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Different classes of regular matrix eigenvalue problems (I)

The basic eigenvalue problem (BEP). Given A ∈ Cn×n, compute scalars λ
(eigenvalues) and nonzero vectors v ∈ Cn (eigenvectors) such that

Av = λv ⇐⇒ (λIn −A) v = 0

It arises in many applications. For instance, if one looks for solutions of
the form y(t) = eλtv in the system of first order ODEs

dy(t)

dt
= Ay(t) =⇒ λv = Av

There are stable algorithms for its numerical solution.

QR algorithm (Francis-Kublanovskaya 1961) for small to medium size
dense matrices.

Arnoldi method (1951) equipped with automatic implicit re-starting
techniques (Sorensen 1992, Stewart 2002) for large-scale problems and
sparse matrices.

Easy to use software. For instance MATLAB’s commands eig(A) or
eigs(A).
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Different classes of regular matrix eigenvalue problems (II)

The GENERALIZED eigenvalue problem (GEP). Given A,B ∈ Cn×n,
compute scalars λ (eigenvalues) and nonzero vectors v ∈ Cn (eigenvectors)
such that

Av = λBv ⇐⇒ (λB −A) v = 0 ,

under the regularity assumption det(zB −A) is not zero for all z ∈ C.

It arises in many applications. For instance, if one looks for solutions
y(t) = eλtv in the system of first order ALGEBRAIC-ODEs

B
dy(t)

dt
= Ay(t) =⇒ λBv = Av

There are stable algorithms for its numerical solution.

QZ algorithm (Moler-Stewart 1973) for small to medium size dense
matrices.

Different (rational) Krylov methods (Ruhe, 1984-1998) for large-scale
problems and sparse matrices, equipped with implicit re-starting.

Easy to use software. For instance MATLAB’s commands eig(A,B) or
eigs(A,B).

F. M. Dopico (U. Carlos III, Madrid) Beyond matrix eigenvalues January 30, 2020 4 / 58



Different classes of regular matrix eigenvalue problems (II)

The GENERALIZED eigenvalue problem (GEP). Given A,B ∈ Cn×n,
compute scalars λ (eigenvalues) and nonzero vectors v ∈ Cn (eigenvectors)
such that

Av = λBv ⇐⇒ (λB −A) v = 0 ,

under the regularity assumption det(zB −A) is not zero for all z ∈ C.

It arises in many applications. For instance, if one looks for solutions
y(t) = eλtv in the system of first order ALGEBRAIC-ODEs

B
dy(t)

dt
= Ay(t) =⇒ λBv = Av

There are stable algorithms for its numerical solution.

QZ algorithm (Moler-Stewart 1973) for small to medium size dense
matrices.

Different (rational) Krylov methods (Ruhe, 1984-1998) for large-scale
problems and sparse matrices, equipped with implicit re-starting.

Easy to use software. For instance MATLAB’s commands eig(A,B) or
eigs(A,B).

F. M. Dopico (U. Carlos III, Madrid) Beyond matrix eigenvalues January 30, 2020 4 / 58



Different classes of regular matrix eigenvalue problems (II)

The GENERALIZED eigenvalue problem (GEP). Given A,B ∈ Cn×n,
compute scalars λ (eigenvalues) and nonzero vectors v ∈ Cn (eigenvectors)
such that

Av = λBv ⇐⇒ (λB −A) v = 0 ,

under the regularity assumption det(zB −A) is not zero for all z ∈ C.

It arises in many applications. For instance, if one looks for solutions
y(t) = eλtv in the system of first order ALGEBRAIC-ODEs

B
dy(t)

dt
= Ay(t) =⇒ λBv = Av

There are stable algorithms for its numerical solution.

QZ algorithm (Moler-Stewart 1973) for small to medium size dense
matrices.

Different (rational) Krylov methods (Ruhe, 1984-1998) for large-scale
problems and sparse matrices, equipped with implicit re-starting.

Easy to use software. For instance MATLAB’s commands eig(A,B) or
eigs(A,B).

F. M. Dopico (U. Carlos III, Madrid) Beyond matrix eigenvalues January 30, 2020 4 / 58



Different classes of regular matrix eigenvalue problems (II)

The GENERALIZED eigenvalue problem (GEP). Given A,B ∈ Cn×n,
compute scalars λ (eigenvalues) and nonzero vectors v ∈ Cn (eigenvectors)
such that

Av = λBv ⇐⇒ (λB −A) v = 0 ,

under the regularity assumption det(zB −A) is not zero for all z ∈ C.

It arises in many applications. For instance, if one looks for solutions
y(t) = eλtv in the system of first order ALGEBRAIC-ODEs

B
dy(t)

dt
= Ay(t) =⇒ λBv = Av

There are stable algorithms for its numerical solution.

QZ algorithm (Moler-Stewart 1973) for small to medium size dense
matrices.

Different (rational) Krylov methods (Ruhe, 1984-1998) for large-scale
problems and sparse matrices, equipped with implicit re-starting.

Easy to use software. For instance MATLAB’s commands eig(A,B) or
eigs(A,B).

F. M. Dopico (U. Carlos III, Madrid) Beyond matrix eigenvalues January 30, 2020 4 / 58



Different classes of regular matrix eigenvalue problems (II)

The GENERALIZED eigenvalue problem (GEP). Given A,B ∈ Cn×n,
compute scalars λ (eigenvalues) and nonzero vectors v ∈ Cn (eigenvectors)
such that

Av = λBv ⇐⇒ (λB −A) v = 0 ,

under the regularity assumption det(zB −A) is not zero for all z ∈ C.

It arises in many applications. For instance, if one looks for solutions
y(t) = eλtv in the system of first order ALGEBRAIC-ODEs

B
dy(t)

dt
= Ay(t) =⇒ λBv = Av

There are stable algorithms for its numerical solution.

QZ algorithm (Moler-Stewart 1973) for small to medium size dense
matrices.

Different (rational) Krylov methods (Ruhe, 1984-1998) for large-scale
problems and sparse matrices, equipped with implicit re-starting.

Easy to use software. For instance MATLAB’s commands eig(A,B) or
eigs(A,B).

F. M. Dopico (U. Carlos III, Madrid) Beyond matrix eigenvalues January 30, 2020 4 / 58



Different classes of regular matrix eigenvalue problems (II)

The GENERALIZED eigenvalue problem (GEP). Given A,B ∈ Cn×n,
compute scalars λ (eigenvalues) and nonzero vectors v ∈ Cn (eigenvectors)
such that

Av = λBv ⇐⇒ (λB −A) v = 0 ,

under the regularity assumption det(zB −A) is not zero for all z ∈ C.

It arises in many applications. For instance, if one looks for solutions
y(t) = eλtv in the system of first order ALGEBRAIC-ODEs

B
dy(t)

dt
= Ay(t) =⇒ λBv = Av

There are stable algorithms for its numerical solution.

QZ algorithm (Moler-Stewart 1973) for small to medium size dense
matrices.

Different (rational) Krylov methods (Ruhe, 1984-1998) for large-scale
problems and sparse matrices, equipped with implicit re-starting.

Easy to use software. For instance MATLAB’s commands eig(A,B) or
eigs(A,B).

F. M. Dopico (U. Carlos III, Madrid) Beyond matrix eigenvalues January 30, 2020 4 / 58



Different classes of regular matrix eigenvalue problems (III)

The POLYNOMIAL eigenvalue problem (PEP). Given P0, . . . , Pd ∈ Cn×n,
compute scalars λ (eigenvalues) and nonzero vectors v ∈ Cn (eigenvectors)
such that

(Pdλ
d + · · ·+ P1λ+ P0)v = 0 ,

under the regularity assumption det(Pdz
d + · · ·+ P1z + P0) 6≡ 0.

It arises in many applications. For instance, if one looks for solutions
y(t) = eλtv in the system of dth order ALGEBRAIC-ODEs

Pd
ddy(t)

dtd
+ · · ·+ P1

dy(t)

dt
+ P0y(t) = 0 =⇒ (Pdλ

d + · · ·+ P1λ+ P0)v = 0

There are stable (? debatable) algorithms for its numerical solution.

Easy to use software for small to medium size dense matrices:
MATLAB’s commands polyeig(P0,P1,...,Pd) (Van Dooren, 1979).

Different specific-structured Krylov methods for large-scale problems
and sparse matrix coefficients (Su-Bai-Lu, 2008, 2016),
(Kressner-Roman, 2014), (Van Beeumen-Meerbergen-Michiels, 2015).
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Intrinsic differences between GEPs and PEPs of degree larger than 1

It is important to emphasize that the theories of GEPs and PEPs are very
different:

The complete eigenstructure of the linear matrix polynomial λA−B is
revealed (even in the singular case) by the Kronecker canonical form
(1890) obtained by multiplications by constant invertible matrices:

λA−B −→ U(λA−B)V = λUAV − UBV .

In addition, the complete eigenstructure can be determined by using
unitary matrices via the staircase form (Van Dooren, 1979).

The use of constant matrices on a polynomial matrix of degree larger
than one is not sufficient for reveling its complete eigenstructure,

unless we transform the problem into a larger one,

and an analog of the Kronecker canonical form does not exist for
polynomial matrices of degree larger than one.
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Different classes of regular matrix eigenvalue problems (IV)

The RATIONAL eigenvalue problem (REP). Given a rational matrix

G(z) ∈ C(z)n×n,

i.e., such that G(z)ij is a scalar rational function of z ∈ C, for 1 ≤ i, j ≤ n,
compute scalars λ (eigenvalues) and nonzero vectors v ∈ Cn (eigenvectors)
such that λ is not a pole of any G(z)ij and

G(λ)v = 0 ,

under the regularity assumption det(G(z)) 6≡ 0.

It arises in applications either directly (multivariable system theory and
control theory) or as an approximation.

There are algorithms for its numerical solution (stability analysis open).

For small to medium size dense matrices via linearizations (Van Dooren,
1979-1981 - Su-Bai, 2011).

For large-scale problems and sparse matrix coefficients (Van
Beeumen-Meerbergen-Michiels, 2015), (D & González-Pizarro, 2018).
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Different classes of regular matrix eigenvalue problems (IV)
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Different classes of regular matrix eigenvalue problems (V)

The NONLINEAR eigenvalue problem (NEP). Given a non-empty open set
Ω ⊆ C and a holomorphic matrix-valued function

F : Ω → Cn×n
z 7→ F (z),

compute scalars λ ∈ Ω (eigenvalues) and nonzero vectors v ∈ Cn
(eigenvectors) such that

F (λ)v = 0 ,

under the regularity assumption det(F (z)) 6≡ 0.

It arises in applications. For instance, if one looks for solutions
y(t) = eλtv in the system of first order DELAYED differential equations

dy(t)

dt
+Ay(t) +By(t− 1) = 0 =⇒ (λIn +A+Be−λ)v = 0
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Different classes of regular matrix eigenvalue problems (V) (continued)

F : Ω → Cn×n
z 7→ F (z)

F (λ)v = 0

There are different algorithms for the numerical solution of NEP.

One of the most important family of algorithms is based on the following
two step strategy

1 Approximate F (z) by a rational matrix G(z) with poles outside Ω.
2 Solve the REP associated to G(z).

There is software available for NEPs developed by the authors of some
key papers that follow the previous strategy:

1 NLEIGS (Güttel, Van Beeumen, Meerbergen, Michiels, 2014) (not
easy to use),

2 Automatic Rational Approximation and Linearization of NEPs
(Lietaert, Pérez, Vandereycken, Meerbergen, 2018) (the authors
claim that is easy to use and good).
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1st KEY IDEA on MATRIX eigenvalue problems

1 BEP: (λIn −A) v = 0

2 GEP: (λB −A) v = 0

3 PEP: (Pdλ
d + · · ·+ P1λ+ P0)v = 0

4 REP: G(λ)v = 0

5 NEP: F (λ)v = 0

1st KEY IDEA: ALL THESE PROBLEMS CAN BE SOLVED BY
TRANSFORMING THE PROBLEM INTO A (much) LARGER GEP→
LINEARIZATION.

For PEPs and REPs, this transformation is mathematically exact!!!!!.

For NEPs, this transformation requires to approximate the NEP by a
REP.

The use of linearizations is (probably) the MOST RELIABLE approach
to solve numerically these problems.
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2nd KEY IDEA on MATRIX eigenvalue problems

1 BEP: (λIn −A) v = 0

2 GEP: (λB −A) v = 0

3 PEP: (Pdλ
d + · · ·+ P1λ+ P0)v = 0

4 REP: G(λ)v = 0

5 NEP: F (λ)v = 0

2nd KEY IDEA: usual methods for transforming a PEP or a REP into a
(much) larger GEP, produce highly structured GEPs.

These structures must be used, in particular in large-scale problems,
for developing efficient algorithms for PEPs or REPs.

This leads us to the realm of Structured Numerical Linear Algebra.
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3rd KEY IDEA on MATRIX eigenvalue problems

1 BEP: (λIn −A) v = 0

2 GEP: (λB −A) v = 0

3 PEP: (Pdλ
d + · · ·+ P1λ+ P0)v = 0

4 REP: G(λ)v = 0

5 NEP: F (λ)v = 0

3rd KEY IDEA: BEPs, GEPs, PEPs are uniquely defined by the matrix
coefficients and the polynomial basis that is used.

REPs can be represented in different ways.
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Outline

1 The “flavor” of applied PEPs, REPs, NEPs: examples

2 Additional “difficulties” of GEPs, PEPs, and REPs over BEPs

3 Linearizations of matrix polynomials

4 Rational vector spaces: minimal bases and indices

5 Unifying theory of linearizations of polynomial matrices

6 Global backward stability of PEPs solved with linearizations

7 Conclusions
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4th KEY IDEA: current applications often lead to very short “split forms”

Every matrix F (z) defining an n× n PEP, REP or NEP can be written in
“split form” with at most n2 terms, i.e.,

F (z) = f1(z)C1 + f2(z)C2 + · · ·+ f`(z)C`,

where fi : C→ C, Ci ∈ Cn×n, and ` ≤ n2.

This result is, of course, a triviality,[
ez z2 + 1
1
z+1

sin(z)

]
= ez

[
1 0
0 0

]
+(z2+1)

[
0 1
0 0

]
+

1

z + 1

[
0 0
1 0

]
+sin(z)

[
0 0
0 1

]

The 4th KEY IDEA is that in most applications `� n,

this is not important in theoretical developments, but yes in the
development of algorithms and in the practical approximation of NEPs by
REPs or PEPs.

Our scenario is large matrices Ci and very few scalar functions fi(z).
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How large is the degree of P (z) = Pdz
d + · · ·+ P1z + P0 in practical PEPs?

In most direct applications coming from vibrational problems in
mechanics d = 2: the quadratic eigenvalue problem (QEP)

(z2M + zC +K)v = 0,

while M,C,K ∈ Cn×n with n = 102,103,104,105,106, ....

Betcke, Higham, Mehrmann, Schröder, Tisseur,“NLEVP: A Collection of
Nonlinear Eigenvalue Problems”, (2013) reports on applications with

d = 4: Hamiltonian control problems, homography-based method for
calibrating a central cadioptric vision system, spatial stability analysis of the
Orr-Sommerfeld equation, and finite element solution of the equation for
the modes of a planar waveguide using piecewise linear basis functions.
d = 3: modeling of drift instabilities in the plasma edge inside a Tokamak
reactor, and the five point relative pose problem in computer vision.

PEPs used to approximate other NEPs. Then d can be much larger.
Kressner and Roman (2014) report on d = 30,n = 10000.
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A few examples of “direct” applied REPs

Change of notation z → λ

Loaded elastic string (Betcke et al., NLEVP-collection, (2013)):

G(λ) = (A+ E)− λB +
σ

λ− σ
E.

Only 3 functions (terms) in split form, A,B,E ∈ Rn×n. n ≥ 102 large.

Damped vibration of a viscoelastic structure (Mehrmann & Voss, (2004)):

G(λ) = λ2M +K −
k∑
i=1

1

1 + biλ
∆Gi.

Only k + 2 functions in split form, M,K positive definite, n = 10704 large,
k ≈ 10.
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Only k + 2 functions in split form, M,K positive definite, n = 10704 large,
k ≈ 10.
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An example of “approximating” applied REPs

NLEIGS-REPs coming from linear rational interpolation of NEPs (Güttel,
Van Beeumen, Meerbergen, Michiels (2014)):

QN (λ) = b0(λ)D0 + b1(λ)D1 + · · ·+ bN (λ)DN ,

with Dj ∈ Cn×n,

b0(λ) =
1

β0
, bj(λ) =

1

β0

j∏
k=1

λ− σk−1
βk(1− λ/ξk)

,

j = 1, . . . , N, rational scalar functions, with the “poles” ξi different from
zero and all distinct from the nodes σj . N ≤ 140, n = 16281.
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“Approximating” REPs have been used to approximate...

among many others, the following NEPs:

The radio-frequency gun cavity problem:[
(K − λM) + i

√
λ− σ2

1 W1 + i
√
λ− σ2

2 W2

]
v = 0,

where M,K,W1,W2 are real sparse symmetric 9956× 9956 matrices
(only 4 scalar functions involved in split form).

Bound states in semiconductor devices problems:(H − λI) +

80∑
j=0

ei
√
λ−αj Sj

 v = 0,

where H,Sj ∈ R16281×16281, H symmetric and the matrices Sj have low
rank (only 83 scalar functions involved in split form).

....
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1 The “flavor” of applied PEPs, REPs, NEPs: examples

2 Additional “difficulties” of GEPs, PEPs, and REPs over BEPs

3 Linearizations of matrix polynomials

4 Rational vector spaces: minimal bases and indices

5 Unifying theory of linearizations of polynomial matrices

6 Global backward stability of PEPs solved with linearizations

7 Conclusions
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GEPs-PEPs-REPs have more spectral “structural” data than BEPs

1 BEP: (λIn −A) v = 0

2 GEP: (λB −A) v = 0

3 PEP: (Pdλ
d + · · ·+ P1λ+ P0)v = 0

4 REP: G(λ)v = 0

So far, we have only considered finite eigenvalues, but

regular GEPs, PEPs, REPs may have also infinite eigenvalues.

GEPs, PEPs, REPs may be singular (BEPs are always regular) and to
have, in addition to eigenvalues, minimal indices.

REPs have poles.

We have to compute more “structural data”. These problems are more
difficult than BEPs.

We illustrate informally some of these concepts on matrix polynomials...
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Example: Infinite eigenvalues in regular PEPs

Let ε be a small parameter and consider the quadratic matrix polynomial

P (λ) =

[
(λ− 1)(λ− 2) 0

0 λ(ελ− 1)

]
= λ2

[
1 0
0 ε

]
+ λ

[
−3 0
0 −1

]
+

[
2 0
0 0

]
.

If ε 6= 0, then the eigenvalues are {1, 2, 0, 1/ε} , (very large if |ε| � 1).

If ε = 0, then the eigenvalues are {1, 2, 0,∞} .

Remarks:

Infinite eigenvalues are related to the presence of algebraic
constraints in ALGEBRAIC-ODES, i.e., singularity or rank deficiency of
the highest degree matrix coefficient.

Why the name infinite eigenvalues? A possible reason is that if a
polynomial with infinite eigenvalues, i.e., with Pd singular, is perturbed a
bit, then eigenvalues with very large absolute values often appears.
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Singular PEPs (I)

An additional step of difficulty is that PEPs can be singular, which
happens when

P (λ) = Pdλ
d + · · ·+ P1λ+ P0

is either rectangular or square with detP (λ) ≡ 0, i.e., zero for all λ.

Singular PEPs also appear in applications, in particular in
Multivariable System Theory and Control Theory.
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Singular PEPs (II)

In addition to finite and infinite eigenvalues, singular matrix
polynomials have other “interesting numbers” attached to them called
minimal indices.

Recall that eigenvalues are related to the existence of nontrivial null
spaces. For instance, Nr(λ0In −A) 6= {0} in BEPs.

Minimal indices are related to the fact that a singular m× n matrix
polynomial P (λ) has non-trivial left and/or right null-spaces over the field
C(λ) of rational functions:

N`(P ) :=
{
y(λ)T ∈ F(λ)1×m : y(λ)TP (λ) ≡ 0T

}
,

Nr(P ) :=
{
x(λ) ∈ F(λ)n×1 : P (λ)x(λ) ≡ 0

}
.
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Example about the complete eigenstructure of matrix polynomials (1)

Example:

P (λ) =


λ −λ4 0 0 0 0
0 0 1 −λ 0 0
0 0 0 1 −λ 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 λ2

 ∈ C[λ]6×6, degP (λ) = 4 .

rankC(λ)P (λ) = 4 (detP (λ) ≡ 0).

rankCP (0) = 3 =⇒ λ = 0 is an eigenvalue (partial multiplicities 0, 0, 0, 1).

rankCP4 = 1 =⇒ λ =∞ is an eigenvalue (partial multiplicities 0, 2, 3, 3).
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Example about the complete eigenstructure of matrix polynomials (2)

P (λ) =


λ −λ4 0 0 0 0
0 0 1 −λ 0 0
0 0 0 1 −λ 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 λ2

 ∈ C[λ]6×6, degP (λ) = 4 .

Bases of right and left rational null spaces of P (λ):

Bright = {


λ3

1
0
0
0
0

 ,


0
0
λ2

λ
1
0

} and Bleft = {


0
0
0
0
λ2

−1

 ,


0
0
0
1
−1

0

}

There are many other polynomial bases but each of these ones have
minimal sum of the degrees of its vectors.

Thus, right minimal indices of P (λ) are {3, 2} and left minimal
indices of P (λ) are {2, 0}.
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Definition: strong linearizations of polynomial matrices

As said before, the most reliable methods for solving numerically PEPs are
based on the concept of linearization.

Definition

A linear polynomial matrix (or matrix pencil) L(λ) is a linearization
of P (λ) = Pd λ

d + · · ·+ P1λ+ P0 if there exist unimodular polynomial
matrices U(λ), V (λ) such that

U(λ)L(λ)V (λ) =

[
Is 0
0 P (λ)

]
.

L(λ) is a strong linearization of P (λ) if, in addition, λL(1/λ) is a
linearization for λdP (1/λ).
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Spectral characterization of linearizations of polynomial matrices

Theorem
A matrix pencil L(λ) is a linearization of a polynomial matrix P (λ) if and
only if

(1) L(λ) and P (λ) have the same number of right minimal indices.

(2) L(λ) and P (λ) have the same number of left minimal indices.

(3) L(λ) and P (λ) have the same finite eigenvalues with the same partial
multiplicities.

L(λ) is a strong linearization of P (λ) if and only if (1), (2), (3) and

(4) L(λ) and P (λ) have the same infinite eigenvalues with the same
partial multiplicities.
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The most famous strong linearization (I)

The classical Frobenius companion form of the m× n matrix polynomial

P (λ) = Pdλ
d + · · ·+ P1λ+ P0

is

C1(λ) :=



λPd + Pd−1 Pd−2 · · · P1 P0

−In λIn
. . .

. . .

. . . λIn
−In λIn

 ∈ C[λ](m+n(d−1))×nd

Additional property of C1(λ): Example of strong linearization whose
right (resp. left) minimal indices allow us to recover the ones of the
polynomial via addition of a constant.
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The most famous strong linearization (II)

Theorem (recovery of eigenvectors from C1(λ))

Let P (λ) = Pdλ
d + · · ·+ P1λ+ P0 be a regular matrix polynomial, λ0 ∈ C be

a finite eigenvalue of P (λ), and C1(λ) be the Frobenius companion form of
P (λ). Then, any eigenvector v of C1(λ) associated to λ0 has the form

v =


λd−10 x
...

λ0 x
x


with x an eigenvector of P (λ) associated to λ0.

C1(λ) is one (among many others) strong linearization of P (λ) that
allows us to recover without computational cost the eigenvectors of the
polynomial from those of the linearization.
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There are many other strong linearizations of PEPs (I)

Since 2006 (Mackey, Mackey, Mehl, Mehrmann), many “new” strong
linearizations of matrix polynomials have been developed by many
authors all around the world

which also allow us to recover minimal indices and eigenvectors of PEPs
without any computational cost. Explosion of new linearizations.

One relevant motivation for developing new classes of linearizations is to
preserve structures appearing in applications, which is important for
saving operations in algorithms and for preserving properties of the
eigenvalues in floating point arithmetic.

For instance, if P (λ) = Pdλ
d + · · ·+ P1λ+ P0 is Hermitian, i.e., it has

Hermitian coefficients, the Frobenius companion form is not!!

C1(λ) :=



λPd + Pd−1 Pd−2 · · · P1 P0

−In λIn
. . .

. . .

. . . λIn
−In λIn
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There are many other strong linearizations of PEPs (II)

but

L̃(λ) =



λP1 + P0 λIn 0
λIn 0 In

In λP3 + P2 λIn
λIn 0 In

In λP5 + P4 λIn
λIn 0 In

0 In λP7 + P6


,

is a Hermitian strong linearization of the n× n Hermitian matrix
polynomial P (λ) = P7λ

7 + · · ·+ P1λ+ P0 (Antoniou-Vologiannidis 2004;
De Terán-D-Mackey 2010; Mackey-Mackey-Mehl-Mehrmann 2010).
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Linearizations transform PEPs into GEPs (P (λ) −→ λB −A)

“Good” strong linearizations of a matrix polynomial P (λ) are linear
matrix polynomials (matrix pencils) that have the same eigenvalues as
P (λ) and that allow us to recover the eigenvectors when P (λ) is regular,
and the minimal indices/bases when P (λ) is singular.

They allow to solve numerically PEPs because there exist excellent
algorithms for solving linear PEPs, i.e., GEPs.

The fundamental proposed approach

“linearization + linear eigenvalue algorithm on the linearization”

for solving numerically PEPs can be traced back at least to
Van Dooren-De Wilde (1983) and Van Dooren’s PhD Thesis (1979).

F. M. Dopico (U. Carlos III, Madrid) Beyond matrix eigenvalues January 30, 2020 34 / 58



Linearizations transform PEPs into GEPs (P (λ) −→ λB −A)

“Good” strong linearizations of a matrix polynomial P (λ) are linear
matrix polynomials (matrix pencils) that have the same eigenvalues as
P (λ) and that allow us to recover the eigenvectors when P (λ) is regular,
and the minimal indices/bases when P (λ) is singular.

They allow to solve numerically PEPs because there exist excellent
algorithms for solving linear PEPs, i.e., GEPs.

The fundamental proposed approach

“linearization + linear eigenvalue algorithm on the linearization”

for solving numerically PEPs can be traced back at least to
Van Dooren-De Wilde (1983) and Van Dooren’s PhD Thesis (1979).

F. M. Dopico (U. Carlos III, Madrid) Beyond matrix eigenvalues January 30, 2020 34 / 58



Linearizations transform PEPs into GEPs (P (λ) −→ λB −A)

“Good” strong linearizations of a matrix polynomial P (λ) are linear
matrix polynomials (matrix pencils) that have the same eigenvalues as
P (λ) and that allow us to recover the eigenvectors when P (λ) is regular,
and the minimal indices/bases when P (λ) is singular.

They allow to solve numerically PEPs because there exist excellent
algorithms for solving linear PEPs, i.e., GEPs.

The fundamental proposed approach

“linearization + linear eigenvalue algorithm on the linearization”

for solving numerically PEPs can be traced back at least to
Van Dooren-De Wilde (1983) and Van Dooren’s PhD Thesis (1979).

F. M. Dopico (U. Carlos III, Madrid) Beyond matrix eigenvalues January 30, 2020 34 / 58



Outline

1 The “flavor” of applied PEPs, REPs, NEPs: examples

2 Additional “difficulties” of GEPs, PEPs, and REPs over BEPs

3 Linearizations of matrix polynomials

4 Rational vector spaces: minimal bases and indices

5 Unifying theory of linearizations of polynomial matrices

6 Global backward stability of PEPs solved with linearizations

7 Conclusions
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Rational vector spaces and subspaces

In this section:

C[λ] is the ring of polynomials with coefficients in C.

C(λ) is the field of rational functions over C.

C(λ)n is the vector space over the field C(λ) of n-tuples with entries in
C(λ).

Example: 
λ+ 2

λ2

1

(λ+ 1)3

 ∈ C(λ)2

C(λ)n is known as a rational vector space and its subspaces as
rational vector subspaces. (Wolovich-1974, Forney-1975)
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Minimal bases of rational vector subspaces

Any rational subspace V ⊆ C(λ)n has bases consisting entirely of vector
polynomials.
Example:

λ+ 2

λ2

1

(λ+ 1)3

 ∈ V =⇒ λ2 (λ+ 1)3


λ+ 2

λ2

1

(λ+ 1)3

 =

 (λ+ 2)(λ+ 1)3

λ2

 ∈ V

Definition (Minimal basis)

A minimal basis of a rational subspace V ⊆ C(λ)n is a basis of V
1 consisting of vector polynomials

2 whose sum of degrees is minimal among all bases of V consisting of
vector polynomials.

Introduced by Dedekind and Weber-1882, Plemelj-1908, Muskhelishvili
and Vekua-1943, but Forney-1975 simplified this concept and made
it very important in Multivariable Linear System Theory and in Code
Theory.
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Minimal indices of rational vector subspaces

There are infinitely many minimal bases of a rational subspace V ⊆ C(λ)n ,
but...

Theorem (Forney, 1975...probably known before)

The ordered list of degrees of the vector polynomials in any minimal basis of
V ⊆ C(λ)n is always the same.

Definition
These degrees are called the minimal indices of V ⊆ C(λ)n.
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Connection to minimal indices/bases of matrix polynomials

Definition

Let P (λ) ∈ C[λ]m×n be a matrix polynomial. Then:

The right minimal indices/bases of P (λ) are the minimal
indices/bases of the rational right NULL space of P (λ), when it is
nontrivial

The left minimal indices/bases of P (λ) are the minimal indices/bases
of the rational left NULL space of P (λ), when it is nontrivial.
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“Practical” characterization of minimal bases

REMARK: In the rest of the talk, we arrange minimal bases as the rows
of matrices and often call “basis” to the matrix.
Theorem (Forney 1975)

The rows of a polynomial matrix N(λ) over C are a minimal basis of the
subspace they span if and only if

(a) N(λ0) has full row rank for all λ0 ∈ C, and

(b) the highest-row-degree coefficient matrix of N(λ) has also full row rank.

Example (of minimal basis)

N(λ) =

[
−λ3 1 0 0 0

0 0 λ2 −λ 1

]

N(λ) satisfies (a) by the 1’s.

N(λ) satisfies (b) since its highest-row-degree coefficient matrix is[
−1 0 0 0 0

0 0 1 0 0

]
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Dual Minimal Bases

Definition (Dual Minimal Bases)

Two minimal bases M(λ) ∈ C[λ]m×n and N(λ) ∈ C[λ]k×n are dual if

(a) m+ k = n,

(b) and M(λ)N(λ)T = 0.

Remarks

Dual minimal bases have classical applications in Linear System Theory

and we have used them intensively in our research in the last
decade

1 for constructing (and unifying) strong linearizations and `-ifications
of polynomial and rational matrices,

2 for solving inverse problems for polynomial and rational matrices,
3 for performing backward error analyses of PEPs and REPs solved

by linearizations.
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Some other of our contributions on minimal bases

In Van Dooren & D (LAA, 2018) and D & Van Dooren (LAA, 2019):

We have obtained a criterion to check numerically whether a polynomial
matrix is a minimal basis in terms of a finite number of rank conditions in
contrast with Forney’s classical “practical” characterization.

We have proved that “most matrix polynomials are minimal bases” and,
moreover, that “are minimal bases with the especial property that their
dual minimal bases have row degrees as equal as possible” (almost
homogeneity of such row degrees).

More precisely: in the vector space of complex matrix polynomials of
size m× n (m < n) and with degree at most d, the minimal bases with
such particular properties form an open and dense set (its complement
is a proper algebraic set).

These properties have allowed us to prove that these minimal bases and
their duals are robust under perturbations, which has been fundamental
for proving backward error results of PEPs solved numerically through
linearizations.
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is a proper algebraic set).

These properties have allowed us to prove that these minimal bases and
their duals are robust under perturbations, which has been fundamental
for proving backward error results of PEPs solved numerically through
linearizations.
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Block minimal bases linearizations of polynomial matrices (I)
Most of the (many) linearizations of polynomial matrices in the literature are
inside (or very closely connected to) the following class of pencils.

Definition (D, Lawrence, Pérez, Van Dooren, Numer. Math., 2018)

A matrix pencil (linear polynomial matrix)

L(λ) =

[
M(λ) K2(λ)T

K1(λ) 0

]
is a block minimal bases pencil (BMBP) if K1(λ) and K2(λ) are minimal
bases. If, in addition, the row degrees of K1(λ) and K2(λ) are all one, and
the row degrees of each of their dual minimal bases N1(λ) and N2(λ) are all
equal, then L(λ) is a strong block minimal bases pencil (SBMBP).

Theorem (D, Lawrence, Pérez, Van Dooren, Numer. Math., 2018)

If L(λ) is a BMBP (resp. SBMBP), then it is a linearization (resp. strong
linearization) of the matrix polynomial

Q(λ) = N2(λ)M(λ)N1(λ)T ,

with excellent recovery properties.
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Examples of SBMBP: block-Kronecker pencils (I)

Two fundamental auxiliary matrix polynomials in the rest of the talk are
the pair of dual minimal bases

Lk(λ) :=


−1 λ

−1 λ
. . .

. . .

−1 λ

 ∈ C[λ]k×(k+1),

Λk(λ)T :=
[
λk λk−1 · · · λ 1

]
∈ C[λ]1×(k+1),

and their Kronecker products by identities

Lk(λ)⊗ In :=


−In λIn

−In λIn
. . .

. . .

−In λIn

 ∈ C[λ]nk×n(k+1),

Λk(λ)T ⊗ In :=
[
λkIn λk−1In · · · λIn In

]
∈ C[λ]n×n(k+1),

which are also dual minimal bases.
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Examples of SBMBP: block-Kronecker pencils (II)

The Frobenius companion form of the m× n matrix polynomial
P (λ) = Pdλ

d + · · ·+ P1λ+ P0 is

C1(λ) :=



λPd + Pd−1 Pd−2 · · · P1 P0

−In λIn
. . .

. . .

. . . λIn
−In λIn

 ,

and can be compactly written with the polynomials defined above as

C1(λ) :=

[
λPd + Pd−1 Pd−2 · · · P1 P0

Ld−1(λ)⊗ In

]
.
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Examples of SBMBP: block-Kronecker pencils (III)

Definition (D, Lawrence, Pérez, Van Dooren, Numer. Math., 2018)

Let M(λ) be an arbitrary pencil. Then any pencil of the form

L(λ) =

[
M(λ) Lη(λ)T ⊗ Im

Lε(λ)⊗ In 0

] }
(η+1)m

} εn︸ ︷︷ ︸
(ε+1)n

︸ ︷︷ ︸
ηm

,

is called a block Kronecker pencil (one-block row and column cases included).

Theorem (D, Lawrence, Pérez, Van Dooren, Numer. Math., 2018)

Any block Kronecker pencil L(λ) is a SBMBP and, so, a strong linearization of
the matrix polynomial

Q(λ) := (Λη(λ)T ⊗ Im)M(λ)(Λε(λ)⊗ In) ∈ C[λ]m×n .
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Examples of block Kronecker pencils (I)

P (λ) = λ5P5 + λ4P4 + λ3P3 + λ2P2 + λP1 + P0 ∈ C[λ]m×n


λP5 + P4 0 0 −Im 0

0 λP3 + P2 0 λIm −Im
0 0 λP1 + P0 0 λIm
−In λIn 0 0 0

0 −In λIn 0 0
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The Setting

We consider a general m× n polynomial matrix of degree d

P (λ) = Pdλ
d + · · ·+ P1λ+ P0 , Pi ∈ Cm×n,

and we assume that its complete eigenstructure

has been computed by applying a backward stable algorithm,
QZ for regular (Moler-Stewart, 1973), Staircase for singular (Van
Dooren, 1979),

to a strong linearization L(λ) in the wide class of block Kronecker
linearizations of P (λ).
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Backward stable algorithms on strong linearizations and question

The computed complete eigenstructure of L(λ) is the exact complete
eigenstructure of a matrix pencil L(λ) + ∆L(λ) such that

‖∆L(λ)‖F
‖L(λ)‖F

= O(u),

where u ≈ 10−16 is the unit roundoff and

‖ · ‖F is the Frobenius norm, i.e., for any matrix polynomial

‖Qkλk + · · ·+Q1λ+Q0‖F =
√
‖Qk‖2F + · · ·+ ‖Q1‖2F + ‖Q0‖2F .

But, does this imply that the computed complete eigenstructure of P (λ)
is the exact complete eigenstructure of a polynomial matrix of the same
degree P (λ) + ∆P (λ) such that

‖∆P (λ)‖F
‖P (λ)‖F

= O(u) ??
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Why is not this question obvious?

because block Kronecker linearizations are highly structured pencils
and perturbations destroy the structure!!

Example: The Frobenius Companion Form

C1(λ) :=



λPd + Pd−1 Pd−2 · · · P1 P0

−In λIn
. . .

. . .

. . . λIn
−In λIn


C1(λ) + ∆L(λ) =

λ(Pd + E11) + (Pd−1 + F11) λE12 + Pd−2 + F12 · · · λE1,d−1 + P1 + F1,d−1 · · ·
λE21 − In + F21 λ(In + E22) + F22 λE23 + F23

λE31 + F31 λE32 + F32

. . .

...
...

. . . λ(In + Ed−1,d−1) + Fd−1,d−1
λEd1 + Fd1 λEd2 + Fd2 λEd,d−1 + Fd,d−1 − In · · ·
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The matrix perturbation problems to be solved

Problem 1: To establish conditions on ‖∆L(λ)‖F such that
L(λ) + ∆L(λ) is a strong linearization for some polynomial matrix
P (λ) + ∆P (λ) of degree d.

Problem 2: To prove a perturbation bound

‖∆P (λ)‖F
‖P (λ)‖F

≤ CP,L
‖∆L(λ)‖F
‖L(λ)‖F

,

with CP,L a number depending on P (λ) and L(λ).

For those P (λ) and L(λ) s.t. CP,L is moderate, to use global backward
stable algorithms on L(λ) gives global backward stability for P (λ).
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Previous works on this type of backward error analyses

1 There were just a few previous analyses of this type when we worked on
this problem:

Van Dooren & De Wilde (LAA 1983).
Edelman & Murakami (Math. Comp. 1995).
Lawrence & Corless (SIMAX 2015).
Lawrence & Van Barel & Van Dooren (SIMAX 2016).
Noferini & Pérez (Math. Comp., 2017).

2 Our analysis improved considerably these analyses, because

3 previous analyses are only valid to first order for infinitesimal
perturbations, are very particular since are only valid for classical
Frobenius linearizations or closely connected linearizations, and often
are only valid for regular polynomial matrices.
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The main perturbation theorem

Theorem (D, Lawrence, Pérez, Van Dooren, Numer. Math., 2018)

Let L(λ) be a block Kronecker pencil for P (λ) =
∑d
i=0 Piλ

i ∈ C[λ]m×n, i.e.,

L(λ) =

[
M(λ) Lη(λ)T ⊗ Im

Lε(λ)⊗ In 0

]
.

If ∆L(λ) is any pencil with the same size as L(λ) and such that

‖∆L(λ)‖F <
(
√

2− 1)2

d5/2
1

1 + ‖M(λ)‖F
,

then L(λ) + ∆L(λ) is a strong linearization of a polynomial matrix
P (λ) + ∆P (λ) with degree d and such that

‖∆P (λ)‖F
‖P (λ)‖F

≤ 14 d5/2
‖L(λ)‖F
‖P (λ)‖F

(1 + ‖M(λ)‖F + ‖M(λ)‖2F )
‖∆L(λ)‖F
‖L(λ)‖F

.
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Discussion of the perturbation bounds for block Kronecker pencils

L(λ) =

[
M(λ) Lη(λ)T ⊗ Im

Lε(λ)⊗ In 0

]
.

‖∆P (λ)‖F
‖P (λ)‖F

≤ 14 d5/2
‖L(λ)‖F
‖P (λ)‖F

(1 + ‖M(λ)‖F + ‖M(λ)‖2F )︸ ︷︷ ︸
CP,L

‖∆L(λ)‖F
‖L(λ)‖F

.

From this bound, it is possible to show that for getting “backward
stability” from Block Kronecker linearizations, one needs to normalize
the matrix poly ‖P (λ)‖F = 1 and to use pencils such that
‖M(λ)‖F ≈ ‖P (λ)‖F . Then

‖∆P (λ)‖F
‖P (λ)‖F

. d3
√
m+ n

‖∆L(λ)‖F
‖L(λ)‖F

.

For Fiedler, Frobenius, etc linearizations ‖M(λ)‖F = ‖P (λ)‖F .
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Discussion of the perturbation bounds for block Kronecker pencils

L(λ) =

[
M(λ) Lη(λ)T ⊗ Im

Lε(λ)⊗ In 0

]
.

‖∆P (λ)‖F
‖P (λ)‖F

≤ 14 d5/2
‖L(λ)‖F
‖P (λ)‖F

(1 + ‖M(λ)‖F + ‖M(λ)‖2F )︸ ︷︷ ︸
CP,L

‖∆L(λ)‖F
‖L(λ)‖F

.

From this bound, it is possible to show that for getting “backward
stability” from Block Kronecker linearizations, one needs to normalize
the matrix poly ‖P (λ)‖F = 1 and to use pencils such that
‖M(λ)‖F ≈ ‖P (λ)‖F . Then

‖∆P (λ)‖F
‖P (λ)‖F

. d3
√
m+ n

‖∆L(λ)‖F
‖L(λ)‖F

.
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Conclusions

There are many matrix eigenvalue problems in addition to the basic one
that are attracting considerable attention.

There are still many open problems in this area.

We have developed new classes of linearizations of PEPs that unify and
extend the previous (many) ones and a theory of local and strong
linearizations of REPs.

We have performed a rather general and rigorous backward stability
analysis of PEPs solved with linearizations, but more analyses, including
PEPs represented in other bases, are necessary.

We have performed for the first time in the literature a backward stability
analysis of REPs solved with linearizations, but this is just the beginning
of these analyses.

The abstract algebraic concept of minimal bases and indices has
played a fundamental role in these developments.
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