
Strongly minimal self-conjugate linearizations
for polynomial and rational matrices

Froilán M. Dopico

joint work with María C. Quintana (Aalto University, Finland)
and Paul Van Dooren (UC Louvain, Belgium)

Departamento de Matemáticas
Universidad Carlos III de Madrid, Spain

Foundations of Computational Mathematics 2023
Workshop on Numerical Linear Algebra

Paris, France. June 12-21, 2023

F. M. Dopico (U. Carlos III, Madrid) Strongly minimal linearizations June 21, 2023 1 / 34



Different classes of matrix eigenvalue problems (I)

From a simplified point of view, we can consider the following matrix eigenvalue
problems:

The basic eigenvalue problem (BEP). Given A ∈ Cn×n, compute
scalars λ (eigenvalues) and nonzero vectors v ∈ Cn (eigenvectors) such
that

Av = λv ⇐⇒ (λIn −A) v = 0

The GENERALIZED eigenvalue problem (GEP). Given A,B ∈ Cm×n,
compute scalars λ (eigenvalues) and nonzero vectors v ∈ Cn

(eigenvectors) such that

Av = λBv ⇐⇒ (λB −A) v = 0 ,

often (but not always) under the regularity assumption that A and B are
square and det(zB −A) is not zero for all z ∈ C.
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Different classes of matrix eigenvalue problems (II)

The POLYNOMIAL eigenvalue problem (PEP). Given
P0, P1, . . . , Pd ∈ Cm×n, compute scalars λ (eigenvalues) and nonzero
vectors v ∈ Cn (eigenvectors) such that

(Pdλ
d + · · ·+ P1λ+ P0)v = 0 ,

often (but not always) under the regularity assumption that Pi are square
and det(Pdz

d + · · ·+ P1z + P0) ̸≡ 0.

The RATIONAL eigenvalue problem (REP). Given a rational matrix
G(z) ∈ C(z)m×n, i.e., such that G(z)ij is a scalar rational function of
z ∈ C, for 1 ≤ i, j ≤ n, compute scalars λ (eigenvalues) and nonzero
vectors v ∈ Cn (eigenvectors) such that λ is not a pole of any G(z)ij and

G(λ)v = 0 ,

often (but not always) under the regularity assumption det(G(z)) ̸≡ 0.

We focus in this talk on PEPs and REPs, which are important by themselves
but also as approximations of more general nonlinear eigenvalue problems.
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A key idea on matrix eigenvalue problems

1 BEP: (λIn −A) v = 0

2 GEP: (λB −A) v = 0 !!!!

3 PEP: (Pdλ
d + · · ·+ P1λ+ P0)v = 0

4 REP: G(λ)v = 0

Key idea: PEPs and REPs can be solved by transforming the
problem into a GEP via a process known as LINEARIZATION.

This transformation is exact, i.e., the obtained GEP contains (or allows us
to easily extract) exactly all the eigen-information of the original PEP or
REP.

The use of linearizations is one of the most reliable approaches for
solving numerically PEPs and REPs, because there exist very reliable
algorithms for solving GEPs.

This approach has been studied by many researchers in the last two
decades.
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The goals of the talk

So far, the linearizations used in the literature for PEPs fit into the
classical definition of Gohberg-Lancaster-Rodman (GLR),

and the ones for REPs fit into combining the GLR-approach with
Rosenbrock’s polynomial system matrices (Alam, Behera (SIMAX, 2016);
Amparan, D, Marcaida, Zaballa (SIMAX, 2018)).

We will introduce a new unified definition of linearizations of PEPs and
REPs (strongly minimal linearizations) that guarantee stronger properties
than those of GLR-linearizarions.

Moreover, we will show how to construct such linearizations for any
polynomial or rational matrix in such a way that

for structured PEPs and REPs (Hermitian, skew-Hermitian, alternating
odd and even) always preserve such structures,

which is not always possible for GLR-linearizations,

in particular for polynomial matrices of even-degree (Mackey, Mackey,
Mehl, Mehrmann, De Terán, D).
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Outline

1 Brief reminder of “Eigenstructures” of PEPs and REPs

2 Gohberg-Lancaster-Rodman linearizations of PEPs (and REPs)

3 Strongly minimal linearizations of polynomial and rational matrices

4 Constructing strongly minimal linearizations of polynomial matrices

5 Constructing strongly minimal linearizations of rational matrices

6 Conclusions
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GEPs-PEPs-REPs have more spectral “structural” data than BEPs

1 BEP: (λIn −A) v = 0

2 GEP: (λB −A) v = 0

3 PEP: (Pdλ
d + · · ·+ P1λ+ P0)v = 0

4 REP: G(λ)v = 0

So far, we have only considered informally finite eigenvalues, but

GEPs, PEPs, REPs may have also infinite eigenvalues.

GEPs, PEPs, REPs may be singular, i.e., rectangular or square with
identically zero determinant, (BEPs are always regular) and to have, in
addition to eigenvalues, minimal indices.

Moreover, REPs have poles.

We define quickly these concepts.
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Finite and infinite eigenvalues of PEPs

Given P (λ) = Pdλ
d + · · ·+ P1λ+ P0 ∈ C[λ]m×n ,

λ0 ∈ C is a finite eigenvalue of P (λ) if

rankP (λ0) < max
λ∈C

rankP (λ)

The infinite eigenvalue of P (λ) is defined through the reversal
polynomial.

The reversal of P (λ) is

revP (λ) := λdP ( 1λ ) = P0λ
d + · · ·+ Pd−1λ+ Pd .

Then the infinite eigenvalue (and its mutiplicities) of P (λ) correspond to
the zero eigenvalue (and its mutiplicities) of revP (λ).
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Minimal indices of singular PEPs

PEPs are singular when P (λ) = Pdλ
d + · · ·+ P1λ+ P0 is either

rectangular or square with detP (λ) ≡ 0.

Singular PEPs appear in applications, in particular in Multivariable
System Theory and Control Theory.

In addition to eigenvalues, singular matrix polynomials have other
“interesting numbers” called minimal indices,

which are related to the fact that a singular m× n matrix polynomial P (λ)
has non-trivial left and/or right null-spaces over the field C(λ) of rational
functions:

Nℓ(P ) :=
{
y(λ)T ∈ F(λ)1×m : y(λ)TP (λ) ≡ 0T

}
,

Nr(P ) :=
{
x(λ) ∈ F(λ)n×1 : P (λ)x(λ) ≡ 0

}
.

They have bases consisting entirely of vector polynomials.

The polynomial bases with “minimal sum of the degrees” of their vectors
are the minimal bases of P (λ). The minimal indices of P (λ) are the
degrees of the vectors of any minimal basis.
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Singular PEPs appear in applications, in particular in Multivariable
System Theory and Control Theory.

In addition to eigenvalues, singular matrix polynomials have other
“interesting numbers” called minimal indices,

which are related to the fact that a singular m× n matrix polynomial P (λ)
has non-trivial left and/or right null-spaces over the field C(λ) of rational
functions:

Nℓ(P ) :=
{
y(λ)T ∈ F(λ)1×m : y(λ)TP (λ) ≡ 0T

}
,

Nr(P ) :=
{
x(λ) ∈ F(λ)n×1 : P (λ)x(λ) ≡ 0

}
.

They have bases consisting entirely of vector polynomials.

The polynomial bases with “minimal sum of the degrees” of their vectors
are the minimal bases of P (λ). The minimal indices of P (λ) are the
degrees of the vectors of any minimal basis.
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The complete “eigenstructure” of a polynomial matrix

As a consequence of the previous discussion, we define:

Definition
The complete “eigenstructure” of a polynomial matrix P (λ) is comprised of:

its finite eigenvalues, together with their partial multiplicities,

its infinite eigenvalue, together with its partial multiplicities,

its right minimal indices, and

its left minimal indices.

Remarks

The partial multiplicities are rigorously defined through the Smith form of
P (λ) and for matrices and pencils they are just the sizes of the Jordan
blocks associated to each eigenvalue.
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The complete “eigenstructure” of a rational matrix

Analogously, we define:

Definition
The complete “eigenstructure” of a rational matrix G(λ) is comprised of:

its finite zeros and poles, together with their partial multiplicities,

its infinite zeros and poles, together with its partial multiplicities,

its right minimal indices, and

its left minimal indices.

Remarks

The partial multiplicities are rigorously defined through the
Smith-McMillan form of G(λ).

The eigenvalues of G(λ) are those zeros that are not poles.

The infinite zeros and poles, together with its partial multiplicities, of G(λ)
are defined as the zeros and poles at λ = 0, together with its partial
multiplicities, of G(1/λ).
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Definition: GLR strong linearizations of polynomial matrices

Definition

A linear polynomial matrix (or matrix pencil) L(λ) is a (GLR)
linearization of P (λ) = Pd λ

d + · · ·+ P1λ+ P0 if there exist unimodular
polynomial matrices U(λ), V (λ) such that

U(λ)L(λ)V (λ) =

[
Is 0
0 P (λ)

]
.

L(λ) is a (GLR) strong linearization of P (λ) if, in addition, revL(λ) is a
linearization for revP (λ), i.e.,

Ũ(λ) (revL(λ)) Ṽ (λ) =

[
Is 0
0 revP (λ)

]
,

with Ũ(λ) and Ṽ (λ) unimodular.
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Spectral characterization of linearizations of polynomial matrices

Theorem
A matrix pencil L(λ) is a (GLR) linearization of a polynomial matrix P (λ) if
and only if

(1) L(λ) and P (λ) have the same number of right minimal indices.

(2) L(λ) and P (λ) have the same number of left minimal indices.

(3) L(λ) and P (λ) have the same finite eigenvalues with the same partial
multiplicities.

L(λ) is a (GLR) strong linearization of P (λ) if and only if (1), (2), (3) and

(4) L(λ) and P (λ) have the same infinite eigenvalues with the same partial
multiplicities.

Remark: The minimal indices of L(λ) may have arbitrarily different values
from those of P (λ), though in the most important classes of (GLR)
linearizations they are easily related.
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The most famous strong linearization

The classical Frobenius companion form of the m× n matrix polynomial

P (λ) = Pdλ
d + · · ·+ P1λ+ P0

is

C1(λ) :=



λPd + Pd−1 Pd−2 · · · P1 P0

−In λIn
. . .

. . .

. . . λIn
−In λIn

 ∈ C[λ](m+n(d−1))×nd
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Some comments on (GLR + Rosenbrock) linearizations of REPs

For brevity, I will not present the definition of (GLR + Rosenbrock)
linearizations and strong linearizations of rational matrices.

In contrast with the polynomial case, there is no agreement in the
community on the definition of (strong) linearization of a rational matrix.

Pioneering works on linearizations of rational matrices where developed
by Van Dooren and Verghese in late 70s & early 80s though they did not
give a general definition.

Amparan, D, Marcaida, and Zaballa, Strong linearizations of rational
matrices, SIMAX 2018 introduced a definition of strong linearization of
any rational matrix R(λ) that reduce to GLR when R(λ) is a polynomial
matrix. They also constructed explicitly many of such linearizations.

Another related approach for defining linearizations of rational matrices
was initiated by Alam and Behera, Linearizations for rational matrix
functions and Rosenbrock system polynomials, SIMAX 2016 and followed
by other students of Alam.
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Definition of strongly minimal linearizations

Since polynomial matrices are also rational matrices the next definition applies
to both. R(λ) ∈ C(λ)m×n denotes that R(λ) is a m× n rational matrix.

Definition (D, Quintana, Van Dooren, SIMAX, 2022)

A strongly minimal linearization of R(λ) ∈ C(λ)m×n is a matrix pencil

L(λ) =

[
A1λ+A0 −(B1λ+B0)
C1λ+ C0 D1λ+D0

]
∈ C[λ](p+m)×(p+n)

such that:

(a) R(λ) = (D1λ+D0) + (C1λ+ C0)(A1λ+A0)
−1(B1λ+B0),

(b)
[
A1λ+A0 −(B1λ+B0)

]
and

[
A1λ+A0

C1λ+ C0

]
have full row and column

rank for all λ0 ∈ C, respectively, and

(c)
[
A1 −B1

]
and

[
A1

C1

]
have full row and column rank, respectively.
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Properties of strongly minimal linearizations (I)

Theorem (D, Quintana, Van Dooren, SIMAX, 2022)

If

L(λ) =

[
A1λ+A0 −(B1λ+B0)
C1λ+ C0 D1λ+D0

]
∈ C[λ](p+m)×(p+n)

is a strongly minimal linearization of R(λ) ∈ C(λ)m×n then:

The finite eigenvalue structure of L(λ) coincides exactly with the finite
zero structure of R(λ).

The finite eigenvalue structure of A1λ+A0 coincides exactly with the
finite pole structure of R(λ).

The infinite eigenvalue structure of L(λ) and A(λ) allows us to recover
exactly the infinite zero/pole structure of R(λ) (next slide).

L(λ) and R(λ) have the same left and right minimal indices.
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Properties of strongly minimal linearizations (II)

Theorem (Recovery at infinity)

If R(λ) has normal rank r, 0 < e1 ≤ · · · ≤ es are the partial multiplicities of
revA(λ) at 0, and 0 < ẽ1 ≤ · · · ≤ ẽu are the partial multiplicities of revL(λ) at 0,
then the structural indices at infinity of R(λ) are

(d1, d2, . . . , dr) = (−es,−es−1, . . . ,−e1, 0, . . . , 0︸ ︷︷ ︸
r−s−u

, ẽ1, ẽ2, . . . , ẽu)− (1, 1, . . . , 1).

Recovery of eigenvectors and minimal bases

The eigenvectors and minimal bases of R(λ) can be recovered from those of
L(λ) simply by removing the first p entries.

Relation with GLR linearizations

Strongly minimal linearizations are GLR-linearizations.

Strongly minimal linearizations are NOT strong GLR-linearizations.

GLR-linearizations are not in general strongly minimal linearizations.
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A famous pencil by Lancaster (1966) (which is not a linearization)

For any
P (λ) = Pdλ

d + · · ·+ P1λ+ P0 ∈ C[λ]m×n

we define

Ls(λ) =



−Pd λPd

. .
.

λPd − Pd−1

...

−Pd . .
. ...

...

−Pd λPd − Pd−1 . . . λP3 − P2 λP2

λPd . . . . . . λP2 λP1 + P0


It was proposed by Lancaster for regular polynomial matrices with Pd

invertible in 1966!!

If Pd is invertible, then Ls(λ) is a GLR strong linearization of P (λ).
Otherwise, it is not a GLR-linearization.

Ls(λ) is one of the famous DL(P ) pencils introduced by Mackey, Mackey,
Mehl and Mehrmann (SIMAX, 2006) and further studied by Nakatsukasa,
Noferini and Townsend (SIMAX, 2017). The one with ansatz vector ed.
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Noferini and Townsend (SIMAX, 2017). The one with ansatz vector ed.
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A rank revealing factorization of a constant matrix associated to Ls(λ)

Based on

Ls(λ) =



−Pd λPd

. .
.

λPd − Pd−1

...

−Pd . .
. ...

...

−Pd λPd − Pd−1 . . . λP3 − P2 λP2

λPd . . . . . . λP2 λP1 + P0


,

we define

T =


Pd

. .
.

Pd−1

Pd . .
. ...

Pd Pd−1 . . . P2


and consider a rank-revealing factorization of T , for instance a SVD,

U∗TV =

[
0 0

0 T̂

]
,

where U , V , and T̂ ∈ Cr×r are invertible.
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A strongly minimal linearization for P (λ)

Theorem (D, Quintana, Van Dooren, SIMAX, 2022)

[
U∗

Im

]


−Pd λPd

. .
.

λPd − Pd−1

...

−Pd . .
. ...

...

−Pd λPd − Pd−1 . . . λP3 − P2 λP2

λPd . . . . . . λP2 λP1 + P0


[

V
In

]

=

 0 0 0

0 Âs(λ) −B̂s(λ)

0 Ĉs(λ) D̂s(λ)

 , where Âs(λ) ∈ C[λ]r×r is regular

and

L̂s(λ) =

[
Âs(λ) −B̂s(λ)

Ĉs(λ) D̂s(λ)

]
is a strongly minimal linearization of P (λ).
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Comments on preservation of structures

Ls(λ) =



−Pd λPd

. .
.

λPd − Pd−1

...

−Pd . .
. ...

...

−Pd λPd − Pd−1 . . . λP3 − P2 λP2

λPd . . . . . . λP2 λP1 + P0


is Hermitian (resp. skew-Hermitian) if P (λ) is.

Moreover, the rank-revealing factorization of T can be chosen to preserve
the Hermitian (resp. skew-Hermitian) structure and, so, to get a

Hermitian (resp. skew-Hermitian) strongly minimal linearization of P (λ).

Using appropriate block diagonal scalings
S := diag((−1)(d−1)Im, . . . , (−1)2Im,−Im) in the factors of the
rank-revealing factorization of T , the process above can be easily adapted
to preserve alternating structures of P (λ).
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Quadratic polynomial matrices (with low rank leading coefficient)

P (λ) = P0 + λP1 + λ2P2 ∈ C[λ]m×n

The Lancaster pencil is very simple in the quadratic case

Ls(λ) =

[
−P2 λP2

λP2 λP1 + P0

]
∈ C[λ]2m×2n and T = P2.

If P2 = U2T̂ V
∗
2 , with T̂ ∈ Cr2×r2 invertible and U2 ∈ Cm×r2 , V2 ∈ Cn×r2

with orthornormal columns. Then

L̂s(λ) =

[
−T̂ λT̂V ∗

2

λU2T̂ λP1 + P0

]
∈ C[λ](r2+m)×(r2+n)

is a strongly minimal linearization of P (λ).

In important applications, the leading coefficient P2 has low rank r2.

In the Hermitian case, T̂ = T̂ ∗, U2 = V2 and the Hermitian structure is
preserved.
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Polynomial and strictly proper parts of a rational matrix

Any rational matrix R(λ) can be uniquely expressed as

R(λ)=P (λ) +Rsp(λ),

where

1 P (λ) is a polynomial matrix (polynomial part of R(λ)), and

2 the rational matrix Rsp(λ) is strictly proper (strictly proper part of R(λ)),
i.e., lim

λ→∞
Rsp(λ) = 0.
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Strongly minimal linearizations for strictly proper rational matrices (I)

For strictly proper rational matrices Rsp(λ) ∈ C(λ)m×n, we represent them via
a Laurent expansion around the point at infinity

Rsp(λ) := R−1λ
−1 +R−2λ

−2 +R−3λ
−3 + . . .

and consider the block Hankel matrix H and shifted block Hankel matrix Hσ:

H :=



R−1 R−2 . . . R−k

R−2 . .
.

R−k−1

... . .
.

. .
. ...

R−k R−k−1 . . . R−2k+1


, Hσ :=



R−2 R−3 . . . R−k−1

R−3 . .
.

R−k−2

... . .
.

. .
. ...

R−k−1 R−k−2 . . . R−2k


.

For sufficiently large k the rank rf of H equals the total polar degree of the
finite poles, i.e., the sum of the degrees of the denominators in the Smith
McMillan form of Rsp(λ) and does not increase more with k.
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Strongly minimal linearizations for strictly proper rational matrices (II)

Theorem (D, Quintana, Van Dooren, SIMAX, 2022)

Let Rsp(λ) ∈ C(λ)m×n be a strictly proper rational matrix. Let H and Hσ be the
block Hankel matrices and rf := rankH. Let U :=

[
U1 U2

]
and

V :=
[
V1 V2

]
be unitary matrices such that

U∗HV =

[
Ĥ 0
0 0

]
=

[
U∗
1HV1 0
0 0

]
,

where Ĥ is rf × rf and invertible. Partition the matrices U1 and V1 as

U1 =

[
U11

U21

]
, and V1 =

[
V11

V21

]
,

where the matrices U11 and V11 have dimension m× rf and n× rf . Then

Lsp(λ) :=

[
U∗
1HσV1 − λĤ ĤV ∗

11

U11Ĥ 0

]

is a strongly minimal linearization for Rsp(λ). Consider U = VU = VU = V if Rsp(λ) is
Hermitian or skew-Hermitian.
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Strongly minimal linearizations for rational matrices

Theorem (D, Quintana, Van Dooren, SIMAX, 2022)

Let R(λ) ∈ C(λ)m×n be an arbitrary (resp. structured) rational matrix. Let

R(λ) = P (λ) +Rsp(λ),

with P (λ) polynomial and Rsp(λ) strictly proper. Let

L̂s(λ) :=

[
Âs(λ) B̂s(λ)

− Ĉs(λ) D̂s(λ)

]
and Lsp(λ) :=

[
Asp(λ) Bsp(λ)

− Csp(λ) 0

]

be (resp. structured) strongly minimal linearizations of P (λ) and Rsp(λ),
respectively. Then

L(λ) :=

 Âs(λ) 0 B̂s(λ)
0 Asp(λ) Bsp(λ)

−Ĉs(λ) −Csp(λ) D̂s(λ)


is a (structured) strongly minimal linearization of R(λ).

F. M. Dopico (U. Carlos III, Madrid) Strongly minimal linearizations June 21, 2023 32 / 34



Outline

1 Brief reminder of “Eigenstructures” of PEPs and REPs

2 Gohberg-Lancaster-Rodman linearizations of PEPs (and REPs)

3 Strongly minimal linearizations of polynomial and rational matrices

4 Constructing strongly minimal linearizations of polynomial matrices

5 Constructing strongly minimal linearizations of rational matrices

6 Conclusions

F. M. Dopico (U. Carlos III, Madrid) Strongly minimal linearizations June 21, 2023 33 / 34



Conclusions

We have introduced the new definition of strongly minimal linearizations.

It is simultaneously valid for polynomial and rational matrices.

We have proved that they have excellent recovery properties.

We showed that they exist for any rational matrix

and we have shown how to construct them via stable rank-revealing
decompositions of constant matrices (SVD, for instance).

Our constructions always preserve the Hermitian, skew-Hermitian, and
alternating structures,

which is not always possible for GLR-strong linearizations.
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