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Homogeneous matrix polynomials

In this talk, we consider regular homogeneous matrix polynomials of
degree k

P (α, β) =

k∑
i=0

αiβk−iBi, Bi ∈ Cn×n,

where α, β are complex scalar variables.

In contrast to the more standard non-homogeneous formulation

P (λ) =

k∑
i=0

λiBi, Bi ∈ Cn×n.

From several points of view, in particular for the purpose of this talk, the
homogeneous formulation has nicer mathematical properties, but

the non-homogeneous formulation is more meaningful in
applications.
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Eigenvalues and eigenvectors of homogeneous matrix polynomials

The polynomial eigenvalue problem (PEP) associated to P (α, β)
consists of finding scalars α0 and β0, at least one nonzero, and nonzero
vectors x, y ∈ Cn such that

y∗P (α0, β0) = 0 and P (α0, β0)x = 0.

The previous equalities hold if and only if the equalities

y∗P (aα0, aβ0) = 0 and P (aα0, aβ0)x = 0

hold for any complex number a 6= 0.

This motivates defining the corresponding eigenvalue of P (α, β) as the
set (line in C2 passing through the origin)

(α0, β0) := {[aα0, aβ0]T : a ∈ C} ⊂ C2.

x and y are called right and left eigenvectors associated with (α0, β0),

and (x, (α0, β0)), (y∗, (α0, β0)) are called right and left eigenpairs.

A specific (nonzero) representative of (α0, β0) is denoted by [α0, β0]T .

We will also use 〈x〉, where x ∈ C2, to denote the line generated by x.
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From homogeneous to non-homogeneous eigenvalues

If [α0, β0]T is any nonzero representative of an eigenvalue of
P (α, β) =

∑k
i=0 α

iβk−iBi, then

λ0 = α0/β0 ∈ C is the corresponding eigenvalue of P (λ) =
∑k
i=0 λ

iBi,
(which may be λ0 =∞).

This indicates that non-homogeneous eigenvalues are more sensitive to
perturbations of the matrix coefficients than homogeneous eigenvalues,

since small (norm) variations in [α0, β0]T may produce large variations in
the quotient α0/β0.

This has been rigourously proved in Anguas, Bueno, D., A comparison
of eigenvalue condition numbers for matrix polynomials, LAA (2019),

and hints why the homogeneous formulation simplifies the analysis of
eigenvalue condition number problems in PEPs.

However, note also that homogeneous eigenvalues are the natural
outcome of solving PEPs via linearization + QZ algorithm:

A− λB −→ T − λU︸ ︷︷ ︸
QZ

⇒ λi = tii/uii
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Two options:

Dedieu-Tisseur condition number κh((α0, β0), P ) (Dedieu, Tisseur,
LAA (2003)):

1 Complicated definition.
2 Not so easily related to the non-homogeneous Wilkinson-like

condition numbers.

Stewart-Sun condition number κθ((α0, β0), P ) (Berhanu, PhD Thesis
Manchester (2005)), (Anguas, Bueno, D, LAA (2019)):

1 Easy and natural definition.
2 Easily related to the non-homogeneous Wilkinson-like condition

numbers.

Both are equivalent

Corollary (Anguas, Bueno, D, LAA (2019))

Let (α0, β0) be a simple eigenvalue of P (α, β) =
∑k
i=0 α

iβk−iBi. Then,

1√
k + 1

≤ κh((α0, β0), P )

κθ((α0, β0), P )
≤ 1.
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Definition of Stewart-Sun condition number

Definition

Let (α0, β0) be a simple eigenvalue of P (α, β) =
∑k
i=0 α

iβk−iBi and let x be
a right eigenvector of P (α, β) associated with (α0, β0). We define

κθ((α0, β0), P ) := lim
ε→0

sup

{
sin θ((α0, β0), (α0 + ∆α0, β0 + ∆β0))

ε
:

[P (α0 + ∆α0, β0 + ∆β0) + ∆P (α0 + ∆α0, β0 + ∆β0)](x+ ∆x) = 0,

‖∆Bi‖2 ≤ ε ωi, i = 0 : k

}
,

where ∆P (α, β) =
∑k
i=0 α

iβk−i∆Bi and ωi, i = 0 : k, are weights.

sin θ(〈x〉, 〈y〉) = ‖x− projyx‖2/‖x‖2, for 〈x〉, 〈y〉 lines in C2.

We will use two types of weights:
1 ωi = ‖P‖∞ = max

j=0:k
{‖Bj‖2} −→ relative eigenvalue cond. number

with respect to the norm of P : κpθ((α0, β0), P ).
2 ωi = ‖Bi‖2 −→ relative eigenvalue cond. number: κrθ((α0, β0), P ).
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κθ((α0, β0), P ) := lim
ε→0

sup

{
sin θ((α0, β0), (α0 + ∆α0, β0 + ∆β0))

ε
:

[P (α0 + ∆α0, β0 + ∆β0) + ∆P (α0 + ∆α0, β0 + ∆β0)](x+ ∆x) = 0,

‖∆Bi‖2 ≤ ε ωi, i = 0 : k

}
,

where ∆P (α, β) =
∑k
i=0 α

iβk−i∆Bi and ωi, i = 0 : k, are weights.

sin θ(〈x〉, 〈y〉) = ‖x− projyx‖2/‖x‖2, for 〈x〉, 〈y〉 lines in C2.
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1 ωi = ‖P‖∞ = max

j=0:k
{‖Bj‖2} −→ relative eigenvalue cond. number

with respect to the norm of P : κpθ((α0, β0), P ).
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Explicit expression of Stewart-Sun condition number

Theorem (Anguas, Bueno, D, LAA (2019))

Let (α0, β0) be a simple eigenvalue of P (α, β) =
∑k
i=0 α

iβk−iBi, and let y
and x be associated left and right eigenvectors of P (α, β). Then, the
Stewart-Sun eigenvalue condition number of (α0, β0) is

κθ((α0, β0), P ) =

(
k∑
i=0

|α0|i|β0|k−iωi

)
‖y‖2‖x‖2

|y∗(β0DαP (α0, β0)− α0DβP (α0, β0))x|
,

where Dz ≡ ∂
∂z denotes the partial derivative with respect to z ∈ {α, β}

Remark
The explicit expression for κθ((α0, β0), P ) does not depend on the choice of
representative of the eigenvalue (α0, β0).
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Definition of Möbius transformations

Definition

Let A =

[
a b
c d

]
∈ GL(2,C) and C[α, β]m×nk be the vector space of m× n

homogeneous matrix polynomials of degree k. Then the Möbius
transformation on C[α, β]m×nk induced by A is the map

MA : C[α, β]m×nk → C[α, β]m×nk

given by

MA

(
k∑
i=0

αiβk−iBi

)
(γ, δ) =

k∑
i=0

(aγ + bδ)i(cγ + dδ)k−iBi.

The matrix polynomial MA(P )(γ, δ), that is, the image of P (α, β) under MA, is
said to be the Möbius transform of P (α, β) under MA.
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Comments, applications, properties for Möbius transformations (I)

Standard tool in Rational Matrices since the 1950’s (McMillan).

They are often used in the theory of matrix polynomials for transforming
a polynomial with infinite eigenvalues into one without infinite
eigenvalues, which simplifies some problems.

Cayley transformations are the most important ones

A+1 =

[
1 1
−1 1

]
, A−1 =

[
1 −1
1 1

]
,

since they transform matrix polynomials with relevant structures into
matrix polynomials with other structures. Important references on this

1 Mehrmann, LAA (1996): key paper on unified treatment of
continuous and discrete time control problems.

2 Mackey, Mackey, Mehl, Mehrmann, SIMAX (2006): key paper on
linearizations and structures.

3 Their use can be traced back to classical group theory to transform
Hamiltonian into Symplectic matrices a vice versa (Weyl).

Mackey, Mackey, Mehl, Mehrmann, LAA (2015) modern, clear and
complete survey on Möbius transformations of matrix polys.
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Comments, applications, properties for Möbius transformations (II)

Cayley transformations, and some variants, have been used explicitly in
important numerical algorithms for eigenvalue problems as:

Benner, Mehrmann, Xu, Numer. Math. (1998), for computing the
eigenvalues of a sympletic pencil by transforming such pencil into a
Hamiltonian pencil.

Mehrmann, Poloni, Num. Lin. Alg. (2013), in an inverse-free disk
function method for computing certain stable/un-stable deflating
subspaces of a matrix pencil.

Mehrmann, Xu, ETNA (2015), for deflating the ±1 eigenvalues of
palindromic/anti-palindromic pencils via algorithms for deflating the
infinite eigenvalues of even/odd pencils.

.....

These and other applications are closely related to the following
property:
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The effect of Möbius transformations on eigenvalues

Theorem

Let P (α, β) ∈ C[α, β]n×nk and let A =

[
a b
c d

]
∈ GL(2,C).

If (x, (α0, β0)) is a right eigenpair of P (α, β), then (x, 〈A−1[α0, β0]T 〉) is a
right eigenpair of MA(P )(γ, δ).

Same for left eigenpairs.

Moreover, (α0, β0) is a simple eigenvalue of P (α, β) if and only if
〈A−1[α0, β0]T 〉 is a simple eigenvalue of MA(P )(γ, δ).

Remark
A much stronger result holds, since in the case of eigenvalues that are not
simple the partial multiplicities are preserved.

F. M. Dopico (U. Carlos III, Madrid) Conditioning Möbius transformations July 9, 2019 15 / 27



The effect of Möbius transformations on eigenvalues

Theorem

Let P (α, β) ∈ C[α, β]n×nk and let A =

[
a b
c d

]
∈ GL(2,C).

If (x, (α0, β0)) is a right eigenpair of P (α, β), then (x, 〈A−1[α0, β0]T 〉) is a
right eigenpair of MA(P )(γ, δ).

Same for left eigenpairs.

Moreover, (α0, β0) is a simple eigenvalue of P (α, β) if and only if
〈A−1[α0, β0]T 〉 is a simple eigenvalue of MA(P )(γ, δ).

Remark
A much stronger result holds, since in the case of eigenvalues that are not
simple the partial multiplicities are preserved.

F. M. Dopico (U. Carlos III, Madrid) Conditioning Möbius transformations July 9, 2019 15 / 27



But, this is not enough for numerical stability, because

when the numerical solution of a problem is obtained by transforming the
problem into another one,

a fundamental question is whether or not such transformation
deteriorates the conditioning of the problem and/or

the backward errors of approximate solutions,

because a significant deterioration of such quantities may lead to
unreliable solutions.

General analyses of these questions concerning Möbius transformations
were not available in the literature before our work.
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The fundamental quotients

We focus on two Stewart-Sun condition numbers

with respect to two types of perturbations of the matrix coefficients
‖∆Bi‖2 ≤ ε ωi

1 ωi = ‖P‖∞ = max
j=0:k

{‖Bj‖2} −→ relative eigenvalue cond. number

with respect to the norm of P : κpθ((α0, β0), P ).
2 ωi = ‖Bi‖2 −→ relative eigenvalue cond. number: κrθ((α0, β0), P ).

For measuring the effect of Möbius transformations on these eigenvalue
condition numbers, the following two quotients are bounded

1 Qpθ :=
κpθ(〈A−1[α0, β0]T 〉,MA(P ))

κpθ((α0, β0), P )
,

“the relative quotient with respect to the norms of MA(P ) and P ”.

2 Qrθ :=
κrθ(〈A−1[α0, β0]T 〉,MA(P ))

κrθ((α0, β0), P )
,

“the relative quotient”.
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Bounds for “the relative with respect to the norms” quotient

Theorem (Anguas, Bueno, D, Math. Comp., to appear)

Let P (α, β) ∈ C[α, β]n×nk and let A ∈ GL(2,C). Let (α0, β0) be a simple
eigenvalue of P (α, β) and let 〈A−1[α0, β0]T 〉 be the associated eigenvalue of
MA(P )(γ, δ). Let Zk := 4(k + 1)2

(
k
bk/2c

)
and cond∞(A) = ‖A‖∞‖A−1‖∞.

1 If k = 1, then
1

4 cond∞(A)
≤ Qpθ ≤ 4 cond∞(A).

2 If k ≥ 2, then

1

Zk cond∞(A)k−1
≤ Qpθ ≤ Zk cond∞(A)k−1.

Remark

Neat and universal “extremely a priori” bounds depending only on
the degree and the condition number of A.
Great result if cond∞(A) ≈ 1!!!!! (at least for moderate k).
cond∞(A) = 2 for Cayley transformations.
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Comments on the bounds for the relative w.r.t. the norms quotient (I)

1

4 cond∞(A)
≤ Qpθ ≤ 4 cond∞(A), for k = 1,

1

Zk cond∞(A)k−1
≤ Qpθ ≤ Zk cond∞(A)k−1, for k ≥ 2.

The factor Zk := 4(k + 1)2
(

k
bk/2c

)
increases very fast with k:

k Zk

2 72
3 192
4 600
5 1440
10 121968

This makes the lower and upper bounds very different from each other
for moderate values of k, even if cond∞(A) ≈ 1.

However, many numerical random experiments confirm that the factor
Zk is very pessimistic, since although Qpθ typically increases slowly with
k, it is much smaller than the corresponding upper bound.
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Comments on the bounds for the relative w.r.t. the norms quotient (II)

1

4 cond∞(A)
≤ Qpθ ≤ 4 cond∞(A), for k = 1,

1

Zk cond∞(A)k−1
≤ Qpθ ≤ Zk cond∞(A)k−1, for k ≥ 2.

These bounds reveal that the main source of potential instability, w.r.t.
the conditioning of eigenvalues, of applying a Möbius transformation to
any matrix polynomial is the possible ill-conditioning of A.

In fact for any fixed A, it is easy to construct matrix polynomials with
eigenvalues that attain the “cond-part” of the lower and upper bounds,
which are very different from each other if A is ill-conditioned.

Curiosity: random experiments with cond∞(A)� 1 behave different for
k = 1 than for k ≥ 2, since for k = 1 the effect of cond∞(A) is not
observed unless the experiment is carefully prepared.

Though not interesting in applications, if cond∞(A)� 1 much sharper
lower-upper bounds on Qpθ can be developed at the cost of involving the
eigenvalues, and the norms of the matrix coefficients of P and MA(P ).

These neat bounds do not hold in non-homogeneous formulation.
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Bounds for the relative quotient

Theorem (Anguas, Bueno, D, Math. Comp., to appear)

Let P (α, β) =
∑k
i=0 α

iβk−iBi and A ∈ GL(2,C). Let (α0, β0) be a simple
eigenvalue of P (α, β) and let 〈A−1[α0, β0]T 〉 be the corresponding eigenvalue
of MA(P )(γ, δ) =

∑k
i=0 γ

iδk−iB̃i. Let Zk := 4(k + 1)2
(

k
bk/2c

)
. Assume that

B0 6= 0, Bk 6= 0, B̃0 6= 0, and B̃k 6= 0 and define

ρ :=
max
i=0:k
{‖Bi‖2}

min{‖B0‖2, ‖Bk‖2}
, ρ̃ :=

max
i=0:k
{‖B̃i‖2}

min{‖B̃0‖2, ‖B̃k‖2}
.

1 If k = 1, then
1

4 cond∞(A) ρ̃
≤ Qrθ ≤ 4 cond∞(A) ρ.

2 If k ≥ 2, then
1

Zk cond∞(A)k−1 ρ̃
≤ Qrθ ≤ Zk cond∞(A)k−1 ρ.

Remark

Penalty w.r.t. Qpθ due to ρ ≥ 1 and ρ̃ ≥ 1, which is observed in practice.
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The scenario and comments

The scenario is: we want to compute eigenpairs of P (α, β), but, for
some reason, it is advantageous to compute eigenpairs of MA(P )(γ, δ).

A motivation for this might be that P (α, β) has a structure that we would
like to preserve in the computation for efficiency, accuracy, symmetries
of eigenvalues, ... but there are no specific algorithms available for such
structure, although there are for the structure of MA(P )(γ, δ).

Note that if (x̂, (γ̂0, δ̂0)) is a computed approximate right eigenpair of

MA(P ), and (α̂0, β̂0) := (aγ̂0 + bδ̂0, cγ̂0 + dδ̂0), where A =

[
a b
c d

]
,

then, (x̂, (α̂0, β̂0)) can be considered an approximate right eigenpair of
P (α, β).

Assuming that (x̂, (γ̂0, δ̂0)) has been computed with small backward
errors,

a natural question in this setting is whether (x̂, (α̂0, β̂0)) is also an
approximate eigenpair of P with small backward errors.

F. M. Dopico (U. Carlos III, Madrid) Conditioning Möbius transformations July 9, 2019 24 / 27



The scenario and comments

The scenario is: we want to compute eigenpairs of P (α, β), but, for
some reason, it is advantageous to compute eigenpairs of MA(P )(γ, δ).

A motivation for this might be that P (α, β) has a structure that we would
like to preserve in the computation for efficiency, accuracy, symmetries
of eigenvalues, ... but there are no specific algorithms available for such
structure, although there are for the structure of MA(P )(γ, δ).

Note that if (x̂, (γ̂0, δ̂0)) is a computed approximate right eigenpair of

MA(P ), and (α̂0, β̂0) := (aγ̂0 + bδ̂0, cγ̂0 + dδ̂0), where A =

[
a b
c d

]
,

then, (x̂, (α̂0, β̂0)) can be considered an approximate right eigenpair of
P (α, β).

Assuming that (x̂, (γ̂0, δ̂0)) has been computed with small backward
errors,

a natural question in this setting is whether (x̂, (α̂0, β̂0)) is also an
approximate eigenpair of P with small backward errors.

F. M. Dopico (U. Carlos III, Madrid) Conditioning Möbius transformations July 9, 2019 24 / 27



The scenario and comments

The scenario is: we want to compute eigenpairs of P (α, β), but, for
some reason, it is advantageous to compute eigenpairs of MA(P )(γ, δ).

A motivation for this might be that P (α, β) has a structure that we would
like to preserve in the computation for efficiency, accuracy, symmetries
of eigenvalues, ... but there are no specific algorithms available for such
structure, although there are for the structure of MA(P )(γ, δ).

Note that if (x̂, (γ̂0, δ̂0)) is a computed approximate right eigenpair of

MA(P ), and (α̂0, β̂0) := (aγ̂0 + bδ̂0, cγ̂0 + dδ̂0), where A =

[
a b
c d

]
,

then, (x̂, (α̂0, β̂0)) can be considered an approximate right eigenpair of
P (α, β).

Assuming that (x̂, (γ̂0, δ̂0)) has been computed with small backward
errors,

a natural question in this setting is whether (x̂, (α̂0, β̂0)) is also an
approximate eigenpair of P with small backward errors.

F. M. Dopico (U. Carlos III, Madrid) Conditioning Möbius transformations July 9, 2019 24 / 27



The scenario and comments

The scenario is: we want to compute eigenpairs of P (α, β), but, for
some reason, it is advantageous to compute eigenpairs of MA(P )(γ, δ).

A motivation for this might be that P (α, β) has a structure that we would
like to preserve in the computation for efficiency, accuracy, symmetries
of eigenvalues, ... but there are no specific algorithms available for such
structure, although there are for the structure of MA(P )(γ, δ).

Note that if (x̂, (γ̂0, δ̂0)) is a computed approximate right eigenpair of

MA(P ), and (α̂0, β̂0) := (aγ̂0 + bδ̂0, cγ̂0 + dδ̂0), where A =

[
a b
c d

]
,

then, (x̂, (α̂0, β̂0)) can be considered an approximate right eigenpair of
P (α, β).

Assuming that (x̂, (γ̂0, δ̂0)) has been computed with small backward
errors,

a natural question in this setting is whether (x̂, (α̂0, β̂0)) is also an
approximate eigenpair of P with small backward errors.

F. M. Dopico (U. Carlos III, Madrid) Conditioning Möbius transformations July 9, 2019 24 / 27



The scenario and comments

The scenario is: we want to compute eigenpairs of P (α, β), but, for
some reason, it is advantageous to compute eigenpairs of MA(P )(γ, δ).

A motivation for this might be that P (α, β) has a structure that we would
like to preserve in the computation for efficiency, accuracy, symmetries
of eigenvalues, ... but there are no specific algorithms available for such
structure, although there are for the structure of MA(P )(γ, δ).

Note that if (x̂, (γ̂0, δ̂0)) is a computed approximate right eigenpair of

MA(P ), and (α̂0, β̂0) := (aγ̂0 + bδ̂0, cγ̂0 + dδ̂0), where A =

[
a b
c d

]
,

then, (x̂, (α̂0, β̂0)) can be considered an approximate right eigenpair of
P (α, β).

Assuming that (x̂, (γ̂0, δ̂0)) has been computed with small backward
errors,

a natural question in this setting is whether (x̂, (α̂0, β̂0)) is also an
approximate eigenpair of P with small backward errors.

F. M. Dopico (U. Carlos III, Madrid) Conditioning Möbius transformations July 9, 2019 24 / 27



The scenario and comments

The scenario is: we want to compute eigenpairs of P (α, β), but, for
some reason, it is advantageous to compute eigenpairs of MA(P )(γ, δ).

A motivation for this might be that P (α, β) has a structure that we would
like to preserve in the computation for efficiency, accuracy, symmetries
of eigenvalues, ... but there are no specific algorithms available for such
structure, although there are for the structure of MA(P )(γ, δ).

Note that if (x̂, (γ̂0, δ̂0)) is a computed approximate right eigenpair of

MA(P ), and (α̂0, β̂0) := (aγ̂0 + bδ̂0, cγ̂0 + dδ̂0), where A =

[
a b
c d

]
,

then, (x̂, (α̂0, β̂0)) can be considered an approximate right eigenpair of
P (α, β).

Assuming that (x̂, (γ̂0, δ̂0)) has been computed with small backward
errors,

a natural question in this setting is whether (x̂, (α̂0, β̂0)) is also an
approximate eigenpair of P with small backward errors.

F. M. Dopico (U. Carlos III, Madrid) Conditioning Möbius transformations July 9, 2019 24 / 27



Main results on backward errors

This would happen if the quotient

Qη,right :=
ηP (x̂, (α̂0, β̂0))

ηMA(P )(x̂, (γ̂0, δ̂0))

is a moderate number not much larger than one,

where the backward error of (x̂, (α̂0, β̂0)) w.r.t. P (α, β) =
∑k
i=0 α

iβk−iBi
is

ηP (x̂, (α̂0, β̂0)) := min{ε : (P (α̂0, β̂0)+∆P (α̂0, β̂0))x̂ = 0, ‖∆Bi‖2 ≤ ε ωi, i = 0 : k},

with ∆P (α, β) =
∑k

i=0 α
iβk−i∆Bi.

Bounds analogous to those of the quotients of condition numbers
hold for the two classes of weights ωi that we have considered.

The same holds for left eigenpairs.

No difference with the non-homogeneous formulation, in contrast
with the comparison of condition numbers.
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Conclusions

For perturbations of each coefficient small w.r.t. the norm of the whole
homogeneous matrix polynomial:

1 Möbius transformations induced by well-conditioned matrices A do
not change significatively the eigenvalue condition numbers and
backward errors of any eigenvalue of any matrix polynomial.

2 This is completely rigorous for matrix polynomials with low degree,
3 but also happens in practice for larger degrees.

For perturbations of each coefficient small w.r.t. the norm of each
coefficient:

1 There are penalty factors depending on the unbalance of the norms
of the coefficients of the matrix polynomial or of its Möbius
transform.

The results on condition numbers do NOT hold for the standard
non-homogeneous formulation.
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2 This is completely rigorous for matrix polynomials with low degree,
3 but also happens in practice for larger degrees.
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