λ0 ∈ C : A(λ0) is invertible}. Then L(λ) is a linearization of the
rational matrix

H(λ) = N2(λ)[M(λ) + C(λ)A(λ)−1B(λ)]N1(λ)T

in Ω.
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Rational strong block minimal bases linearizations in a set

Theorem (D., Marcaida, Quintana, Van Dooren, 2018)

Moreover, if[
M(λ) K2(λ)T

K1(λ) 0

]
is a SBMBP, and

A(λ) = A1λ+A0 with A1 nonsingular,

then L(λ) is also a linearization of

H(λ) = N2(λ)[M(λ) + C(λ)A(λ)−1B(λ)]N1(λ)T

at infinity.
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Outline

1 Basics on rational matrices

2 Linearizations of rational matrices: strong, in a set, at infinity

3 Block minimal bases linearizations of rational matrices: strong, in a
set, at infinity

4 The NLEIGS “linearizations” inside this framework

5 The “Automatic linearizations” inside this framework
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NLEIGS “linearizations” without low-rank structure (I)

For the rational matrix

QN (λ) = b0(λ)D0 + b1(λ)D1 + · · ·+ bN (λ)DN ,

with Dj ∈ Cm×m and

bj(λ) =
1

β0

j∏
k=1

λ− σk−1
βk(1− λ/ξk)

=:
nj(λ)

dj(λ)
, j = 0, 1, . . . , N,

a sequence of rational scalar functions, with the poles ξi all distinct from the
nodes σj , and some poles ξi can be infinite,

Güttel, Van Beeumen, Meerbergen, Michiels (2014) construct the following
pencil associated to QN (λ)

LN (λ) =



(
1− λ

ξN

)
D0

(
1− λ

ξN

)
D1 . . .

(
1− λ

ξN

)
DN−2

(
1− λ

ξN

)
DN−1 +

λ−σN−1
βN

DN

(σ0 − λ)Im β1(1− λ
ξ1

)Im

. . .
. . .

(σN−2 − λ)Im βN−1(1− λ
ξN−1

)Im
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NLEIGS “linearizations” without low-rank structure (II)

Theorem (D., Marcaida, Quintana, Van Dooren, 2018)

LN (λ) is a SBMBP and, so, a strong linearization, of the polynomial matrix

dN (λ)QN (λ) .

Theorem (D., Marcaida, Quintana, Van Dooren, 2018)

LN (λ) is a linearization of the rational matrix(
1− λ

ξN

)
QN (λ)

in the set Ω := C \Θ, where Θ is the set of finite poles in {ξ1, . . . , ξN−1}.
In fact, LN (λ) is a RBMBP in Ω.

Moreover, if all the poles in {ξ1, . . . , ξN−1} are finite, then LN (λ) is a
linearization of

(
1− λ

ξN

)
QN (λ) at infinity. In fact, LN (λ) is a RSBMBP

in Ω.
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Partition for the second theorem

To get the second theorem in the previous slide, the invertible A(λ) has
to be placed in the (2, 2) position and partition LN (λ) as

LN (λ)=



(
1− λ

ξN

)
D0

(
1− λ

ξN

)
D1 . . .

(
1− λ

ξN

)
DN−2

(
1− λ

ξN

)
DN−1 +

λ−σN−1
βN

DN

(σ0 − λ)Im β1(1− λ
ξ1

)Im

. . .
. . .

(σN−2 − λ)Im βN−1(1− λ
ξN−1

)Im



=

 M(λ) −C(λ)

B(λ) A(λ)

 .
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Is this what we want?

Theorem (D., Marcaida, Quintana, Van Dooren, 2018)

LN (λ) is a strong linearization of the polynomial matrix dN (λ)QN (λ) .

This result (and others that we will see) guarantees that LN (λ) has the
information that the authors of NLEIGS need, but

LN (λ) may contain also non-desired information, because dN (λ)QN (λ)
has eigenvalues in (some) of the poles ξ1, ξ2, . . . , ξN except in the case
that all the denominators in the Smith-McMillan form of QN (λ) are equal
to dN (λ).

Fortunately, for QN (λ), this happens “almost always”.

Theorem (D., Marcaida, Quintana, Van Dooren, 2018)

QN (λ) is regular and the denominators of its Smith-McMillan form are all
equal to dN (λ) if and only if the matrices Ck(ξk) are nonsingular for every
finite pole ξk in {ξ1, . . . , ξN}, where

CN (λ) = DN and Ck(λ) =

N∏
j=k+1

(
1−

λ

ξi

)
Dk +

λ− σk
βk+1

Ck+1(λ) for k = N − 1, . . . , 1.
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NLEIGS “linearizations” WITH low-rank structure (I)

For the rational matrix

Q̃N (λ) =

p∑
i=0

(B̃i + C̃i)bi(λ) +

N∑
i=p+1

C̃ibi(λ),

with the same bi(λ) as before, and

B̃i =

p∑
j=0

βijBj ∈ Cm×m, C̃i =

n∑
j=i

γijLjU
∗
j ∈ Cm×m,

Güttel, Van Beeumen, Meerbergen, Michiels (2014) define low-rank matrices

L̃i = [γi1L1 γi2L2 · · · γinLn] and Ũ = [U1 U2 · · · Un]

and the pencil

L̃N (λ) =

[
W (λ) V (λ)

U(λ) T (λ)

]
,

where
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NLEIGS “linearizations” WITH low-rank structure (II)

W (λ) =

(
1− λ

ξN

)
(B̃0 + C̃0)

(
1− λ

ξN

)
(B̃1 + C̃1) · · ·

(
1− λ

ξN

)
(B̃p + C̃p)

(σ0 − λ)Im β1

(
1− λ

ξ1

)
Im

. . .
. . .

(σp−1 − λ)Im βp

(
1− λ

ξp

)
Im


,

V (λ) = e1 ⊗
[ (

1− λ
ξN

)
L̃p+1

(
1− λ

ξN

)
L̃p+2 · · ·

(
1− λ

ξN

)
L̃N−1 +

λ−σN−1
βN

L̃N

]
,

with e1 ∈ Cp+1,

U(λ) =

[
0 (σp − λ)Ũ∗

0 0

]
∈ C(N−p−1)r×(p+1)n,

T (λ) =

βp+1

(
1− λ

ξp+1

)
Ir

(σp+1 − λ)Ir βp+2

(
1− λ

ξp+2

)
Ir

. . .
. . .

(σN−2 − λ)Ir βN−1

(
1− λ

ξN−1

)
Ir


.
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NLEIGS “linearizations” WITH low-rank structure (III)

Theorem (D., Marcaida, Quintana, Van Dooren, 2018)

L̃N (λ) is a linearization of the rational matrix

dp(λ)

(
1− λ

ξN

)
Q̃N (λ)

in the set Ωp := C \Θp, where Θp is the set of finite poles in
{ξp+1, . . . , ξN−1}. In fact, L̃N (λ) is a RBMBP in Ωp.

Moreover, if all the poles in {ξp+1, . . . , ξN−1} are finite, then L̃N (λ) is a
linearization of dp(λ)

(
1− λ

ξN

)
Q̃N (λ) at infinity. In fact, L̃N (λ) is a

RSBMBP in Ωp.
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Outline

1 Basics on rational matrices

2 Linearizations of rational matrices: strong, in a set, at infinity

3 Block minimal bases linearizations of rational matrices: strong, in a
set, at infinity

4 The NLEIGS “linearizations” inside this framework

5 The “Automatic linearizations” inside this framework
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“Automatic linearizations” without low-rank structure (I)

For the rational matrix

R(λ) =

k−1∑
i=0

(Ai − λBi)fi(λ) +

s∑
i=1

(Ci − λDi)a
T
i (Ei − λFi)−1bi,

where fi(λ) are scalar polynomial or rational functions satisfying a linear
relation (f0(λ) = 1)

(M − λN)f(λ) = 0, f(λ) := [f0(λ), f1(λ), . . . , fk−1(λ)]T 6= 0,

with M − λN of size (k − 1)× k and rank(M − λN) = k − 1 for all λ ∈ C,
ai, bi ∈ Cli are vectors, Ai, Bi, Ci, Di ∈ Cm×m matrices, and li × li matrices

Ei =



w1 w2 · · · wli−1 wli
−z1 z2

−z2
. . .

. . . zli−1

−zli−1 zli


and Fi =



0 0 · · · 0 0
1 −1

1
. . .

. . . −1
1 −1

 ,
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“Automatic linearizations” without low-rank structure (II)

Lietaert, Pérez, Vandereycken, Meerbergen (2018) define the pencil

LR(λ) =

 A0 − λB0 · · · Ak−1 − λBk−1 aT1 ⊗ (C1 − λD1) · · · aTs ⊗ (Cs − λDs)
(M − λN)⊗ In 0
−b⊗ In 0 (E − λF )⊗ In

 ,

where b := [bT1 · · · bTs ]T and E − λF := diag(E1 − λF1, . . . , Es − λFs).

Theorem (D., Marcaida, Quintana, Van Dooren, 2018)

Let Ω := {λ0 ∈ C : E − λ0F is invertible}.

LR(λ) is a linearization of df (λ)R(λ) in Ω, where df (λ) is the least
common denominator of f0(λ), f1(λ), . . . , fk−1(λ).

If M − λN is a minimal basis, then LR(λ) is a RBMBP in Ω.

LR(λ) is NOT a linearization at infinity of df (λ)R(λ).

Remark
Analogous results hold for the “automatic low-rank exploiting linearizations”.
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