Linearizations of matrix polynomials via Rosenbrock polynomial system matrices

Froilán M. Dopico

joint work with S. Marcaida (U. País Vasco, Spain), M.C. Quintana
(Aalto U., Finland) and P. Van Dooren (U. C. Louvain, Belgium)
Depto de Matemáticas, Universidad Carlos III de Madrid, Spain Part of "Proyecto de I+D+i PID2019-106362GB-I00 financiado por MCIN/AEI/10.13039/501100011033"

24th ILAS Conference. Minisymp on Companion Matrix Forms June 20-24, 2022. National University of Ireland, Galway
uc3m | Universidad Carlos III de Madrid

Outline

(1) Rosenbrock Polynomial System Matrices
(2) Gohberg-Lancaster-Rodman linearizations of polynomial matrices

3 Frobenius companion linearization and Rosenbrock
4. Comrade companion linearizations and Rosenbrock

5 Block Kronecker linearizations and Rosenbrock
6 Extended block Kronecker linearizations and Rosenbrock
(7) Two advantages of Rosenbrock's point on view
(8) Conclusions

Outline

(1) Rosenbrock Polynomial System Matrices

2
Gohberg-Lancaster-Rodman linearizations of polynomial matricesFrobenius companion linearization and Rosenbrock

Comrade companion Iinearizations and RosenbrockBlock Kronecker linearizations and RosenbrockExtended block Kronecker linearizations and RosenbrockTwo advantages of Rosenbrock's point on view
(8) Conclusions

Minimal polynomial system matrices of rational matrices

Definition (Rosenbrock, 1970)

Let $G(\lambda) \in \mathbb{F}(\lambda)^{p \times m}$ be a rational matrix. The polynomial matrix

$$
S(\lambda)=\left[\begin{array}{cc}
A(\lambda) & B(\lambda) \\
-C(\lambda) & D(\lambda)
\end{array}\right] \in \mathbb{F}[\lambda]^{(n+p) \times(n+m)}
$$

is a polynomial system matrix of $G(\lambda)$ if

$$
G(\lambda)=D(\lambda)+C(\lambda) A(\lambda)^{-1} B(\lambda) .
$$

If, in addition, $\left[\begin{array}{c}A(\lambda) \\ -C(\lambda)\end{array}\right]$ and $\left[\begin{array}{ll}A(\lambda) & B(\lambda)\end{array}\right]$ have respectively full column and row ranks when evaluated in any $\lambda_{0} \in \overline{\mathbb{F}}$, then $S(\lambda)$ is a minimal polynomial system matrix of $G(\lambda)$.

Theorem (Rosenbrock, 1970)

Each rational matrix has infinitely many minimal polynomial system matrices.
The position of the state matrix $A(\lambda)$ is not important: it may be anywhere, the point is to take the Schur complementswith respact to til

Minimal polynomial system matrices of rational matrices

Definition (Rosenbrock, 1970)

Let $G(\lambda) \in \mathbb{F}(\lambda)^{p \times m}$ be a rational matrix. The polynomial matrix

$$
S(\lambda)=\left[\begin{array}{cc}
A(\lambda) & B(\lambda) \\
-C(\lambda) & D(\lambda)
\end{array}\right] \in \mathbb{F}[\lambda]^{(n+p) \times(n+m)}
$$

is a polynomial system matrix of $G(\lambda)$ if

$$
G(\lambda)=D(\lambda)+C(\lambda) A(\lambda)^{-1} B(\lambda) .
$$

If, in addition, $\left[\begin{array}{c}A(\lambda) \\ -C(\lambda)\end{array}\right]$ and $\left[\begin{array}{ll}A(\lambda) & B(\lambda)\end{array}\right]$ have respectively full column and row ranks when evaluated in any $\lambda_{0} \in \overline{\mathbb{F}}$, then $S(\lambda)$ is a minimal polynomial system matrix of $G(\lambda)$.

Theorem (Rosenbrock, 1970)

Each rational matrix has infinitely many minimal polynomial system matrices.
The position of the state matrix $A(\lambda)$ is not important: it may be anywhere, the point is to take the Schur complementswith respact to it

Minimal polynomial system matrices of rational matrices

Definition (Rosenbrock, 1970)

Let $G(\lambda) \in \mathbb{F}(\lambda)^{p \times m}$ be a rational matrix. The polynomial matrix

$$
S(\lambda)=\left[\begin{array}{cc}
A(\lambda) & B(\lambda) \\
-C(\lambda) & D(\lambda)
\end{array}\right] \in \mathbb{F}[\lambda]^{(n+p) \times(n+m)}
$$

is a polynomial system matrix of $G(\lambda)$ if

$$
G(\lambda)=D(\lambda)+C(\lambda) A(\lambda)^{-1} B(\lambda)
$$

If, in addition, $\left[\begin{array}{c}A(\lambda) \\ -C(\lambda)\end{array}\right]$ and $\left[\begin{array}{ll}A(\lambda) & B(\lambda)\end{array}\right]$ have respectively full column and row ranks when evaluated in any $\lambda_{0} \in \overline{\mathbb{F}}$, then $S(\lambda)$ is a minimal polynomial system matrix of $G(\lambda)$.

Theorem (Rosenbrock, 1970)

Each rational matrix has infinitely many minimal polynomial system matrices.
The position of the state matrix $A(\lambda)$ is not important: it may be anywhere, the point is to take the Schur complement with respect to it.

Example of (minimal) polynomial system matrix

Consider the rational matrix

$$
G(\lambda)=-B_{0}+\lambda A_{0}+\frac{B_{1}}{\lambda-\sigma_{1}}+\cdots+\frac{B_{s}}{\lambda-\sigma_{s}} \in \mathbb{F}(\lambda)^{p \times p}
$$

$A_{0}, B_{i} \in \mathbb{F}^{p \times p}$ and $\sigma_{i} \neq \sigma_{j}$ if $i \neq j$, from El-Guide, Miedlar, Saad, 2020. Then, these authors introduce the pencil,

$$
\text { which is a polynomial system matrix of } G(\lambda) \text { of degree } 1 \text {. }
$$

Moreover, $S(\lambda)$ is minimal if and only if all the matrices B_{1}, \ldots, B_{s} are nonsingular.

Example of (minimal) polynomial system matrix

Consider the rational matrix

$$
G(\lambda)=-B_{0}+\lambda A_{0}+\frac{B_{1}}{\lambda-\sigma_{1}}+\cdots+\frac{B_{s}}{\lambda-\sigma_{s}} \in \mathbb{F}(\lambda)^{p \times p}
$$

$A_{0}, B_{i} \in \mathbb{F}^{p \times p}$ and $\sigma_{i} \neq \sigma_{j}$ if $i \neq j$, from El-Guide, Miedlar, Saad, 2020. Then, these authors introduce the pencil,

$$
S(\lambda)=\left[\begin{array}{cccc|c}
\left(\lambda-\sigma_{1}\right) I & & & & I \\
& \left(\lambda-\sigma_{2}\right) I & & & I \\
& & \ddots & & \vdots \\
& & & \left(\lambda-\sigma_{s}\right) I & I \\
\hline-B_{1} & -B_{2} & \cdots & -B_{s} & \lambda A_{0}-B_{0}
\end{array}\right]
$$

which is a polynomial system matrix of $G(\lambda)$ of degree 1 .
Moreover, $S(\lambda)$ is minimal if and only if all the matrices B_{1}, \ldots, B_{s} are nonsingular.

Example of (minimal) polynomial system matrix

Consider the rational matrix

$$
G(\lambda)=-B_{0}+\lambda A_{0}+\frac{B_{1}}{\lambda-\sigma_{1}}+\cdots+\frac{B_{s}}{\lambda-\sigma_{s}} \in \mathbb{F}(\lambda)^{p \times p},
$$

$A_{0}, B_{i} \in \mathbb{F}^{p \times p}$ and $\sigma_{i} \neq \sigma_{j}$ if $i \neq j$, from El-Guide, Miedlar, Saad, 2020. Then, these authors introduce the pencil,

$$
S(\lambda)=\left[\begin{array}{cccc|c}
\left(\lambda-\sigma_{1}\right) I & & & & I \\
& \left(\lambda-\sigma_{2}\right) I & & & I \\
& & \ddots & & \vdots \\
& & & \left(\lambda-\sigma_{s}\right) I & I \\
\hline-B_{1} & -B_{2} & \cdots & -B_{s} & \lambda A_{0}-B_{0}
\end{array}\right]
$$

which is a polynomial system matrix of $G(\lambda)$ of degree 1 .
Moreover, $S(\lambda)$ is minimal if and only if all the matrices B_{1}, \ldots, B_{s} are nonsingular.

Minimal polynomial system matrices contain the whole finite structure

Theorem (Rosenbrock, 1970)

If

$$
S(\lambda)=\left[\begin{array}{cc}
A(\lambda) & B(\lambda) \\
-C(\lambda) & D(\lambda)
\end{array}\right] \in \mathbb{F}[\lambda]^{(n+p) \times(n+m)}
$$

is a minimal polynomial system matrix of $G(\lambda)=D(\lambda)+C(\lambda) A(\lambda)^{-1} B(\lambda)$, then:
(1) The finite eigenvalue structure of $S(\lambda)$ (including all types of multiplicities, geometric, algebraic, partial) coincides exactly with the finite zero structure of $G(\lambda)$.
(2) The finite eigenvalue structure of $A(\lambda)$ (including all types of multiplicities, geometric, algebraic, partial) coincides exactly with the finite pole structure of $G(\lambda)$.

Polynomial system matrices with unimodular state matrix $A(\lambda)$

- They are automatically minimal.
- Their associated rational matrices $G(\lambda)=D(\lambda)+C(\lambda) A(\lambda)^{-1} B(\lambda)$ are polynomial matrices.
- They satisfy the following

Theorem

is a polynomial system matrix of $G(\lambda)=D(\lambda)+C(\lambda) A(\lambda)^{-1} B(\lambda)$, with state-matrix $A(\lambda)$ unimodular, then

$S(\lambda)$ is unimodularly equivalent to

Polynomial system matrices with unimodular state matrix $A(\lambda)$

- They are automatically minimal.
- Their associated rational matrices $G(\lambda)=D(\lambda)+C(\lambda) A(\lambda)^{-1} B(\lambda)$ are polynomial matrices.
- They satisfy the following

Theorem
 is a polynomial system matrix of $G(\lambda)=D(\lambda)+C(\lambda) A(\lambda)^{-1} B(\lambda)$, with state-matrix $A(\lambda)$ unimodular, then

$S(\lambda)$ is unimodularly equivalent to

Polynomial system matrices with unimodular state matrix $A(\lambda)$

- They are automatically minimal.
- Their associated rational matrices $G(\lambda)=D(\lambda)+C(\lambda) A(\lambda)^{-1} B(\lambda)$ are polynomial matrices.
- They satisfy the following

$$
\left[\begin{array}{cc}
A(\lambda) & B(\lambda) \\
-C(\lambda) & D(\lambda)
\end{array}\right]=\left[\begin{array}{cc}
A(\lambda) & \\
-C(\lambda) & I_{p}
\end{array}\right]\left[\begin{array}{cc}
I_{n} & \\
& G(\lambda)
\end{array}\right]\left[\begin{array}{cc}
I_{n} & A(\lambda)^{-1} B(\lambda) \\
& I_{m}
\end{array}\right]
$$

Theorem

is a polynomial system matrix of $G(\lambda)=D(\lambda)+C(\lambda) A(\lambda)^{-1} B(\lambda)$, with state-matrix $A(\lambda)$ unimodular, then

Polynomial system matrices with unimodular state matrix $A(\lambda)$

- They are automatically minimal.
- Their associated rational matrices $G(\lambda)=D(\lambda)+C(\lambda) A(\lambda)^{-1} B(\lambda)$ are polynomial matrices.
- They satisfy the following

$$
\left[\begin{array}{cc}
A(\lambda) & B(\lambda) \\
-C(\lambda) & D(\lambda)
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
A(\lambda) & \\
-C(\lambda) & I_{p}
\end{array}\right]}_{\text {UNIMODULAR }}\left[\begin{array}{ll}
I_{n} & \\
& G(\lambda)
\end{array}\right] \underbrace{\left[\begin{array}{cc}
I_{n} & A(\lambda)^{-1} B(\lambda) \\
I_{m}
\end{array}\right]}_{\text {UNIMODULAR }}
$$

Theorem

is a polynomial system matrix of $G(\lambda)=D(\lambda)+C(\lambda) A(\lambda)^{-1} B(\lambda)$, with
state-matrix $A(\lambda)$ unimodular, then

Polynomial system matrices with unimodular state matrix $A(\lambda)$

- They are automatically minimal.
- Their associated rational matrices $G(\lambda)=D(\lambda)+C(\lambda) A(\lambda)^{-1} B(\lambda)$ are polynomial matrices.
- They satisfy the following

Theorem

If

$$
S(\lambda)=\left[\begin{array}{cc}
A(\lambda) & B(\lambda) \\
-C(\lambda) & D(\lambda)
\end{array}\right] \in \mathbb{F}[\lambda]^{(n+p) \times(n+m)}
$$

is a polynomial system matrix of $G(\lambda)=D(\lambda)+C(\lambda) A(\lambda)^{-1} B(\lambda)$, with state-matrix $A(\lambda)$ unimodular, then

$$
S(\lambda) \text { is unimodularly equivalent to }\left[\begin{array}{ll}
I_{n} & \\
& G(\lambda)
\end{array}\right]
$$

Outline

(1) Rosenbrock Polynomial System Matrices
(2) Gohberg-Lancaster-Rodman linearizations of polynomial matrices

Frobenius companion linearization and Rosenbrock

4.

Comrade companion linearizations and Rosenbrock

Block Kronecker linearizations and Rosenbrock

Extended block Kronecker linearizations and RosenbrockTwo advantages of Rosenbrock's point on view(8) Conclusions

GLR linearizations and strong linearizations of polynomial matrices

GLR \equiv Gohberg-Lancaster-Rodman

Definition (Gohberg-Lancaster-Rodman, 1982)

Let
be a polynomial matrix of degree at most k. A linearization for $P(\lambda)$ is a linear polynomial matrix (or pencil) $L(\lambda)$ such that

Definition (Gohberg-Kaashoek-Lancaster, 1988)

$L(\lambda)$ is a strong linearization of $P(\lambda)$ if, in addition,

$$
\operatorname{rev}_{1} L(\lambda):=\lambda L_{0}+L_{1} \text { is a linearization for } \operatorname{rev}_{k} P(\lambda) \text {. }
$$

GLR linearizations and strong linearizations of polynomial matrices

GLR \equiv Gohberg-Lancaster-Rodman

Definition (Gohberg-Lancaster-Rodman, 1982)

Let

$$
P(\lambda)=\lambda^{k} A_{k}+\cdots+\lambda A_{1}+A_{0} \in \mathbb{F}[\lambda]^{p \times m}
$$

be a polynomial matrix of degree at most k. A linearization for $P(\lambda)$ is a linear polynomial matrix (or pencil) $L(\lambda)$ such that

$$
L(\lambda)=\lambda L_{1}+L_{0} \quad \text { is unimodularly equivalent to } \quad\left[\begin{array}{ll}
I_{n} & \\
& P(\lambda)
\end{array}\right] .
$$

Definition (Gohberg-Kaashoek-Lancaster, 1988)
$L(\lambda)$ is a strong linearization of $P(\lambda)$ if, in addition,

$$
\operatorname{rev}_{1} L(\lambda):=\lambda L_{0}+L_{1} \quad \text { is a linearization for }
$$

\square

GLR linearizations and strong linearizations of polynomial matrices

GLR \equiv Gohberg-Lancaster-Rodman

Definition (Gohberg-Lancaster-Rodman, 1982)

Let

$$
P(\lambda)=\lambda^{k} A_{k}+\cdots+\lambda A_{1}+A_{0} \in \mathbb{F}[\lambda]^{p \times m}
$$

be a polynomial matrix of degree at most k. A linearization for $P(\lambda)$ is a linear polynomial matrix (or pencil) $L(\lambda)$ such that

$$
L(\lambda)=\lambda L_{1}+L_{0} \quad \text { is unimodularly equivalent to } \quad\left[\begin{array}{ll}
I_{n} & \\
& P(\lambda)
\end{array}\right] .
$$

Definition (Gohberg-Kaashoek-Lancaster, 1988)

$L(\lambda)$ is a strong linearization of $P(\lambda)$ if, in addition,

$$
\operatorname{rev}_{1} L(\lambda):=\lambda L_{0}+L_{1} \text { is a linearization for } \operatorname{rev}_{k} P(\lambda),
$$

where $\operatorname{rev}_{k} P(\lambda):=\lambda^{k} A_{0}+\cdots+\lambda A_{k-1}+A_{k}$.

Key observation for this talk

Corollary

A linear polynomial system matrix

$$
S(\lambda)=\left[\begin{array}{cc}
A(\lambda) & B(\lambda) \\
-C(\lambda) & D(\lambda)
\end{array}\right] \in \mathbb{F}[\lambda]^{(n+p) \times(n+m)}
$$

with unimodular state-matrix $A(\lambda)$ is a GLR-linearization of its associated polynomial matrix $G(\lambda)=D(\lambda)+C(\lambda) A(\lambda)^{-1} B(\lambda)$.

- We emphasize: linear polynomial system matrices with unimodular state-matrix are particular cases of GLR-linearizations.
- But, we will see that they include many famous GLR-linearizations available in the literature, which connects Rosenbrock (previous) and GLR approaches for polynomial matrices.
- Recall: We have to identify unimodular submatrices.

Key observation for this talk

Corollary

A linear polynomial system matrix

$$
S(\lambda)=\left[\begin{array}{cc}
A(\lambda) & B(\lambda) \\
-C(\lambda) & D(\lambda)
\end{array}\right] \in \mathbb{F}[\lambda]^{(n+p) \times(n+m)}
$$

with unimodular state-matrix $A(\lambda)$ is a GLR-linearization of its associated polynomial matrix $G(\lambda)=D(\lambda)+C(\lambda) A(\lambda)^{-1} B(\lambda)$.

- We emphasize: linear polynomial system matrices with unimodular state-matrix are particular cases of GLR-linearizations.
- But, we will see that they include many famous GLR-linearizations available in the literature, which connects Rosenbrock (previous) and GLR approaches for polynomial matrices.
- Recall: We have to identify unimodular submatrices.

Key observation for this talk

Corollary

A linear polynomial system matrix

$$
S(\lambda)=\left[\begin{array}{cc}
A(\lambda) & B(\lambda) \\
-C(\lambda) & D(\lambda)
\end{array}\right] \in \mathbb{F}[\lambda]^{(n+p) \times(n+m)}
$$

with unimodular state-matrix $A(\lambda)$ is a GLR-linearization of its associated polynomial matrix $G(\lambda)=D(\lambda)+C(\lambda) A(\lambda)^{-1} B(\lambda)$.

- We emphasize: linear polynomial system matrices with unimodular state-matrix are particular cases of GLR-linearizations.
- But, we will see that they include many famous GLR-linearizations available in the literature, which connects Rosenbrock (previous) and GLR approaches for polynomial matrices.
- Recall: We have to identify unimodular submatrices.

Key observation for this talk

Corollary

A linear polynomial system matrix

$$
S(\lambda)=\left[\begin{array}{cc}
A(\lambda) & B(\lambda) \\
-C(\lambda) & D(\lambda)
\end{array}\right] \in \mathbb{F}[\lambda]^{(n+p) \times(n+m)}
$$

with unimodular state-matrix $A(\lambda)$ is a GLR-linearization of its associated polynomial matrix $G(\lambda)=D(\lambda)+C(\lambda) A(\lambda)^{-1} B(\lambda)$.

- We emphasize: linear polynomial system matrices with unimodular state-matrix are particular cases of GLR-linearizations.
- But, we will see that they include many famous GLR-linearizations available in the literature, which connects Rosenbrock (previous) and GLR approaches for polynomial matrices.
- Recall: We have to identify unimodular submatrices.

GLR-Linearizations and eigenvalues

Theorem

A GLR-linearization $L(\lambda)$ of a polynomial matrix $P(\lambda)$ satisfies

- $L(\lambda)$ and $P(\lambda)$ have the same finite eigenvalues with the same partial multiplicities.
A GLR-strong-linearization $L(\lambda)$ of a polynomial matrix $P(\lambda)$ satisfies
- $L(\lambda)$ and $P(\lambda)$ have the same finite and infinite eigenvalues with the same partial multiplicities.

Outline

(1)Rosenbrock Polynomial System Matrices

Gohberg-Lancaster-Rodman linearizations of polynomial matrices
(3) Frobenius companion linearization and Rosenbrock

Comrade companion linearizations and Rosenbrock

Block Kronecker linearizations and Rosenbrock

Extended block Kronecker linearizations and Rosenbrock

Two advantages of Rosenbrock's point on view(8) Conclusions

The most famous (strong) linearization: Frobenius

The Frobenius companion form of $P(\lambda)=P_{k} \lambda^{k}+\cdots+P_{1} \lambda+P_{0} \in \mathbb{F}[\lambda]^{p \times m}$ is

$$
C_{1}(\lambda):=\left[\begin{array}{ccccc}
\lambda P_{k}+P_{k-1} & P_{k-2} & \cdots & P_{1} & P_{0} \\
-I_{m} & \lambda I_{m} & & & \\
& \ddots & \ddots & & \\
& & \ddots & \lambda I_{m} & \\
& & & -I_{m} & \lambda I_{m}
\end{array}\right]
$$

> Theorem (Frobenius companion is a Rosenbrock sysiem mairix)
> The Frobenius companion form of $P(\lambda)$ is a linear polynomial system matrix
> - with unimodular state-matrix $A(\lambda)$, i.e., the submatrix obtained by removing the first block row and last block column, and
> - associated polynomial matrix equal to $P(\lambda)$, i.e.,

\square
Therefore, $C_{1}(\lambda)$ is a GLR-linearization of $P(\lambda)$.

The most famous (strong) linearization: Frobenius

The Frobenius companion form of $P(\lambda)=P_{k} \lambda^{k}+\cdots+P_{1} \lambda+P_{0} \in \mathbb{F}[\lambda]^{p \times m}$ is

$$
C_{1}(\lambda)=\left[\begin{array}{cccc|c}
\lambda P_{k}+P_{k-1} & P_{k-2} & \cdots & P_{1} & P_{0} \\
\hline-I_{m} & \lambda I_{m} & & & \\
& \ddots & \ddots & & \\
& & \ddots & \lambda I_{m} & \\
& & & -I_{m} & \lambda I_{m}
\end{array}\right]
$$

Theorem (Frobenius companion is a Rosenbrock system matrix)

The Frobenius companion form of $P(\lambda)$ is a linear polynomial system matrix

- with unimodular state-matrix $A(\lambda)$, i.e., the submatrix obtained by removing the first block row and last block column, and
- associated polynomial matrix equal to $P(\lambda)$, i.e.,

Therefore, $C_{1}(\lambda)$ is a GLR-linearization of $P(\lambda)$.

The most famous (strong) linearization: Frobenius

The Frobenius companion form of $P(\lambda)=P_{k} \lambda^{k}+\cdots+P_{1} \lambda+P_{0} \in \mathbb{F}[\lambda]^{p \times m}$ is

$$
C_{1}(\lambda)=\left[\begin{array}{cccc|c}
\lambda P_{k}+P_{k-1} & P_{k-2} & \cdots & P_{1} & P_{0} \\
\hline-I_{m} & \lambda I_{m} & & & \\
& \ddots & \ddots & & \\
& & \ddots & \lambda I_{m} & \\
& & & -I_{m} & \lambda I_{m}
\end{array}\right]=:\left[\begin{array}{cc}
-C(\lambda) & D(\lambda) \\
A(\lambda) & B(\lambda)
\end{array}\right]
$$

Theorem (Frobenius companion is a Rosenbrock system matrix)

The Frobenius companion form of $P(\lambda)$ is a linear polynomial system matrix

- with unimodular state-matrix A(λ), i.e., the submatrix obtained by removing the first block row and last block column, and
- associated polynomial matrix equal to $P(\lambda)$, i.e.,

Therefore, $C_{1}(\lambda)$ is a GLR-linearization of $P(\lambda)$.

The most famous (strong) linearization: Frobenius

The Frobenius companion form of $P(\lambda)=P_{k} \lambda^{k}+\cdots+P_{1} \lambda+P_{0} \in \mathbb{F}[\lambda]^{p \times m}$ is

$$
C_{1}(\lambda)=\left[\begin{array}{cccc|c}
\lambda P_{k}+P_{k-1} & P_{k-2} & \cdots & P_{1} & P_{0} \\
\hline-I_{m} & \lambda I_{m} & & & \\
& \ddots & \ddots & & \\
& & \ddots & \lambda I &
\end{array}\right]=:\left[\begin{array}{cc}
-C(\lambda) & D(\lambda) \\
A(\lambda) & B(\lambda)
\end{array}\right]
$$

Theorem (Frobenius companion is a Rosenbrock system matrix)
The Frobenius companion form of $P(\lambda)$ is a linear polynomial system matrix

- with unimodular state-matrix $A(\lambda)$, i.e., the submatrix obtained by removing the first block row and last block column, and
- associated polynomial matrix equal to $P(\lambda)$, i.e.,

$$
P(\lambda)=D(\lambda)+C(\lambda) A(\lambda)^{-1} B(\lambda) .
$$

Therefore, $C_{1}(\lambda)$ is a GLR-linearization of $P(\lambda)$.

The proof is easy: the presence of $A(\lambda)^{-1}$ does not create a mess

$$
\left[\begin{array}{cccc}
-I_{m} & \lambda I_{m} & & \\
& \ddots & \ddots & \\
& & \ddots & \lambda I_{m} \\
& & & -I_{m}
\end{array} \left\lvert\, \lambda I_{m}\left[\begin{array}{c}
\lambda^{k-1} I_{m} \\
\lambda^{k-2} I_{m} \\
\vdots \\
\lambda I_{m} \\
I_{m}
\end{array}\right]=\left[\begin{array}{ll}
A(\lambda) & B(\lambda)
\end{array}\right]\left[\begin{array}{c}
\lambda^{k-1} I_{m} \\
\lambda^{k-2} I_{m} \\
\vdots \\
\lambda I_{m} \\
I_{m}
\end{array}\right]=0\right.\right.
$$

- Similar tricks can be used for the rest of linearizations in the talk.

The proof is easy: the presence of $A(\lambda)^{-1}$ does not create a mess

$$
\left.\left.\begin{array}{c}
{\left[\left.\begin{array}{cccc}
-I_{m} & \lambda I_{m} & & \\
& \ddots & \ddots & \\
& & \ddots & \lambda I_{m} \\
& & & -I_{m}
\end{array} \right\rvert\, \lambda I_{m}\right.}
\end{array}\right]\left[\begin{array}{c}
\lambda^{k-1} I_{m} \\
\lambda^{k-2} I_{m} \\
\vdots \\
\lambda I_{m} \\
I_{m}
\end{array}\right]=\left[\begin{array}{ll}
A(\lambda) & B(\lambda)
\end{array}\right]\left[\begin{array}{c}
\lambda^{k-1} I_{m} \\
\lambda^{k-2} I_{m} \\
\vdots \\
\lambda I_{m} \\
I_{m}
\end{array}\right]=0\right]\left[\begin{array}{cc}
\lambda^{k-1} I_{m} \\
\lambda^{k-2} I_{m} \\
\vdots \\
\lambda I_{m}
\end{array}\right] .\left[\begin{array}{c}
\lambda^{k-1} I_{m} \\
\lambda^{k-2} I_{m} \\
\vdots \\
\lambda I_{m}
\end{array}\right]+B(\lambda)=0 \Longrightarrow A(\lambda)^{-1} B(\lambda)=-\left[\begin{array}{l}
\end{array}\right.
$$

- Similar tricks can be used for the rest of linearizations in the talk.

The proof is easy: the presence of $A(\lambda)^{-1}$ does not create a mess

$$
\left.\left.\begin{array}{cccc}
{\left[\left.\begin{array}{cccc}
-I_{m} & \lambda I_{m} & & \\
& \ddots & \ddots & \\
& & \ddots & \lambda I_{m} \\
& & & -I_{m}
\end{array} \right\rvert\, \lambda I_{m}\right.}
\end{array}\right]\left[\begin{array}{c}
\lambda^{k-1} I_{m} \\
\lambda^{k-2} I_{m} \\
\vdots \\
\lambda I_{m} \\
I_{m}
\end{array}\right]=\left[\begin{array}{ll}
A(\lambda) & B(\lambda)
\end{array}\right]\left[\begin{array}{c}
\lambda^{k-1} I_{m} \\
\lambda^{k-2} I_{m} \\
\vdots \\
\lambda I_{m} \\
I_{m}
\end{array}\right]=0\right]\left[\begin{array}{cc}
\lambda^{k-1} I_{m} \\
\lambda^{k-2} I_{m} \\
\vdots \\
\lambda I_{m}
\end{array}\right]+B(\lambda)=0 \Longrightarrow A(\lambda)^{-1} B(\lambda)=-\left[\begin{array}{c}
\lambda^{k-1} I_{m} \\
\lambda^{k-2} I_{m} \\
\vdots \\
\lambda I_{m}
\end{array}\right] .
$$

- Similar tricks can be used for the rest of linearizations in the talk.

Similar arguments for the reversal of the Frobenius companion form

$$
\operatorname{rev}{ }_{1} C_{1}(\lambda):=\left[\begin{array}{ccccc}
P_{k}+\lambda P_{k-1} & \lambda P_{k-2} & \cdots & \lambda P_{1} & \lambda P_{0} \\
-\lambda I_{m} & I_{m} & & & \\
& \ddots & \ddots & & \\
& & \ddots & I_{m} & \\
& & & -\lambda I_{m} & I_{m}
\end{array}\right]
$$

Theorem (Reversal Frobenius is a Rosenbrock system matrix)

The reversal of the Frobenius companion form of $P(\lambda)$ is a linear polynomial system matrix

- with unimodular state-matrix $A_{r}(\lambda)$, i.e., the submatrix obtained by removing the first block row and first block column, and
- associated polynomial matrix equal to rev ${ }_{k} P(\lambda)$, i.e.,

Therefore, $\operatorname{rev}_{1} C_{1}(\lambda)$ is a GLR-linearization of $\operatorname{rev}_{k} P(\lambda)$ and $C_{1}(\lambda)$ is a GLR-strong-linearization of $P(\lambda)$.

Similar arguments for the reversal of the Frobenius companion form

$$
\operatorname{rev}_{1} C_{1}(\lambda)=\left[\begin{array}{c|cccc}
P_{k}+\lambda P_{k-1} & \lambda P_{k-2} & \cdots & \lambda P_{1} & \lambda P_{0} \\
\hline-\lambda I_{m} & I_{m} & & & \\
& \ddots & \ddots & & \\
& & \ddots & I_{m} & \\
& & & -\lambda I_{m} & I_{m}
\end{array}\right]
$$

Theorem (Reversal Frobenius is a Rosenbrock system matrix)

The reversal of the Frobenius companion form of $P(\lambda)$ is a linear polynomial system matrix

- with unimodular state-matrix $A_{r}(\lambda)$, i.e., the submatrix obtained by removing the first block row and first block column, and
- associated polynomial matrix equal to rev ${ }_{k} P(\lambda)$, i.e.,

Therefore, $\operatorname{rev}_{1} C_{1}(\lambda)$ is a GLR-linearization of $\operatorname{rev}_{k} P(\lambda)$ and $C_{1}(\lambda)$ is a GLR-strong-linearization of $P(\lambda)$.

Similar arguments for the reversal of the Frobenius companion form

$$
\operatorname{rev}_{1} C_{1}(\lambda)=\left[\begin{array}{c|cccc}
P_{k}+\lambda P_{k-1} & \lambda P_{k-2} & \cdots & \lambda P_{1} & \lambda P_{0} \\
\hline-\lambda I_{m} & I_{m} & & & \\
& \ddots & \ddots & & \\
& & \ddots & I_{m} & \\
& & & -\lambda I_{m} & I_{m}
\end{array}\right]=:\left[\begin{array}{cc}
D_{r}(\lambda) & -C_{r}(\lambda) \\
B_{r}(\lambda) & A_{r}(\lambda)
\end{array}\right]
$$

Theorem (Reversal Frobenius is a Rosenbrock system matrix)

The reversal of the Frobenius companion form of $P(\lambda)$ is a linear polynomial system matrix

- with unimodular state-matrix $A_{r}(\lambda)$, i.e., the submatrix obtained by removing the first block row and first block column, and
- associated polynomial matrix equal to rev $P(\lambda)$, i.e.,

Therefore, $\operatorname{rev}_{1} C_{1}(\lambda)$ is a GLR-linearization of rev ${ }_{k} P(\lambda)$ and $C_{1}(\lambda)$ is a GLR-strong-linearization of $P(\lambda)$.

Similar arguments for the reversal of the Frobenius companion form

$$
\operatorname{rev}_{1} C_{1}(\lambda)=\left[\begin{array}{c|cccc}
P_{k}+\lambda P_{k-1} & \lambda P_{k-2} & \cdots & \lambda P_{1} & \lambda P_{0} \\
\hline-\lambda I_{m} & I_{m} & & & \\
& \ddots & \ddots & & \\
& & \ddots & I_{m} & \\
& & & -\lambda I_{m} & I_{m}
\end{array}\right]=:\left[\begin{array}{cc}
D_{r}(\lambda) & -C_{r}(\lambda) \\
B_{r}(\lambda) & A_{r}(\lambda)
\end{array}\right]
$$

Theorem (Reversal Frobenius is a Rosenbrock system matrix)

The reversal of the Frobenius companion form of $P(\lambda)$ is a linear polynomial system matrix

- with unimodular state-matrix $A_{r}(\lambda)$, i.e., the submatrix obtained by removing the first block row and first block column, and
- associated polynomial matrix equal to $\operatorname{rev}_{k} P(\lambda)$, i.e.,

$$
\operatorname{rev}_{k} P(\lambda)=D_{r}(\lambda)+C_{r}(\lambda) A_{r}(\lambda)^{-1} B_{r}(\lambda) .
$$

Therefore, $\operatorname{rev}_{1} C_{1}(\lambda)$ is a GLR-linearization of $\operatorname{rev}_{k} P(\lambda)$ and $C_{1}(\lambda)$ is a GLR-strong-linearization of $P(\lambda)$.

Outline

(1)Rosenbrock Polynomial System MatricesGohberg-Lancaster-Rodman linearizations of polynomial matrices
(3) Frobenius companion linearization and Rosenbrock
(4) Comrade companion linearizations and Rosenbrock

Block Kronecker linearizations and Rosenbrock

Extended block Kronecker linearizations and Rosenbrock

Two advantages of Rosenbrock's point on view
(8) Conclusions

For polynomial matrices expressed in "orthogonal" bases

Scalar polynomial basis satisfying a three-term recurrence relation

$$
\alpha_{j} \phi_{j+1}(\lambda)=\left(\lambda-\beta_{j}\right) \phi_{j}(\lambda)-\gamma_{j} \phi_{j-1}(\lambda) \quad j \geq 0
$$

where $\alpha_{j}, \beta_{j}, \gamma_{j} \in \mathbb{F}, \alpha_{j} \neq 0, \phi_{-1}(\lambda)=0$, and $\phi_{0}(\lambda)=1$.

Matrix polynomial expressed in such a basis

\square

- It is "well-known" that the "comrade" companion matrix in the next slide is a GLR-strong-linearization of $P(\lambda)$.

For polynomial matrices expressed in "orthogonal" bases

Scalar polynomial basis satisfying a three-term recurrence relation

$$
\alpha_{j} \phi_{j+1}(\lambda)=\left(\lambda-\beta_{j}\right) \phi_{j}(\lambda)-\gamma_{j} \phi_{j-1}(\lambda) \quad j \geq 0
$$

where $\alpha_{j}, \beta_{j}, \gamma_{j} \in \mathbb{F}, \alpha_{j} \neq 0, \phi_{-1}(\lambda)=0$, and $\phi_{0}(\lambda)=1$.

> Matrix polynomial expressed in such a basis
> $P(\lambda)=P_{k} \phi_{k}(\lambda)+P_{k-1} \phi_{k-1}(\lambda)+\cdots+P_{1} \phi_{1}(\lambda)+P_{0} \phi_{0}(\lambda) \in \mathbb{F}[\lambda]^{p \times m}$

- It is "well-known" that the "comrade" companion matrix in the next slide is a GLR-strong-linearization of $P(\lambda)$.

For polynomial matrices expressed in "orthogonal" bases

Scalar polynomial basis satisfying a three-term recurrence relation

$$
\alpha_{j} \phi_{j+1}(\lambda)=\left(\lambda-\beta_{j}\right) \phi_{j}(\lambda)-\gamma_{j} \phi_{j-1}(\lambda) \quad j \geq 0
$$

where $\alpha_{j}, \beta_{j}, \gamma_{j} \in \mathbb{F}, \alpha_{j} \neq 0, \phi_{-1}(\lambda)=0$, and $\phi_{0}(\lambda)=1$.

> Matrix polynomial expressed in such a basis
> $P(\lambda)=P_{k} \phi_{k}(\lambda)+P_{k-1} \phi_{k-1}(\lambda)+\cdots+P_{1} \phi_{1}(\lambda)+P_{0} \phi_{0}(\lambda) \in \mathbb{F}[\lambda]^{p \times m}$

- It is "well-known" that the "comrade" companion matrix in the next slide is a GLR-strong-linearization of $P(\lambda)$.

Comrade is a Rosenbrock polynomial system matrix

$$
C_{\phi}(\lambda)=\left[\begin{array}{cccccc}
\frac{\left(\lambda-\beta_{k-1}\right)}{\alpha_{k-1}} P_{k}+P_{k-1} & P_{k-2}-\frac{\gamma_{k-1}}{\alpha_{k-1}} P_{k} & P_{k-3} & \cdots & P_{1} & P_{0} \\
-\alpha_{k-2} I & \left(\lambda-\beta_{k-2}\right) I & -\gamma_{k-2} I & & & \\
& -\alpha_{k-3} I & \left(\lambda-\beta_{k-3}\right) I & -\gamma_{k-3} I & & \\
& & \ddots & \ddots & \ddots & \\
& & & -\alpha_{1} I & \left(\lambda-\beta_{1}\right) I & -\gamma_{1} I \\
& & & -\alpha_{0} I & \left(\lambda-\beta_{0}\right) I
\end{array}\right]
$$

Theorem (Comrade is a Rosenbrock polynomial system matrix)

The Comrade form of $P(\lambda)$ is a linear nolynomial system matrix

- with unimodular state-matrix $A(\lambda)$, i.e., the submatrix obtained by removing the first block row and last block column, and
- associated nolynomial matrix equal to $P(\lambda)$, i.e.,

$$
P(\lambda)=D(\lambda)+C(\lambda) A(\lambda)^{-1} B(\lambda) \quad \text { where } \quad C_{\phi}(\lambda)=\left[\begin{array}{cc}
-C(\lambda) & D(\lambda) \\
A(\lambda) & B(\lambda)
\end{array}\right]
$$

Therefore, $C_{\phi}(\lambda)$ is a GLR-linearization of $P(\lambda)$.

- The reversal is NOT in this case a Rosenbrock polynomial system matrix with unimodular state-matrix.

Comrade is a Rosenbrock polynomial system matrix

$$
C_{\phi}(\lambda)=\left[\begin{array}{ccccc|c}
\frac{\left(\lambda-\beta_{k-1}\right)}{\alpha_{k-1}} P_{k}+P_{k-1} & P_{k-2}-\frac{\gamma_{k-1}}{\alpha_{k-1}} P_{k} & P_{k-3} & \ldots & P_{1} & P_{0} \\
\hline-\alpha_{k-2} I & \left(\lambda-\beta_{k-2}\right) I & -\gamma_{k-2} I \\
& -\alpha_{k-3} I & \left(\lambda-\beta_{k-3}\right) I & -\gamma_{k-3} I & & \\
& & \ddots & \ddots & \ddots & \\
& & & -\alpha_{1} I & \left(\lambda-\beta_{1}\right) I & -\gamma_{1} I \\
& & & -\alpha_{0} I & \left(\lambda-\beta_{0}\right) I
\end{array}\right]
$$

Theorem (Comrade is a Rosenbrock polynomial system matrix)

The Comrade form of $P(\lambda)$ is a linear polynomial system matrix

- with unimodular state-matrix $A(\lambda)$, i.e., the submatrix obtained by removing the first block row and last block column, and
- associated nolynomial matrix equal to $P(\lambda)$, i.e.,

$$
P(\lambda)=D(\lambda)+C(\lambda) A(\lambda)^{-1} B(\lambda) \quad \text { where } \quad C_{\phi}(\lambda)=\left[\begin{array}{cc}
-C(\lambda) & D(\lambda) \\
A(\lambda) & B(\lambda)
\end{array}\right]
$$

Therefore, $C_{\phi}(\lambda)$ is a GLR-linearization of $P(\lambda)$.

- The reversal is NOT in this case a Rosenbrock polynomial system matrix with unimodular state-matrix.

Comrade is a Rosenbrock polynomial system matrix

$$
\left[\begin{array}{ccccc|c}
\frac{\left(\lambda-\beta_{k-1}\right)}{\alpha_{k-1}} P_{k}+P_{k-1} & P_{k-2}-\frac{\gamma_{k-1}}{\alpha_{k-1}} P_{k} & P_{k-3} & \cdots & P_{1} & P_{0} \\
\hline-\alpha_{k-2} I & \left(\lambda-\beta_{k-2}\right) I & -\gamma_{k-2} I & & \\
& -\alpha_{k-3} I & \left(\lambda-\beta_{k-3}\right) I & -\gamma_{k-3} I & & \\
& & \ddots & \ddots & \ddots & \\
& & & -\alpha_{1} I & \left(\lambda-\beta_{1}\right) I & -\gamma_{1} I \\
& & & -\alpha_{0} I & \left(\lambda-\beta_{0}\right) I
\end{array}\right]
$$

Theorem (Comrade is a Rosenbrock polynomial system matrix)

The Comrade form of $P(\lambda)$ is a linear polynomial system matrix

- with unimodular state-matrix $A(\lambda)$, i.e., the submatrix obtained by removing the first block row and last block column, and
- associated polynomial matrix equal to $P(\lambda)$, i.e.,

$$
P(\lambda)=D(\lambda)+C(\lambda) A(\lambda)^{-1} B(\lambda) \quad \text { where } \quad C_{\phi}(\lambda)=\left[\begin{array}{cc}
-C(\lambda) & D(\lambda) \\
A(\lambda) & B(\lambda)
\end{array}\right]
$$

Therefore, $C_{\phi}(\lambda)$ is a GLR-linearization of $P(\lambda)$.

- The reversal is NOT in this case a Rosenbrock polynomial system matrix with unimodular state-matrix.

Comrade is a Rosenbrock polynomial system matrix

$$
\left[\begin{array}{ccccc|c}
\frac{\left(\lambda-\beta_{k-1}\right)}{\alpha_{k-1}} P_{k}+P_{k-1} & P_{k-2}-\frac{\gamma_{k-1}}{\alpha_{k-1}} P_{k} & P_{k-3} & \cdots & P_{1} & P_{0} \\
\hline-\alpha_{k-2} I & \left(\lambda-\beta_{k-2}\right) I & -\gamma_{k-2} I & & \\
& -\alpha_{k-3} I & \left(\lambda-\beta_{k-3}\right) I & -\gamma_{k-3} I & & \\
& & \ddots & \ddots & \ddots & \\
& & & -\alpha_{1} I & \left(\lambda-\beta_{1}\right) I & -\gamma_{1} I \\
& & & -\alpha_{0} I & \left(\lambda-\beta_{0}\right) I
\end{array}\right]
$$

Theorem (Comrade is a Rosenbrock polynomial system matrix)

The Comrade form of $P(\lambda)$ is a linear polynomial system matrix

- with unimodular state-matrix $A(\lambda)$, i.e., the submatrix obtained by removing the first block row and last block column, and
- associated polynomial matrix equal to $P(\lambda)$, i.e.,

$$
P(\lambda)=D(\lambda)+C(\lambda) A(\lambda)^{-1} B(\lambda) \quad \text { where } \quad C_{\phi}(\lambda)=\left[\begin{array}{cc}
-C(\lambda) & D(\lambda) \\
A(\lambda) & B(\lambda)
\end{array}\right]
$$

Therefore, $C_{\phi}(\lambda)$ is a GLR-linearization of $P(\lambda)$.

- The reversal is NOT in this case a Rosenbrock polynomial system matrix with unimodular state-matrix.

Outline

0

Rosenbrock Polynomial System Matrices

Gohberg-Lancaster-Rodiman Iinearizations of polynomial matricesFrobenius companion linearization and RosenbrockComrade companion linearizations and Rosenbrock(5) Block Kronecker linearizations and Rosenbrock

Extended block Kronecker linearizations and Rosenbrock
Two advantages of Rosenbrock's point on view
8 Conclusions

An example of block Kronecker linearization

A strong linearization of

$$
P(\lambda)=\lambda^{5} P_{5}+\lambda^{4} P_{4}+\lambda^{3} P_{3}+\lambda^{2} P_{2}+\lambda P_{1}+P_{0} \in \mathbb{F}[\lambda]^{p \times m}
$$

is the following block Kronecker pencil

$$
C_{K}(\lambda):=\left[\begin{array}{ccc|cc}
\lambda P_{5} & \lambda P_{4} & \lambda P_{3} & -I_{p} & 0 \\
0 & 0 & \lambda P_{2} & \lambda I_{p} & -I_{p} \\
0 & 0 & \lambda P_{1}+P_{0} & 0 & \lambda I_{p} \\
\hline-I_{m} & \lambda I_{m} & 0 & 0 & 0 \\
0 & -I_{m} & \lambda I_{m} & 0 & 0
\end{array}\right]
$$

The "yellow" submatrix is unimodular. This is genera!!!

- Block Kronecker linearizations (D, Lawrence, Pérez, Van Dooren, 2018) are a wide infinite family of strong linearizations of polynomial matrices that include among many others the Fiedler linearizations (Fiedler, 2003) modulo permutations.
- Moreover, they have favorable structured backward error properties when are used for solving numerically polynomial eigenvalue problems (D, Lawrence, Pérez, Van Dooren, 2018).

An example of block Kronecker linearization

A strong linearization of

$$
P(\lambda)=\lambda^{5} P_{5}+\lambda^{4} P_{4}+\lambda^{3} P_{3}+\lambda^{2} P_{2}+\lambda P_{1}+P_{0} \in \mathbb{F}[\lambda]^{p \times m}
$$

is the following block Kronecker pencil

$$
C_{K}(\lambda)=\left[\begin{array}{ccccc}
\lambda P_{5} & \lambda P_{4} & \lambda P_{3} & -I_{p} & 0 \\
0 & 0 & \lambda P_{2} & \lambda I_{p} & -I_{p} \\
0 & 0 & \lambda P_{1}+P_{0} & 0 & \lambda I_{p} \\
-I_{m} & \lambda I_{m} & 0 & 0 & 0 \\
0 & -I_{m} & \lambda I_{m} & 0 & 0
\end{array}\right]
$$

- Block Kronecker linearizations (D, Lawrence, Pérez, Van Dooren, 2018) are a wide infinite family of strong linearizations of polynomial matrices that include among many others the Fiedler linearizations (Fiedler, 2003) modulo permutations.
- Moreover, they have favorable structured backward error properties when are used for solving numerically polynomial eigenvalue problems (D, Lawrence, Pérez, Van Dooren, 2018).

An example of block Kronecker linearization

A strong linearization of

$$
P(\lambda)=\lambda^{5} P_{5}+\lambda^{4} P_{4}+\lambda^{3} P_{3}+\lambda^{2} P_{2}+\lambda P_{1}+P_{0} \in \mathbb{F}[\lambda]^{p \times m}
$$

is the following block Kronecker pencil

$$
C_{K}(\lambda)=\left[\begin{array}{ccccc}
\lambda P_{5} & \lambda P_{4} & \lambda P_{3} & -I_{p} & 0 \\
0 & 0 & \lambda P_{2} & \lambda I_{p} & -I_{p} \\
0 & 0 & \lambda P_{1}+P_{0} & 0 & \lambda I_{p} \\
-I_{m} & \lambda I_{m} & 0 & 0 & 0 \\
0 & -I_{m} & \lambda I_{m} & 0 & 0
\end{array}\right]
$$

The "yellow" submatrix is unimodular. This is general!!

- Block Kronecker linearizations (D, Lawrence, Pérez, Van Dooren, 2018) are a wide infinite family of strong linearizations of polynomial matrices that include among many others the Fiedler linearizations (Fiediler, 2003) modiulo permutations.
- Moreover, they have favorable structured backward error properties when are used for solving numerically polynomial eigenvalue problems
(D, Lawrence, Pérez, Van Dooren, 2018).

An example of block Kronecker linearization

A strong linearization of

$$
P(\lambda)=\lambda^{5} P_{5}+\lambda^{4} P_{4}+\lambda^{3} P_{3}+\lambda^{2} P_{2}+\lambda P_{1}+P_{0} \in \mathbb{F}[\lambda]^{p \times m}
$$

is the following block Kronecker pencil

$$
C_{K}(\lambda)=\left[\begin{array}{ccccc}
\lambda P_{5} & \lambda P_{4} & \lambda P_{3} & -I_{p} & 0 \\
0 & 0 & \lambda P_{2} & \lambda I_{p} & -I_{p} \\
0 & 0 & \lambda P_{1}+P_{0} & 0 & \lambda I_{p} \\
-I_{m} & \lambda I_{m} & 0 & 0 & 0 \\
0 & -I_{m} & \lambda I_{m} & 0 & 0
\end{array}\right]
$$

The "yellow" submatrix is unimodular. This is general!!

- Block Kronecker linearizations (D, Lawrence, Pérez, Van Dooren, 2018) are a wide infinite family of strong linearizations of polynomial matrices that include among many others the Fiedler linearizations (Fiedler, 2003) modulo permutations.
- Moreover, they have favorable structured backward error properties
when are used for solving numerically polynomial eigenvalue problems
(D, Lawrence, Pérez, Van Dooren, 2018).

An example of block Kronecker linearization

A strong linearization of

$$
P(\lambda)=\lambda^{5} P_{5}+\lambda^{4} P_{4}+\lambda^{3} P_{3}+\lambda^{2} P_{2}+\lambda P_{1}+P_{0} \in \mathbb{F}[\lambda]^{p \times m}
$$

is the following block Kronecker pencil

$$
C_{K}(\lambda)=\left[\begin{array}{ccccc}
\lambda P_{5} & \lambda P_{4} & \lambda P_{3} & -I_{p} & 0 \\
0 & 0 & \lambda P_{2} & \lambda I_{p} & -I_{p} \\
0 & 0 & \lambda P_{1}+P_{0} & 0 & \lambda I_{p} \\
-I_{m} & \lambda I_{m} & 0 & 0 & 0 \\
0 & -I_{m} & \lambda I_{m} & 0 & 0
\end{array}\right]
$$

The "yellow" submatrix is unimodular. This is general!!

- Block Kronecker linearizations (D, Lawrence, Pérez, Van Dooren, 2018) are a wide infinite family of strong linearizations of polynomial matrices that include among many others the Fiedler linearizations (Fiedler, 2003) modulo permutations.
- Moreover, they have favorable structured backward error properties when are used for solving numerically polynomial eigenvalue problems (D, Lawrence, Pérez, Van Dooren, 2018).

Two fundamental auxiliary polynomial matrices in the rest of the talk

$$
\begin{aligned}
L_{k}(\lambda) & :=\left[\begin{array}{ccccc}
-1 & \lambda & & & \\
& -1 & \lambda & & \\
& & \ddots & \ddots & \\
& & & -1 & \lambda
\end{array}\right] \in \mathbb{F}[\lambda]^{k \times(k+1)}, \\
\Lambda_{k}(\lambda)^{T} & :=\left[\begin{array}{lllll}
\lambda^{k} & \lambda^{k-1} & \cdots & \lambda & 1
\end{array}\right] \in \mathbb{F}[\lambda]^{1 \times(k+1)},
\end{aligned}
$$

and their Kronecker products by identities

Two fundamental auxiliary polynomial matrices in the rest of the talk

$$
\begin{aligned}
L_{k}(\lambda) & :=\left[\begin{array}{ccccc}
-1 & \lambda & & & \\
& -1 & \lambda & & \\
& & \ddots & \ddots & \\
& & & -1 & \lambda
\end{array}\right] \in \mathbb{F}[\lambda]^{k \times(k+1)}, \\
\Lambda_{k}(\lambda)^{T} & :=\left[\begin{array}{lllll}
\lambda^{k} & \lambda^{k-1} & \cdots & \lambda & 1
\end{array}\right] \in \mathbb{F}[\lambda]^{1 \times(k+1)},
\end{aligned}
$$

and their Kronecker products by identities

$$
\begin{aligned}
L_{k}(\lambda) \otimes I_{n} & :=\left[\begin{array}{ccccc}
-I_{n} & \lambda I_{n} & & & \\
& -I_{n} & \lambda I_{n} & & \\
& & \ddots & \ddots & \\
& & & -I_{n} & \lambda I_{n}
\end{array}\right] \in \mathbb{F}[\lambda]^{n k \times n(k+1)}, \\
\Lambda_{k}(\lambda)^{T} \otimes I_{n} & :=\left[\begin{array}{lllll}
\lambda^{k} I_{n} & \lambda^{k-1} I_{n} & \cdots & \lambda I_{n} & I_{n}
\end{array}\right] \in \mathbb{F}[\lambda]^{n \times n(k+1)} .
\end{aligned}
$$

Definition and key property of Block Kronecker Pencils

Definition

Let $\lambda M_{1}+M_{0}$ be an arbitrary pencil. Then any pencil of the form

$$
C_{K}(\lambda)=\left[\begin{array}{c|c}
\lambda M_{1}+M_{0} & L_{\eta}(\lambda)^{T} \otimes I_{p} \\
\hline L_{\varepsilon}(\lambda) \otimes I_{m} & 0
\end{array}\right] \quad \begin{aligned}
& \}(\eta+1) p \\
& \} \varepsilon m
\end{aligned}
$$

is called a block Kronecker pencil (one-block row and column cases included).
Theorem (Key Theorem of Block Kronecker Pencils) Any block Kronecker pencil $C_{K}(\lambda)$ is a GLR-strong-linearization of the matrix polynomial

Definition and key property of Block Kronecker Pencils

Definition

Let $\lambda M_{1}+M_{0}$ be an arbitrary pencil. Then any pencil of the form

$$
C_{K}(\lambda)=\left[\begin{array}{c|c}
\begin{array}{c|c}
\lambda M_{1}+M_{0} & L_{\eta}(\lambda)^{T} \otimes I_{p} \\
\hline L_{\varepsilon}(\lambda) \otimes I_{m} & 0
\end{array} \underbrace{}_{(\varepsilon+1) m} \quad \begin{array}{l}
\}(\eta+1) p \\
\} \varepsilon m
\end{array} \\
\begin{array}{ll}
\\
\varepsilon m
\end{array}
\end{array}\right.
$$

is called a block Kronecker pencil (one-block row and column cases included).

Theorem (Key Theorem of Block Kronecker Pencils)

Any block Kronecker pencil $C_{K}(\lambda)$ is a GLR-strong-linearization of the matrix polynomial

$$
P(\lambda):=\left(\Lambda_{\eta}(\lambda)^{T} \otimes I_{p}\right)\left(\lambda M_{1}+M_{0}\right)\left(\Lambda_{\varepsilon}(\lambda) \otimes I_{m}\right) \in \mathbb{F}[\lambda]^{p \times m}
$$

Block Kronecker Linearizations are Rosenbrock poly system matrices

$$
C_{K}(\lambda)=\left[\begin{array}{c|c}
\begin{array}{c}
\lambda M_{1}+M_{0} \\
L_{\varepsilon}(\lambda) \otimes I_{m}
\end{array} & \underbrace{L_{\eta}(\lambda)^{T} \otimes I_{p}}_{(\varepsilon+1) m} \\
\hline 0
\end{array}\right] \quad \begin{aligned}
& \}(\eta+1) p \\
& \} \varepsilon m
\end{aligned}
$$

Theorem (Block Kronecker are Rosenbrock system matrices)

Block Kronecker Linearizations are Rosenbrock poly system matrices

$$
\begin{aligned}
& C_{K}(\lambda)=\left[\begin{array}{c|c}
\lambda M_{1}+M_{0} & L_{\eta}(\lambda)^{T} \otimes I_{p} \\
\hline L_{\varepsilon}(\lambda) \otimes I_{m} & 0
\end{array}\right] \quad \begin{array}{l}
\}(\eta+1) p \\
\} \varepsilon m
\end{array} \\
& \underbrace{}_{(\varepsilon+1) m} \underbrace{}_{\eta p}
\end{aligned}
$$

Theorem (Block Kronecker are Rosenbrock system matrices)

- The submatrix $A(\lambda)$ of $C_{K}(\lambda)$ obtained by removing the block-column corresponding to the last block-column of $L_{\varepsilon}(\lambda) \otimes I_{m}$ and the block-row corresponding to the last block-row of $L_{\eta}(\lambda)^{T} \otimes I_{p}$ is unimodular.
- The Schur complement of $A(\lambda)$ in $C_{K}(\lambda)$ is the polynomial matrix
\square

Block Kronecker Linearizations are Rosenbrock poly system matrices

$$
C_{K}(\lambda)=\left[\begin{array}{l|c}
\underbrace{\lambda M_{1}+M_{0}}_{(\varepsilon+1) m} & L_{\eta}(\lambda)^{T} \otimes I_{p} \\
\hline L_{\varepsilon}(\lambda) \otimes I_{m} & 0
\end{array}\right] \quad \begin{aligned}
& \}(\eta+1) p \\
& \} \varepsilon m
\end{aligned}
$$

Theorem (Block Kronecker are Rosenbrock system matrices)

- The submatrix $A(\lambda)$ of $C_{K}(\lambda)$ obtained by removing the block-column corresponding to the last block-column of $L_{\varepsilon}(\lambda) \otimes I_{m}$ and the block-row corresponding to the last block-row of $L_{\eta}(\lambda)^{T} \otimes I_{p}$ is unimodular.
- The Schur complement of $A(\lambda)$ in $C_{K}(\lambda)$ is the polynomial matrix

$$
P(\lambda):=\left(\Lambda_{\eta}(\lambda)^{T} \otimes I_{p}\right)\left(\lambda M_{1}+M_{0}\right)\left(\Lambda_{\varepsilon}(\lambda) \otimes I_{m}\right) \in \mathbb{F}[\lambda]^{p \times m} .
$$

Block Kronecker Linearizations are Rosenbrock poly system matrices

$$
\begin{aligned}
& C_{K}(\lambda)=\left[\begin{array}{c|c}
\lambda M_{1}+M_{0} & L_{\eta}(\lambda)^{T} \otimes I_{p} \\
\hline L_{\varepsilon}(\lambda) \otimes I_{m} & 0
\end{array}\right] \quad \begin{array}{c}
\}(\eta+1) p \\
\} \varepsilon m
\end{array} \\
& \underbrace{}_{(\varepsilon+1) m} \underbrace{}_{\eta p}
\end{aligned}
$$

Theorem (Block Kronecker are Rosenbrock system matrices)

- The submatrix $A(\lambda)$ of $C_{K}(\lambda)$ obtained by removing the block-column corresponding to the last block-column of $L_{\varepsilon}(\lambda) \otimes I_{m}$ and the block-row corresponding to the last block-row of $L_{\eta}(\lambda)^{T} \otimes I_{p}$ is unimodular.
- The Schur complement of $A(\lambda)$ in $C_{K}(\lambda)$ is the polynomial matrix

$$
P(\lambda):=\left(\Lambda_{\eta}(\lambda)^{T} \otimes I_{p}\right)\left(\lambda M_{1}+M_{0}\right)\left(\Lambda_{\varepsilon}(\lambda) \otimes I_{m}\right) \in \mathbb{F}[\lambda]^{p \times m} .
$$

Therefore, $C_{K}(\lambda)$ is a $G L R$-linearization of $P(\lambda)$.

Reversals of Block Kronecker are Rosenbrock poly system matrices

$$
\left.\operatorname{rev}_{1} C_{K}(\lambda)=\left[\begin{array}{c|c}
\underbrace{\operatorname{rev}_{1} \lambda M_{1}+M_{0}}_{(\varepsilon+1) m} & \operatorname{rev}_{1} L_{\eta}(\lambda)^{T} \otimes I_{p} \\
\hline \operatorname{rev}_{1} L_{\varepsilon}(\lambda) \otimes I_{m} & \underbrace{}_{\eta p}
\end{array}\right\} \begin{array}{l}
0
\end{array}\right\} \varepsilon m
$$

Theorem (Reversals of Block Kronecker are Rosenbrock system matrices)

Reversals of Block Kronecker are Rosenbrock poly system matrices

$$
\operatorname{rev}_{1} C_{K}(\lambda)=[\underbrace{\operatorname{rev}_{1} \lambda M_{1}+M_{0}}_{(\varepsilon+1) m} \operatorname{rev}_{1} L_{\eta}(\lambda)^{T} \otimes I_{p}] \quad \underbrace{\operatorname{rev}_{1} L_{\varepsilon}(\lambda) \otimes I_{m}}_{\eta p}] \quad\left\{\begin{array}{l}
0
\end{array}\right\} \varepsilon m
$$

Theorem (Reversals of Block Kronecker are Rosenbrock system matrices)

- The submatrix $A_{r}(\lambda)$ of rev ${ }_{1} C_{K}(\lambda)$ obtained by removing the first block-column and the first block-row is unimodular.
- The Schur complement of $A_{r}(\lambda)$ in rev ${ }_{1} C_{K}(\lambda)$ is

Reversals of Block Kronecker are Rosenbrock poly system matrices

$$
\operatorname{rev}_{1} C_{K}(\lambda)=[\underbrace{\operatorname{rev}_{1} \lambda M_{1}+M_{0}}_{(\varepsilon+1) m} \operatorname{rev}_{1} L_{\eta}(\lambda)^{T} \otimes I_{p}] \quad \underbrace{\operatorname{rev}_{1} L_{\varepsilon}(\lambda) \otimes I_{m}}_{\eta p}] \quad\left\{\begin{array}{l}
0
\end{array}\right\} \varepsilon m
$$

Theorem (Reversals of Block Kronecker are Rosenbrock system matrices)

- The submatrix $A_{r}(\lambda)$ of $\operatorname{rev}_{1} C_{K}(\lambda)$ obtained by removing the first block-column and the first block-row is unimodular.
- The Schur complement of $A_{r}(\lambda)$ in $\operatorname{rev}_{1} C_{K}(\lambda)$ is

$$
\operatorname{rev}_{\varepsilon+\eta+1} P(\lambda)
$$

Reversals of Block Kronecker are Rosenbrock poly system matrices

$$
\operatorname{rev}_{1} C_{K}(\lambda)=\left[\begin{array}{l|l}
\underbrace{\operatorname{rev}_{1} \lambda M_{1}+M_{0}}_{(\varepsilon+1) m} & \operatorname{rev}_{1} L_{\eta}(\lambda)^{T} \otimes I_{p} \\
\operatorname{rev}_{1} L_{\varepsilon}(\lambda) \otimes I_{m} & \underbrace{}_{\eta p}
\end{array} \quad \begin{array}{l}
\}(\eta+1) p \\
\} \varepsilon m
\end{array}\right.
$$

Theorem (Reversals of Block Kronecker are Rosenbrock system matrices)

- The submatrix $A_{r}(\lambda)$ of $\operatorname{rev}_{1} C_{K}(\lambda)$ obtained by removing the first block-column and the first block-row is unimodular.
- The Schur complement of $A_{r}(\lambda)$ in $\operatorname{rev}_{1} C_{K}(\lambda)$ is

$$
\operatorname{rev}_{\varepsilon+\eta+1} P(\lambda)
$$

Therefore, $\operatorname{rev}_{1} C_{K}(\lambda)$ is a GLR-linearization of $\operatorname{rev}_{\varepsilon+\eta+1} P(\lambda)$ and $C_{K}(\lambda)$ is a GLR-strong-linearization of $P(\lambda)$.

Outline

0

Rosenbrock Polynomial System Matrices

Gohberg-Lancaster-Rodiman Iinearizations of polynomial matrices
Frobenius companion linearization and Rosenbrock

Comrade companion linearizations and Rosenbrock(5) Block Kronecker linearizations and Rosenbrock
(6) Extended block Kronecker linearizations and Rosenbrock
(7) Two advantages of Rosenbrock's point on view

8 Conclusions

A very wide family of linearizations

Extended block Kronecker linearizations were introduced by Bueno, D, Pérez, Saavedra, and Zykoski in 2018 and they include, among many others,

- all block Kronecker linearizations,
- all Fiedler linearizations (modulo permutations),
- all Generalized Fiedler linearizations (modulo permutations),
- all Generalized Fiedler linearizations with repetition (modulo permutations),
- all the pencils in the canonical basis of the vector space $\mathbb{D L}(P)$ (modulo permutations), since they are Fiedler pencils with repetition (Bueno, Curlett, Furtado, 2014),

They can be (apparently) quite complicated and they are linearizations under some conditions.

A very wide family of linearizations

Extended block Kronecker linearizations were introduced by Bueno, D, Pérez, Saavedra, and Zykoski in 2018 and they include, among many others,

- all block Kronecker linearizations,
- all Fiedler linearizations (modulo permutations),
- all Generalized Fiedler linearizations (modulo permutations),
- all Generalized Fiedler linearizations with renetition (modulo permutations),
- all the pencils in the canonical basis of the vector space $\mathbb{D L}(P)$ (modulo permutations), since they are Fiedler pencils with repetition (Bueno, Curlett, Furtado, 2014),

They can be (apparently) quite complicated and they are linearizations under some conditions.

A very wide family of linearizations

Extended block Kronecker linearizations were introduced by Bueno, D, Pérez, Saavedra, and Zykoski in 2018 and they include, among many others,

- all block Kronecker linearizations,
- all Fiedler linearizations (modulo permutations),
- all Generalized Fiedler linearizations (modulo permutations),
- all Generalized Fiedler linearizations with repetition (modulo permutations),
- all the pencils in the canonical basis of the vector space $\mathbb{D L}(P)$ (modulo permutations), since they are Fiedler pencils with repetition (Bueno, Curlett, Furtado, 2014),

They can be (apparently) quite complicated and they are linearizations under

 some conditions.
A very wide family of linearizations

Extended block Kronecker linearizations were introduced by Bueno, D, Pérez, Saavedra, and Zykoski in 2018 and they include, among many others,

- all block Kronecker linearizations,
- all Fiedler linearizations (modulo permutations),
- all Generalized Fiedler linearizations (modulo permutations),
- all Generalized Fiedler linearizations with repetition (modulo permutations),
- all the nencils in the canonical basis of the vector space $\mathbb{D L}(P)$ (modulo permutations), since they are Fiedler pencils with repetition (Bueno, Curlett, Furtado, 2014),

They can be (apparently) quite complicated and they are linearizations under some conditions.

A very wide family of linearizations

Extended block Kronecker linearizations were introduced by Bueno, D, Pérez, Saavedra, and Zykoski in 2018 and they include, among many others,

- all block Kronecker linearizations,
- all Fiedler linearizations (modulo permutations),
- all Generalized Fiedler linearizations (modulo permutations),
- all Generalized Fiedler linearizations with repetition (modulo permutations),
- all the pencils in the canonical basis of the vector space $\mathbb{D L}(P)$ (modulo permutations), since they are Fiedler pencils with repetition (Bueno, Curlett, Furtado, 2014)

They can be (apparently) quite complicated and they are linearizations under some conditions.

A very wide family of linearizations

Extended block Kronecker linearizations were introduced by Bueno, D, Pérez, Saavedra, and Zykoski in 2018 and they include, among many others,

- all block Kronecker linearizations,
- all Fiedler linearizations (modulo permutations),
- all Generalized Fiedler linearizations (modulo permutations),
- all Generalized Fiedler linearizations with repetition (modulo permutations),
- all the pencils in the canonical basis of the vector space $\mathbb{D L}(P)$ (modulo permutations), since they are Fiedler pencils with repetition (Bueno, Curlett, Furtado, 2014),

They can be (apparently) quite complicated and they are linearizations under some conditions.

A very wide family of linearizations

Extended block Kronecker linearizations were introduced by Bueno, D, Pérez, Saavedra, and Zykoski in 2018 and they include, among many others,

- all block Kronecker linearizations,
- all Fiedler linearizations (modulo permutations),
- all Generalized Fiedler linearizations (modulo permutations),
- all Generalized Fiedler linearizations with repetition (modulo permutations),
- all the pencils in the canonical basis of the vector space $\mathbb{D L}(P)$ (modulo permutations), since they are Fiedler pencils with repetition (Bueno, Curlett, Furtado, 2014),

They can be (apparently) quite complicated and they are linearizations under some conditions.

A very wide family of linearizations

Extended block Kronecker linearizations were introduced by Bueno, D, Pérez, Saavedra, and Zykoski in 2018 and they include, among many others,

- all block Kronecker linearizations,
- all Fiedler linearizations (modulo permutations),
- all Generalized Fiedler linearizations (modulo permutations),
- all Generalized Fiedler linearizations with repetition (modulo permutations),
- all the pencils in the canonical basis of the vector space $\mathbb{D L}(P)$ (modulo permutations), since they are Fiedler pencils with repetition (Bueno, Curlett, Furtado, 2014),
- ...

They can be (apparently) quite complicated and they are linearizations under some conditions.

An example of Extended block Kronecker linearization

Given

$$
P(\lambda)=\lambda^{4} P_{4}+\lambda^{3} P_{3}+\lambda^{2} P_{2}+\lambda P_{1}+P_{0} \in \mathbb{F}[\lambda]^{p \times p},
$$

the following extended block Kronecker pencil is, under some conditions, a GLR-strong-linearization of $P(\lambda)$

$$
C_{E K}(\lambda):=\left[\begin{array}{cccc}
\lambda P_{4}+P_{3} & P_{2} & P_{1} & -P_{4} \\
P_{2} & -\lambda P_{2}+P_{1} & -\lambda P_{1}+P_{0} & \lambda P_{4} \\
-P_{2} & \lambda P_{2}-P_{3} & \lambda P_{3} & 0 \\
-P_{1} & \lambda P_{1} & 0 & 0
\end{array}\right]
$$

The "yellow" submatrix is unimodular if P_{1}, P_{3} and P_{4} are invertible.
To see this note

Observe also that

An example of Extended block Kronecker linearization

Given

$$
P(\lambda)=\lambda^{4} P_{4}+\lambda^{3} P_{3}+\lambda^{2} P_{2}+\lambda P_{1}+P_{0} \in \mathbb{F}[\lambda]^{p \times p}
$$

the following extended block Kronecker pencil is, under some conditions, a GLR-strong-linearization of $P(\lambda)$

$$
C_{E K}(\lambda):=\left[\begin{array}{cccc}
\lambda P_{4}+P_{3} & P_{2} & P_{1} & -P_{4} \\
P_{2} & -\lambda P_{2}+P_{1} & -\lambda P_{1}+P_{0} & \lambda P_{4} \\
-P_{2} & \lambda P_{2}-P_{3} & \lambda P_{3} & 0 \\
-P_{1} & \lambda P_{1} & 0 & 0
\end{array}\right]
$$

The "yellow" su To see this note

Observe also that

An example of Extended block Kronecker linearization

Given

$$
P(\lambda)=\lambda^{4} P_{4}+\lambda^{3} P_{3}+\lambda^{2} P_{2}+\lambda P_{1}+P_{0} \in \mathbb{F}[\lambda]^{p \times p}
$$

the following extended block Kronecker pencil is, under some conditions, a GLR-strong-linearization of $P(\lambda)$

$$
C_{E K}(\lambda):=\left[\begin{array}{cccc}
\lambda P_{4}+P_{3} & P_{2} & P_{1} & -P_{4} \\
P_{2} & -\lambda P_{2}+P_{1} & -\lambda P_{1}+P_{0} & \lambda P_{4} \\
-P_{2} & \lambda P_{2}-P_{3} & \lambda P_{3} & 0 \\
-P_{1} & \lambda P_{1} & 0 & 0
\end{array}\right]
$$

The "yellow" submatrix is unimodular if P_{1}, P_{3} and P_{4} are invertible.
To see this note

Observe also that

An example of Extended block Kronecker linearization

Given

$$
P(\lambda)=\lambda^{4} P_{4}+\lambda^{3} P_{3}+\lambda^{2} P_{2}+\lambda P_{1}+P_{0} \in \mathbb{F}[\lambda]^{p \times p}
$$

the following extended block Kronecker pencil is, under some conditions, a GLR-strong-linearization of $P(\lambda)$

$$
C_{E K}(\lambda):=\left[\begin{array}{cccc}
\lambda P_{4}+P_{3} & P_{2} & P_{1} & -P_{4} \\
P_{2} & -\lambda P_{2}+P_{1} & -\lambda P_{1}+P_{0} & \lambda P_{4} \\
-P_{2} & \lambda P_{2}-P_{3} & \lambda P_{3} & 0 \\
-P_{1} & \lambda P_{1} & 0 & 0
\end{array}\right]
$$

The "yellow" submatrix is unimodular if P_{1}, P_{3} and P_{4} are invertible.
To see this note

$$
\left[\begin{array}{cc}
-P_{2} & \lambda P_{2}-P_{3} \\
-P_{1} & \lambda P_{1}
\end{array}\right]=\left[\begin{array}{cc}
P_{2} & P_{3} \\
P_{1} & 0
\end{array}\right]\left[\begin{array}{cc}
-I & \lambda I \\
0 & -I
\end{array}\right]
$$

Observe also that

An example of Extended block Kronecker linearization

Given

$$
P(\lambda)=\lambda^{4} P_{4}+\lambda^{3} P_{3}+\lambda^{2} P_{2}+\lambda P_{1}+P_{0} \in \mathbb{F}[\lambda]^{p \times p}
$$

the following extended block Kronecker pencil is, under some conditions, a GLR-strong-linearization of $P(\lambda)$

$$
C_{E K}(\lambda):=\left[\begin{array}{cccc}
\lambda P_{4}+P_{3} & P_{2} & P_{1} & -P_{4} \\
P_{2} & -\lambda P_{2}+P_{1} & -\lambda P_{1}+P_{0} & \lambda P_{4} \\
-P_{2} & \lambda P_{2}-P_{3} & \lambda P_{3} & 0 \\
-P_{1} & \lambda P_{1} & 0 & 0
\end{array}\right]
$$

The "yellow" submatrix is unimodular if P_{1}, P_{3} and P_{4} are invertible.
To see this note

$$
\left[\begin{array}{cc}
-P_{2} & \lambda P_{2}-P_{3} \\
-P_{1} & \lambda P_{1}
\end{array}\right]=\left[\begin{array}{cc}
P_{2} & P_{3} \\
P_{1} & 0
\end{array}\right]\left[\begin{array}{cc}
-I & \lambda I \\
0 & -I
\end{array}\right]
$$

Observe also that

$$
\left[\begin{array}{ccc}
-P_{2} & \lambda P_{2}-P_{3} & \lambda P_{3} \\
-P_{1} & \lambda P_{1} & 0
\end{array}\right]=\left[\begin{array}{cc}
P_{2} & P_{3} \\
P_{1} & 0
\end{array}\right]\left[\begin{array}{ccc}
-I & \lambda I & 0 \\
0 & -I & \lambda I
\end{array}\right]
$$

Definition and key property of Extended Block Kronecker Pencils

Definition

Let $\lambda M_{1}+M_{0}$ be an arbitrary pencil and $Y \in \mathbb{F}^{\varepsilon m \times \varepsilon m}, Z \in \mathbb{F}^{\eta p \times \eta p}$ be arbitrary constant matrices. Then any pencil of the form

$$
C_{E K}(\lambda)=\left[\begin{array}{c|c}
\lambda M_{1}+M_{0} & \left(Z\left(L_{\eta}(\lambda) \otimes I_{p}\right)\right)^{T} \\
\hline Y\left(L_{\varepsilon}(\lambda) \otimes I_{m}\right) & 0
\end{array}\right]
$$

is called a Extended block Kronecker pencil (one-block row and column cases included).

Theorem (Key Theorem of Extended Block Kronecker Pencils)

Any Extended block Kronecker pencil $C_{E K}(\lambda)$ with Y and Z invertible is a GLR-strong-linearization of the matrix polynomial

Definition and key property of Extended Block Kronecker Pencils

Definition

Let $\lambda M_{1}+M_{0}$ be an arbitrary pencil and $Y \in \mathbb{F}^{\varepsilon m \times \varepsilon m}, Z \in \mathbb{F}^{\eta p \times \eta p}$ be arbitrary constant matrices. Then any pencil of the form

$$
C_{E K}(\lambda)=\left[\begin{array}{c|c}
\lambda M_{1}+M_{0} & \left(Z\left(L_{\eta}(\lambda) \otimes I_{p}\right)\right)^{T} \\
\hline Y\left(L_{\varepsilon}(\lambda) \otimes I_{m}\right) & 0
\end{array}\right],
$$

is called a Extended block Kronecker pencil (one-block row and column cases included).

Theorem (Key Theorem of Extended Block Kronecker Pencils)

Any Extended block Kronecker pencil $C_{E K}(\lambda)$ with Y and Z invertible is a GLR-strong-linearization of the matrix polynomial

$$
P(\lambda):=\left(\Lambda_{\eta}(\lambda)^{T} \otimes I_{p}\right)\left(\lambda M_{1}+M_{0}\right)\left(\Lambda_{\varepsilon}(\lambda) \otimes I_{m}\right) \in \mathbb{F}[\lambda]^{p \times m} .
$$

Extended Block Kronecker Lins are Rosenbrock poly system matrices

$$
C_{E K}(\lambda)=\left[\begin{array}{c|c}
\lambda M_{1}+M_{0} & \left(Z\left(L_{\eta}(\lambda) \otimes I_{p}\right)\right)^{T} \\
\hline Y\left(L_{\varepsilon}(\lambda) \otimes I_{m}\right) & 0
\end{array}\right]
$$

Theorem (Extended Block Kronecker are Rosenbrock system matrices)

- The submatrix $A(\lambda)$ of $C_{E K}(\lambda)$ obtained by removing the block-column corresponding to the last block-column of $L_{\varepsilon}(\lambda) \otimes I_{m}$ and the block-row corresponding to the last block-row of $L_{\eta}(\lambda)^{T} \otimes I_{p}$ is unimodular.
- The Schur complement of $A(\lambda)$ in $C_{E K}(\lambda)$ is the polynomial matrix

$$
P(\lambda):=\left(\Lambda_{\eta}(\lambda)^{T} \otimes I_{p}\right)\left(\lambda M_{1}+M_{0}\right)\left(\Lambda_{\varepsilon}(\lambda) \otimes I_{m}\right) \in \mathbb{F}[\lambda]^{p \times m} .
$$

Therefore, $C_{E K}(\lambda)$ is a GLR-linearization of $P(\lambda)$.

Reversals of Extended Block Kronecker Lins are Rosenbrock poly

system matrices

$$
\operatorname{rev}_{1} C_{E K}(\lambda)=\left[\begin{array}{c|c}
\operatorname{rev}_{1} \lambda M_{1}+M_{0} & \operatorname{rev}_{1}\left(Z\left(L_{\eta}(\lambda) \otimes I_{p}\right)\right)^{T} \\
\hline \operatorname{rev}_{1} Y\left(L_{\varepsilon}(\lambda) \otimes I_{m}\right) & 0
\end{array}\right],
$$

Theorem (Reversals of Extended Block Kronecker are Rosenbrock system matrices)

- The submatrix $A_{r}(\lambda)$ of rev ${ }_{1} C_{E K}(\lambda)$ obtained by removing the first block-column and the first block-row is unimodular.
- The Schur complement of $A_{r}(\lambda)$ in $\operatorname{rev}{ }_{1} C_{E K}(\lambda)$ is

$$
\operatorname{rev}_{\varepsilon+\eta+1} P(\lambda)
$$

Therefore, $\operatorname{rev}_{1} C_{E K}(\lambda)$ is a GLR-linearization of $\operatorname{rev}_{\varepsilon+\eta+1} P(\lambda)$ and $C_{E K}(\lambda)$ is a GLR-strong-linearization of $P(\lambda)$.

Outline

(1)

Rosenbrock Polynomial System Matrices

Gohberg-Lancaster-Rodman linearizations of polynomial matricesFrobenius companion linearization and RosenbrockComrade companion Iinearizations and RosenbrockBlock Kronecker linearizations and RosenbrockExtended block Kronecker linearizations and Rosenbrock
(7) Two advantages of Rosenbrock's point on view

8 Conclusions

Universal recovery of eigenvectors

Once a linearization of a regular polynomial matrix $P(\lambda)$ is viewed as a linear polynomial system matrix

$$
L(\lambda)=\left[\begin{array}{cc}
A(\lambda) & B(\lambda) \\
-C(\lambda) & D(\lambda)
\end{array}\right],
$$

with $A(\lambda)$ unimodular and

$$
P(\lambda)=D(\lambda)+C(\lambda) A(\lambda)^{-1} B(\lambda),
$$

the eigenvectors of an eigenvalue λ_{0} can be recovered always in the same way.

Theorem (Universal recovery of eigenvectors)

Universal recovery of eigenvectors

Once a linearization of a regular polynomial matrix $P(\lambda)$ is viewed as a linear polynomial system matrix

$$
L(\lambda)=\left[\begin{array}{cc}
A(\lambda) & B(\lambda) \\
-C(\lambda) & D(\lambda)
\end{array}\right]
$$

with $A(\lambda)$ unimodular and

$$
P(\lambda)=D(\lambda)+C(\lambda) A(\lambda)^{-1} B(\lambda),
$$

the eigenvectors of an eigenvalue λ_{0} can be recovered always in the same way.

Theorem (Universal recovery of eigenvectors)

$$
\left[\begin{array}{cc}
A\left(\lambda_{0}\right) & B\left(\lambda_{0}\right) \\
-C\left(\lambda_{0}\right) & D\left(\lambda_{0}\right)
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=0 \Longleftrightarrow\left\{\begin{array}{l}
x_{1}=-A\left(\lambda_{0}\right)^{-1} B\left(\lambda_{0}\right) x_{2} \\
P\left(\lambda_{0}\right) x_{2}=0
\end{array}\right.
$$

Universal construction of linearizations of rational matrices

- Suppose that a rational matrix $R(\lambda)$ is expressed as

$$
R(\lambda)=P(\lambda)+R_{s p}(\lambda)
$$

with $P(\lambda)$ its polynomial part and $R_{s p}(\lambda)$ its strictly proper part.

- Assume that we have a linearization of $P(\lambda)$ that is a polynomial system matrix

with $A(\lambda)$ unimodular,
- and a $R_{\mathrm{s} r}(\lambda)=C_{\mathrm{e}}\left(\lambda E_{\mathrm{c}}-A_{\mathrm{s}}\right)^{-1} B_{\mathrm{s}}$ minimal state-space realization of the strictly proper part.

Universal construction of linearizations of rational matrices

- Suppose that a rational matrix $R(\lambda)$ is expressed as

$$
R(\lambda)=P(\lambda)+R_{s p}(\lambda)
$$

with $P(\lambda)$ its polynomial part and $R_{s p}(\lambda)$ its strictly proper part.

- Assume that we have a linearization of $P(\lambda)$ that is a polynomial system matrix

$$
L(\lambda)=\left[\begin{array}{cc}
A(\lambda) & B(\lambda) \\
-C(\lambda) & D(\lambda)
\end{array}\right]
$$

with $A(\lambda)$ unimodular,
minimal state-space realization of the
strictly proper part.

Universal construction of linearizations of rational matrices

- Suppose that a rational matrix $R(\lambda)$ is expressed as

$$
R(\lambda)=P(\lambda)+R_{s p}(\lambda)
$$

with $P(\lambda)$ its polynomial part and $R_{s p}(\lambda)$ its strictly proper part.

- Assume that we have a linearization of $P(\lambda)$ that is a polynomial system matrix

$$
L(\lambda)=\left[\begin{array}{cc}
A(\lambda) & B(\lambda) \\
-C(\lambda) & D(\lambda)
\end{array}\right]
$$

with $A(\lambda)$ unimodular,

- and a $R_{s p}(\lambda)=C_{s}\left(\lambda E_{s}-A_{s}\right)^{-1} B_{s}$ minimal state-space realization of the strictly proper part.
- Then,

Universal construction of linearizations of rational matrices

- Suppose that a rational matrix $R(\lambda)$ is expressed as

$$
R(\lambda)=P(\lambda)+R_{s p}(\lambda)
$$

with $P(\lambda)$ its polynomial part and $R_{s p}(\lambda)$ its strictly proper part.

- Assume that we have a linearization of $P(\lambda)$ that is a polynomial system matrix

$$
L(\lambda)=\left[\begin{array}{cc}
A(\lambda) & B(\lambda) \\
-C(\lambda) & D(\lambda)
\end{array}\right]
$$

with $A(\lambda)$ unimodular,

- and a $R_{s p}(\lambda)=C_{s}\left(\lambda E_{s}-A_{s}\right)^{-1} B_{s}$ minimal state-space realization of the strictly proper part.
- Then,

$$
\left[\begin{array}{cc|c}
\left(\lambda E_{s}-A_{s}\right) & 0 & B_{s} \\
0 & A(\lambda) & B(\lambda) \\
\hline-C_{s} & -C(\lambda) & D(\lambda)
\end{array}\right]
$$

is a linear minimal polynomial system matrix of $R(\lambda)$ and, so, a linearization of $P(\lambda)$.

Outline

(1)

Rosenbrock Polynomial System Matrices

(2)

Gohberg-Lancaster-Rodman linearizations of polynomial matrices

(3) Frobenius companion linearization and Rosenbrock
(Comrade companion Iinearizations and Rosenbrock
(5) Block Kronecker linearizations and RosenbrockExtended block Kronecker linearizations and Rosenbrock
(7) Two advantages of Rosenbrock's point on view

8 Conclusions

Conclusions

- When working with a pencil that might be a linearization of a polynomial matrix, one should look for unimodular submatrices of this pencil.
- This may lead to easy proofs that such a pencil is a linearization, as well as to other advantages.
- This idea links Rosenbrock's Polynomial system matrices (introduced in 1970) to the more modern definition of GLR-linearizations of polynomial matrices and to many specific families of such linearizations.
- Rosenbrock's results included in his classical book "State-Space and Multivariable Theory" (1970) have received very limited attention recently by the Linear Algebra community.
- I hope this talk will attract more attention on Rosenbrock's work and that it serves as a small tribute to Rosenbrock from the Linear Algebra community.
- The results in this talk can be easily extended to many families of modern ℓ-ifications of polynomial matrices.

Conclusions

- When working with a pencil that might be a linearization of a polynomial matrix, one should look for unimodular submatrices of this pencil.
- This may lead to easy proofs that such a pencil is a linearization, as well as to other advantages.
- This idea links Rosenbrock's Polynomial system matrices (introduced in 1970) to the more modern definition of GLR-linearizations of polynomial matrices and to many specific families of such linearizations.
- Rosenbrock's results included in his classical book "State-Space and Multivariable Theory" (1970) have received very limited attention recently by the Linear Algebra community.
- I hope this talk will attract more attention on Rosenbrock's work and that it serves as a small tribute to Rosenbrock from the Linear Algebra community.
- The results in this talk can be easily extended to many families of modern ℓ-ifications of polynomial matrices.

Conclusions

- When working with a pencil that might be a linearization of a polynomial matrix, one should look for unimodular submatrices of this pencil.
- This may lead to easy proofs that such a pencil is a linearization, as well as to other advantages.
- This idea links Rosenbrock's Polynomial system matrices (introduced in 1970) to the more modern definition of GLR-linearizations of polynomial matrices and to many specific families of such linearizations.
- Rosenbrock's results included in his classical book "State-Space and Multivariable Theory" (1970) have received very limited attention recently by the Linear Algebra community.
- I hope this talk will attract more attention on Rosenbrock's work and that it serves as a small tribute to Rosenbrock from the Linear Algebra community.
- The results in this talk can be easily extended to many families of modern ℓ-ifications of polynomial matrices.

Conclusions

- When working with a pencil that might be a linearization of a polynomial matrix, one should look for unimodular submatrices of this pencil.
- This may lead to easy proofs that such a pencil is a linearization, as well as to other advantages.
- This idea links Rosenbrock's Polynomial system matrices (introduced in 1970) to the more modern definition of GLR-linearizations of polynomial matrices and to many specific families of such linearizations.
- Rosenbrock's results included in his classical book "State-Space and Multivariable Theory" (1970) have received very limited attention recently by the Linear Algebra community.
- I hope this talk will attract more attention on Rosenbrock's work and that it serves as a small tribute to Rosenbrock from the Linear Algebra community.
- The results in this talk can be easily extended to many families of modern ℓ-ifications of polynomial matrices.

Conclusions

- When working with a pencil that might be a linearization of a polynomial matrix, one should look for unimodular submatrices of this pencil.
- This may lead to easy proofs that such a pencil is a linearization, as well as to other advantages.
- This idea links Rosenbrock's Polynomial system matrices (introduced in 1970) to the more modern definition of GLR-linearizations of polynomial matrices and to many specific families of such linearizations.
- Rosenbrock's results included in his classical book "State-Space and Multivariable Theory" (1970) have received very limited attention recently by the Linear Algebra community.
- I hope this talk will attract more attention on Rosenbrock's work and that it serves as a small tribute to Rosenbrock from the Linear Algebra community.

> The results in this talk can be easily extended to many families of modern ℓ-ifications of polynomial matrices.

Conclusions

- When working with a pencil that might be a linearization of a polynomial matrix, one should look for unimodular submatrices of this pencil.
- This may lead to easy proofs that such a pencil is a linearization, as well as to other advantages.
- This idea links Rosenbrock's Polynomial system matrices (introduced in 1970) to the more modern definition of GLR-linearizations of polynomial matrices and to many specific families of such linearizations.
- Rosenbrock's results included in his classical book "State-Space and Multivariable Theory" (1970) have received very limited attention recently by the Linear Algebra community.
- I hope this talk will attract more attention on Rosenbrock's work and that it serves as a small tribute to Rosenbrock from the Linear Algebra community.
- The results in this talk can be easily extended to many families of modern ℓ-ifications of polynomial matrices.

