Conditioning and backward errors of eigenvalues of homogeneous matrix polynomials under Möbius transformations

Froilán M. Dopico
join work with Luis M. Anguas (U. Pontificia Comillas, Spain)
and María I. Bueno (U. California, Santa Barbara, USA)

Departamento de Matemáticas
Universidad Carlos III de Madrid, Spain

22nd Conference of the International Linear Algebra Society
Minisymposium “Matrices over elementary divisor domains”
July 8-12, 2019. Rio de Janeiro, Brazil
1. Homogeneous matrix polynomials and their eigenvalues
2. Homogeneous eigenvalue condition numbers
3. Möbius transformations of homogeneous matrix polynomials
4. The effect of Möbius transformations on eigenvalue condition numbers
5. The effect of Möbius transformations on backward errors of approximate eigenpairs
6. Conclusions
Outline

1. Homogeneous matrix polynomials and their eigenvalues
2. Homogeneous eigenvalue condition numbers
3. Möbius transformations of homogeneous matrix polynomials
4. The effect of Möbius transformations on eigenvalue condition numbers
5. The effect of Möbius transformations on backward errors of approximate eigenpairs
6. Conclusions
In this talk, we consider regular homogeneous matrix polynomials of degree \(k \):

\[
P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^{i} \beta^{k-i} B_{i}, \quad B_{i} \in \mathbb{C}^{n \times n},
\]

where \(\alpha, \beta \) are complex scalar variables.

In contrast to the more standard non-homogeneous formulation

\[
P(\lambda) = \sum_{i=0}^{k} \lambda^{i} B_{i}, \quad B_{i} \in \mathbb{C}^{n \times n}.
\]

From several points of view, in particular for the purpose of this talk, the homogeneous formulation has nicer mathematical properties, but the non-homogeneous formulation is more meaningful in applications.
In this talk, we consider **regular homogeneous matrix polynomials** of degree k

$$P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} B_i, \quad B_i \in \mathbb{C}^{n \times n},$$

where α, β are complex scalar variables.

In contrast to the more standard non-homogeneous formulation

$$P(\lambda) = \sum_{i=0}^{k} \lambda^i B_i, \quad B_i \in \mathbb{C}^{n \times n}.$$

From several points of view, in particular for the purpose of this talk, the homogeneous formulation has nicer mathematical properties, but the non-homogeneous formulation is more meaningful in applications.
In this talk, we consider **regular homogeneous matrix polynomials** of degree k

$$P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} B_i, \quad B_i \in \mathbb{C}^{n \times n},$$

where α, β are complex scalar variables.

In contrast to the more standard non-homogeneous formulation

$$P(\lambda) = \sum_{i=0}^{k} \lambda^i B_i, \quad B_i \in \mathbb{C}^{n \times n}.$$

From several points of view, in particular for the purpose of this talk, **the homogeneous formulation has nicer mathematical properties**, but

the non-homogeneous formulation is more meaningful in applications.
In this talk, we consider regular homogeneous matrix polynomials of degree k

$$P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} B_i, \quad B_i \in \mathbb{C}^{n \times n},$$

where α, β are complex scalar variables.

In contrast to the more standard non-homogeneous formulation

$$P(\lambda) = \sum_{i=0}^{k} \lambda^i B_i, \quad B_i \in \mathbb{C}^{n \times n}.$$

From several points of view, in particular for the purpose of this talk, the homogeneous formulation has nicer mathematical properties, but

the non-homogeneous formulation is more meaningful in applications.
Eigenvalues and eigenvectors of homogeneous matrix polynomials

- The **polynomial eigenvalue problem (PEP)** associated to \(P(\alpha, \beta) \) consists of finding scalars \(\alpha_0 \) and \(\beta_0 \), at least one nonzero, and nonzero vectors \(x, y \in \mathbb{C}^n \) such that

\[
y^* P(\alpha_0, \beta_0) = 0 \quad \text{and} \quad P(\alpha_0, \beta_0)x = 0.
\]

- The previous equalities hold if and only if the equalities

\[
y^* P(a\alpha_0, a\beta_0) = 0 \quad \text{and} \quad P(a\alpha_0, a\beta_0)x = 0
\]

hold for any complex number \(a \neq 0 \).

- This motivates defining the corresponding **eigenvalue** of \(P(\alpha, \beta) \) as the set (line in \(\mathbb{C}^2 \) passing through the origin)

\[
(\alpha_0, \beta_0) := \{ [a\alpha_0, a\beta_0]^T : a \in \mathbb{C} \} \subset \mathbb{C}^2.
\]

- \(x \) and \(y \) are called **right and left eigenvectors** associated with \((\alpha_0, \beta_0) \), and \((x, (\alpha_0, \beta_0)), (y^*, (\alpha_0, \beta_0)) \) are called **right and left eigenpairs**.

- A specific (nonzero) representative of \((\alpha_0, \beta_0) \) is denoted by \([\alpha_0, \beta_0]^T\).

- We will also use \(\langle x \rangle \), where \(x \in \mathbb{C}^2 \), to denote the line generated by \(x \).
The polynomial eigenvalue problem (PEP) associated to $P(\alpha, \beta)$ consists of finding scalars α_0 and β_0, at least one nonzero, and nonzero vectors $x, y \in \mathbb{C}^n$ such that

$$y^* P(\alpha_0, \beta_0) = 0 \quad \text{and} \quad P(\alpha_0, \beta_0)x = 0.$$

The previous equalities hold if and only if the equalities

$$y^* P(a\alpha_0, a\beta_0) = 0 \quad \text{and} \quad P(a\alpha_0, a\beta_0)x = 0$$

hold for any complex number $a \neq 0$.

This motivates defining the corresponding eigenvalue of $P(\alpha, \beta)$ as the set (line in \mathbb{C}^2 passing through the origin)

$$(\alpha_0, \beta_0) := \{[a\alpha_0, a\beta_0]^T : a \in \mathbb{C}\} \subset \mathbb{C}^2.$$

x and y are called right and left eigenvectors associated with (α_0, β_0), and $(x, (\alpha_0, \beta_0)), (y^*, (\alpha_0, \beta_0))$ are called right and left eigenpairs.

A specific (nonzero) representative of (α_0, β_0) is denoted by $[\alpha_0, \beta_0]^T$.

We will also use $\langle x \rangle$, where $x \in \mathbb{C}^2$, to denote the line generated by x.

F. M. Dopico (U. Carlos III, Madrid)
Conditioning Möbius transformations
July 9, 2019 5 / 27
Eigenvalues and eigenvectors of homogeneous matrix polynomials

- The **polynomial eigenvalue problem (PEP)** associated to $P(\alpha, \beta)$ consists of finding scalars α_0 and β_0, at least one nonzero, and nonzero vectors $x, y \in \mathbb{C}^n$ such that

 $$y^* P(\alpha_0, \beta_0) = 0 \quad \text{and} \quad P(\alpha_0, \beta_0)x = 0.$$

- The previous equalities hold if and only if the equalities

 $$y^* P(a\alpha_0, a\beta_0) = 0 \quad \text{and} \quad P(a\alpha_0, a\beta_0)x = 0$$

 hold for any complex number $a \neq 0$.

- This motivates defining the corresponding **eigenvalue** of $P(\alpha, \beta)$ as the set (line in \mathbb{C}^2 passing through the origin)

 $$(\alpha_0, \beta_0) := \{[a\alpha_0, a\beta_0]^T : a \in \mathbb{C}\} \subset \mathbb{C}^2.$$

- x and y are called **right and left eigenvectors** associated with (α_0, β_0), and $(x, (\alpha_0, \beta_0)), (y^*, (\alpha_0, \beta_0))$ are called **right and left eigenpairs**.

- A specific (nonzero) representative of (α_0, β_0) is denoted by $[\alpha_0, \beta_0]^T$.

- We will also use $\langle x \rangle$, where $x \in \mathbb{C}^2$, to denote the line generated by x.

Eigenvalues and eigenvectors of homogeneous matrix polynomials

- The **polynomial eigenvalue problem (PEP)** associated to $P(\alpha, \beta)$ consists of finding scalars α_0 and β_0, at least one nonzero, and nonzero vectors $x, y \in \mathbb{C}^n$ such that
 \[y^* P(\alpha_0, \beta_0) = 0 \quad \text{and} \quad P(\alpha_0, \beta_0)x = 0. \]

- The previous equalities hold if and only if the equalities
 \[y^* P(a\alpha_0, a\beta_0) = 0 \quad \text{and} \quad P(a\alpha_0, a\beta_0)x = 0 \]
 hold for any complex number $a \neq 0$.

- This motivates defining the corresponding **eigenvector** of $P(\alpha, \beta)$ as the set (line in \mathbb{C}^2 passing through the origin)
 \[(\alpha_0, \beta_0) := \{[a\alpha_0, a\beta_0]^T : a \in \mathbb{C}\} \subset \mathbb{C}^2. \]

- x and y are called **right and left eigenvectors** associated with (α_0, β_0),
- and $(x, (\alpha_0, \beta_0)), (y^*, (\alpha_0, \beta_0))$ are called **right and left eigenpairs**.
- A specific (nonzero) representative of (α_0, β_0) is denoted by $[\alpha_0, \beta_0]^T$.
- We will also use $\langle x \rangle$, where $x \in \mathbb{C}^2$, to denote the line generated by x.
Eigenvalues and eigenvectors of homogeneous matrix polynomials

- The **polynomial eigenvalue problem (PEP)** associated to $P(\alpha, \beta)$ consists of finding scalars α_0 and β_0, at least one nonzero, and nonzero vectors $x, y \in \mathbb{C}^n$ such that

$$y^* P(\alpha_0, \beta_0) = 0 \quad \text{and} \quad P(\alpha_0, \beta_0)x = 0.$$

- The previous equalities hold if and only if the equalities

$$y^* P(a\alpha_0, a\beta_0) = 0 \quad \text{and} \quad P(a\alpha_0, a\beta_0)x = 0$$

hold for any complex number $a \neq 0$.

- This motivates defining the corresponding **eigenvalue** of $P(\alpha, \beta)$ as the set (line in \mathbb{C}^2 passing through the origin)

$$(\alpha_0, \beta_0) := \{[a\alpha_0, a\beta_0]^T : a \in \mathbb{C}\} \subset \mathbb{C}^2.$$

- x and y are called **right and left eigenvectors** associated with (α_0, β_0), and $(x, (\alpha_0, \beta_0)), (y^*, (\alpha_0, \beta_0))$ are called **right and left eigenpairs**.

- A specific (nonzero) representative of (α_0, β_0) is denoted by $[\alpha_0, \beta_0]^T$.

- We will also use $\langle x \rangle$, where $x \in \mathbb{C}^2$, to denote the line generated by x.

F. M. Dopico (U. Carlos III, Madrid)
Conditioning Möbius transformations
July 9, 2019
The polynomial eigenvalue problem (PEP) associated to $P(\alpha, \beta)$ consists of finding scalars α_0 and β_0, at least one nonzero, and nonzero vectors $x, y \in \mathbb{C}^n$ such that

$$y^* P(\alpha_0, \beta_0) = 0 \quad \text{and} \quad P(\alpha_0, \beta_0)x = 0.$$

The previous equalities hold if and only if the equalities

$$y^* P(a\alpha_0, a\beta_0) = 0 \quad \text{and} \quad P(a\alpha_0, a\beta_0)x = 0$$

hold for any complex number $a \neq 0$.

This motivates defining the corresponding eigenvalue of $P(\alpha, \beta)$ as the set (line in \mathbb{C}^2 passing through the origin)

$$(\alpha_0, \beta_0) := \{[a\alpha_0, a\beta_0]^T : a \in \mathbb{C}\} \subset \mathbb{C}^2.$$

x and y are called right and left eigenvectors associated with (α_0, β_0), and $(x, (\alpha_0, \beta_0)), (y^*, (\alpha_0, \beta_0))$ are called right and left eigenpairs.

A specific (nonzero) representative of (α_0, β_0) is denoted by $[\alpha_0, \beta_0]^T$.

We will also use $\langle x \rangle$, where $x \in \mathbb{C}^2$, to denote the line generated by x.
Eigenvalues and eigenvectors of homogeneous matrix polynomials

- The **polynomial eigenvalue problem (PEP)** associated to $P(\alpha, \beta)$ consists of finding scalars α_0 and β_0, at least one nonzero, and nonzero vectors $x, y \in \mathbb{C}^n$ such that
 \[y^* P(\alpha_0, \beta_0) = 0 \quad \text{and} \quad P(\alpha_0, \beta_0)x = 0. \]

- The previous equalities hold if and only if the equalities
 \[y^* P(a\alpha_0, a\beta_0) = 0 \quad \text{and} \quad P(a\alpha_0, a\beta_0)x = 0 \]
 hold for any complex number $a \neq 0$.

- This motivates defining the corresponding **eigenvalue** of $P(\alpha, \beta)$ as the set (line in \mathbb{C}^2 passing through the origin)
 \[(\alpha_0, \beta_0) := \{ [a\alpha_0, a\beta_0]^T : a \in \mathbb{C} \} \subset \mathbb{C}^2. \]

- x and y are called **right and left eigenvectors** associated with (α_0, β_0), and $(x, (\alpha_0, \beta_0)), (y^*, (\alpha_0, \beta_0))$ are called **right and left eigenpairs**.

- A specific (nonzero) representative of (α_0, β_0) is denoted by $[\alpha_0, \beta_0]^T$.

- We will also use $\langle x \rangle$, where $x \in \mathbb{C}^2$, to denote the line generated by x.

F. M. Dopico (U. Carlos III, Madrid)
From homogeneous to non-homogeneous eigenvalues

- If $[\alpha_0, \beta_0]^T$ is any nonzero representative of an eigenvalue of
 $P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} B_i$, then

- $\lambda_0 = \alpha_0 / \beta_0 \in \mathbb{C}$ is the corresponding eigenvalue of
 $P(\lambda) = \sum_{i=0}^{k} \lambda^i B_i$, (which may be $\lambda_0 = \infty$).

- This indicates that non-homogeneous eigenvalues are more sensitive to
 perturbations of the matrix coefficients than homogeneous eigenvalues,
 since small (norm) variations in $[\alpha_0, \beta_0]^T$ may produce large variations in
 the quotient α_0 / β_0.

- This has been rigourously proved in Anguas, Bueno, D., *A comparison of eigenvalue condition numbers for matrix polynomials*, LAA (2019),

- and hints why the homogeneous formulation simplifies the analysis of
 eigenvalue condition number problems in PEPs.

- However, note also that homogeneous eigenvalues are the natural
 outcome of solving PEPs via linearization + QZ algorithm:

 \[
 \underbrace{A - \lambda B}_{QZ} \rightarrow T - \lambda U \Rightarrow \lambda_i = t_{ii} / u_{ii}
 \]
From homogeneous to non-homogeneous eigenvalues

If \([α_0, β_0]^T\) is any nonzero representative of an eigenvalue of
\[P(α, β) = \sum_{i=0}^{k} α^i β^{k-i} B_i,\]
then

\[λ_0 = \frac{α_0}{β_0} ∈ \mathbb{C}\]
is the corresponding eigenvalue of
\[P(λ) = \sum_{i=0}^{k} λ^i B_i,\]
(which may be \(λ_0 = ∞\)).

This indicates that non-homogeneous eigenvalues are more sensitive to
perturbations of the matrix coefficients than homogeneous eigenvalues,
since small (norm) variations in \([α_0, β_0]^T\) may produce large variations in
the quotient \(α_0/β_0\).

This has been rigourously proved in Anguas, Bueno, D., *A comparison of eigenvalue condition numbers for matrix polynomials*, LAA (2019),
and hints why the homogeneous formulation simplifies the analysis of
eigenvalue condition number problems in PEPs.

However, note also that homogeneous eigenvalues are the natural
outcome of solving PEPs via linearization + QZ algorithm:
\[
A - λB \rightarrow T - λU \quad ⇒ \quad λ_i = t_{ii}/u_{ii}
\]
From homogeneous to non-homogeneous eigenvalues

- If \([\alpha_0, \beta_0]^T\) is any nonzero representative of an eigenvalue of
 \[P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} B_i,\]
 then
 \[\lambda_0 = \frac{\alpha_0}{\beta_0} \in \mathbb{C} \]
 is the corresponding eigenvalue of
 \[P(\lambda) = \sum_{i=0}^{k} \lambda^i B_i,\]
 (which may be \(\lambda_0 = \infty\)).

- This indicates that non-homogeneous eigenvalues are more sensitive to
 perturbations of the matrix coefficients than homogeneous eigenvalues,
 since small (norm) variations in \([\alpha_0, \beta_0]^T\) may produce large variations in
 the quotient \(\alpha_0/\beta_0\).

- This has been rigourously proved in Anguas, Bueno, D., *A comparison of
 eigenvalue condition numbers for matrix polynomials*, LAA (2019),
 and hints why the homogeneous formulation simplifies the analysis of
 eigenvalue condition number problems in PEPs.

- However, note also that homogeneous eigenvalues are the natural
 outcome of solving PEPs via linearization + QZ algorithm:
 \[
 A - \lambda B \rightarrow T - \lambda U \Rightarrow \lambda_i = t_{ii}/u_{ii}
 \]
From homogeneous to non-homogeneous eigenvalues

- If \([α_0, β_0]^T\) is any nonzero representative of an eigenvalue of
 \(P(α, β) = \sum_{i=0}^{k} α^i β^{k-i} B_i\), then

 \[λ_0 = \frac{α_0}{β_0} ∈ \mathbb{C}\]

 is the corresponding eigenvalue of
 \(P(λ) = \sum_{i=0}^{k} λ^i B_i\)

 (which may be \(λ_0 = ∞\)).

- This indicates that non-homogeneous eigenvalues are more sensitive to
 perturbations of the matrix coefficients than homogeneous eigenvalues,
 since small (norm) variations in \([α_0, β_0]^T\) may produce large variations in
 the quotient \(α_0/β_0\).

- This has been rigourously proved in Anguas, Bueno, D., *A comparison
 of eigenvalue condition numbers for matrix polynomials*, LAA (2019),
 and hints why the homogeneous formulation simplifies the analysis of
 eigenvalue condition number problems in PEPs.

- However, note also that homogeneous eigenvalues are the natural
 outcome of solving PEPs via linearization + QZ algorithm:

 \[A − λB \rightarrow T − λU \rightarrow λ_i = t_{ii}/u_{ii}\]
From homogeneous to non-homogeneous eigenvalues

- If \([\alpha_0, \beta_0]^T\) is any nonzero representative of an eigenvalue of
 \(P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} B_i\), then

\[\lambda_0 = \frac{\alpha_0}{\beta_0} \in \mathbb{C}\]

is the corresponding eigenvalue of
\(P(\lambda) = \sum_{i=0}^{k} \lambda^i B_i\),

(which may be \(\lambda_0 = \infty\)).

- This indicates that non-homogeneous eigenvalues are more sensitive to perturbations of the matrix coefficients than homogeneous eigenvalues, since small (norm) variations in \(\begin{bmatrix} \alpha_0, \beta_0 \end{bmatrix}^T\) may produce large variations in the quotient \(\alpha_0/\beta_0\).

- This has been rigourously proved in Anguas, Bueno, D., *A comparison of eigenvalue condition numbers for matrix polynomials*, LAA (2019),

and hints why the homogeneous formulation simplifies the analysis of eigenvalue condition number problems in PEPs.

- However, note also that homogeneous eigenvalues are the natural outcome of solving PEPs via linearization + QZ algorithm:

\[
\begin{align*}
A - \lambda B &\rightarrow T - \lambda U \Rightarrow \lambda_i = t_{ii}/u_{ii} \\
QZ
\end{align*}
\]
From homogeneous to non-homogeneous eigenvalues

- If \([a_0, b_0]^T\) is any nonzero representative of an eigenvalue of
 \[P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} B_i,\]
 then
 \[\lambda_0 = \frac{a_0}{b_0} \in \mathbb{C}\] is the corresponding eigenvalue of
 \[P(\lambda) = \sum_{i=0}^{k} \lambda^i B_i,\]
 (which may be \(\lambda_0 = \infty\)).

- This indicates that non-homogeneous eigenvalues are more sensitive to perturbations of the matrix coefficients than homogeneous eigenvalues, since small (norm) variations in \([a_0, b_0]^T\) may produce large variations in the quotient \(a_0/b_0\).

- This has been rigourously proved in Anguas, Bueno, D., *A comparison of eigenvalue condition numbers for matrix polynomials*, LAA (2019), and hints why the homogeneous formulation simplifies the analysis of eigenvalue condition number problems in PEPs.

- However, note also that homogeneous eigenvalues are the natural outcome of solving PEPs via linearization + QZ algorithm:
 \[\frac{A - \lambda B}{QZ} \rightarrow \frac{T - \lambda U}{QZ} \Rightarrow \lambda_i = \frac{t_{ii}}{u_{ii}}\]
From homogeneous to non-homogeneous eigenvalues

- If \([\alpha_0, \beta_0]^T\) is any nonzero representative of an eigenvalue of
 \(P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} B_i\), then
 \[\lambda_0 = \frac{\alpha_0}{\beta_0} \in \mathbb{C}\]
 is the corresponding eigenvalue of
 \(P(\lambda) = \sum_{i=0}^{k} \lambda^i B_i\),
 (which may be \(\lambda_0 = \infty\)).

- This indicates that non-homogeneous eigenvalues are more sensitive to
 perturbations of the matrix coefficients than homogeneous eigenvalues,
 since small (norm) variations in \([\alpha_0, \beta_0]^T\) may produce large variations in
 the quotient \(\alpha_0/\beta_0\).

- This has been rigourously proved in Anguas, Bueno, D., *A comparison
 of eigenvalue condition numbers for matrix polynomials*, LAA (2019),
 and hints why the homogeneous formulation simplifies the analysis of
 eigenvalue condition number problems in PEPs.

- However, note also that homogeneous eigenvalues are the natural
 outcome of solving PEPs via linearization + QZ algorithm:

\[
\underbrace{A - \lambda B}_{QZ} \rightarrow T - \lambda U \Rightarrow \lambda_i = \frac{t_{ii}}{u_{ii}}
\]
From homogeneous to non-homogeneous eigenvalues

- If \([\alpha_0, \beta_0]^T\) is any nonzero representative of an eigenvalue of
 \[P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} B_i,\]
 then

\[\lambda_0 = \frac{\alpha_0}{\beta_0} \in \mathbb{C}\]

is the corresponding eigenvalue of
\[P(\lambda) = \sum_{i=0}^{k} \lambda^i B_i,\]
(which may be \(\lambda_0 = \infty\)).

- This indicates that non-homogeneous eigenvalues are more sensitive to
 perturbations of the matrix coefficients than homogeneous eigenvalues,
 since small (norm) variations in \([\alpha_0, \beta_0]^T\) may produce large variations in
 the quotient \(\frac{\alpha_0}{\beta_0}\).

- This has been rigourously proved in Anguas, Bueno, D., *A comparison
 of eigenvalue condition numbers for matrix polynomials*, LAA (2019),
 and hints why the homogeneous formulation simplifies the analysis of
 eigenvalue condition number problems in PEPs.

- However, note also that homogeneous eigenvalues are the natural
 outcome of solving PEPs via linearization + QZ algorithm:

\[
\begin{align*}
A - \lambda B & \rightarrow T - \lambda U \quad \Rightarrow \quad \lambda_i = \frac{t_{ii}}{u_{ii}} \\
\text{QZ}
\end{align*}
\]
Outline

1. Homogeneous matrix polynomials and their eigenvalues
2. Homogeneous eigenvalue condition numbers
3. Möbius transformations of homogeneous matrix polynomials
4. The effect of Möbius transformations on eigenvalue condition numbers
5. The effect of Möbius transformations on backward errors of approximate eigenpairs
6. Conclusions
Two options:

- **Dedieu-Tisseur condition number** $\kappa_h((\alpha_0, \beta_0), P)$ (Dedieu, Tisseur, LAA (2003)):
 1. Complicated definition.

- **Stewart-Sun condition number** $\kappa_\theta((\alpha_0, \beta_0), P)$ (Berhanu, PhD Thesis Manchester (2005)), (Anguas, Bueno, D, LAA (2019)):
 1. Easy and natural definition.
 2. Easily related to the non-homogeneous Wilkinson-like condition numbers.

- **Both are equivalent**

Corollary (Anguas, Bueno, D, LAA (2019))

Let (α_0, β_0) be a *simple eigenvalue* of $P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} B_i$. Then,

$$\frac{1}{\sqrt{k + 1}} \leq \frac{\kappa_h((\alpha_0, \beta_0), P)}{\kappa_\theta((\alpha_0, \beta_0), P)} \leq 1.$$
Two options:

- **Dedieu-Tisseur condition number** \(\kappa_h((\alpha_0, \beta_0), P) \) (Dedieu, Tisseur, LAA (2003)):
 1. Complicated definition.

- **Stewart-Sun condition number** \(\kappa_\theta((\alpha_0, \beta_0), P) \) (Berhanu, PhD Thesis Manchester (2005)), (Anguas, Bueno, D, LAA (2019)):
 1. Easy and natural definition.
 2. Easily related to the non-homogeneous Wilkinson-like condition numbers.

Both are equivalent

Corollary (Anguas, Bueno, D, LAA (2019))

Let \((\alpha_0, \beta_0) \) be a simple eigenvalue of \(P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} B_i \). Then,

\[
\frac{1}{\sqrt{k+1}} \leq \frac{\kappa_h((\alpha_0, \beta_0), P)}{\kappa_\theta((\alpha_0, \beta_0), P)} \leq 1.
\]
Two options:

- **Dedieu-Tisseur condition number** \(\kappa_h((\alpha_0, \beta_0), P) \) (Dedieu, Tisseur, LAA (2003)):
 1. Complicated definition.

- **Stewart-Sun condition number** \(\kappa_\theta((\alpha_0, \beta_0), P) \) (Berhanu, PhD Thesis Manchester (2005)), (Anguas, Bueno, D, LAA (2019)):
 1. Easy and natural definition.
 2. Easily related to the non-homogeneous Wilkinson-like condition numbers.

- **Both are equivalent**

Corollary (Anguas, Bueno, D, LAA (2019))

Let \((\alpha_0, \beta_0)\) be a **simple eigenvalue** of \(P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} B_i\). Then,

\[
\frac{1}{\sqrt{k} + 1} \leq \frac{\kappa_h((\alpha_0, \beta_0), P)}{\kappa_\theta((\alpha_0, \beta_0), P)} \leq 1.
\]
Definition of Stewart-Sun condition number

Definition

Let \((\alpha_0, \beta_0)\) be a simple eigenvalue of \(P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} B_i\) and let \(x\) be a right eigenvector of \(P(\alpha, \beta)\) associated with \((\alpha_0, \beta_0)\). We define

\[
\kappa_\theta((\alpha_0, \beta_0), P) := \lim_{\epsilon \to 0} \sup \left\{ \frac{\sin \theta((\alpha_0, \beta_0), (\alpha_0 + \Delta \alpha_0, \beta_0 + \Delta \beta_0))}{\epsilon} : \right. \\
\left. [P(\alpha_0 + \Delta \alpha_0, \beta_0 + \Delta \beta_0) + \Delta P(\alpha_0 + \Delta \alpha_0, \beta_0 + \Delta \beta_0)](x + \Delta x) = 0, \right. \\
\|\Delta B_i\|_2 \leq \epsilon \omega_i, i = 0 : k \right\},
\]

where \(\Delta P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} \Delta B_i\) and \(\omega_i, i = 0 : k\), are weights.

- \(\sin \theta(\langle x \rangle, \langle y \rangle) = \|x - \text{proj}_y x\|_2 / \|x\|_2\), for \(\langle x \rangle, \langle y \rangle\) lines in \(\mathbb{C}^2\).
- We will use two types of weights:
 1. \(\omega_i = \|P\|_\infty = \max_{j=0:k} \{\|B_j\|_2\}\) \(\longrightarrow\) relative eigenvalue cond. number with respect to the norm of \(P\): \(\kappa^P_\theta((\alpha_0, \beta_0), P)\).
 2. \(\omega_i = \|B_i\|_2 \longrightarrow\) relative eigenvalue cond. number: \(\kappa^r_\theta((\alpha_0, \beta_0), P)\).
Definition of Stewart-Sun condition number

Let \((\alpha_0, \beta_0)\) be a simple eigenvalue of \(P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} B_i\) and let \(x\) be a right eigenvector of \(P(\alpha, \beta)\) associated with \((\alpha_0, \beta_0)\). We define

\[
\kappa_\theta((\alpha_0, \beta_0), P) := \lim_{\epsilon \to 0} \sup \left\{ \frac{\sin \theta((\alpha_0, \beta_0), (\alpha_0 + \Delta \alpha_0, \beta_0 + \Delta \beta_0))}{\epsilon} : [P(\alpha_0 + \Delta \alpha_0, \beta_0 + \Delta \beta_0) + \Delta P(\alpha_0 + \Delta \alpha_0, \beta_0 + \Delta \beta_0)](x + \Delta x) = 0, \right. \\
\left. \|\Delta B_i\|_2 \leq \epsilon \omega_i, i = 0 : k \right\},
\]

where \(\Delta P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} \Delta B_i\) and \(\omega_i, i = 0 : k\), are weights.

- \(\sin \theta(\langle x \rangle, \langle y \rangle) = \|x - \text{proj}_y x\|_2 / \|x\|_2\), for \(\langle x \rangle, \langle y \rangle\) lines in \(\mathbb{C}^2\).

- We will use two types of weights:
 1. \(\omega_i = \|P\|_\infty = \max_{j=0:k} \{\|B_j\|_2\} \longrightarrow \text{relative eigenvalue cond. number} \), with respect to the norm of \(P\): \(\kappa_\theta^P((\alpha_0, \beta_0), P)\).
 2. \(\omega_i = \|B_i\|_2 \longrightarrow \text{relative eigenvalue cond. number: } \kappa_\theta^r((\alpha_0, \beta_0), P)\).
Definition of Stewart-Sun condition number

Let \((\alpha_0, \beta_0)\) be a simple eigenvalue of \(P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} B_i\) and let \(x\) be a right eigenvector of \(P(\alpha, \beta)\) associated with \((\alpha_0, \beta_0)\). We define

\[
\kappa_\theta((\alpha_0, \beta_0), P) := \lim_{\epsilon \to 0} \sup \left\{ \frac{\sin \theta((\alpha_0, \beta_0), (\alpha_0 + \Delta \alpha_0, \beta_0 + \Delta \beta_0))}{\epsilon} : \right.
\]

\[
[P(\alpha_0 + \Delta \alpha_0, \beta_0 + \Delta \beta_0) + \Delta P(\alpha_0 + \Delta \alpha_0, \beta_0 + \Delta \beta_0)](x + \Delta x) = 0,
\]

\[
\|\Delta B_i\|_2 \leq \epsilon \omega_i, i = 0 : k \}
\]

where \(\Delta P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} \Delta B_i\) and \(\omega_i, i = 0 : k\), are weights.

- \(\sin \theta(\langle x \rangle, \langle y \rangle) = \|x - \text{proj}_y x\|_2 / \|x\|_2\), for \(\langle x \rangle, \langle y \rangle\) lines in \(\mathbb{C}^2\).

- We will use two types of weights:
 1. \(\omega_i = \|P\|_\infty = \max_{j=0:k} \{\|B_j\|_2\}\) \(\longrightarrow\) relative eigenvalue cond. number with respect to the norm of \(P\): \(\kappa_\theta^P((\alpha_0, \beta_0), P)\).
 2. \(\omega_i = \|B_i\|_2\) \(\longrightarrow\) relative eigenvalue cond. number: \(\kappa_\theta^R((\alpha_0, \beta_0), P)\).
Explicit expression of Stewart-Sun condition number

Theorem (Anguas, Bueno, D, LAA (2019))

Let \((\alpha_0, \beta_0)\) be a simple eigenvalue of \(P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} B_i\), and let \(y\) and \(x\) be associated left and right eigenvectors of \(P(\alpha, \beta)\). Then, the Stewart-Sun eigenvalue condition number of \((\alpha_0, \beta_0)\) is

\[
\kappa_\theta((\alpha_0, \beta_0), P) = \left(\sum_{i=0}^{k} |\alpha_0|^i |\beta_0|^{k-i} \omega_i \right) \frac{\|y\|_2 \|x\|_2}{|y^*(\beta_0 D_\alpha P(\alpha_0, \beta_0) - \alpha_0 D_\beta P(\alpha_0, \beta_0))x|},
\]

where \(D_z \equiv \frac{\partial}{\partial z}\) denotes the partial derivative with respect to \(z \in \{\alpha, \beta\}\).

Remark

The explicit expression for \(\kappa_\theta((\alpha_0, \beta_0), P)\) does not depend on the choice of representative of the eigenvalue \((\alpha_0, \beta_0)\).
Explicit expression of Stewart-Sun condition number

Theorem (Anguas, Bueno, D, LAA (2019))

Let \((\alpha_0, \beta_0)\) be a simple eigenvalue of \(P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} B_i\), and let \(y\) and \(x\) be associated left and right eigenvectors of \(P(\alpha, \beta)\). Then, the Stewart-Sun eigenvalue condition number of \((\alpha_0, \beta_0)\) is

\[
\kappa_\theta((\alpha_0, \beta_0), P) = \left(\sum_{i=0}^{k} |\alpha_0|^i |\beta_0|^{k-i} \omega_i \right) \frac{\|y\|_2 \|x\|_2}{|y^*(\beta_0 D_\alpha P(\alpha_0, \beta_0) - \alpha_0 D_\beta P(\alpha_0, \beta_0))x|},
\]

where \(D_z \equiv \frac{\partial}{\partial z}\) denotes the partial derivative with respect to \(z \in \{\alpha, \beta\}\)

Remark

The explicit expression for \(\kappa_\theta((\alpha_0, \beta_0), P)\) does not depend on the choice of representative of the eigenvalue \((\alpha_0, \beta_0)\).
1. Homogeneous matrix polynomials and their eigenvalues
2. Homogeneous eigenvalue condition numbers
3. Möbius transformations of homogeneous matrix polynomials
4. The effect of Möbius transformations on eigenvalue condition numbers
5. The effect of Möbius transformations on backward errors of approximate eigenpairs
6. Conclusions
Definition of Möbius transformations

Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL(2, \mathbb{C})$ and $\mathbb{C}[\alpha, \beta]_{k}^{m\times n}$ be the vector space of $m \times n$ homogeneous matrix polynomials of degree k. Then the Möbius transformation on $\mathbb{C}[\alpha, \beta]_{k}^{m\times n}$ induced by A is the map

$$M_A : \mathbb{C}[\alpha, \beta]_{k}^{m\times n} \rightarrow \mathbb{C}[\alpha, \beta]_{k}^{m\times n}$$

given by

$$M_A \left(\sum_{i=0}^{k} \alpha^i \beta^{k-i} B_i \right) (\gamma, \delta) = \sum_{i=0}^{k} (a \gamma + b \delta)^i (c \gamma + d \delta)^{k-i} B_i.$$

The matrix polynomial $M_A(P)(\gamma, \delta)$, that is, the image of $P(\alpha, \beta)$ under M_A, is said to be the Möbius transform of $P(\alpha, \beta)$ under M_A.
Comments, applications, properties for Möbius transformations (I)

- **Standard tool in Rational Matrices since the 1950’s (McMillan).**
- They are often used in the theory of matrix polynomials for transforming a polynomial with infinite eigenvalues into one without infinite eigenvalues, which simplifies some problems.
- **Cayley transformations** are the most important ones

\[
A_{+1} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}, \quad A_{-1} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix},
\]

since they transform matrix polynomials with relevant structures into matrix polynomials with other structures. Important references on this

1. **Mehrmann, LAA (1996):** key paper on unified treatment of continuous and discrete time control problems.
2. **Mackey, Mackey, Mehl, Mehrmann, SIMAX (2006):** key paper on linearizations and structures.
3. Their use can be traced back to classical group theory to transform Hamiltonian into Symplectic matrices a vice versa (Weyl).

- **Mackey, Mackey, Mehl, Mehrmann, LAA (2015) modern, clear and complete survey on Möbius transformations of matrix polys.**
Comments, applications, properties for Möbius transformations (I)

- Standard tool in Rational Matrices since the 1950’s (McMillan).
- They are often used in the theory of matrix polynomials for transforming a polynomial with infinite eigenvalues into one without infinite eigenvalues, which simplifies some problems.

- Cayley transformations are the most important ones

\[A_{+1} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}, \quad A_{-1} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}, \]

- since they transform matrix polynomials with relevant structures into matrix polynomials with other structures. Important references on this:
 3. Their use can be traced back to classical group theory to transform Hamiltonian into Symplectic matrices a vice versa (Weyl).

- Mackey, Mackey, Mehl, Mehrmann, LAA (2015) modern, clear and complete survey on Möbius transformations of matrix polys.
Standard tool in Rational Matrices since the 1950’s (McMillan).

They are often used in the theory of matrix polynomials for transforming a polynomial with infinite eigenvalues into one without infinite eigenvalues, which simplifies some problems.

Cayley transformations are the most important ones

\[A_{+1} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}, \quad A_{-1} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}, \]

since they transform matrix polynomials with relevant structures into matrix polynomials with other structures. Important references on this

3. Their use can be traced back to classical group theory to transform Hamiltonian into Symplectic matrices a vice versa (Weyl).

Mackey, Mackey, Mehl, Mehrmann, LAA (2015) modern, clear and complete survey on Möbius transformations of matrix polys.
Standard tool in Rational Matrices since the 1950’s (McMillan).

They are often used in the theory of matrix polynomials for transforming a polynomial with infinite eigenvalues into one without infinite eigenvalues, which simplifies some problems.

Cayley transformations are the most important ones

\[
A_{+1} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}, \quad A_{-1} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix},
\]

since they transform matrix polynomials with relevant structures into matrix polynomials with other structures. Important references on this

1. **Mehrmann, LAA (1996)**: key paper on unified treatment of continuous and discrete time control problems.
2. **Mackey, Mackey, Mehl, Mehrmann, SIMAX (2006)**: key paper on linearizations and structures.
3. **Their use can be traced back to classical group theory to transform Hamiltonian into Symplectic matrices a vice versa (Weyl).**

Mackey, Mackey, Mehl, Mehrmann, LAA (2015) modern, clear and complete survey on Möbius transformations of matrix polys.
Comments, applications, properties for Möbius transformations (I)

- Standard tool in Rational Matrices since the 1950’s (McMillan).
- They are often used in the theory of matrix polynomials for transforming a polynomial with infinite eigenvalues into one without infinite eigenvalues, which simplifies some problems.

Cayley transformations are the most important ones

\[
A_{+1} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}, \quad A_{-1} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix},
\]

since they transform matrix polynomials with relevant structures into matrix polynomials with other structures. Important references on this

1. **Mehrmann, LAA (1996)**: key paper on unified treatment of continuous and discrete time control problems.
2. **Mackey, Mackey, Mehl, Mehrmann, SIMAX (2006)**: key paper on linearizations and structures.
3. Their use can be traced back to classical group theory to transform Hamiltonian into Symplectic matrices a vice versa (Weyl).

- **Mackey, Mackey, Mehl, Mehrmann, LAA (2015)** modern, clear and complete survey on Möbius transformations of matrix polys.
Cayley transformations, and some variants, have been used explicitly in important numerical algorithms for eigenvalue problems as:

- Benner, Mehrmann, Xu, Numer. Math. (1998), for computing the eigenvalues of a sympletic pencil by transforming such pencil into a Hamiltonian pencil.
- Mehrmann, Xu, ETNA (2015), for deflating the ±1 eigenvalues of palindromic/anti-palindromic pencils via algorithms for deflating the infinite eigenvalues of even/odd pencils.

These and other applications are closely related to the following property:
Cayley transformations, and some variants, have been used explicitly in important numerical algorithms for eigenvalue problems as:

Benner, Mehrmann, Xu, Numer. Math. (1998), for computing the eigenvalues of a sympletic pencil by transforming such pencil into a Hamiltonian pencil.

Mehrmann, Xu, ETNA (2015), for deflating the \(\pm 1 \) eigenvalues of palindromic/anti-palindromic pencils via algorithms for deflating the infinite eigenvalues of even/odd pencils.

These and other applications are closely related to the following property:
Cayley transformations, and some variants, have been used explicitly in important numerical algorithms for eigenvalue problems as:

- **Benner, Mehrmann, Xu**, Numer. Math. (1998), for computing the eigenvalues of a symplectic pencil by transforming such pencil into a Hamiltonian pencil.

- **Mehrmann, Xu**, ETNA (2015), for deflating the ±1 eigenvalues of palindromic/anti-palindromic pencils via algorithms for deflating the infinite eigenvalues of even/odd pencils.

These and other applications are closely related to the following property:
Cayley transformations, and some variants, have been used explicitly in important numerical algorithms for eigenvalue problems as:

- **Benner, Mehrmann, Xu**, Numer. Math. (1998), for computing the eigenvalues of a sympletic pencil by transforming such pencil into a Hamiltonian pencil.

- **Mehrmann, Xu**, ETNA (2015), for deflating the ± 1 eigenvalues of palindromic/anti-palindromic pencils via algorithms for deflating the infinite eigenvalues of even/odd pencils.

These and other applications are closely related to the following property:
Cayley transformations, and some variants, have been used explicitly in important numerical algorithms for eigenvalue problems as:

- **Benner, Mehrmann, Xu**, Numer. Math. (1998), for computing the eigenvalues of a sympletic pencil by transforming such pencil into a Hamiltonian pencil.

- **Mehrmann, Xu**, ETNA (2015), for deflating the ± 1 eigenvalues of palindromic/anti-palindromic pencils via algorithms for deflating the infinite eigenvalues of even/odd pencils.

-

These and other applications are closely related to the following property:
Cayley transformations, and some variants, have been used explicitly in important numerical algorithms for eigenvalue problems as:

- **Benner, Mehrmann, Xu**, Numer. Math. (1998), for computing the eigenvalues of a sympletic pencil by transforming such pencil into a Hamiltonian pencil.

- **Mehrmann, Xu**, ETNA (2015), for deflating the ± 1 eigenvalues of palindromic/anti-palindromic pencils via algorithms for deflating the infinite eigenvalues of even/odd pencils.

These and other applications are closely related to the following property:
The effect of Möbius transformations on eigenvalues

Theorem

Let $P(\alpha, \beta) \in \mathbb{C}[\alpha, \beta]_{k}^{n \times n}$ and let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL(2, \mathbb{C})$.

- If $(x, (\alpha_0, \beta_0))$ is a right eigenpair of $P(\alpha, \beta)$, then $(x, \langle A^{-1}[\alpha_0, \beta_0]^T \rangle)$ is a right eigenpair of $M_A(P)(\gamma, \delta)$.
- Same for left eigenpairs.
- Moreover, (α_0, β_0) is a simple eigenvalue of $P(\alpha, \beta)$ if and only if $\langle A^{-1}[\alpha_0, \beta_0]^T \rangle$ is a simple eigenvalue of $M_A(P)(\gamma, \delta)$.

Remark

A much stronger result holds, since in the case of eigenvalues that are not simple the partial multiplicities are preserved.
The effect of Möbius transformations on eigenvalues

Theorem

Let $P(\alpha, \beta) \in \mathbb{C}[\alpha, \beta]_{k}^{n \times n}$ and let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL(2, \mathbb{C})$.

- If $(x, (\alpha_0, \beta_0))$ is a right eigenpair of $P(\alpha, \beta)$, then $(x, \langle A^{-1}[\alpha_0, \beta_0]^T \rangle)$ is a right eigenpair of $M_A(P)(\gamma, \delta)$.
- Same for left eigenpairs.
- Moreover, (α_0, β_0) is a simple eigenvalue of $P(\alpha, \beta)$ if and only if $\langle A^{-1}[\alpha_0, \beta_0]^T \rangle$ is a simple eigenvalue of $M_A(P)(\gamma, \delta)$.

Remark

A much stronger result holds, since in the case of eigenvalues that are not simple the partial multiplicities are preserved.
But, this is not enough for numerical stability, because

- when the numerical solution of a problem is obtained by transforming the problem into another one,
- a fundamental question is whether or not such transformation deteriorates the conditioning of the problem and/or
- the backward errors of approximate solutions,
- because a significant deterioration of such quantities may lead to unreliable solutions.

General analyses of these questions concerning Möbius transformations were not available in the literature before our work.
But, this is not enough for numerical stability, because

- when the numerical solution of a problem is obtained by transforming the problem into another one,

- a fundamental question is whether or not such transformation deteriorates the conditioning of the problem and/or the backward errors of approximate solutions,

- because a significant deterioration of such quantities may lead to unreliable solutions.

- General analyses of these questions concerning Möbius transformations were not available in the literature before our work.
But, this is not enough for numerical stability, because

- when the numerical solution of a problem is obtained by transforming the problem into another one,
- a fundamental question is whether or not such transformation deteriorates the conditioning of the problem and/or
- the backward errors of approximate solutions,
- because a significant deterioration of such quantities may lead to unreliable solutions.
- General analyses of these questions concerning Möbius transformations were not available in the literature before our work.
But, this is not enough for numerical stability, because

- when the numerical solution of a problem is obtained by transforming the problem into another one,
- a fundamental question is whether or not such transformation deteriorates the conditioning of the problem and/or
- the backward errors of approximate solutions,
- because a significant deterioration of such quantities may lead to unreliable solutions.

General analyses of these questions concerning Möbius transformations were not available in the literature before our work.
But, this is not enough for numerical stability, because

- when the numerical solution of a problem is obtained by transforming the problem into another one,
- a fundamental question is whether or not such transformation deteriorates the conditioning of the problem and/or
- the backward errors of approximate solutions,
- because a significant deterioration of such quantities may lead to unreliable solutions.
- General analyses of these questions concerning Möbius transformations were not available in the literature before our work.
1. Homogeneous matrix polynomials and their eigenvalues
2. Homogeneous eigenvalue condition numbers
3. Möbius transformations of homogeneous matrix polynomials
4. The effect of Möbius transformations on eigenvalue condition numbers
5. The effect of Möbius transformations on backward errors of approximate eigenpairs
6. Conclusions
The fundamental quotients

We focus on two Stewart-Sun condition numbers with respect to two types of perturbations of the matrix coefficients
\[\| \Delta B_i \|_2 \leq \epsilon \omega_i \]

1. \[\omega_i = \left\| P \right\|_\infty = \max_{j=0:k} \{ \| B_j \|_2 \} \quad \text{relative eigenvalue cond. number} \]

with respect to the norm of \(P \): \(\kappa^P_\theta((\alpha_0, \beta_0), P) \).

2. \[\omega_i = \| B_i \|_2 \quad \text{relative eigenvalue cond. number: } \kappa^r_\theta((\alpha_0, \beta_0), P) \]

For measuring the effect of Möbius transformations on these eigenvalue condition numbers, the following two quotients are bounded

1. \[Q^p_\theta := \frac{\kappa^P_\theta(\langle A^{-1}[\alpha_0, \beta_0]^T \rangle, M_A(P))}{\kappa^P_\theta((\alpha_0, \beta_0), P)} \]

“the relative quotient with respect to the norms of \(M_A(P) \) and \(P \)”.

2. \[Q^r_\theta := \frac{\kappa^r_\theta(\langle A^{-1}[\alpha_0, \beta_0]^T \rangle, M_A(P))}{\kappa^r_\theta((\alpha_0, \beta_0), P)} \]

“the relative quotient”.

F. M. Dopico (U. Carlos III, Madrid)
Conditioning Möbius transformations
July 9, 2019 18 / 27
The fundamental quotients

- We focus on two Stewart-Sun condition numbers

with respect to two types of perturbations of the matrix coefficients

$$\|\Delta B_i\|_2 \leq \epsilon \omega_i$$

1. \(\omega_i = \|P\|_\infty = \max_{j=0:k}\{\|B_j\|_2\} \longrightarrow \text{relative eigenvalue cond. number}$$

with respect to the norm of \(P\): \(\kappa^p_\theta((\alpha_0, \beta_0), P)\).

2. \(\omega_i = \|B_i\|_2 \longrightarrow \text{relative eigenvalue cond. number:} \ \kappa^r_\theta((\alpha_0, \beta_0), P)\).

For measuring the effect of Möbius transformations on these eigenvalue condition numbers, the following two quotients are bounded

1. \(Q^p_\theta := \frac{\kappa^p_\theta(\langle A^{-1}[\alpha_0, \beta_0]^T\rangle, M_A(P))}{\kappa^p_\theta((\alpha_0, \beta_0), P)}\),

 “the relative quotient with respect to the norms of \(M_A(P)\) and \(P\)”.

2. \(Q^r_\theta := \frac{\kappa^r_\theta(\langle A^{-1}[\alpha_0, \beta_0]^T\rangle, M_A(P))}{\kappa^r_\theta((\alpha_0, \beta_0), P)}\),

 “the relative quotient”.

F. M. Dopico (U. Carlos III, Madrid) Conditioning Möbius transformations July 9, 2019 18 / 27
The fundamental quotients

- We focus on two Stewart-Sun condition numbers
- with respect to two types of perturbations of the matrix coefficients
 \[\| \Delta B_i \|_2 \leq \epsilon \omega_i \]
 \[\omega_i = \| P \|_\infty = \max_{j=0:k} \{ \| B_j \|_2 \} \rightarrow \text{relative eigenvalue cond. number} \]

1. \[\omega_i = \| P \|_\infty = \max_{j=0:k} \{ \| B_j \|_2 \} \rightarrow \text{relative eigenvalue cond. number: } \kappa^p_\theta((\alpha_0, \beta_0), P) \]

2. \[\omega_i = \| B_i \|_2 \rightarrow \text{relative eigenvalue cond. number: } \kappa^r_\theta((\alpha_0, \beta_0), P) \]

- For measuring the effect of Möbius transformations on these eigenvalue condition numbers, the following two quotients are bounded

1. \[Q^p_\theta := \frac{\kappa^p_\theta(\langle A^{-1}[\alpha_0, \beta_0]^T \rangle, M_A(P))}{\kappa^p_\theta((\alpha_0, \beta_0), P)} \]
 “the relative quotient with respect to the norms of \(M_A(P) \) and \(P \)”.

2. \[Q^r_\theta := \frac{\kappa^r_\theta(\langle A^{-1}[\alpha_0, \beta_0]^T \rangle, M_A(P))}{\kappa^r_\theta((\alpha_0, \beta_0), P)} \]
 “the relative quotient”.

\[\text{F. M. Dopico (U. Carlos III, Madrid)} \]
\[\text{Conditioning Möbius transformations} \]
\[\text{July 9, 2019 18 / 27} \]
Bounds for “the relative with respect to the norms” quotient

Let $P(\alpha, \beta) \in \mathbb{C}[\alpha, \beta]_{k}^{n \times n}$ and let $A \in \text{GL}(2, \mathbb{C})$. Let (α_{0}, β_{0}) be a simple eigenvalue of $P(\alpha, \beta)$ and let $\langle A^{-1}[\alpha_{0}, \beta_{0}]^{T} \rangle$ be the associated eigenvalue of $M_{A}(P)(\gamma, \delta)$. Let $Z_{k} := 4(k + 1)^{2}\left(\frac{k}{\lfloor k/2 \rfloor}\right)$ and $\text{cond}_{\infty}(A) = \|A\|_{\infty}\|A^{-1}\|_{\infty}$.

1. If $k = 1$, then
 $\frac{1}{4 \text{ cond}_{\infty}(A)} \leq Q_{\theta}^{p} \leq 4 \text{ cond}_{\infty}(A)$.

2. If $k \geq 2$, then
 $\frac{1}{Z_{k} \text{ cond}_{\infty}(A)^{k-1}} \leq Q_{\theta}^{p} \leq Z_{k} \text{ cond}_{\infty}(A)^{k-1}$.

Remark

- Neat and universal “extremely a priori” bounds depending only on the degree and the condition number of A.
- **Great result if** $\text{cond}_{\infty}(A) \approx 1$!!!!!! (at least for moderate k).
- $\text{cond}_{\infty}(A) = 2$ for Cayley transformations.
Bounds for “the relative with respect to the norms” quotient

Let $P(\alpha, \beta) \in \mathbb{C}[\alpha, \beta]_{k}^{n \times n}$ and let $A \in GL(2, \mathbb{C})$. Let (α_0, β_0) be a simple eigenvalue of $P(\alpha, \beta)$ and let $\langle A^{-1}[\alpha_0, \beta_0]^T \rangle$ be the associated eigenvalue of $M_A(P)(\gamma, \delta)$. Let $Z_k := 4(k + 1)^2\left(\frac{k}{[k/2]}\right)$ and $\text{cond}_\infty(A) = \|A\|_\infty \|A^{-1}\|_\infty$.

1. If $k = 1$, then
 \[
 \frac{1}{4 \text{cond}_\infty(A)} \leq Q^p_\theta \leq 4 \text{cond}_\infty(A).
 \]

2. If $k \geq 2$, then
 \[
 \frac{1}{Z_k \text{cond}_\infty(A)^{k-1}} \leq Q^p_\theta \leq Z_k \text{cond}_\infty(A)^{k-1}.
 \]

Remark

- Neat and universal “extremely a priori” bounds depending only on the degree and the condition number of A.
- **Great result** if $\text{cond}_\infty(A) \approx 1!!!!!!$ (at least for moderate k).
- $\text{cond}_\infty(A) = 2$ for Cayley transformations.
\[
\frac{1}{4 \ \text{cond}_\infty(A)} \leq Q_{\theta}^p \leq 4 \ \text{cond}_\infty(A), \quad \text{for } k = 1,
\]
\[
\frac{1}{Z_k \ \text{cond}_\infty(A)^{k-1}} \leq Q_{\theta}^p \leq Z_k \ \text{cond}_\infty(A)^{k-1}, \quad \text{for } k \geq 2.
\]

- The factor \(Z_k := 4(k + 1)^2\left(\frac{k}{k/2}\right) \) increases very fast with \(k \):

<table>
<thead>
<tr>
<th>(k)</th>
<th>(Z_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>72</td>
</tr>
<tr>
<td>3</td>
<td>192</td>
</tr>
<tr>
<td>4</td>
<td>600</td>
</tr>
<tr>
<td>5</td>
<td>1440</td>
</tr>
<tr>
<td>10</td>
<td>121968</td>
</tr>
</tbody>
</table>

- This makes the lower and upper bounds very different from each other for moderate values of \(k \), even if \(\text{cond}_\infty(A) \approx 1 \).

- However, many numerical random experiments confirm that the factor \(Z_k \) is very pessimistic, since although \(Q_{\theta}^p \) typically increases slowly with \(k \), it is much smaller than the corresponding upper bound.
The factor $Z_k := 4(k + 1)^2\left(\left\lfloor\frac{k}{2}\right\rfloor\right)$ increases very fast with k:

<table>
<thead>
<tr>
<th>k</th>
<th>Z_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>72</td>
</tr>
<tr>
<td>3</td>
<td>192</td>
</tr>
<tr>
<td>4</td>
<td>600</td>
</tr>
<tr>
<td>5</td>
<td>1440</td>
</tr>
<tr>
<td>10</td>
<td>121968</td>
</tr>
</tbody>
</table>

This makes the lower and upper bounds very different from each other for moderate values of k, even if $\text{cond}_\infty(A) \approx 1$.

However, many numerical random experiments confirm that the factor Z_k is very pessimistic, since although Q_θ^p typically increases slowly with k, it is much smaller than the corresponding upper bound.
The factor $Z_k := 4(k + 1)^2 \left(\frac{k}{\lfloor k/2 \rfloor}\right)$ increases very fast with k:

<table>
<thead>
<tr>
<th>k</th>
<th>Z_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>72</td>
</tr>
<tr>
<td>3</td>
<td>192</td>
</tr>
<tr>
<td>4</td>
<td>600</td>
</tr>
<tr>
<td>5</td>
<td>1440</td>
</tr>
<tr>
<td>10</td>
<td>121968</td>
</tr>
</tbody>
</table>

This makes the lower and upper bounds very different from each other for moderate values of k, even if $\text{cond}_\infty(A) \approx 1$.

However, many numerical random experiments confirm that the factor Z_k is very pessimistic, since although Q^p typically increases slowly with k, it is much smaller than the corresponding upper bound.
The factor \(Z_k \) increases very fast with \(k \):

\[
\begin{array}{c|c}
 k & Z_k \\
\hline
 2 & 72 \\
 3 & 192 \\
 4 & 600 \\
 5 & 1440 \\
10 & 121968 \\
\end{array}
\]

This makes the lower and upper bounds very different from each other for moderate values of \(k \), even if \(\text{cond}_\infty(A) \approx 1 \).

However, many numerical random experiments confirm that the factor \(Z_k \) is very pessimistic, since although \(Q_\theta^p \) typically increases slowly with \(k \), it is much smaller than the corresponding upper bound.
\[
\frac{1}{4 \text{ cond}_{\infty}(A)} \leq Q_\theta^p \leq 4 \text{ cond}_{\infty}(A), \quad \text{for } k = 1,
\]
\[
\frac{1}{Z_k \text{ cond}_{\infty}(A)^{k-1}} \leq Q_\theta^p \leq Z_k \text{ cond}_{\infty}(A)^{k-1}, \quad \text{for } k \geq 2.
\]

These bounds reveal that the main source of potential instability, w.r.t. the conditioning of eigenvalues, of applying a Möbius transformation to any matrix polynomial is the possible ill-conditioning of \(A \).

In fact for any fixed \(A \), it is easy to construct matrix polynomials with eigenvalues that attain the “cond-part” of the lower and upper bounds, which are very different from each other if \(A \) is ill-conditioned.

Curiosity: random experiments with \(\text{cond}_{\infty}(A) \gg 1 \) behave different for \(k = 1 \) than for \(k \geq 2 \), since for \(k = 1 \) the effect of \(\text{cond}_{\infty}(A) \) is not observed unless the experiment is carefully prepared.

Though not interesting in applications, if \(\text{cond}_{\infty}(A) \gg 1 \) much sharper lower-upper bounds on \(Q_\theta^p \) can be developed at the cost of involving the eigenvalues, and the norms of the matrix coefficients of \(P \) and \(M_A(P) \).

These neat bounds do not hold in non-homogeneous formulation.
\[
\frac{1}{4 \cond_{\infty}(A)} \leq Q^p_\theta \leq 4 \cond_{\infty}(A), \quad \text{for } k = 1,
\]
\[
\frac{1}{Z_k \cond_{\infty}(A)^{k-1}} \leq Q^p_\theta \leq Z_k \cond_{\infty}(A)^{k-1}, \quad \text{for } k \geq 2.
\]

These bounds reveal that the main source of potential instability, w.r.t. the conditioning of eigenvalues, of applying a Möbius transformation to any matrix polynomial is the possible ill-conditioning of \(A \).

In fact for any fixed \(A \), it is easy to construct matrix polynomials with eigenvalues that attain the “cond-part” of the lower and upper bounds, which are very different from each other if \(A \) is ill-conditioned.

Curiosity: random experiments with \(\cond_{\infty}(A) \gg 1 \) behave different for \(k = 1 \) than for \(k \geq 2 \), since for \(k = 1 \) the effect of \(\cond_{\infty}(A) \) is not observed unless the experiment is carefully prepared.

Though not interesting in applications, if \(\cond_{\infty}(A) \gg 1 \) much sharper lower-upper bounds on \(Q^p_\theta \) can be developed at the cost of involving the eigenvalues, and the norms of the matrix coefficients of \(P \) and \(M_A(P) \).

These neat bounds do not hold in non-homogeneous formulation.
\[
\frac{1}{4 \ \text{cond}_\infty(A)} \leq Q^p_\theta \leq 4 \ \text{cond}_\infty(A), \quad \text{for } k = 1,
\]
\[
\frac{1}{Z_k \ \text{cond}_\infty(A)^{k-1}} \leq Q^p_\theta \leq Z_k \ \text{cond}_\infty(A)^{k-1}, \quad \text{for } k \geq 2.
\]

These bounds reveal that the main source of potential instability, w.r.t. the conditioning of eigenvalues, of applying a Möbius transformation to any matrix polynomial is the possible ill-conditioning of \(A\).

In fact for any fixed \(A\), it is easy to construct matrix polynomials with eigenvalues that attain the “cond-part” of the lower and upper bounds, which are very different from each other if \(A\) is ill-conditioned.

Curiosity: random experiments with \(\text{cond}_\infty(A) \gg 1\) behave different for \(k = 1\) than for \(k \geq 2\), since for \(k = 1\) the effect of \(\text{cond}_\infty(A)\) is not observed unless the experiment is carefully prepared.

Though not interesting in applications, if \(\text{cond}_\infty(A) \gg 1\) much sharper lower-upper bounds on \(Q^p_\theta\) can be developed at the cost of involving the eigenvalues, and the norms of the matrix coefficients of \(P\) and \(M_A(P)\).

These neat bounds do not hold in non-homogeneous formulation.
\[
\frac{1}{4 \cond_{\infty}(A)} \leq \frac{Q^p_\theta}{Z_k \cond_{\infty}(A)^{k-1}} \leq \frac{4 \cond_{\infty}(A)}{Z_k \cond_{\infty}(A)^{k-1}}, \quad \text{for } k \geq 2.
\]

These bounds reveal that the main source of potential instability, w.r.t. the conditioning of eigenvalues, of applying a Möbius transformation to any matrix polynomial is the possible ill-conditioning of \(A \).

In fact for any fixed \(A \), it is easy to construct matrix polynomials with eigenvalues that attain the “cond-part” of the lower and upper bounds, which are very different from each other if \(A \) is ill-conditioned.

Curiosity: random experiments with \(\cond_{\infty}(A) \gg 1 \) behave different for \(k = 1 \) than for \(k \geq 2 \), since for \(k = 1 \) the effect of \(\cond_{\infty}(A) \) is not observed unless the experiment is carefully prepared.

Though not interesting in applications, if \(\cond_{\infty}(A) \gg 1 \) much sharper lower-upper bounds on \(Q^p_\theta \) can be developed at the cost of involving the eigenvalues, and the norms of the matrix coefficients of \(P \) and \(M_A(P) \).

These neat bounds do not hold in non-homogeneous formulation.
\[
\frac{1}{4 \operatorname{cond}_\infty(A)} \leq Q^p_\theta \leq 4 \operatorname{cond}_\infty(A), \quad \text{for } k = 1,
\]
\[
\frac{1}{Z_k \operatorname{cond}_\infty(A)^{k-1}} \leq Q^p_\theta \leq Z_k \operatorname{cond}_\infty(A)^{k-1}, \quad \text{for } k \geq 2.
\]

- These bounds reveal that the main source of potential instability, w.r.t. the conditioning of eigenvalues, of applying a Möbius transformation to any matrix polynomial is the possible ill-conditioning of \(A \).

- In fact for any fixed \(A \), it is easy to construct matrix polynomials with eigenvalues that attain the “cond-part” of the lower and upper bounds, which are very different from each other if \(A \) is ill-conditioned.

- **Curiosity:** random experiments with \(\operatorname{cond}_\infty(A) \gg 1 \) behave different for \(k = 1 \) than for \(k \geq 2 \), since for \(k = 1 \) the effect of \(\operatorname{cond}_\infty(A) \) is not observed unless the experiment is carefully prepared.

- Though not interesting in applications, if \(\operatorname{cond}_\infty(A) \gg 1 \) much sharper lower-upper bounds on \(Q^p_\theta \) can be developed at the cost of involving the eigenvalues, and the norms of the matrix coefficients of \(P \) and \(M_A(P) \).

- These neat bounds do not hold in non-homogeneous formulation.
\[
\frac{1}{4 \, \text{cond}_\infty(A)} \leq Q_\theta^p \leq 4 \, \text{cond}_\infty(A), \quad \text{for } k = 1,
\]
\[
\frac{1}{Z_k \, \text{cond}_\infty(A)^{k-1}} \leq Q_\theta^p \leq Z_k \, \text{cond}_\infty(A)^{k-1}, \quad \text{for } k \geq 2.
\]

These bounds reveal that the main source of potential instability, w.r.t. the conditioning of eigenvalues, of applying a Möbius transformation to any matrix polynomial is the possible ill-conditioning of \(A \).

In fact for any fixed \(A \), it is easy to construct matrix polynomials with eigenvalues that attain the “cond-part” of the lower and upper bounds, which are very different from each other if \(A \) is ill-conditioned.

Curiosity: random experiments with \(\text{cond}_\infty(A) \gg 1 \) behave different for \(k = 1 \) than for \(k \geq 2 \), since for \(k = 1 \) the effect of \(\text{cond}_\infty(A) \) is not observed unless the experiment is carefully prepared.

Though not interesting in applications, if \(\text{cond}_\infty(A) \gg 1 \) much sharper lower-upper bounds on \(Q_\theta^p \) can be developed at the cost of involving the eigenvalues, and the norms of the matrix coefficients of \(P \) and \(M_A(P) \).

These neat bounds do not hold in non-homogeneous formulation.
Bounds for the relative quotient

Let $P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} B_i$ and $A \in GL(2, \mathbb{C})$. Let (α_0, β_0) be a simple eigenvalue of $P(\alpha, \beta)$ and let $\langle A^{-1}[\alpha_0, \beta_0]^T \rangle$ be the corresponding eigenvalue of $M_A(P)(\gamma, \delta) = \sum_{i=0}^{k} \gamma^i \delta^{k-i} \tilde{B}_i$. Let $Z_k := 4(k + 1)^2 \left(\frac{k}{[k/2]} \right)$. Assume that $B_0 \neq 0, B_k \neq 0, \tilde{B}_0 \neq 0, \text{ and } \tilde{B}_k \neq 0$ and define

$$\rho := \frac{\max_{i=0:k} \{ \| B_i \|_2 \}}{\min \{ \| B_0 \|_2, \| B_k \|_2 \}}, \quad \tilde{\rho} := \frac{\max_{i=0:k} \{ \| \tilde{B}_i \|_2 \}}{\min \{ \| \tilde{B}_0 \|_2, \| \tilde{B}_k \|_2 \}}.$$

1. If $k = 1$, then
 $$\frac{1}{4 \ \text{cond}_\infty(A) \tilde{\rho}} \leq Q^r_\theta \leq 4 \ \text{cond}_\infty(A) \rho.$$

2. If $k \geq 2$, then
 $$\frac{1}{Z_k \ \text{cond}_\infty(A)^{k-1} \tilde{\rho}} \leq Q^r_\theta \leq Z_k \ \text{cond}_\infty(A)^{k-1} \rho.$$

Remark

- Penalty w.r.t. Q^P_θ due to $\rho \geq 1$ and $\tilde{\rho} \geq 1$, which is observed in practice.
Bounds for the relative quotient

Let \(P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} B_i \) and \(A \in GL(2, \mathbb{C}) \). Let \((\alpha_0, \beta_0)\) be a simple eigenvalue of \(P(\alpha, \beta) \) and let \(\langle A^{-1}[\alpha_0, \beta_0]^T \rangle \) be the corresponding eigenvalue of \(M_A(P)(\gamma, \delta) = \sum_{i=0}^{k} \gamma^i \delta^{k-i} \tilde{B}_i \). Let \(Z_k := 4(k+1)^2 \left(\frac{k}{\lfloor k/2 \rfloor} \right) \). Assume that \(B_0 \neq 0, B_k \neq 0, \tilde{B}_0 \neq 0, \text{ and } \tilde{B}_k \neq 0 \) and define

\[
\rho := \frac{\max_{i=0:k}\{ ||B_i||_2 \}}{\min\{ ||B_0||_2, ||B_k||_2 \}}, \quad \tilde{\rho} := \frac{\max_{i=0:k}\{ ||\tilde{B}_i||_2 \}}{\min\{ ||\tilde{B}_0||_2, ||\tilde{B}_k||_2 \}}.
\]

1. If \(k = 1 \), then
\[
\frac{1}{4 \ \text{cond}_\infty(A) \tilde{\rho}} \leq Q^r_\theta \leq 4 \ \text{cond}_\infty(A) \rho.
\]

2. If \(k \geq 2 \), then
\[
\frac{1}{Z_k \ \text{cond}_\infty(A)^{k-1} \tilde{\rho}} \leq Q^r_\theta \leq Z_k \ \text{cond}_\infty(A)^{k-1} \rho.
\]

Remark

- Penalty w.r.t. \(Q^p_\theta \) due to \(\rho \geq 1 \) and \(\tilde{\rho} \geq 1 \), which is observed in practice.
Outline

1. Homogeneous matrix polynomials and their eigenvalues
2. Homogeneous eigenvalue condition numbers
3. Möbius transformations of homogeneous matrix polynomials
4. The effect of Möbius transformations on eigenvalue condition numbers
5. The effect of Möbius transformations on backward errors of approximate eigenpairs
6. Conclusions
The scenario is: we want to compute eigenpairs of $P(\alpha, \beta)$, but, for some reason, it is advantageous to compute eigenpairs of $M_A(P)(\gamma, \delta)$.

A motivation for this might be that $P(\alpha, \beta)$ has a structure that we would like to preserve in the computation for efficiency, accuracy, symmetries of eigenvalues, ... but there are no specific algorithms available for such structure, although there are for the structure of $M_A(P)(\gamma, \delta)$.

Note that if $(\hat{x}, (\hat{\gamma}_0, \hat{\delta}_0))$ is a computed approximate right eigenpair of $M_A(P)$, and $(\hat{\alpha}_0, \hat{\beta}_0) := (a\hat{\gamma}_0 + b\hat{\delta}_0, c\hat{\gamma}_0 + d\hat{\delta}_0)$, where $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$,

then, $(\hat{x}, (\hat{\alpha}_0, \hat{\beta}_0))$ can be considered an approximate right eigenpair of $P(\alpha, \beta)$.

Assuming that $(\hat{x}, (\hat{\gamma}_0, \hat{\delta}_0))$ has been computed with small backward errors,

a natural question in this setting is whether $(\hat{x}, (\hat{\alpha}_0, \hat{\beta}_0))$ is also an approximate eigenpair of P with small backward errors.
The scenario is: we want to compute eigenpairs of $P(\alpha, \beta)$, but, for some reason, it is advantageous to compute eigenpairs of $M_A(P)(\gamma, \delta)$.

A motivation for this might be that $P(\alpha, \beta)$ has a structure that we would like to preserve in the computation for efficiency, accuracy, symmetries of eigenvalues, ... but there are no specific algorithms available for such structure, although there are for the structure of $M_A(P)(\gamma, \delta)$.

Note that if $(\hat{x}, (\hat{\gamma}_0, \hat{\delta}_0))$ is a computed approximate right eigenpair of $M_A(P)$, and $(\hat{\alpha}_0, \hat{\beta}_0) := (a\hat{\gamma}_0 + b\hat{\delta}_0, c\hat{\gamma}_0 + d\hat{\delta}_0)$, where $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$,

then, $(\hat{x}, (\hat{\alpha}_0, \hat{\beta}_0))$ can be considered an approximate right eigenpair of $P(\alpha, \beta)$.

Assuming that $(\hat{x}, (\hat{\gamma}_0, \hat{\delta}_0))$ has been computed with small backward errors,

a natural question in this setting is whether $(\hat{x}, (\hat{\alpha}_0, \hat{\beta}_0))$ is also an approximate eigenpair of P with small backward errors.
The scenario is: we want to compute eigenpairs of $P(\alpha, \beta)$, but, for some reason, it is advantageous to compute eigenpairs of $M_A(P)(\gamma, \delta)$.

A motivation for this might be that $P(\alpha, \beta)$ has a structure that we would like to preserve in the computation for efficiency, accuracy, symmetries of eigenvalues, ... but there are no specific algorithms available for such structure, although there are for the structure of $M_A(P)(\gamma, \delta)$.

Note that if $(\hat{x}, (\hat{\gamma}_0, \hat{\delta}_0))$ is a computed approximate right eigenpair of $M_A(P)$, and $(\hat{\alpha}_0, \hat{\beta}_0) := (a\hat{\gamma}_0 + b\hat{\delta}_0, c\hat{\gamma}_0 + d\hat{\delta}_0)$, where $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$,

then, $(\hat{x}, (\hat{\alpha}_0, \hat{\beta}_0))$ can be considered an approximate right eigenpair of $P(\alpha, \beta)$.

Assuming that $(\hat{x}, (\hat{\gamma}_0, \hat{\delta}_0))$ has been computed with small backward errors,

a natural question in this setting is whether $(\hat{x}, (\hat{\alpha}_0, \hat{\beta}_0))$ is also an approximate eigenpair of P with small backward errors.
The scenario and comments

- The scenario is: we want to compute eigenpairs of $P(\alpha, \beta)$, but, for some reason, it is advantageous to compute eigenpairs of $MA(P)(\gamma, \delta)$.

- A motivation for this might be that $P(\alpha, \beta)$ has a structure that we would like to preserve in the computation for efficiency, accuracy, symmetries of eigenvalues, ... but there are no specific algorithms available for such structure, although there are for the structure of $MA(P)(\gamma, \delta)$.

- Note that if $(\hat{x}, (\hat{\gamma}_0, \hat{\delta}_0))$ is a computed approximate right eigenpair of $MA(P)$, and $(\hat{\alpha}_0, \hat{\beta}_0) := (a\hat{\gamma}_0 + b\hat{\delta}_0, c\hat{\gamma}_0 + d\hat{\delta}_0)$, where $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then, $(\hat{x}, (\hat{\alpha}_0, \hat{\beta}_0))$ can be considered an approximate right eigenpair of $P(\alpha, \beta)$.

- Assuming that $(\hat{x}, (\hat{\gamma}_0, \hat{\delta}_0))$ has been computed with small backward errors,

- a natural question in this setting is whether $(\hat{x}, (\hat{\alpha}_0, \hat{\beta}_0))$ is also an approximate eigenpair of P with small backward errors.
The scenario and comments

- The scenario is: we want to compute eigenpairs of $P(\alpha, \beta)$, but, for some reason, it is advantageous to compute eigenpairs of $M_A(P)(\gamma, \delta)$.

- A motivation for this might be that $P(\alpha, \beta)$ has a structure that we would like to preserve in the computation for efficiency, accuracy, symmetries of eigenvalues, ... but there are no specific algorithms available for such structure, although there are for the structure of $M_A(P)(\gamma, \delta)$.

- Note that if $(\hat{x}, (\hat{\gamma}_0, \hat{\delta}_0))$ is a computed approximate right eigenpair of $M_A(P)$, and $(\hat{\alpha}_0, \hat{\beta}_0) := (a\hat{\gamma}_0 + b\hat{\delta}_0, c\hat{\gamma}_0 + d\hat{\delta}_0)$, where $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$,

then, $(\hat{x}, (\hat{\alpha}_0, \hat{\beta}_0))$ can be considered an approximate right eigenpair of $P(\alpha, \beta)$.

- Assuming that $(\hat{x}, (\hat{\gamma}_0, \hat{\delta}_0))$ has been computed with small backward errors,

- a natural question in this setting is whether $(\hat{x}, (\hat{\alpha}_0, \hat{\beta}_0))$ is also an approximate eigenpair of P with small backward errors.
The scenario is: we want to compute eigenpairs of $P(\alpha, \beta)$, but, for some reason, it is advantageous to compute eigenpairs of $MA(P)(\gamma, \delta)$.

A motivation for this might be that $P(\alpha, \beta)$ has a structure that we would like to preserve in the computation for efficiency, accuracy, symmetries of eigenvalues, ... but there are no specific algorithms available for such structure, although there are for the structure of $MA(P)(\gamma, \delta)$.

Note that if $(\hat{x}, (\hat{\gamma}_0, \hat{\delta}_0))$ is a computed approximate right eigenpair of $MA(P)$, and $(\hat{\alpha}_0, \hat{\beta}_0) := (a\hat{\gamma}_0 + b\hat{\delta}_0, c\hat{\gamma}_0 + d\hat{\delta}_0)$, where $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then, $(\hat{x}, (\hat{\alpha}_0, \hat{\beta}_0))$ can be considered an approximate right eigenpair of $P(\alpha, \beta)$.

Assuming that $(\hat{x}, (\hat{\gamma}_0, \hat{\delta}_0))$ has been computed with small backward errors,

a natural question in this setting is whether $(\hat{x}, (\hat{\alpha}_0, \hat{\beta}_0))$ is also an approximate eigenpair of P with small backward errors.
Main results on backward errors

- This would happen if the quotient

\[Q_{\eta, \text{right}} := \frac{\eta_P(\hat{x}, (\hat{\alpha}_0, \hat{\beta}_0))}{\eta_{MA}(\hat{x}, (\hat{\gamma}_0, \hat{\delta}_0))} \]

is a moderate number not much larger than one,

- where the backward error of \((\hat{x}, (\hat{\alpha}_0, \hat{\beta}_0))\) w.r.t. \(P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} B_i\) is

\[\eta_P(\hat{x}, (\hat{\alpha}_0, \hat{\beta}_0)) := \min\{\epsilon : (P(\hat{\alpha}_0, \hat{\beta}_0) + \Delta P(\hat{\alpha}_0, \hat{\beta}_0)) \hat{x} = 0, \|\Delta B_i\|_2 \leq \epsilon \omega_i, i = 0 : k\}, \]

with \(\Delta P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} \Delta B_i\).

- Bounds analogous to those of the quotients of condition numbers hold for the two classes of weights \(\omega_i\) that we have considered.

- The same holds for left eigenpairs.

- No difference with the non-homogeneous formulation, in contrast with the comparison of condition numbers.
Main results on backward errors

- This would happen if the quotient

\[Q_{\eta, \text{right}} := \frac{\eta_P(\hat{x}, (\hat{\alpha}_0, \hat{\beta}_0))}{\eta_{MA}(P)(\hat{x}, (\hat{\gamma}_0, \hat{\delta}_0))} \]

is a moderate number not much larger than one,

- where the backward error of \((\hat{x}, (\hat{\alpha}_0, \hat{\beta}_0))\) w.r.t. \(P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} B_i\) is

\[\eta_P(\hat{x}, (\hat{\alpha}_0, \hat{\beta}_0)) := \min\{\epsilon : (P(\hat{\alpha}_0, \hat{\beta}_0) + \Delta P(\hat{\alpha}_0, \hat{\beta}_0))\hat{x} = 0, \|\Delta B_i\|_2 \leq \epsilon \omega_i, i = 0 : k\}, \]

with \(\Delta P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} \Delta B_i\).

- Bounds analogous to those of the quotients of condition numbers hold for the two classes of weights \(\omega_i\) that we have considered.

- The same holds for left eigenpairs.

- No difference with the non-homogeneous formulation, in contrast with the comparison of condition numbers.
Main results on backward errors

- This would happen if the quotient
 \[Q_{\eta, \text{right}} := \frac{\eta_P(\hat{x}, (\hat{\alpha}_0, \hat{\beta}_0))}{\eta_{M_A}(P)(\hat{x}, (\hat{\gamma}_0, \hat{\delta}_0))} \]
 is a moderate number not much larger than one,

- where the backward error of \((\hat{x}, (\hat{\alpha}_0, \hat{\beta}_0))\) w.r.t. \(P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} B_i\) is
 \[\eta_P(\hat{x}, (\hat{\alpha}_0, \hat{\beta}_0)) := \min\{\epsilon : (P(\hat{\alpha}_0, \hat{\beta}_0) + \Delta P(\hat{\alpha}_0, \hat{\beta}_0))\hat{x} = 0, \|\Delta B_i\|_2 \leq \epsilon \omega_i, i = 0 : k\}, \]
 with \(\Delta P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} \Delta B_i\).

- Bounds analogous to those of the quotients of condition numbers hold for the two classes of weights \(\omega_i\) that we have considered.

- The same holds for left eigenpairs.

- No difference with the non-homogeneous formulation, in contrast with the comparison of condition numbers.
Main results on backward errors

- This would happen if the quotient
 \[Q_{\eta,\text{right}} := \frac{\eta_P(\hat{x}, (\hat{\alpha}_0, \hat{\beta}_0))}{\eta_{MA}(P)(\hat{x}, (\hat{\gamma}_0, \hat{\delta}_0))} \]
 is a moderate number not much larger than one,

- where the backward error of \((\hat{x}, (\hat{\alpha}_0, \hat{\beta}_0))\) w.r.t. \(P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} B_i\) is
 \[\eta_P(\hat{x}, (\hat{\alpha}_0, \hat{\beta}_0)) := \min\{\epsilon : (P(\hat{\alpha}_0, \hat{\beta}_0) + \Delta P(\hat{\alpha}_0, \hat{\beta}_0))\hat{x} = 0, \|\Delta B_i\|_2 \leq \epsilon \omega_i, i = 0 : k\}, \]
 with \(\Delta P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} \Delta B_i\).

- Bounds analogous to those of the quotients of condition numbers hold for the two classes of weights \(\omega_i\) that we have considered.

- The same holds for left eigenpairs.

- No difference with the non-homogeneous formulation, in contrast with the comparison of condition numbers.
Main results on backward errors

- This would happen if the quotient
 \[Q_{\eta, \text{right}} := \frac{\eta_P(\hat{x}, (\hat{\alpha}_0, \hat{\beta}_0))}{\eta_{MA}(P)(\hat{x}, (\hat{\gamma}_0, \hat{\delta}_0))} \]
 is a moderate number not much larger than one,

- where the backward error of \((\hat{x}, (\hat{\alpha}_0, \hat{\beta}_0))\) w.r.t. \(P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} B_i\)
 is
 \[\eta_P(\hat{x}, (\hat{\alpha}_0, \hat{\beta}_0)) := \min\{\epsilon : (P(\hat{\alpha}_0, \hat{\beta}_0) + \Delta P(\hat{\alpha}_0, \hat{\beta}_0))\hat{x} = 0, \|\Delta B_i\|_2 \leq \epsilon \omega_i, i = 0 : k\} \]
 with \(\Delta P(\alpha, \beta) = \sum_{i=0}^{k} \alpha^i \beta^{k-i} \Delta B_i\).

- Bounds analogous to those of the quotients of condition numbers hold for the two classes of weights \(\omega_i\) that we have considered.

- The same holds for left eigenpairs.

- No difference with the non-homogeneous formulation, in contrast with the comparison of condition numbers.
Outline

1. Homogeneous matrix polynomials and their eigenvalues
2. Homogeneous eigenvalue condition numbers
3. Möbius transformations of homogeneous matrix polynomials
4. The effect of Möbius transformations on eigenvalue condition numbers
5. The effect of Möbius transformations on backward errors of approximate eigenpairs
6. Conclusions
Conclusions

- For perturbations of each coefficient small w.r.t. the norm of the whole homogeneous matrix polynomial:
 1. Möbius transformations induced by well-conditioned matrices A do not change significantly the eigenvalue condition numbers and backward errors of any eigenvalue of any matrix polynomial.
 2. This is completely rigorous for matrix polynomials with low degree, but also happens in practice for larger degrees.

- For perturbations of each coefficient small w.r.t. the norm of each coefficient:
 - There are penalty factors depending on the unbalance of the norms of the coefficients of the matrix polynomial or of its Möbius transform.
 - The results on condition numbers do NOT hold for the standard non-homogeneous formulation.
Conclusions

- For perturbations of each coefficient small w.r.t. the norm of the whole homogeneous matrix polynomial:
 1. Möbius transformations induced by well-conditioned matrices A do not change significatively the eigenvalue condition numbers and backward errors of any eigenvalue of any matrix polynomial.
 2. This is completely rigorous for matrix polynomials with low degree,
 3. but also happens in practice for larger degrees.

- For perturbations of each coefficient small w.r.t. the norm of each coefficient:
 - There are penalty factors depending on the unbalance of the norms of the coefficients of the matrix polynomial or of its Möbius transform.
 - The results on condition numbers do NOT hold for the standard non-homogeneous formulation.
Conclusions

- For perturbations of each coefficient small w.r.t. the norm of the whole homogeneous matrix polynomial:
 1. Möbius transformations induced by well-conditioned matrices A do not change significantly the eigenvalue condition numbers and backward errors of any eigenvalue of any matrix polynomial.
 2. This is completely rigorous for matrix polynomials with low degree, but also happens in practice for larger degrees.

- For perturbations of each coefficient small w.r.t. the norm of each coefficient:
 1. There are penalty factors depending on the unbalance of the norms of the coefficients of the matrix polynomial or of its Möbius transform.
 2. The results on condition numbers do NOT hold for the standard non-homogeneous formulation.
Conclusions

- For perturbations of each coefficient small w.r.t. the norm of the whole homogeneous matrix polynomial:
 1. Möbius transformations induced by well-conditioned matrices A do not change significatively the eigenvalue condition numbers and backward errors of any eigenvalue of any matrix polynomial.
 2. This is completely rigorous for matrix polynomials with low degree, but also happens in practice for larger degrees.

- For perturbations of each coefficient small w.r.t. the norm of each coefficient:
 1. There are penalty factors depending on the unbalance of the norms of the coefficients of the matrix polynomial or of its Möbius transform.

- The results on condition numbers do NOT hold for the standard non-homogeneous formulation.
Conclusions

- For perturbations of each coefficient small w.r.t. the norm of the whole homogeneous matrix polynomial:
 1. Möbius transformations induced by well-conditioned matrices A do not change significatively the eigenvalue condition numbers and backward errors of any eigenvalue of any matrix polynomial.
 2. This is completely rigorous for matrix polynomials with low degree, but also happens in practice for larger degrees.

- For perturbations of each coefficient small w.r.t. the norm of each coefficient:
 1. There are penalty factors depending on the unbalance of the norms of the coefficients of the matrix polynomial or of its Möbius transform.

- The results on condition numbers do NOT hold for the standard non-homogeneous formulation.