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Preliminaries: Balancing matrices for computing eigenvalues (I)

It is a well-known pre-processing of a non-normal matrix A before
computing its eigenvalues with the QR algorithm, or with any other
backward stable algorithm, for improving the accuracy of the computed
eigenvalues.

It is performed by default by command eig in MATLAB.

Given

A ∈ Cn×n
z→ B = D−1AD

with D positive diagonal matrix whose entries are integer powers of 2,
(no rounding errors in computing B) and

∥coli(B)∥2 ≈ ∥rowi(B)∥2, i = 1,2, . . . ,n.

The eigenvalue algorithm is applied to B!!

LAPACK uses ∥ ⋅ ∥1, we will use ∥ ⋅ ∥2 throughout the talk for vectors and
∥ ⋅ ∥F for matrices. These choices have better “theoretical” properties and
better numerical properties (James, Langou, Lowery, 2014).
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Preliminaries: Balancing matrices for computing eigenvalues (II)

The basic algorithm for balancing is a cyclic iterative procedure
proposed by Osborne (1960) and by Parlett-Reinsch (1969, Dii integer
power of 2) that starts with D = In, updates one diagonal entry of D and
one row and one column of A in each step making their norms equal:

f =

¿

Á
ÁÀ
∥rowi(A)∥2
∥coli(A)∥2

dii ←Ð f ⋅ dii

coli(A)←Ð f ⋅ coli(A)

rowi(A)←Ð rowi(A)/f

If A is irreducible, then the algorithm converges to B = D−1AD such that

∥rowi(B)∥2 = ∥coli(B)∥2, i = 1, . . . ,n ⇐⇒ ∥B∥F = inf
D diagonal

∥D−1AD∥F

These equalities become approximate if the entries of D are restricted to
be integer powers of 2,

in this case, the process converges in general quickly and costs O(n2
)

flops, which is negligible with respect to O(n3
) cost of QR.
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Why does balancing improve often the accuracy of computed e-values?

The computed eigenvalues λ̂A of A ∈ Cn×n, via a backward stable
algorithm, are the exact ones of A + E with ∥E∥F = O(ε)∥A∥F, with
ε ≈ 10−16 the unit roundoff of the computer.

Thus, up to O(ε2
),

∣λ̂A − λ∣ ≤ O(ε)
∥y∥2 ∥x∥2
∣y∗x∣

∥A∥F ,

where, λ is a exact simple eigenvalue of A, Ax = λx and y∗A = λy∗, and
∥y∥2 ∥x∥2

∣y∗x∣ is the Wilkinson-eigenvalue condition number.

If we compute instead the eigenvalues λ̂B of B = D−1AD with the same
exact eigenvalues as A, then

∣λ̂B − λ∣ ≤ O(ε)
∥Dy∥2 ∥D−1x∥2

∣y∗x∣
∥B∥F .

If ∥B∥F < ∥A∥F, one of the factors in the error bound decreases, but what
happens with the other one?, i.e., with the eigenvalue condition number?
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Why does balancing improve often the accuracy of comput e-values? (2)

The condition number also “often decreases”.

An explanation for this is that if A ∈ Cn×n is diagonalizable with
eigenvalues λ1, λ2, . . . , λn, then

∥diag(λ1, λ2, . . . , λn)∥F = min
S invertible

∥S−1AS∥F

is attained at
S−1AS = U diag(λ1, λ2, . . . , λn)U∗,

with U an arbitrary unitary matrix, which have the smallest possible
eigenvalue condition numbers all equal to 1.

Thus, balancing will likely improve the eigenvalue condition numbers,
since it solves the same minimization problem but restricted to diagonal
invertible matrices.

It is known that there are matrices for which “balancing” yields larger
errors of computed eigenvalues than “no-balancing”. See for instance
Watkins (2006).
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Some comments on regular matrix pencils

We consider first λB − A, with A,B ∈ Cn×n and det(λB − A) not identically zero,
i.e., the pencil is regular or the generalized eigenvalue problem is regular.

Note that the eigenvalues are now invariant under strict equivalence

λB − AÐ→ Tℓ(λB − A)Tr = λTℓBTr − TℓBTr,

with Tℓ,Tr ∈ Cn×n invertible (and different to each other).

Thus, balancing or diagonally scaling a pencil, is

λB − AÐ→ λDℓBDr −DℓADr =∶ λ B̃ − Ã

with Dℓ,Dr nonsingular positive diagonal matrices whose entries are
integer powers of 2 before applying the QZ algorithm.

Observe that the purpose of such diagonal scalings cannot be simply to
decrease the norms of DℓBDr and of DℓADr since these norms can be
made arbitrarily small without changing the eigenvalues, just by
multiplying the pencil by a small number.
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Available methods for “balancing” or “diagonally scaling” regular pencils

A,B ∈ Cn×n. λB − AÐ→ λDℓBDr −DℓADr =∶ λ B̃ − Ã

Ward’s Method (1981) tries to get Ã and B̃ so that the magnitude of each
of their elements is as close to 1 as possible.

Available in LAPACK.
It is well known that it can severely deteriorate the accuracy of the
computed eigenvalues of some pencils with entries of strongly
varying order of magnitude (Kressner (2004), Lemonnier-Van
Dooren (2006)).

Lemonnier-Van Dooren’s (LVD) method (2006) gets

∥colj(Ã)∥22 + ∥colj(B̃)∥22 ≈ ∥rowi(Ã)∥22 + ∥rowi(B̃)∥22 ≈ γ
2,

for i, j = 1, . . . ,n, and some constant γ whose value is irrelevant.

MATLAB does not include any built-in option for scaling pencils.
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Why does LVD method improve often the accuracy of computed eigenvalues? (1)

Due to the fact that pencils may have “infinite eigenvalues” and that
eigenvalues are computed by QZ as ratios of numbers, the “right way” to
study the eigenvalue condition numbers of pencils is via the
homogeneous formulation (Stewart-Sun, 1990), i.e. A,B ∈ Cn×n,

λB − A←→ αB − βA ,

where each eigenvalue (α,β) ≠ (0,0) satisfying det(αB − β A) = 0
becomes a line ⟨α,β⟩ through the origin in C2 (λ = α/β and∞←→ ⟨1,0⟩)

and the diference between two eigenvalues is measured in terms of the
chordal metric:

χ(⟨α,β⟩, ⟨γ, δ⟩) =
∣αδ − βγ∣

√

∣α∣2 + ∣β∣2
√

∣γ∣2 + ∣δ∣2

Also
sin θ(⟨α,β⟩, ⟨γ, δ⟩) = χ(⟨α,β⟩, ⟨γ, δ⟩)
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Why does LVD method improve often the accuracy of computed eigenvalues? (2)

The eigenvalues ⟨α̂, β̂⟩ of αB − βA computed via a backward stable algorithm as
QZ are the exact ones of α (B + F) − β(A + E) with ∥F∥F = O(ε)∥B∥F and
∥E∥F = O(ε)∥A∥F.

Thus, using Stewart-Sun homogeneous condition numbers, up to O(ε2
),

χ(⟨α̂, β̂⟩, ⟨α,β⟩) ≤ O(ε)
∥y∥2 ∥x∥2

√

∣y∗Ax∣2 + ∣y∗Bx∣2

√

∥A∥2F + ∥B∥
2
F,

where ⟨α,β⟩ is an exact simple eigenvalue of αB − βA, (αB − βA)x = 0 and
y∗(αB − βA) = 0.

Observe invariance under multiplying the pencil by a number.
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Why does LVD method improve often the accuracy of computed eigenvalues? (3)

Lemonnier-Van Dooren (2006) proved that in the diagonalizable case the pencils

α B̃ − β Ã ∶= αTℓBTr − β TℓATr

that solve the minimization problem

min
det Tℓ.det Tr=1

∥TℓATr∥
2
F + ∥TℓBTr∥

2
F,

where Tℓ and Tr are arbitrary nonsingular matrices, satisfy

∥̃y∥2 ∥̃x∥2
√

∣̃y∗Ãx̃∣2 + ∣̃y∗B̃x̃∣2

√

∥Ã∥2F + ∥B̃∥
2
F ≤
√

n.

√

nÐ→
√

2 in the spectral norm.

The minimizers are the so-called standardized normal pencils satisfying

αB̂ − βÂ = Uℓ(αΛB − βΛA)Ur, ∣ΛB∣
2
+ ∣ΛA∣

2
= c2In,

where ΛB and ΛA are diagonal and Uℓ,Ur are unitary.
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α B̃ − β Ã ∶= αTℓBTr − β TℓATr

that solve the minimization problem

min
det Tℓ.det Tr=1

∥TℓATr∥
2
F + ∥TℓBTr∥

2
F,

where Tℓ and Tr are arbitrary nonsingular matrices, satisfy

∥̃y∥2 ∥̃x∥2
√
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Why does LVD method improve often the accuracy of computed eigenvalues? (4)

Moreover, Lemonnier-Van Dooren proved that the same minimization over
positive diagonal matrices Dℓ,Dr

min
detDℓ.detDr=1

∥DℓADr∥
2
F + ∥DℓBDr∥

2
F,

has as solution a pencil Ã = DℓADr and B̃ = DℓBDr such that

∥colj(Ã)∥22 + ∥colj(B̃)∥22 = ∥rowi(Ã)∥
2
2 + ∥rowi(B̃)∥

2
2 = γ

2,

for i, j = 1, . . . , n, and some constant γ.

Thus, LVD scaling method will likely improve the error of computed eigenvalues
measured in the chordal metric, since it solves the same minimization problem
that makes the errors O(ε) but restricted to diagonal invertible matrices.

These equalities become approximate if the entries of Dℓ and Dr are restricted to
be integer power of 2.

F. M. Dopico (U. Carlos III, Madrid) Diagonal scalings for pencils OSELOT. April 21, 2022 13 / 36



Why does LVD method improve often the accuracy of computed eigenvalues? (4)

Moreover, Lemonnier-Van Dooren proved that the same minimization over
positive diagonal matrices Dℓ,Dr

min
detDℓ.detDr=1

∥DℓADr∥
2
F + ∥DℓBDr∥

2
F,
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has as solution a pencil Ã = DℓADr and B̃ = DℓBDr such that

∥colj(Ã)∥22 + ∥colj(B̃)∥22 = ∥rowi(Ã)∥
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Lemonnier-Van Dooren algorithm for scaling pencils

Since the precise value of the constant γ is not relevant in the error bounds, we
take it equal to 1 and the LVD algorithm for computing the diagonal scalings
starts with Dℓ = Dr = In and consist in alternatively updating the diagonal matrices

Dr ←Ð Dr Dr,up and Dℓ ←Ð Dℓ,up Dℓ

such that

[
A
B
]←Ð [

A
B
]Dr,up and [A B]←Ð Dℓ,up [A B]

have column 2-norms all equal to 1 and row 2-norms all equal to 1, respectively.

If the entries of the diagonal matrices are restricted to be integer powers of 2, the
process converges in general quickly and costs O(n2

) flops, which is negligible
with respect to O(n3

) of QZ.

The theoretical conditions of convergence were not analyzed by LVD.
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Some numerical tests

Next, we illustrate the LVD algorithm with two examples where the
“exact” eigevalues are known, either because we construct the test
pencils starting from the eigenvalues or because we compute them via
MATLAB vpa with 64 decimal digits.

We measure the errors with

c = ∥ [c1 ⋯ cn] ∥2, where ci = χ(⟨α̂i, β̂i⟩, ⟨αi, βi⟩)
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Numerical test 1 illustrates that LVD can be much better than Ward

500 × 500 pencils λT − TD, with T = randn and with
T(1,2 ∶ 500) = 10−kT(1,2 ∶ 500) and T(4 ∶ 500,3) = 10−kT(4 ∶ 500,3), and
D = diag(randi).

corig error QZ applied to original pencil.

cbal error QZ applied to LVD scaled pencil.

cward error QZ applied to Ward scaled pencil.

k corig cbal cward

1 2.61e-13 3.40e-15 8.87e-15
3 1.48e-13 7.59e-15 1.91e-14
5 4.13e-13 8.72e-15 4.56e-09
7 7.16e-14 2.27e-15 3.47e-02
9 3.90e-13 3.01e-15 1.05e+00

11 1.34e-13 7.99e-15 1.08e+00

Ward’s method works very badly in this example, but often works well.

We have not found examples so far where LVD deteriorates the error
with respect to original pencil.
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Numerical test 2 is related to the dynamic behavior of a nuclear power plant

8 × 8 quadratic eigenvalue problem Q(λ) = λ2M + λD +K describing a
simple model for the dynamic behavior of a nuclear plant (Betcke,
Higham, Mehrmann, Schröder, Tisseur, NLEVP collection, 2013).

We solve the problem via QZ applied to first Frobenius companion pencil

λB − A = [
λM +D K
−I λI ]
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Goal for the rest of the talk

To develop a diagonal scaling strategy for arbitrary pencils (regular,
singular, square, rectangular) that converges always and quickly.

As far as we know, this problem has not been considered before for
square singular pencils nor for rectangular pencils.

In the process, we will obtain a much deeper understanding of the
Lemonnier-Van Dooren strategy for regular pencils.
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A new view of Lemmonier-Van Dooren algorithm for regular pencils

A,B ∈ Cn×n. λB − AÐ→ λDℓBDr −DℓADr =∶ λ B̃ − Ã

such
∥colj(Ã)∥22 + ∥colj(B̃)∥22 = ∥rowi(Ã)∥22 + ∥rowi(B̃)∥22 = 1,

for i, j = 1, . . . ,n.

Define the nonnegative matrices

M ∶= ∣A∣○2 + ∣B∣○2, and M̃ ∶= ∣Ã∣○2 + ∣B̃∣○2 = D2
ℓ M D2

r

where ∣X∣ indicates the entry-wise absolute value and X○2 indicates the
entry-wise square.

Thus, the LVD diagonal scaling is equivalent to find positive
diagonal matrices that transform the nonnegative matrix M into a
doubly stochastic matrix M̃.

There are many results in the literature for diagonally scaling a
nonnegative matrix to a matrix with prescribed row and column sums:
Kruithof (1937), Sinkhorn-Knopp (1967), Brualdi (1968), Krupp (1979),
Rothblum-Schneider (1989), ...
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ℓ M D2

r

where ∣X∣ indicates the entry-wise absolute value and X○2 indicates the
entry-wise square.

Thus, the LVD diagonal scaling is equivalent to find positive
diagonal matrices that transform the nonnegative matrix M into a
doubly stochastic matrix M̃.

There are many results in the literature for diagonally scaling a
nonnegative matrix to a matrix with prescribed row and column sums:
Kruithof (1937), Sinkhorn-Knopp (1967), Brualdi (1968), Krupp (1979),
Rothblum-Schneider (1989), ...

F. M. Dopico (U. Carlos III, Madrid) Diagonal scalings for pencils OSELOT. April 21, 2022 20 / 36



Scaling nonnegative matrices

The problem of scaling an entrywise nonnegative m × n matrix M with
diagonal transformations

and prescribed positive vectors r and c for the row and column sums

consists of finding a matrix of the form

S = DM,ℓ M DM,r,

where DM,ℓ ∈ Rm×m and DM,r ∈ Rn×n are positive diagonal matrices

such that
S 1n = r and 1T

m S = cT ,

where 1ℓ ∶= [1, . . . ,1]T ∈ Rℓ for ℓ = n,m,

that is, the sum of the entries of the ith row of S is equal to ri and the
sum of the entries of the jth column of S is equal to cj, for all i, j.

The doubly stochastic scaling problem corresponds to m = n and
r = c = 1n.
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The Sinkhorn-Knopp-like algorithm for scaling a nonnegative M ∈ Rm×n

The problem in the previous slide has a solution if and only if the
following algorithm converges

Initialize: DM,ℓ = Im and DM,r = In

(1) DM,ℓ ←Ð Dℓ,up DM,ℓ and M ←Ð Dℓ,up M, such that the updated
matrix M has row sums equal to r.

(2) DM,r ←Ð DM,r Dr,up and M ←ÐM Dr,up, such that the updated
matrix M has column sums equal to c.

(3) If the row sums of the matrix M obtained in step (2) are far from r,
repeat steps (1) and (2) with such M until an adequate stopping
criterion is satisfied.

If m = n and r = c = 1n, this reduces to the famous Sinkhorn-Knopp
algorithm, which

applied to the nonnegative matrix M ∶= ∣A∣○2 + ∣B∣○2 associated to the
regular pencil λB − A, A,B ∈ Cn×n, computes matrices Dℓ =

√

DM,ℓ and
Dr =

√

DM,r that scale the pencil according to LVD strategy.
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Some classical convergence results for Sinkhorn-Knopp algorithm

There exist well-known results that guarantee the convergence of the
Sinkhorn-Knopp algorithm based on the zero pattern of the matrix.

Theorem (Sinkhorn-Knopp)

If M ∈ Rn×n is a nonnegative matrix, then:

There exists a doubly stochastic matrix S of the form S = DM,ℓ M DM,r,
where DM,ℓ and DM,r are diagonal matrices with positive main diagonals,
if and only if M has total support.

If S exists, then it is unique.

DM,ℓ and DM,r are also unique up to a nonnegative scalar multiple if and
only if M is fully indecomposable.

For other vectors r and c of prescribed row and column sums the
available results are not so clear.
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Reminder: total support and fully indecomposability

Definition

The sequence m1,σ(1),m2,σ(2), . . . ,mn,σ(n), where σ is a permutation of
{1,2,⋯,n}, is called a diagonal of the matrix M ∈ Rn×n.

A nonnegative M ∈ Rn×n is said to have total support if every positive
element of M lies on a positive diagonal.

Definition
A nonnegative matrix M ∈ Rn×n is said to be fully indecomposable if there do
not exist permutation matrices Pℓ and Pr such that PℓMPr can be partitioned
as

PℓMPr = [
M11 M12

0 M22
] ,

where M11 and M22 are square matrices.

Remark (Brualdi, 1980)

A fully indecomposable matrix has total support.
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Example of a matrix without total support

The following matrix has NOT total support

M = [
8 30
2 0 ]

Thus, it cannot be diagonally scaled to a doubly stochastic matrix:

[
s1

s2
] [

8 30
2 0 ] [

t1
t2
] is doubly stochastic⇐⇒

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

s1t1 = 0,
s1t2 = 1/30,
s2t1 = 1/2

and the Sinkhorn-Knopp algorithm does not converge in exact arithmetic,
but, in numerical practice,

[
2−6

2−1] [
8 30
2 0 ] [

1
2] = [

0.1250 0.9375
1.0000 0 ]

is a good result with diagonal scalings whose entries are integer powers of 2.
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Some practical comments

When a pencil λB − AÐ→ λDℓBDr −DℓADr is diagonally scaled with the goal of
improving the accuracy of its computed eigenvalues,

it is essential that the elements of the diagonal matrices are integer powers of 2,
because in this way the scaling does not produce any rounding errors and the
eigenvalues are preserved exactly. Otherwise, the rounding errors would spoil
any potential improvement in the accuracy of the computed eigenvalues.

This implies in practice that we do not need to stop the Sinkhorn-Knopp
algorithm with a very stringent criterion, i.e., we do not need to converge to an
(almost) stochastic matrix.

In our experience, this means that for regular pencils the Sinkhorn-Knopp
algorithm on M ∶= ∣A∣○2 + ∣B∣○2 converges “always in practice” with a relaxed
stopping criterion (for instance, row sums and column sums equal up to a factor
2), even in situations for which the conditions in previous theorem are not
satisfied.

This is no longer true for SINGULAR square pencils, in particular, when they are
sparse.
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A first approach for scaling rectangular pencils

A first idea is to extend LVD method with obvious restrictions as follows

A,B ∈ Cm×n. λB − AÐ→ λDℓBDr −DℓADr =∶ λ B̃ − Ã

such that

∥colj(Ã)∥22 + ∥colj(B̃)∥22 = m, ∥rowi(Ã)∥22 + ∥rowi(B̃)∥22 = n,

for i = 1, . . . ,m and j = 1, . . . ,n,

which can be solved by the Sinkhorn-Knopp-like algorithm applied to
M = ∣A∣○2 + ∣B∣○2 ∈ Rm×n with r = n1m and c = m1n.

This is equivalent to solving the following minimization problem over
positive diagonal matrices

inf
detD2

ℓ
=cℓ,detD2

r=cr

(∥DℓADr∥
2
F + ∥DℓBDr∥

2
F)

This strategy works well in practice for dense rectangular pencils but we
have observed that the Sinkhorn-Knopp-like algorithm (with a relaxed
stopping criterion) may not converge for some sparse rectangular
pencils, for which this scaling problem does not have solution.
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∥colj(Ã)∥22 + ∥colj(B̃)∥22 = m, ∥rowi(Ã)∥22 + ∥rowi(B̃)∥22 = n,
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∥colj(Ã)∥22 + ∥colj(B̃)∥22 = m, ∥rowi(Ã)∥22 + ∥rowi(B̃)∥22 = n,
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Numerical test 3 illustrates Sinkhorn-Knopp-like for DENSE rectangular pencils

150 × 450 pencils with 149 eigenvalues, matrices M = ∣A∣○2 + ∣B∣○2 very
badly scaled in a nontrivial way (i.e., not constructed multiplying by
diagonals).

We apply the staircase algorithm to the original pencil (corig) and to the
scaled one via Sinkhorn-Knopp-like algorithm (cbal).

We measure the “scaling” of M with qS(M) ∶=max{maxi ri(M)
mini ri(M)

, maxi ci(M)
mini ci(M)

} .

corig cbal qS(Morig) qS(Mscal) steps
9.96e-15 9.96e-15 2.29e+00 2.29e+00 2
1.95e-14 1.08e-14 4.94e+03 7.77e+00 4
2.62e-13 1.06e-14 1.22e+08 9.66e+00 7
2.27e-12 1.29e-14 4.32e+11 1.06e+01 9
5.61e-09 1.97e-13 1.36e+16 1.17e+01 12
1.51e-05 1.20e-13 8.19e+23 1.07e+01 14
6.03e-05 1.08e-12 3.51e+22 1.27e+01 21
5.49e-02 1.72e-11 2.39e+29 1.17e+01 16
9.76e-02 8.40e-12 1.24e+31 1.32e+01 24
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What to do when the Sinkhorn-Knopp-like algorithm on M does not converge?

We regularize the scaling problem

A,B ∈ Cm×n, λB − AÐ→ λDℓBDr −DℓADr =∶ λ B̃ − Ã,

by considering the following constrained minimization problem over
positive diagonal matrices Dℓ and Dr:

inf
detD2

ℓ
detD2

r=c
2(∥DℓADr∥

2
F + ∥DℓBDr∥

2
F) + α

2
(

1
m2
∥Dℓ∥

4
F +

1
n2
∥Dr∥

4
F),

for some real number c > 0 and a regularization parameter α ≠ 0, where
the regularization term and the constraint penalize solutions with
ill-conditioned Dℓ and Dr.

It can be proved that this minimization problem has always a unique
solution (D̃ℓ, D̃r) that can be easily computed with the Sinkhorn-Knopp
algorithm.
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Regularization ≡ Sinkhorn-Knopp on an extended matrix

If M = ∣A∣○2 + ∣B∣○2, then we define

M○2α =
⎡
⎢
⎢
⎢
⎣

α2

m2 1m1T
m M

MT α2

n2 1n1T
n

⎤
⎥
⎥
⎥
⎦

.

We have proved that if α ≠ 0 and M ≠ 0, then

the nonnegative matrix M○2α is fully indecomposable,

it can be always diagonally scaled (multiplying by a unique diagonal
matrix on the left and on the right) to have any prescribed common
positive vector v for the row and column sums, and

that the regularized minimization problem in the previous slide has as
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Additional comments on regularization

In the case of rectangular pencils, we have observed that scalings with
row sums of M closer to each other and with column sums of M closer to
each other are obtained by scaling M○2α with the Sinkhorn-Knopp-like
algorithm with

v ∶= [
n1m

m1n
]

as prescribed common vector for the row and column sums, instead of
with v = 1m+n.

The selection of the regularization parameter is always an issue in any
regularization method.

In our case, we recommend to try first “Sinkhorn-Knopp-like” (with
relaxed stopping criterion) directly on M (with prescribed equal row sums
and equal column sums) and if it does not converge in ≈max{m,n}/10
iterations move to the regularized method with α ≈ 0.5 (assuming
∥M∥F ≈ 1).

We have not observed that the use of very small values of α have a
relevant impact on the accuracy of the computed eigenvalues.
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Numerical test 4 illustrates regularized method for SPARSE rectangular pencils

700 × 450 pencils with 148 eigenvalues, matrices M = ∣A∣○2 + ∣B∣○2 very
badly scaled in a nontrivial way (i.e., not constructed multiplying by
diagonals) and “sparse”.

We apply the staircase algorithm to the original pencil (corig) and to the
scaled one via the regularized algorithm (cbal) with α = 0.5.

(The direct un-regularized method on M did not converge and produced
diagonal scaling matrices with zero entries due to underflows.)

We measure the “scaling” of M with qS(M) ∶=max{maxi ri(M)
mini ri(M)

, maxi ci(M)
mini ci(M)

} .

corig cbal qS(Morig) qS(Mscal) steps
1.43e-14 1.26e-14 5.54e+01 3.27e+01 7
1.73e-14 1.39e-14 4.64e+06 9.30e+03 13
2.81e-13 3.75e-14 3.10e+11 1.80e+06 26
1.77e-11 1.98e-14 5.14e+19 1.42e+10 32
2.42e-06 6.23e-14 5.87e+28 1.09e+13 46
2.42e-02 1.15e-10 4.53e+29 1.11e+18 46
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Conclusions

We have developed new scaling algorithms for both regular and singular
pencils.

We have revised and analyzed in detail previous scaling algorithms for
pencils.

The considered algorithms are based on applying the
Sinkhorn-Knopp-like algorithm to certain nonnegative matrices easily
constructed from the pencil.

A regularization guarantees to get always a unique and bounded scaling,
though very often the un-regularized algorithm works well in practice.

Extensive numerical experiments confirm that the proposed algorithms
very often improve significantly the accuracy of computed eigenvalues of
arbitrary pencils.

The scaling algorithms have a computational cost that is much smaller
than the cost of the subsequent generalized eigenvalue algorithm as a
consequence of using a stopping criterion compatible with computing
diagonal scalings whose diagonal entries are integer powers of 2.
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