Strongly minimal self-conjugate linearizations for polynomial and rational matrices

Froilán M. Dopico joint work with María C. Quintana (Aalto University, Finland) and Paul Van Dooren (UC Louvain, Belgium)

Departamento de Matemáticas Universidad Carlos III de Madrid, Spain

Foundations of Computational Mathematics 2023
Workshop on Numerical Linear Algebra
Paris, France. June 12-21, 2023

MINISTERIO
DE CIENCIA
DE CIENCIA
EINNOVACION
E INNOVACIÓN
uc3m | Universidad Carlos III de Madrid

Different classes of matrix eigenvalue problems (I)

From a simplified point of view, we can consider the following matrix eigenvalue problems:

The basic eigenvalue problem (BEP). Given $A \in \mathbb{C}^{n \times n}$, compute
scalars λ (eigenvalues) and nonzero vectors $v \in \mathbb{C}^{n}$ (eigenvectors) such that

- The GENERALIZED eigenvalue problem (GEP). Given compute scalars λ (eigenvalues) and nonzero vectors $v \in \mathbb{C}$ (eigenvectors) such that
often (but not always) under the regularity assumption that A and B are square and $\operatorname{det}(z B-A)$ is not zero for all $z \in \mathbb{C}$.

Different classes of matrix eigenvalue problems (I)

From a simplified point of view, we can consider the following matrix eigenvalue problems:

- The basic eigenvalue problem (BEP). Given $A \in \mathbb{C}^{n \times n}$, compute scalars λ (eigenvalues) and nonzero vectors $v \in \mathbb{C}^{n}$ (eigenvectors) such that

$$
A v=\lambda v \Longleftrightarrow \quad\left(\lambda I_{n}-A\right) v=0
$$

- The GENERALIZED eigenvalue problem (GEP). Given compute scalars λ (eigenvalues) and nonzero vectors (eigenvectors) such that
often (but not always) under the regularity assumption that A and B are square and $\operatorname{det}(z B-A)$ is not zero for all $z \in \mathbb{C}$.

Different classes of matrix eigenvalue problems (I)

From a simplified point of view, we can consider the following matrix eigenvalue problems:

- The basic eigenvalue problem (BEP). Given $A \in \mathbb{C}^{n \times n}$, compute scalars λ (eigenvalues) and nonzero vectors $v \in \mathbb{C}^{n}$ (eigenvectors) such that

$$
A v=\lambda v \Longleftrightarrow \quad\left(\lambda I_{n}-A\right) v=0
$$

- The GENERALIZED eigenvalue problem (GEP). Given $A, B \in \mathbb{C}^{m \times n}$, compute scalars λ (eigenvalues) and nonzero vectors $v \in \mathbb{C}^{n}$ (eigenvectors) such that

$$
A v=\lambda B v \Longleftrightarrow \quad(\lambda B-A) v=0
$$

often (but not always) under the regularity assumption that A and B are square and $\operatorname{det}(z B-A)$ is not zero for all $z \in \mathbb{C}$.

Different classes of matrix eigenvalue problems (II)

- The POLYNOMIAL eigenvalue problem (PEP). Given
$P_{0}, P_{1}, \ldots, P_{d} \in \mathbb{C}^{m \times n}$, compute scalars λ (eigenvalues) and nonzero vectors $v \in \mathbb{C}^{n}$ (eigenvectors) such that

$$
\left(P_{d} \lambda^{d}+\cdots+P_{1} \lambda+P_{0}\right) v=0
$$

often (but not always) under the regularity assumption that P_{i} are square and $\operatorname{det}\left(P_{d} z^{d}+\cdots+P_{1} z+P_{0}\right) \not \equiv 0$.

The RATIONAL eigenvalue problem (REP). Given a rational matrix $G(z) \in \mathbb{C}(z)^{m \times n}$, i.e., such that $G(z)_{i j}$ is a scalar rational function of for $1 \leq i, j \leq n$, compute scalars λ (eigenvalues) and nonzero vectors $v \in \mathbb{C}^{n}$ (eigenvectors) such that λ is not a pole of any $G(z)_{i j}$ and
often (but not always) under the regularity assumption $\operatorname{det}(G(z)) \not \equiv 0$.
We focus in this talk on PEPs and PEPs, which are important by themselves but also as approximations of more general nonlineągeigeporvaluę proplems ouac

Different classes of matrix eigenvalue problems (II)

- The POLYNOMIAL eigenvalue problem (PEP). Given $P_{0}, P_{1}, \ldots, P_{d} \in \mathbb{C}^{m \times n}$, compute scalars λ (eigenvalues) and nonzero vectors $v \in \mathbb{C}^{n}$ (eigenvectors) such that

$$
\left(P_{d} \lambda^{d}+\cdots+P_{1} \lambda+P_{0}\right) v=0
$$

often (but not always) under the regularity assumption that P_{i} are square and $\operatorname{det}\left(P_{d} z^{d}+\cdots+P_{1} z+P_{0}\right) \not \equiv 0$.

- The RATIONAL eigenvalue problem (REP). Given a rational matrix $G(z) \in \mathbb{C}(z)^{m \times n}$, i.e., such that $G(z)_{i j}$ is a scalar rational function of $z \in \mathbb{C}$, for $1 \leq i, j \leq n$, compute scalars λ (eigenvalues) and nonzero vectors $v \in \mathbb{C}^{n}$ (eigenvectors) such that λ is not a pole of any $G(z)_{i j}$ and

$$
G(\lambda) v=0
$$

often (but not always) under the regularity assumption $\operatorname{det}(G(z)) \not \equiv 0$.
We focus in this talk on PEPs and REPs, which are important by themselves

Different classes of matrix eigenvalue problems (II)

- The POLYNOMIAL eigenvalue problem (PEP). Given $P_{0}, P_{1}, \ldots, P_{d} \in \mathbb{C}^{m \times n}$, compute scalars λ (eigenvalues) and nonzero vectors $v \in \mathbb{C}^{n}$ (eigenvectors) such that

$$
\left(P_{d} \lambda^{d}+\cdots+P_{1} \lambda+P_{0}\right) v=0
$$

often (but not always) under the regularity assumption that P_{i} are square and $\operatorname{det}\left(P_{d} z^{d}+\cdots+P_{1} z+P_{0}\right) \not \equiv 0$.

- The RATIONAL eigenvalue problem (REP). Given a rational matrix $G(z) \in \mathbb{C}(z)^{m \times n}$, i.e., such that $G(z)_{i j}$ is a scalar rational function of $z \in \mathbb{C}$, for $1 \leq i, j \leq n$, compute scalars λ (eigenvalues) and nonzero vectors $v \in \mathbb{C}^{n}$ (eigenvectors) such that λ is not a pole of any $G(z)_{i j}$ and

$$
G(\lambda) v=0
$$

often (but not always) under the regularity assumption $\operatorname{det}(G(z)) \not \equiv 0$.
We focus in this talk on PEPs and REPs, which are important by themselves but also as approximations of more general nonlinear eigenvalue problems.

A key idea on matrix eigenvalue problems

(1) BEP: $\left(\lambda I_{n}-A\right) v=0$
(2) GEP: $(\lambda B-A) v=0$
(3) PEP: $\left(P_{d} \lambda^{d}+\cdots+P_{1} \lambda+P_{0}\right) v=0$
(4) REP: $G(\lambda) v=0$

- Key idea: PEPs and REPs can be solved by transforming the problem into a GEP via a process known as LINEARIZATION.
- This transformation is exact, i.e., the obtained GEP contains (or allows us to easily extract) exactly all the eigen-information of the original PEP or REP.
- The use of linearizations is one of the most reliable approaches for solving numerically PEPs and REPs, because there exist very reliable algorithms for solving GEPs.
- This approach has been studied by many researchers in the last two decades.

A key idea on matrix eigenvalue problems

(1) BEP: $\left(\lambda I_{n}-A\right) v=0$
(2) GEP: $(\lambda B-A) v=0$
(3) PEP: $\left(P_{d} \lambda^{d}+\cdots+P_{1} \lambda+P_{0}\right) v=0$
(4) REP: $G(\lambda) v=0$

- Key idea: PEPs and REPs can be solved by transforming the problem into a GEP via a process known as LINEARIZATION.
- This transformation is exact, i.e., the obtained GEP contains (or allows us to easily extract) exactly all the eigen-information of the original PEP or REP
- The use of linearizations is one of the most reliable approaches for solving numerically PEPs and REPs, because there exist very reliable algorithms for solving GEPs.
- This approach has been studied by many researchers in the last two decades.

A key idea on matrix eigenvalue problems

$$
\begin{aligned}
& \text { (1) BEP: } \quad\left(\lambda I_{n}-A\right) v=0 \\
& \text { (2) GEP: } \quad(\lambda B-A) v=0 \\
& \text { (3) PEP: } \quad\left(P_{d} \lambda^{d}+\cdots+P_{1} \lambda+P_{0}\right) v=0 \\
& \text { (4) REP: } \quad G(\lambda) v=0
\end{aligned}
$$

- Key idea: PEPs and REPs can be solved by transforming the problem into a GEP via a process known as LINEARIZATION.
- This transformation is exact, i.e., the obtained GEP contains (or allows us to easily extract) exactly all the eigen-information of the original PEP or REP.
- The use of linearizations is one of the most reliable approaches for solving numerically PEPs and REPs, because there exist very reliable algorithms for solving GEPs
- This approach has been studied by many researchers in the last two decades.

A key idea on matrix eigenvalue problems

(1) BEP: $\left(\lambda I_{n}-A\right) v=0$
(2) GEP: $(\lambda B-A) v=0 \quad$!!!!
(3) PEP: $\left(P_{d} \lambda^{d}+\cdots+P_{1} \lambda+P_{0}\right) v=0$
(4) REP: $G(\lambda) v=0$

- Key idea: PEPs and REPs can be solved by transforming the problem into a GEP via a process known as LINEARIZATION.
- This transformation is exact, i.e., the obtained GEP contains (or allows us to easily extract) exactly all the eigen-information of the original PEP or REP.
- The use of linearizations is one of the most reliable approaches for solving numerically PEPs and REPs, because there exist very reliable algorithms for solving GEPs.
- This approach has been studied by many researchers in the last two decades.

A key idea on matrix eigenvalue problems

(1) BEP: $\left(\lambda I_{n}-A\right) v=0$
(2) GEP: $(\lambda B-A) v=0 \quad$!!!!
(3) PEP: $\left(P_{d} \lambda^{d}+\cdots+P_{1} \lambda+P_{0}\right) v=0$
(4) REP: $G(\lambda) v=0$

- Key idea: PEPs and REPs can be solved by transforming the problem into a GEP via a process known as LINEARIZATION.
- This transformation is exact, i.e., the obtained GEP contains (or allows us to easily extract) exactly all the eigen-information of the original PEP or REP.
- The use of linearizations is one of the most reliable approaches for solving numerically PEPs and REPs, because there exist very reliable algorithms for solving GEPs.
- This approach has been studied by many researchers in the last two decades.

The goals of the talk

- So far, the linearizations used in the literature for PEPs fit into the classical definition of Gohberg-Lancaster-Rodman (GLR),
- and the ones for REPs fit into combining the GLR-approach with Rosenbrock's polynomial system matrices (Alam, Behera (SIMAX, 2016); Amparan, D, Marcaida, Zaballa (SIMAX, 2018)).
- We will introduce a new unified definition of linearizations of PEPs and REPs (strongly minimal linearizations) that guarantee stronger properties than those of GLR-linearizarions.
- Moreover, we will show how to construct such linearizations for any polynomial or rational matrix in such a way that
- for structured PEPs and PEPs (Hermitian, skew-Hermitian, alternating odd and even) always preserve such structures,
- which is not always possible for GLR-linearizations,
- in particular for polynomial matrices of even-degree (Mackey, Mackey, Mehl, Mehrmann, De Terán, D).

The goals of the talk

- So far, the linearizations used in the literature for PEPs fit into the classical definition of Gohberg-Lancaster-Rodman (GLR),
- and the ones for REPs fit into combining the GLR-approach with Rosenbrock's polynomial system matrices (Alam, Behera (SIMAX, 2016); Amparan, D, Marcaida, Zaballa (SIMAX, 2018)).
- We will introduce a new unified definition of linearizations of PEPS and REPs (strongly minimal linearizations) that guarantee stronger properties than those of GLR-linearizarions.
- Moreover, we will show how to construct such linearizations for any polynomial or rational matrix in such a way that
- for structured PEDs and REDs (Hermitian, skow-Hermitian, alternating odd and even) always preserve such structures,
- which is not always possible for GLR-linearizations,
e in particular for polynomial matrices of even-degree (Mackey, Mackey, Mehl, Mehrmann, De Terán, D)

The goals of the talk

- So far, the linearizations used in the literature for PEPs fit into the classical definition of Gohberg-Lancaster-Rodman (GLR),
- and the ones for REPs fit into combining the GLR-approach with Rosenbrock's polynomial system matrices (Alam, Behera (SIMAX, 2016); Amparan, D, Marcaida, Zaballa (SIMAX, 2018)).
- We will introduce a new unified definition of linearizations of PEPs and REPs (strongly minimal linearizations) that guarantee stronger properties than those of GLR-linearizarions.
- Moreover, we will show how to construct such linearizations for any polynomial or rational matrix in such a way that
- for structured PFPs and RFPs (Hermitian skew-Hermitian, alternating odd and even) always preserve such structures,
- which is not always possible for GLR-linearizations,
- in narticular for nolynomial matrices of even-degree (Mackey, Mackey, Mehl, Mehrmann, De Terán, D)

The goals of the talk

- So far, the linearizations used in the literature for PEPs fit into the classical definition of Gohberg-Lancaster-Rodman (GLR),
- and the ones for REPs fit into combining the GLR-approach with Rosenbrock's polynomial system matrices (Alam, Behera (SIMAX, 2016); Amparan, D, Marcaida, Zaballa (SIMAX, 2018)).
- We will introduce a new unified definition of linearizations of PEPs and REPs (strongly minimal linearizations) that guarantee stronger properties than those of GLR-linearizarions.
- Moreover, we will show how to construct such linearizations for any polynomial or rational matrix in such a way that
- for structured PEPs and REPs (Hermitian, skew-Hermitian, alternating odd and even) always preserve such structures,
a which is not always nossible for GI R-linearizations,
- in particular for polynomial matrices of even-degree (Mackey, Mackey, Mehl, Mehrmann, De Terán, D)

The goals of the talk

- So far, the linearizations used in the literature for PEPs fit into the classical definition of Gohberg-Lancaster-Rodman (GLR),
- and the ones for REPs fit into combining the GLR-approach with Rosenbrock's polynomial system matrices (Alam, Behera (SIMAX, 2016); Amparan, D, Marcaida, Zaballa (SIMAX, 2018)).
- We will introduce a new unified definition of linearizations of PEPs and REPs (strongly minimal linearizations) that guarantee stronger properties than those of GLR-linearizarions.
- Moreover, we will show how to construct such linearizations for any polynomial or rational matrix in such a way that
- for structured PEPs and REPs (Hermitian, skew-Hermitian, alternating odd and even) always preserve such structures,
- which is not always possible for GLR-linearizations,
- in particular for polynomial matrices of even-degree (Mackey, Mackey, Mehl, Mehrmann, De Terán, D)

The goals of the talk

- So far, the linearizations used in the literature for PEPs fit into the classical definition of Gohberg-Lancaster-Rodman (GLR),
- and the ones for REPs fit into combining the GLR-approach with Rosenbrock's polynomial system matrices (Alam, Behera (SIMAX, 2016); Amparan, D, Marcaida, Zaballa (SIMAX, 2018)).
- We will introduce a new unified definition of linearizations of PEPs and REPs (strongly minimal linearizations) that guarantee stronger properties than those of GLR-linearizarions.
- Moreover, we will show how to construct such linearizations for any polynomial or rational matrix in such a way that
- for structured PEPs and REPs (Hermitian, skew-Hermitian, alternating odd and even) always preserve such structures,
- which is not always possible for GLR-linearizations,
- in particular for polynomial matrices of even-degree (Mackey, Mackey, Mehl, Mehrmann, De Terán, D)

The goals of the talk

- So far, the linearizations used in the literature for PEPs fit into the classical definition of Gohberg-Lancaster-Rodman (GLR),
- and the ones for REPs fit into combining the GLR-approach with Rosenbrock's polynomial system matrices (Alam, Behera (SIMAX, 2016); Amparan, D, Marcaida, Zaballa (SIMAX, 2018)).
- We will introduce a new unified definition of linearizations of PEPs and REPs (strongly minimal linearizations) that guarantee stronger properties than those of GLR-linearizarions.
- Moreover, we will show how to construct such linearizations for any polynomial or rational matrix in such a way that
- for structured PEPs and REPs (Hermitian, skew-Hermitian, alternating odd and even) always preserve such structures,
- which is not always possible for GLR-linearizations,
- in particular for polynomial matrices of even-degree (Mackey, Mackey, Mehl, Mehrmann, De Terán, D).

Outline

(9) Brief reminder of "Eigenstructures" of PEPs and REPs
(2) Gohberg-Lancaster-Rodman linearizations of PEPs (and REPs)
(3) Strongly minimal linearizations of polynomial and rational matrices

4 Constructing strongly minimal linearizations of polynomial matrices

5 Constructing strongly minimal linearizations of rational matrices
(6) Conclusions

Outline

(1) Brief reminder of "Eigenstructures" of PEPs and REPs

(2) Gohberg-Lancaster-Rodman linearizations of PEPs (and REPs)
(3) Strongly minimal linearizations of polynomial and rational matrices
4) Constructing strongly minimal linearizations of polynomial matrices
(5) Constructing strongly minimal linearizations of rational matrices
(6) Conclusions

GEPs-PEPs-REPs have more spectral "structural" data than BEPs

(1) BEP: $\left(\lambda I_{n}-A\right) v=0$
(2) GEP: $(\lambda B-A) v=0$
(3) PEP: $\left(P_{d} \lambda^{d}+\cdots+P_{1} \lambda+P_{0}\right) v=0$
(4) REP: $\quad G(\lambda) v=0$

- So far, we have only considered informally finite eigenvalues, but
- GEPs, PEPs, REPs may have also infinite eigenvalues.
- GEPs, PEPs, REPs may be sinqular i.e., rectangular or square with identically zero determinant, (BEPs are always regular) and to have, in addition to eigenvalues, minimal indices.
- Moreover, REPs have poles.
- We define quickly these concepts.

GEPs-PEPs-REPs have more spectral "structural" data than BEPs

(1) BEP: $\left(\lambda I_{n}-A\right) v=0$
(2) GEP: $(\lambda B-A) v=0$
(3) PEP: $\left(P_{d} \lambda^{d}+\cdots+P_{1} \lambda+P_{0}\right) v=0$
(4) REP: $G(\lambda) v=0$

- So far, we have only considered informally finite eigenvalues, but
- GEPs, PEPs, REPs may have also infinite eigenvalues.
- GEPs, PEPs, REPs may be singular, i.e., rectangular or square with identically zero determinant, (BEPs are always regular) and to have, in addition to eigenvalues, minimal indices.
- Moreover, REPs have poles.
- We define quickly these concents.

GEPs-PEPs-REPs have more spectral "structural" data than BEPs

(1) BEP: $\left(\lambda I_{n}-A\right) v=0$
(2) GEP: $(\lambda B-A) v=0$
(3) PEP: $\left(P_{d} \lambda^{d}+\cdots+P_{1} \lambda+P_{0}\right) v=0$
(4) REP: $G(\lambda) v=0$

- So far, we have only considered informally finite eigenvalues, but
- GEPs, PEPs, REPs may have also infinite eigenvalues.
- GEPs, PEPs, REPs may be singular, i.e., rectangular or square with identically zero determinant, (BEPs are always regular) and to have, in addition to eigenvalues, minimal indices.
- Moreover, REPs have poles.
- We define quickly these concepts.

GEPs-PEPs-REPs have more spectral "structural" data than BEPs

(1) BEP: $\left(\lambda I_{n}-A\right) v=0$
(2) GEP: $(\lambda B-A) v=0$
(3) PEP: $\left(P_{d} \lambda^{d}+\cdots+P_{1} \lambda+P_{0}\right) v=0$
(4) REP: $G(\lambda) v=0$

- So far, we have only considered informally finite eigenvalues, but
- GEPs, PEPs, REPs may have also infinite eigenvalues.
- GEPs, PEPs, REPs may be singular, i.e., rectangular or square with identically zero determinant, (BEPs are always regular) and to have, in addition to eigenvalues, minimal indices.
- Moreover, REPs have poles.
- We define quickly these concepts.

GEPs-PEPs-REPs have more spectral "structural" data than BEPs

(1) BEP: $\left(\lambda I_{n}-A\right) v=0$
(2) GEP: $(\lambda B-A) v=0$
(3) PEP: $\left(P_{d} \lambda^{d}+\cdots+P_{1} \lambda+P_{0}\right) v=0$
(4) REP: $G(\lambda) v=0$

- So far, we have only considered informally finite eigenvalues, but
- GEPs, PEPs, REPs may have also infinite eigenvalues.
- GEPs, PEPs, REPs may be singular, i.e., rectangular or square with identically zero determinant, (BEPs are always regular) and to have, in addition to eigenvalues, minimal indices.
- Moreover, REPs have poles.
- We define quickly these concepts.

GEPs-PEPs-REPs have more spectral "structural" data than BEPs

(1) BEP: $\left(\lambda I_{n}-A\right) v=0$
(2) GEP: $(\lambda B-A) v=0$
(3) PEP: $\left(P_{d} \lambda^{d}+\cdots+P_{1} \lambda+P_{0}\right) v=0$
(4) REP: $G(\lambda) v=0$

- So far, we have only considered informally finite eigenvalues, but
- GEPs, PEPs, REPs may have also infinite eigenvalues.
- GEPs, PEPs, REPs may be singular, i.e., rectangular or square with identically zero determinant, (BEPs are always regular) and to have, in addition to eigenvalues, minimal indices.
- Moreover, REPs have poles.
- We define quickly these concepts.

Finite and infinite eigenvalues of PEPs

Given $\quad P(\lambda)=P_{d} \lambda^{d}+\cdots+P_{1} \lambda+P_{0} \in \mathbb{C}[\lambda]^{m \times n}$

- $\lambda_{0} \in \mathbb{C}$ is a finite eigenvalue of $P(\lambda)$ if

$$
\operatorname{rank} P\left(\lambda_{0}\right)<\max _{\lambda \in \mathbb{C}} \operatorname{rank} P(\lambda)
$$

- The infinite eigenvalue of $P(\lambda)$ is defined through the reversal polynomial.
- The reversal of $P(\lambda)$ is
- Then the infinite eigenvalue (and its mutiplicities) of $P(\lambda)$ correspond to the zero eigenvalue (and its mutiplicities) of $\operatorname{rev} P(\lambda)$.

Finite and infinite eigenvalues of PEPs

Given $\quad P(\lambda)=P_{d} \lambda^{d}+\cdots+P_{1} \lambda+P_{0} \in \mathbb{C}[\lambda]^{m \times n}$

- $\lambda_{0} \in \mathbb{C}$ is a finite eigenvalue of $P(\lambda)$ if

$$
\operatorname{rank} P\left(\lambda_{0}\right)<\max _{\lambda \in \mathbb{C}} \operatorname{rank} P(\lambda)
$$

- The infinite eigenvalue of $P(\lambda)$ is defined through the reversal polynomial.
- The reversal of $P(\lambda)$ is
- Then the infinite eigenvalue (and its mutiplicities) of $P(\lambda)$ correspond to the zero eigenvalue (and its mutiplicities) of rev $P(\lambda)$

Finite and infinite eigenvalues of PEPs

Given $\quad P(\lambda)=P_{d} \lambda^{d}+\cdots+P_{1} \lambda+P_{0} \in \mathbb{C}[\lambda]^{m \times n}$

- $\lambda_{0} \in \mathbb{C}$ is a finite eigenvalue of $P(\lambda)$ if

$$
\operatorname{rank} P\left(\lambda_{0}\right)<\max _{\lambda \in \mathbb{C}} \operatorname{rank} P(\lambda)
$$

- The infinite eigenvalue of $P(\lambda)$ is defined through the reversal polynomial.
- The reversal of $P(\lambda)$ is

$$
\operatorname{rev} P(\lambda):=\lambda^{d} P\left(\frac{1}{\lambda}\right)=P_{0} \lambda^{d}+\cdots+P_{d-1} \lambda+P_{d}
$$

- Then the infinite eigenvalue (and its mutiplicities) of $P(\lambda)$ correspond to the zero eigenvalue (and its mutiplicities) of $\operatorname{rev} P(\lambda)$.

Finite and infinite eigenvalues of PEPs

Given $\quad P(\lambda)=P_{d} \lambda^{d}+\cdots+P_{1} \lambda+P_{0} \in \mathbb{C}[\lambda]^{m \times n}$

- $\lambda_{0} \in \mathbb{C}$ is a finite eigenvalue of $P(\lambda)$ if

$$
\operatorname{rank} P\left(\lambda_{0}\right)<\max _{\lambda \in \mathbb{C}} \operatorname{rank} P(\lambda)
$$

- The infinite eigenvalue of $P(\lambda)$ is defined through the reversal polynomial.
- The reversal of $P(\lambda)$ is

$$
\operatorname{rev} P(\lambda):=\lambda^{d} P\left(\frac{1}{\lambda}\right)=P_{0} \lambda^{d}+\cdots+P_{d-1} \lambda+P_{d}
$$

- Then the infinite eigenvalue (and its mutiplicities) of $P(\lambda)$ correspond to the zero eigenvalue (and its mutiplicities) of $\operatorname{rev} P(\lambda)$.

Minimal indices of singular PEPs

- PEPs are singular when $\quad P(\lambda)=P_{d} \lambda^{d}+\cdots+P_{1} \lambda+P_{0} \quad$ is either rectangular or square with $\operatorname{det} P(\lambda) \equiv 0$.
- Singular PEPs appear in applications, in particular in Multivariable System Theory and Control Theory.
- In addition to eigenvalues, singular matrix polynomials have other "interesting numbers" called minimal indices,
- which are related to the fact that a singular $m \times n$ matrix polynomial $P(\lambda)$ has non-trivial left and/or right null-spaces over the field $\mathbb{C}(\lambda)$ of rational functions:

- They have bases consisting entirely of vector polynomials.
- The polynomial bases with "minimal sum of the degrees" of their vectors are the minimal bases of $P(\lambda)$. The minimal indices of $P(\lambda)$ are the degrees of the vectors of any minimal basis.

Minimal indices of singular PEPs

- PEPs are singular when $\quad P(\lambda)=P_{d} \lambda^{d}+\cdots+P_{1} \lambda+P_{0} \quad$ is either rectangular or square with $\operatorname{det} P(\lambda) \equiv 0$.
- Singular PEPs appear in applications, in particular in Multivariable System Theory and Control Theory.
- In addition to eigenvalues, singular matrix polynomials have other "interesting numbers" called minimal indices,
- which are related to the fact that a singular $m \times n$ matrix polynomial $P(\lambda$ has non-trivial left and/or right null-spaces over the field $\mathbb{C}(\lambda)$ of rational functions:
- They have bases consisting entirely of vector polynomials.
- The polynomial bases with "minimal sum of the degrees" of their vectors are the minimal bases of $P(\lambda)$. The minimal indices of $P(\lambda)$ are the degrees of the vectors of any minimal basis.

Minimal indices of singular PEPs

- PEPs are singular when $\quad P(\lambda)=P_{d} \lambda^{d}+\cdots+P_{1} \lambda+P_{0} \quad$ is either rectangular or square with $\operatorname{det} P(\lambda) \equiv 0$.
- Singular PEPs appear in applications, in particular in Multivariable System Theory and Control Theory.
- In addition to eigenvalues, singular matrix polynomials have other "interesting numbers" called minimal indices,
- which are related to the fact that a singular $m \times n$ matrix polynomial $P(\lambda$ has non-trivial left and/or right null-spaces over the field $\mathbb{C}(\lambda)$ of rational functions:
- They have bases consisting entirely of vector polynomials.
- The polynomial bases with "minimal sum of the dearees" of their vectors are the minimal bases of $P(\lambda)$. The minimal indices of $P(\lambda)$ are the degrees of the vectors of any minimal basis.

Minimal indices of singular PEPs

- PEPs are singular when $\quad P(\lambda)=P_{d} \lambda^{d}+\cdots+P_{1} \lambda+P_{0} \quad$ is either rectangular or square with $\operatorname{det} P(\lambda) \equiv 0$.
- Singular PEPs appear in applications, in particular in Multivariable System Theory and Control Theory.
- In addition to eigenvalues, singular matrix polynomials have other "interesting numbers" called minimal indices,
- which are related to the fact that a singular $m \times n$ matrix polynomial $P(\lambda)$ has non-trivial left and/or right null-spaces over the field $\mathbb{C}(\lambda)$ of rational functions:

$$
\begin{aligned}
& \mathcal{N}_{\ell}(P):=\left\{y(\lambda)^{T} \in \mathbb{F}(\lambda)^{1 \times m}: y(\lambda)^{T} P(\lambda) \equiv 0^{T}\right\}, \\
& \mathcal{N}_{r}(P):=\left\{x(\lambda) \in \mathbb{F}(\lambda)^{n \times 1}: P(\lambda) x(\lambda) \equiv 0\right\}
\end{aligned}
$$

- They have bases consisting entirely of vector polynomials.
- The polynomial bases with "minimal sum of the degrees" of their vectors are the minimal bases of $P(\lambda)$. The minimal indices of $P(\lambda)$ are the degrees of the vectors of any minimal basis.

Minimal indices of singular PEPs

- PEPs are singular when $\quad P(\lambda)=P_{d} \lambda^{d}+\cdots+P_{1} \lambda+P_{0} \quad$ is either rectangular or square with $\operatorname{det} P(\lambda) \equiv 0$.
- Singular PEPs appear in applications, in particular in Multivariable System Theory and Control Theory.
- In addition to eigenvalues, singular matrix polynomials have other "interesting numbers" called minimal indices,
- which are related to the fact that a singular $m \times n$ matrix polynomial $P(\lambda)$ has non-trivial left and/or right null-spaces over the field $\mathbb{C}(\lambda)$ of rational functions:

$$
\begin{aligned}
& \mathcal{N}_{\ell}(P):=\left\{y(\lambda)^{T} \in \mathbb{F}(\lambda)^{1 \times m}: y(\lambda)^{T} P(\lambda) \equiv 0^{T}\right\}, \\
& \mathcal{N}_{r}(P):=\left\{x(\lambda) \in \mathbb{F}(\lambda)^{n \times 1}: P(\lambda) x(\lambda) \equiv 0\right\}
\end{aligned}
$$

- They have bases consisting entirely of vector polynomials.

The polynomial bases with "minimal sum of the degrees" of their vectors are the minimal base of $P(\lambda)$. The minimal indices of $P(\lambda)$ are the degrees of the vectors of any minimal basis.

Minimal indices of singular PEPs

- PEPs are singular when $\quad P(\lambda)=P_{d} \lambda^{d}+\cdots+P_{1} \lambda+P_{0} \quad$ is either rectangular or square with $\operatorname{det} P(\lambda) \equiv 0$.
- Singular PEPs appear in applications, in particular in Multivariable System Theory and Control Theory.
- In addition to eigenvalues, singular matrix polynomials have other "interesting numbers" called minimal indices,
- which are related to the fact that a singular $m \times n$ matrix polynomial $P(\lambda)$ has non-trivial left and/or right null-spaces over the field $\mathbb{C}(\lambda)$ of rational functions:

$$
\begin{aligned}
& \mathcal{N}_{\ell}(P):=\left\{y(\lambda)^{T} \in \mathbb{F}(\lambda)^{1 \times m}: y(\lambda)^{T} P(\lambda) \equiv 0^{T}\right\}, \\
& \mathcal{N}_{r}(P):=\left\{x(\lambda) \in \mathbb{F}(\lambda)^{n \times 1}: P(\lambda) x(\lambda) \equiv 0\right\}
\end{aligned}
$$

- They have bases consisting entirely of vector polynomials.
- The polynomial bases with "minimal sum of the degrees" of their vectors are the minimal bases of $P(\lambda)$. The minimal indices of $P(\lambda)$ are the degrees of the vectors of any minimal basis.

The complete "eigenstructure" of a polynomial matrix

As a consequence of the previous discussion, we define:

Definition

The complete "eigenstructure" of a polynomial matrix $P(\lambda)$ is comprised of:

- its finite eigenvalues, together with their partial multiplicities,
- its infinite eigenvalue, together with its partial multiplicities,
- its right minimal indices, and
- its left minimal indices.

Remarks

- The partial multiplicities are rigorously defined through the Smith form of $P(\lambda)$ and for matrices and pencils they are just the sizes of the Jordan blocks associated to each eigenvalue.

The complete "eigenstructure" of a polynomial matrix

As a consequence of the previous discussion, we define:

Definition

The complete "eigenstructure" of a polynomial matrix $P(\lambda)$ is comprised of:

- its finite eigenvalues, together with their partial multiplicities,
- its infinite eigenvalue, together with its partial multiplicities,
- its right minimal indices, and
- its left minimal indices.

Remarks

- The partial multiplicities are rigorously defined through the Smith form of $P(\lambda)$ and for matrices and pencils they are just the sizes of the Jordan blocks associated to each eigenvalue.

The complete "eigenstructure" of a rational matrix

Analogously, we define:

Definition

The complete "eigenstructure" of a rational matrix $G(\lambda)$ is comprised of:

- its finite zeros and poles, together with their partial multiplicities,
- its infinite zeros and poles, together with its partial multiplicities,
- its right minimal indices, and
- its left minimal indices.

The complete "eigenstructure" of a rational matrix

Analogously, we define:

Definition

The complete "eigenstructure" of a rational matrix $G(\lambda)$ is comprised of:

- its finite zeros and poles, together with their partial multiplicities,
- its infinite zeros and poles, together with its partial multiplicities,
- its right minimal indices, and
- its left minimal indices.

Remarks

- The partial multiplicities are rigorously defined through the Smith-McMillan form of $G(\lambda)$.
- The eigenvalues of $G(\lambda)$ are those zeros that are not poles.
- The infinite zeros and poles, together with its partial multiplicities, of $G(\lambda)$ are defined as the zeros and poles at $\lambda=0$, together with its partial multiplicities, of $G(1 / \lambda)$.

Outline

(1) Brief reminder of "Eigenstructures" of PEPs and REPs

2 Gohberg-Lancaster-Rodman linearizations of PEPs (and REPs)

3 Strongly minimal linearizations of polynomial and rational matrices

4 Constructing strongly minimal linearizations of polynomial matrices
(5) Constructing strongly minimal linearizations of rational matrices

6 Conclusions

Definition: GLR strong linearizations of polynomial matrices

Definition

- A linear polynomial matrix (or matrix pencil) $L(\lambda)$ is a (GLR) linearization of $P(\lambda)=P_{d} \lambda^{d}+\cdots+P_{1} \lambda+P_{0}$ if there exist unimodular polynomial matrices $U(\lambda), V(\lambda)$ such that

$$
U(\lambda) L(\lambda) V(\lambda)=\left[\begin{array}{cc}
I_{s} & 0 \\
0 & P(\lambda)
\end{array}\right]
$$

- $L(\lambda)$ is a (GLR) strong linearization of $P(\lambda)$ if, in addition, rev $L(\lambda)$ is a linearization for rev $P(\lambda)$, i.e.,

$$
\widetilde{U}(\lambda)(\operatorname{rev} L(\lambda)) \tilde{V}(\lambda)=\left[\begin{array}{cc}
I_{s} & 0 \\
0 & \operatorname{rev} P(\lambda)
\end{array}\right],
$$

with $\widetilde{U}(\lambda)$ and $\widetilde{V}(\lambda)$ unimodular.

Spectral characterization of linearizations of polynomial matrices

Theorem

A matrix pencil $L(\lambda)$ is a (GLR) linearization of a polynomial matrix $P(\lambda)$ if and only if
(1) $L(\lambda)$ and $P(\lambda)$ have the same number of right minimal indices.
(2) $L(\lambda)$ and $P(\lambda)$ have the same number of left minimal indices.
(3) $L(\lambda)$ and $P(\lambda)$ have the same finite eigenvalues with the same partial multiplicities.
is a (GLR) strong linearization of $P(\lambda)$ if and only if (1), (2), (3) and
$L(\lambda)$ and $P(\lambda)$ have the same infinite eigenvalues with the same partial multiplicities.

Remark: The minimal indices of $L(\lambda)$ may have arbitrarily different values from those of $P(\lambda)$, though in the most important classes of (GLR) linearizations they are easily related.

Spectral characterization of linearizations of polynomial matrices

Theorem

A matrix pencil $L(\lambda)$ is a (GLR) linearization of a polynomial matrix $P(\lambda)$ if and only if
(1) $L(\lambda)$ and $P(\lambda)$ have the same number of right minimal indices.
(2) $L(\lambda)$ and $P(\lambda)$ have the same number of left minimal indices.
(3) $L(\lambda)$ and $P(\lambda)$ have the same finite eigenvalues with the same partial multiplicities.
$L(\lambda)$ is a (GLR) strong linearization of $P(\lambda)$ if and only if (1), (2), (3) and
(4) $L(\lambda)$ and $P(\lambda)$ have the same infinite eigenvalues with the same partial multiplicities.

Remark: The minimal indices of $L(\lambda)$ may have arbitrarily different values from those of $P(\lambda)$, though in the most important classes of (GLR) linearizations they are easily related.

Spectral characterization of linearizations of polynomial matrices

Theorem

A matrix pencil $L(\lambda)$ is a (GLR) linearization of a polynomial matrix $P(\lambda)$ if and only if
(1) $L(\lambda)$ and $P(\lambda)$ have the same number of right minimal indices.
(2) $L(\lambda)$ and $P(\lambda)$ have the same number of left minimal indices.
(3) $L(\lambda)$ and $P(\lambda)$ have the same finite eigenvalues with the same partial multiplicities.
$L(\lambda)$ is a (GLR) strong linearization of $P(\lambda)$ if and only if (1), (2), (3) and
(4) $L(\lambda)$ and $P(\lambda)$ have the same infinite eigenvalues with the same partial multiplicities.

Remark: The minimal indices of $L(\lambda)$ may have arbitrarily different values from those of $P(\lambda)$, though in the most important classes of (GLR) linearizations they are easily related.

The most famous strong linearization

The classical Frobenius companion form of the $m \times n$ matrix polynomial

$$
P(\lambda)=P_{d} \lambda^{d}+\cdots+P_{1} \lambda+P_{0}
$$

is

$$
C_{1}(\lambda):=\left[\begin{array}{ccccc}
\lambda P_{d}+P_{d-1} & P_{d-2} & \cdots & P_{1} & P_{0} \\
-I_{n} & \lambda I_{n} & & & \\
& \ddots & \ddots & & \\
& & \ddots & \lambda I_{n} & \\
& & & -I_{n} & \lambda I_{n}
\end{array}\right] \in \mathbb{C}[\lambda]^{(m+n(d-1)) \times n d}
$$

Some comments on (GLR + Rosenbrock) linearizations of REPs

- For brevity, I will not present the definition of (GLR + Rosenbrock) linearizations and strong linearizations of rational matrices.
- In contrast with the polynomial case, there is no agreement in the community on the definition of (strong) linearization of a rational matrix.
- Dionecring works on linearizations of rational matriees where developed by Van Dooren and Verghese in late 70s \& early 80s though they did not give a general definition.
- Amparan, D, Marcaida, and Zaballa, Strong linearizations of rational matrices, SIMAX 2018 introduced a definition of strong linearization of any rational matrix $R(\lambda)$ that reduce to GLR when $R(\lambda)$ is a polynomial matrix. They also constructed explicitly many of such linearizations.
- Another related approach for defining linearizations of rational matrices was initiated by Alam and Behera, Linearizations for rational matrix functions and Rosenbrock system polynomials, SIMAX 2016 and followed by other students of Alam.

Some comments on (GLR + Rosenbrock) linearizations of REPs

- For brevity, I will not present the definition of (GLR + Rosenbrock) linearizations and strong linearizations of rational matrices.
- In contrast with the polynomial case, there is no agreement in the community on the definition of (strong) linearization of a rational matrix.
- Pioneering works on linearizations of rational matrices where developed by Van Dooren and Verghese in late 70s \& early 80s though they did not give a general definition.
- Amparan, D, Marcaida, and Zaballa, Strong linearizations of rational matrices, SIMAX 2018 introduced a definition of strong linearization of any rational matrix $R(\lambda)$ that reduce to GLR when $R(\lambda)$ is a polynomial matrix. They also constructed explicitly many of such linearizations.
- Another related approach for defining linearizations of rational matrices was initiated by Alam and Behera, Linearizations for rational matrix functions and Rosenbrock system polynomials, SIMAX 2016 and followed by other students of Alam.

Some comments on (GLR + Rosenbrock) linearizations of REPs

- For brevity, I will not present the definition of (GLR + Rosenbrock) linearizations and strong linearizations of rational matrices.
- In contrast with the polynomial case, there is no agreement in the community on the definition of (strong) linearization of a rational matrix.
- Pioneering works on linearizations of rational matrices where developed by Van Dooren and Verghese in late 70s \& early 80s though they did not give a general definition.
- Amparan, D, Marcaida, and Zaballa, Strong linearizations of rational matrices, SIMAX 2018 introduced a definition of strong linearization of any rational matrix $R(\lambda)$ that reduce to GLR when $R(\lambda)$ is a polynomial matrix. They also constructed explicitly many of such linearizations.
- Another related approach for defining linearizations of rational matrices was initiated by Alam and Behera, Linearizations for rational matrix functions and Rosenbrock system polynomials, SIMAX 2016 and followed by other students of Alam.

Some comments on (GLR + Rosenbrock) linearizations of REPs

- For brevity, I will not present the definition of (GLR + Rosenbrock) linearizations and strong linearizations of rational matrices.
- In contrast with the polynomial case, there is no agreement in the community on the definition of (strong) linearization of a rational matrix.
- Pioneering works on linearizations of rational matrices where developed by Van Dooren and Verghese in late 70s \& early 80s though they did not give a general definition.
- Amparan, D, Marcaida, and Zaballa, Strong linearizations of rational matrices, SIMAX 2018 introduced a definition of strong linearization of any rational matrix $R(\lambda)$ that reduce to GLR when $R(\lambda)$ is a polynomial matrix. They also constructed explicitly many of such linearizations.
- Another related approach for defining linearizations of rational matrices was initiated by Alam and Behera, Linearizations for rational matrix functions and Rosenbrock svstem nolvnomials, SIMAX 2016 and folloved by other students of Alam

Some comments on (GLR + Rosenbrock) linearizations of REPs

- For brevity, I will not present the definition of (GLR + Rosenbrock) linearizations and strong linearizations of rational matrices.
- In contrast with the polynomial case, there is no agreement in the community on the definition of (strong) linearization of a rational matrix.
- Pioneering works on linearizations of rational matrices where developed by Van Dooren and Verghese in late 70s \& early 80s though they did not give a general definition.
- Amparan, D, Marcaida, and Zaballa, Strong linearizations of rational matrices, SIMAX 2018 introduced a definition of strong linearization of any rational matrix $R(\lambda)$ that reduce to GLR when $R(\lambda)$ is a polynomial matrix. They also constructed explicitly many of such linearizations.
- Another related approach for defining linearizations of rational matrices was initiated by Alam and Behera, Linearizations for rational matrix functions and Rosenbrock system polynomials, SIMAX 2016 and followed by other students of Alam.

Outline

Brief reminder of "Eigenstructures" of PEPs and REPs2 Gohberg-Lancaster-Rodman linearizations of PEPs (and REPs)
(3) Strongly minimal linearizations of polynomial and rational matrices

4 Constructing strongly minimal linearizations of polynomial matrices
(5) Constructing strongly minimal linearizations of rational matrices
(6) Conclusions

Definition of strongly minimal linearizations

Since polynomial matrices are also rational matrices the next definition applies to both. $R(\lambda) \in \mathbb{C}(\lambda)^{m \times n}$ denotes that $R(\lambda)$ is a $m \times n$ rational matrix.
Definition (D, Quintana, Van Dooren, SIMAX, 2022)

A strongly minimal linearization of $R(\lambda) \in \mathbb{C}(\lambda)^{m \times n}$ is a matrix pencil

such that:

Definition of strongly minimal linearizations

Since polynomial matrices are also rational matrices the next definition applies to both. $R(\lambda) \in \mathbb{C}(\lambda)^{m \times n}$ denotes that $R(\lambda)$ is a $m \times n$ rational matrix.

Definition (D, Quintana, Van Dooren, SIMAX, 2022)

A strongly minimal linearization of $R(\lambda) \in \mathbb{C}(\lambda)^{m \times n}$ is a matrix pencil

$$
L(\lambda)=\left[\begin{array}{cc}
A_{1} \lambda+A_{0} & -\left(B_{1} \lambda+B_{0}\right) \\
C_{1} \lambda+C_{0} & D_{1} \lambda+D_{0}
\end{array}\right] \in \mathbb{C}[\lambda]^{(p+m) \times(p+n)}
$$

such that:
(a) $R(\lambda)=\left(D_{1} \lambda+D_{0}\right)+\left(C_{1} \lambda+C_{0}\right)\left(A_{1} \lambda+A_{0}\right)^{-1}\left(B_{1} \lambda+B_{0}\right)$,
 rank for all $\lambda_{0} \in \mathbb{C}$, respectively, and
(c) $\left[\begin{array}{ll}A_{1} & -B_{1}\end{array}\right]$ and $\left[\begin{array}{l}A_{1} \\ C_{1}\end{array}\right]$ have full row and column rank, respectively.

Properties of strongly minimal linearizations (l)

Theorem (D, Quintana, Van Dooren, SIMAX, 2022)

If

$$
L(\lambda)=\left[\begin{array}{cc}
A_{1} \lambda+A_{0} & -\left(B_{1} \lambda+B_{0}\right) \\
C_{1} \lambda+C_{0} & D_{1} \lambda+D_{0}
\end{array}\right] \in \mathbb{C}[\lambda]^{(p+m) \times(p+n)}
$$

is a strongly minimal linearization of $R(\lambda) \in \mathbb{C}(\lambda)^{m \times n}$ then:

- The finite eigenvalue structure of $L(\lambda)$ coincides exactly with the finite zero structure of $R(\lambda)$.
- The finite eigenvalue structure of $A_{1} \lambda+A_{0}$ coincides exactly with the finite pole structure of $R(\lambda)$.
- The infinite eigenvalue structure of $L(\lambda)$ and $A(\lambda)$ allows us to recover exactly the infinite zero/pole structure of $R(\lambda)$ (next slide).
- $L(\lambda)$ and $R(\lambda)$ have the same left and right minimal indices.

Properties of strongly minimal linearizations (II)

Theorem (Recovery at infinity)

If $R(\lambda)$ has normal rank $r, 0<e_{1} \leq \cdots \leq e_{s}$ are the partial multiplicities of $\operatorname{rev} A(\lambda)$ at 0 , and $0<\widetilde{e}_{1} \leq \cdots \leq \widetilde{e}_{u}$ are the partial multiplicities of $\operatorname{rev} L(\lambda)$ at 0 , then the structural indices at infinity of $R(\lambda)$ are

$$
\left(d_{1}, d_{2}, \ldots, d_{r}\right)=(-e_{s},-e_{s-1}, \ldots,-e_{1}, \underbrace{0, \ldots, 0}_{r-s-u}, \widetilde{e}_{1}, \widetilde{e}_{2}, \ldots, \widetilde{e}_{u})-(1,1, \ldots, 1) .
$$

Recovery of eigenvectors and minimal bases

The eigenvectors and minimal bases of $R(\lambda)$ can be recovered from those of $L(\lambda)$ simply by removing the first p entries.

feiation with G.R inearizations

- Strongly minimal linearizations are GLR-linearizations.
- Strongly minimal linearizations are NOT strong GLR-linearizations.
- GLR-linearizations are not in general strongly minimal linearizations.

Properties of strongly minimal linearizations (II)

Theorem (Recovery at infinity)

If $R(\lambda)$ has normal rank $r, 0<e_{1} \leq \cdots \leq e_{s}$ are the partial multiplicities of $\operatorname{rev} A(\lambda)$ at 0 , and $0<\widetilde{e}_{1} \leq \cdots \leq \widetilde{e}_{u}$ are the partial multiplicities of $\operatorname{rev} L(\lambda)$ at 0 , then the structural indices at infinity of $R(\lambda)$ are

$$
\left(d_{1}, d_{2}, \ldots, d_{r}\right)=(-e_{s},-e_{s-1}, \ldots,-e_{1}, \underbrace{0, \ldots, 0}_{r-s-u}, \widetilde{e}_{1}, \widetilde{e}_{2}, \ldots, \widetilde{e}_{u})-(1,1, \ldots, 1)
$$

Recovery of eigenvectors and minimal bases

The eigenvectors and minimal bases of $R(\lambda)$ can be recovered from those of $L(\lambda)$ simply by removing the first p entries.

[^0]
Properties of strongly minimal linearizations (II)

Theorem (Recovery at infinity)

If $R(\lambda)$ has normal rank $r, 0<e_{1} \leq \cdots \leq e_{s}$ are the partial multiplicities of $\operatorname{rev} A(\lambda)$ at 0 , and $0<\widetilde{e}_{1} \leq \cdots \leq \widetilde{e}_{u}$ are the partial multiplicities of $\operatorname{rev} L(\lambda)$ at 0 , then the structural indices at infinity of $R(\lambda)$ are

$$
\left(d_{1}, d_{2}, \ldots, d_{r}\right)=(-e_{s},-e_{s-1}, \ldots,-e_{1}, \underbrace{0, \ldots, 0}_{r-s-u}, \widetilde{e}_{1}, \widetilde{e}_{2}, \ldots, \widetilde{e}_{u})-(1,1, \ldots, 1) .
$$

Recovery of eigenvectors and minimal bases

The eigenvectors and minimal bases of $R(\lambda)$ can be recovered from those of $L(\lambda)$ simply by removing the first p entries.

Relation with GLR linearizations

- Strongly minimal linearizations are GLR-linearizations.
- Strongly minimal linearizations are NOT strong GLR-linearizations.
- GLR-linearizations are not in general strongly minimal linearizations.

Outline

Brief reminder of "Eigenstructures" of PEPs and REPs2 Gohberg-Lancaster-Rodman linearizations of PEPs (and REPs)
(3) Strongly minimal linearizations of polynomial and rational matrices

4 Constructing strongly minimal linearizations of polynomial matrices
(5) Constructing strongly minimal linearizations of rational matrices
(6) Conclusions

A famous pencil by Lancaster (1966) (which is not a linearization)

For any

$$
P(\lambda)=P_{d} \lambda^{d}+\cdots+P_{1} \lambda+P_{0} \in \mathbb{C}[\lambda]^{m \times n}
$$

we define

$$
L_{s}(\lambda)=\left[\begin{array}{cccc|c}
& & & -P_{d} & \lambda P_{d} \\
& & . & \lambda P_{d}-P_{d-1} & \vdots \\
& -P_{d} & . & \vdots & \vdots \\
-P_{d} & \lambda P_{d}-P_{d-1} & \ldots & \lambda P_{3}-P_{2} & \lambda P_{2} \\
\hline \lambda P_{d} & \ldots & \ldots & \lambda P_{2} & \lambda P_{1}+P_{0}
\end{array}\right]
$$

- It was proposed by Lancaster for regular polynomial matrices with P_{d} invertible in 1966!!
- If P_{d} is invertible, then $L_{s}(\lambda)$ is a GLR strong linearization of $P(\lambda)$. Otherwise, it is not a GLR-Iinearization.
- $L_{s}(\lambda)$ is one of the famous $\mathbb{D L}(P)$ pencils introduced by Mackey, Mackey, Mehl and Mehrmann (SIMAX, 2006) and further studied by Nakatsukasa,

A famous pencil by Lancaster (1966) (which is not a linearization)

For any

$$
P(\lambda)=P_{d} \lambda^{d}+\cdots+P_{1} \lambda+P_{0} \in \mathbb{C}[\lambda]^{m \times n}
$$

we define

$$
L_{s}(\lambda)=\left[\begin{array}{cccc|c}
& & & -P_{d} & \lambda P_{d} \\
& & . \cdot & \lambda P_{d}-P_{d-1} & \vdots \\
& -P_{d} & . \cdot & \vdots & \vdots \\
-P_{d} & \lambda P_{d}-P_{d-1} & \ldots & \lambda P_{3}-P_{2} & \lambda P_{2} \\
\hline \lambda P_{d} & \ldots & \ldots & \lambda P_{2} & \lambda P_{1}+P_{0}
\end{array}\right]
$$

- It was proposed by Lancaster for regular polynomial matrices with P_{d} invertible in 1966!!
- If P_{d} is invertible, then $L_{s}(\lambda)$ is a GLR strong linearization of $P(\lambda)$. Otherwise, it is not a GLR-linearization.
- $L_{s}(\lambda)$ is one of the famous $\mathbb{D L}(P)$ pencils introduced by Mackey, Mackey, Mehl and Mehrmann (SIMAX, 2006) and further studied by Nakatsukasa, Noferini and Townsend (SIMAX, 2017). The oneqwithansastz yector reme

A famous pencil by Lancaster (1966) (which is not a linearization)

For any

$$
P(\lambda)=P_{d} \lambda^{d}+\cdots+P_{1} \lambda+P_{0} \in \mathbb{C}[\lambda]^{m \times n}
$$

we define

$$
L_{s}(\lambda)=\left[\begin{array}{cccc|c}
& & & -P_{d} & \lambda P_{d} \\
& & . \cdot & \lambda P_{d}-P_{d-1} & \vdots \\
& -P_{d} & . \cdot & \vdots & \vdots \\
-P_{d} & \lambda P_{d}-P_{d-1} & \ldots & \lambda P_{3}-P_{2} & \lambda P_{2} \\
\hline \lambda P_{d} & \ldots & \ldots & \lambda P_{2} & \lambda P_{1}+P_{0}
\end{array}\right]
$$

- It was proposed by Lancaster for regular polynomial matrices with P_{d} invertible in 1966!!
- If P_{d} is invertible, then $L_{s}(\lambda)$ is a GLR strong linearization of $P(\lambda)$. Otherwise, it is not a GLR-linearization.
$L_{s}(\lambda)$ is one of the famous $\mathbb{D} L(P)$ pencils introduced by Mackey, Mackey, Mehl and Mehrmann (SIMAX, 2006) and further studied by Nakatsukasa, Noferini and Townsend (SIMAX, 2017). The oneqwithensentz Vector

A famous pencil by Lancaster (1966) (which is not a linearization)

For any

$$
P(\lambda)=P_{d} \lambda^{d}+\cdots+P_{1} \lambda+P_{0} \in \mathbb{C}[\lambda]^{m \times n}
$$

we define

$$
L_{s}(\lambda)=\left[\begin{array}{cccc|c}
& & & -P_{d} & \lambda P_{d} \\
& & . \cdot & \lambda P_{d}-P_{d-1} & \vdots \\
& -P_{d} & . \cdot & \vdots & \vdots \\
-P_{d} & \lambda P_{d}-P_{d-1} & \ldots & \lambda P_{3}-P_{2} & \lambda P_{2} \\
\hline \lambda P_{d} & \ldots & \ldots & \lambda P_{2} & \lambda P_{1}+P_{0}
\end{array}\right]
$$

- It was proposed by Lancaster for regular polynomial matrices with P_{d} invertible in 1966!!
- If P_{d} is invertible, then $L_{s}(\lambda)$ is a GLR strong linearization of $P(\lambda)$. Otherwise, it is not a GLR-linearization.
- $L_{s}(\lambda)$ is one of the famous $\mathbb{D L}(P)$ pencils introduced by Mackey, Mackey, Mehl and Mehrmann (SIMAX, 2006) and further studied by Nakatsukasa, Noferini and Townsend (SIMAX, 2017). The one with ansatz vector \mathbf{e}_{d}.

A rank revealing factorization of a constant matrix associated to $L_{s}(\lambda)$

Based on
$L_{s}(\lambda)$

\& \& . \cdot \& \lambda P_{d}-P_{d-1} \& \vdots

\& -P_{d} \& . . \& \vdots \& \vdots

-P_{d} \& \lambda P_{d}-P_{d-1} \& ··· \& \lambda P_{3}-P_{2} \& \lambda P_{2}

\hline \lambda P_{d} \& ··· \& ··· \& \lambda P_{2} \& \lambda P_{1}+P_{0}\end{array}\right]\),

we define

and consider a rank-revealing factorization of T, for instance a SVD,

A rank revealing factorization of a constant matrix associated to $L_{s}(\lambda)$

$$
L_{s}(\lambda)=\left[\begin{array}{cccc|c}
& & & -P_{d} & \lambda P_{d} \\
& & . & \lambda P_{d}-P_{d-1} & \vdots \\
& -P_{d} & . & \vdots & \vdots \\
-P_{d} & \lambda P_{d}-P_{d-1} & \ldots & \lambda P_{3}-P_{2} & \lambda P_{2} \\
\hline \lambda P_{d} & \ldots & \ldots & \lambda P_{2} & \lambda P_{1}+P_{0}
\end{array}\right]
$$

we define

$$
T=\left[\begin{array}{cccc}
& & & P_{d} \\
& & . & P_{d-1} \\
& & P_{d} & . \\
P_{d} & P_{d-1} & \ldots & \vdots \\
P_{d}
\end{array}\right]
$$

and consider a rank-revealing factorization of T, for instance a SVD,

A rank revealing factorization of a constant matrix associated to $L_{s}(\lambda)$

$$
\left.\begin{array}{lllc|c}
\text { Based on } \\
L_{s}(\lambda) & & & -P_{d} & \lambda P_{d} \\
& & . & \lambda P_{d}-P_{d-1} & \vdots \\
& -P_{d} & . . & \vdots & \vdots \\
-P_{d} & \lambda P_{d}-P_{d-1} & \ldots & \lambda P_{3}-P_{2} & \lambda P_{2} \\
\hline \lambda P_{d} & \ldots & \ldots & \lambda P_{2} & \lambda P_{1}+P_{0}
\end{array}\right],
$$

we define

$$
T=\left[\begin{array}{cccc}
& & & P_{d} \\
& & . & P_{d-1} \\
& & P_{d} & . \\
P_{d} & P_{d-1} & \ldots & \vdots \\
P_{2}
\end{array}\right]
$$

and consider a rank-revealing factorization of T, for instance a SVD,

$$
U^{*} T V=\left[\begin{array}{cc}
0 & 0 \\
0 & \widehat{T}
\end{array}\right],
$$

where U, V, and $\widehat{T} \in \mathbb{C}^{r \times r}$ are invertible.

A strongly minimal linearization for $P(\lambda)$

Theorem (D, Quintana, Van Dooren, SIMAX, 2022)

where $\widehat{A}_{s}(\lambda) \in \mathbb{C}[\lambda]^{r \times r}$ is regular
and

A strongly minimal linearization for $P(\lambda)$

Theorem (D, Quintana, Van Dooren, SIMAX, 2022)

$$
=\left[\begin{array}{cc|c}
0 & 0 & 0 \\
0 & \widehat{A}_{s}(\lambda) & -\widehat{B}_{s}(\lambda) \\
\hline 0 & \widehat{C}_{s}(\lambda) & \widehat{D}_{s}(\lambda)
\end{array}\right], \quad \text { where } \widehat{A}_{s}(\lambda) \in \mathbb{C}[\lambda]^{r \times r} \text { is regular }
$$

A strongly minimal linearization for $P(\lambda)$

Theorem (D, Quintana, Van Dooren, SIMAX, 2022)

$$
\begin{aligned}
& {\left[\begin{array}{c|c}
U^{*} & \\
\hline & I_{m}
\end{array}\right]\left[\begin{array}{cccc|c}
& & & -P_{d} & \lambda P_{d} \\
& & . & \lambda P_{d}-P_{d-1} & \vdots \\
& -P_{d} & . & \vdots & \vdots \\
-P_{d} & \lambda P_{d}-P_{d-1} & \ldots & \lambda P_{3}-P_{2} & \lambda P_{2} \\
\hline \lambda P_{d} & \ldots & \ldots & \lambda P_{2} & \lambda P_{1}+P_{0}
\end{array}\right]\left[\begin{array}{ll}
V & \\
\hline & I_{n}
\end{array}\right]} \\
& \\
& =\left[\begin{array}{cc|c}
0 & 0 & 0 \\
0 & \widehat{A}_{s}(\lambda) & -\widehat{B}_{s}(\lambda) \\
\hline 0 & \widehat{C}_{s}(\lambda) & \widehat{D}_{s}(\lambda)
\end{array}\right], \quad \text { where } \widehat{A}_{s}(\lambda) \in \mathbb{C}[\lambda]^{r \times r} \text { is regular }
\end{aligned}
$$

and

$$
\widehat{L}_{s}(\lambda)=\left[\begin{array}{c|c}
\widehat{A}_{s}(\lambda) & -\widehat{B}_{s}(\lambda) \\
\hline \widehat{C}_{s}(\lambda) & \widehat{D}_{s}(\lambda)
\end{array}\right]
$$

is a strongly minimal linearization of $P(\lambda)$.

Comments on preservation of structures

$$
L_{s}(\lambda)=\left[\begin{array}{cccc|c}
& & & -P_{d} & \lambda P_{d} \\
& & . & \lambda P_{d}-P_{d-1} & \vdots \\
& -P_{d} & . & \vdots & \vdots \\
-P_{d} & \lambda P_{d}-P_{d-1} & \ldots & \lambda P_{3}-P_{2} & \lambda P_{2} \\
\hline \lambda P_{d} & \ldots & \ldots & \lambda P_{2} & \lambda P_{1}+P_{0}
\end{array}\right]
$$

- is Hermitian (resp. skew-Hermitian) if $P(\lambda)$ is.
- Moreover, the rank-revealing factorization of T can be chosen to preserve the Hermitian (resp. skew-Hermitian) structure and, so, to get a
- Hermitian (resn skew-Hermitian) strongly minimal linearization of $P(\lambda)$.
- Using appropriate block diagonal scalings
$S:=\operatorname{diag}\left((-1)^{(d-1)} I_{m}, \ldots,(-1)^{2} I_{m},-I_{m}\right)$ in the factors of the
rank-revealing factorization of T, the process above can be easily adapted to preserve alternating structures of I

Comments on preservation of structures

$$
L_{s}(\lambda)=\left[\begin{array}{cccc|c}
& & & -P_{d} & \lambda P_{d} \\
& & . & \lambda P_{d}-P_{d-1} & \vdots \\
& -P_{d} & . & \vdots & \vdots \\
-P_{d} & \lambda P_{d}-P_{d-1} & \ldots & \lambda P_{3}-P_{2} & \lambda P_{2} \\
\hline \lambda P_{d} & \ldots & \ldots & \lambda P_{2} & \lambda P_{1}+P_{0}
\end{array}\right]
$$

- is Hermitian (resp. skew-Hermitian) if $P(\lambda)$ is.
- Moreover, the rank-revealing factorization of T can be chosen to preserve the Hermitian (resp. skew-Hermitian) structure and, so, to get a
- Hermitian (resp. skew-Hermitian) strongly minimal linearization of $P(\lambda)$
- Using appropriate block diagonal scalings
rank-revealing factorization of T, the process above can be easily adapted to preserve alternating structures of

Comments on preservation of structures

$$
L_{s}(\lambda)=\left[\begin{array}{cccc|c}
& & & -P_{d} & \lambda P_{d} \\
& & . & \lambda P_{d}-P_{d-1} & \vdots \\
& -P_{d} & . & \vdots & \vdots \\
-P_{d} & \lambda P_{d}-P_{d-1} & \ldots & \lambda P_{3}-P_{2} & \lambda P_{2} \\
\hline \lambda P_{d} & \ldots & \ldots & \lambda P_{2} & \lambda P_{1}+P_{0}
\end{array}\right]
$$

- is Hermitian (resp. skew-Hermitian) if $P(\lambda)$ is.
- Moreover, the rank-revealing factorization of T can be chosen to preserve the Hermitian (resp. skew-Hermitian) structure and, so, to get a
- Hermitian (resp. skew-Hermitian) strongly minimal linearization of $P(\lambda)$.
- Using appropriate block diagonal scalings
rank-revealing factorization of T, the process above can be easily adapted to preserve alternating structures of

Comments on preservation of structures

$$
L_{s}(\lambda)=\left[\begin{array}{cccc|c}
& & & -P_{d} & \lambda P_{d} \\
& & . & \lambda P_{d}-P_{d-1} & \vdots \\
& -P_{d} & . \cdot & \vdots & \vdots \\
-P_{d} & \lambda P_{d}-P_{d-1} & \ldots & \lambda P_{3}-P_{2} & \lambda P_{2} \\
\hline \lambda P_{d} & \ldots & \ldots & \lambda P_{2} & \lambda P_{1}+P_{0}
\end{array}\right]
$$

- is Hermitian (resp. skew-Hermitian) if $P(\lambda)$ is.
- Moreover, the rank-revealing factorization of T can be chosen to preserve the Hermitian (resp. skew-Hermitian) structure and, so, to get a
- Hermitian (resp. skew-Hermitian) strongly minimal linearization of $P(\lambda)$.
- Using appropriate block diagonal scalings
$S:=\operatorname{diag}\left((-1)^{(d-1)} I_{m}, \ldots,(-1)^{2} I_{m},-I_{m}\right)$ in the factors of the rank-revealing factorization of T, the process above can be easily adapted to preserve alternating structures of $P(\lambda)$.

Quadratic polynomial matrices (with low rank leading coefficient)

$$
P(\lambda)=P_{0}+\lambda P_{1}+\lambda^{2} P_{2} \in \mathbb{C}[\lambda]^{m \times n}
$$

- The Lancaster pencil is very simple in the quadratic case

- If with orthornormal columns. Then

is a strongly minimal linearization of $P(\lambda)$.
- In important applications, the leading coefficient P_{2} has low rank r_{2}.
- In the Hermitian case, $\widehat{T}=\widehat{T}^{*}, U_{2}=V_{2}$ and the Hermitian structure is preserved.

Quadratic polynomial matrices (with low rank leading coefficient)

$$
P(\lambda)=P_{0}+\lambda P_{1}+\lambda^{2} P_{2} \in \mathbb{C}[\lambda]^{m \times n}
$$

- The Lancaster pencil is very simple in the quadratic case

$$
L_{s}(\lambda)=\left[\begin{array}{c|c}
-P_{2} & \lambda P_{2} \\
\hline \lambda P_{2} & \lambda P_{1}+P_{0}
\end{array}\right] \in \mathbb{C}[\lambda]^{2 m \times 2 n} \quad \text { and } \quad T=P_{2} .
$$

with orthornormal columns. Then

is a strongly minimal linearization of $P(\lambda)$.

- In important applications, the leading coefficient P_{2} has low rank
- In the Hermitian case, $\widehat{T}=\widehat{T}^{*}, U_{2}=V_{2}$ and the Hermitian structure is preserved.

Quadratic polynomial matrices (with low rank leading coefficient)

$$
P(\lambda)=P_{0}+\lambda P_{1}+\lambda^{2} P_{2} \in \mathbb{C}[\lambda]^{m \times n}
$$

- The Lancaster pencil is very simple in the quadratic case

$$
L_{s}(\lambda)=\left[\begin{array}{c|c}
-P_{2} & \lambda P_{2} \\
\hline \lambda P_{2} & \lambda P_{1}+P_{0}
\end{array}\right] \in \mathbb{C}[\lambda]^{2 m \times 2 n} \quad \text { and } \quad T=P_{2} .
$$

- If $P_{2}=U_{2} \widehat{T} V_{2}^{*}$, with $\widehat{T} \in \mathbb{C}^{r_{2} \times r_{2}}$ invertible and $U_{2} \in \mathbb{C}^{m \times r_{2}}, V_{2} \in \mathbb{C}^{n \times r_{2}}$ with orthornormal columns. Then

$$
\widehat{L}_{s}(\lambda)=\left[\begin{array}{c|c}
-\widehat{T} & \lambda \widehat{T} V_{2}^{*} \\
\hline \lambda U_{2} \widehat{T} & \lambda P_{1}+P_{0}
\end{array}\right] \in \mathbb{C}[\lambda]^{\left(r_{2}+m\right) \times\left(r_{2}+n\right)}
$$

is a strongly minimal linearization of $P(\lambda)$.

- In important applications, the leading coefficient P_{2} has low rank T_{2}.
- In the Hermitian case, $\widehat{T}=\widehat{T}^{*}, U_{2}=V_{2}$ and the Hermitian structure is preserved.

Quadratic polynomial matrices (with low rank leading coefficient)

$$
P(\lambda)=P_{0}+\lambda P_{1}+\lambda^{2} P_{2} \in \mathbb{C}[\lambda]^{m \times n}
$$

- The Lancaster pencil is very simple in the quadratic case

$$
L_{s}(\lambda)=\left[\begin{array}{c|c}
-P_{2} & \lambda P_{2} \\
\hline \lambda P_{2} & \lambda P_{1}+P_{0}
\end{array}\right] \in \mathbb{C}[\lambda]^{2 m \times 2 n} \quad \text { and } \quad T=P_{2} .
$$

- If $P_{2}=U_{2} \widehat{T} V_{2}^{*}$, with $\widehat{T} \in \mathbb{C}^{r_{2} \times r_{2}}$ invertible and $U_{2} \in \mathbb{C}^{m \times r_{2}}, V_{2} \in \mathbb{C}^{n \times r_{2}}$ with orthornormal columns. Then

$$
\widehat{L}_{s}(\lambda)=\left[\begin{array}{c|c}
-\widehat{T} & \lambda \widehat{T} V_{2}^{*} \\
\hline \lambda U_{2} \widehat{T} & \lambda P_{1}+P_{0}
\end{array}\right] \in \mathbb{C}[\lambda]^{\left(r_{2}+m\right) \times\left(r_{2}+n\right)}
$$

is a strongly minimal linearization of $P(\lambda)$.

- In important applications, the leading coefficient P_{2} has low rank r_{2}. preserved.

Quadratic polynomial matrices (with low rank leading coefficient)

$$
P(\lambda)=P_{0}+\lambda P_{1}+\lambda^{2} P_{2} \in \mathbb{C}[\lambda]^{m \times n}
$$

- The Lancaster pencil is very simple in the quadratic case

$$
L_{s}(\lambda)=\left[\begin{array}{c|c}
-P_{2} & \lambda P_{2} \\
\hline \lambda P_{2} & \lambda P_{1}+P_{0}
\end{array}\right] \in \mathbb{C}[\lambda]^{2 m \times 2 n} \quad \text { and } \quad T=P_{2} .
$$

- If $P_{2}=U_{2} \widehat{T} V_{2}^{*}$, with $\widehat{T} \in \mathbb{C}^{r_{2} \times r_{2}}$ invertible and $U_{2} \in \mathbb{C}^{m \times r_{2}}, V_{2} \in \mathbb{C}^{n \times r_{2}}$ with orthornormal columns. Then

$$
\widehat{L}_{s}(\lambda)=\left[\begin{array}{c|c}
-\widehat{T} & \lambda \widehat{T} V_{2}^{*} \\
\hline \lambda U_{2} \widehat{T} & \lambda P_{1}+P_{0}
\end{array}\right] \in \mathbb{C}[\lambda]^{\left(r_{2}+m\right) \times\left(r_{2}+n\right)}
$$

is a strongly minimal linearization of $P(\lambda)$.

- In important applications, the leading coefficient P_{2} has low rank r_{2}.
- In the Hermitian case, $\widehat{T}=\widehat{T}^{*}, U_{2}=V_{2}$ and the Hermitian structure is preserved.

Outline

Brief reminder of "Eigenstructures" of PEPs and REPs(2) Gohberg-Lancaster-Rodman linearizations of PEPs (and REPs)
(3) Strongly minimal linearizations of polynomial and rational matrices
(4) Constructing strongly minimal linearizations of polynomial matrices
(5) Constructing strongly minimal linearizations of rational matrices
(6) Conclusions

Polynomial and strictly proper parts of a rational matrix

Any rational matrix $R(\lambda)$ can be uniquely expressed as

$$
R(\lambda)=P(\lambda)+R_{s p}(\lambda)
$$

where
(1) $P(\lambda)$ is a polynomial matrix (polynomial part of $R(\lambda)$), and
(2) the rational matrix $R_{s p}(\lambda)$ is strictly proper (strictly proper part of $R(\lambda)$), i.e., $\lim _{\lambda \rightarrow \infty} R_{s p}(\lambda)=0$.

Strongly minimal linearizations for strictly proper rational matrices (I)

For strictly proper rational matrices $R_{s p}(\lambda) \in \mathbb{C}(\lambda)^{m \times n}$, we represent them via a Laurent expansion around the point at infinity

$$
R_{s p}(\lambda):=R_{-1} \lambda^{-1}+R_{-2} \lambda^{-2}+R_{-3} \lambda^{-3}+\ldots
$$

and consider the block Hankel matrix H and shifted block Hankel matrix H_{σ} :

For sufficiently large k the rank r_{f} of H equals the total polar degree of the finite poles, i.e., the sum of the degrees of the denominators in the Smith McMillan form of $R_{s p}(\lambda)$ and does not increase more with k.

Strongly minimal linearizations for strictly proper rational matrices (I)

For strictly proper rational matrices $R_{s p}(\lambda) \in \mathbb{C}(\lambda)^{m \times n}$, we represent them via a Laurent expansion around the point at infinity

$$
R_{s p}(\lambda):=R_{-1} \lambda^{-1}+R_{-2} \lambda^{-2}+R_{-3} \lambda^{-3}+\ldots
$$

and consider the block Hankel matrix H and shifted block Hankel matrix H_{σ} :
$H:=\left[\begin{array}{cccc}R_{-1} & R_{-2} & \ldots & R_{-k} \\ R_{-2} & & . \cdot & R_{-k-1} \\ \vdots & . \cdot & . . & \vdots \\ R_{-k} & R_{-k-1} & \ldots & R_{-2 k+1}\end{array}\right], H_{\sigma}:=\left[\begin{array}{cccc}R_{-2} & R_{-3} & \ldots & R_{-k-1} \\ R_{-3} & & . & R_{-k-2} \\ \vdots & . & . & \vdots \\ R_{-k-1} & R_{-k-2} & \ldots & R_{-2 k}\end{array}\right]$

For sufficiently large k the rank r_{f} of H equals the total polar degree of the finite poles, i.e., the sum of the degrees of the denominators in the Smith McMillan form of $R_{s p}(\lambda)$ and does not increase more with k.

Strongly minimal linearizations for strictly proper rational matrices (II)

Theorem (D, Quintana, Van Dooren, SIMAX, 2022)

Let $R_{s p}(\lambda) \in \mathbb{C}(\lambda)^{m \times n}$ be a strictly proper rational matrix. Let H and H_{σ} be the block Hankel matrices and $r_{f}:=\operatorname{rank} H$. Let $U:=\left[\begin{array}{ll}U_{1} & U_{2}\end{array}\right]$ and $V:=\left[\begin{array}{ll}V_{1} & V_{2}\end{array}\right]$ be unitary matrices such that

$$
U^{*} H V=\left[\begin{array}{cc}
\widehat{H} & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
U_{1}^{*} H V_{1} & 0 \\
0 & 0
\end{array}\right]
$$

where \hat{H} is $r_{f} \times r_{f}$ and invertible. Partition the matrices U_{1} and V_{1} as

$$
U_{1}=\left[\begin{array}{l}
U_{11} \\
U_{21}
\end{array}\right], \quad \text { and } \quad V_{1}=\left[\begin{array}{l}
V_{11} \\
V_{21}
\end{array}\right]
$$

where the matrices U_{11} and V_{11} have dimension $m \times r_{f}$ and $n \times r_{f}$. Then

$$
L_{s p}(\lambda):=\left[\begin{array}{c|c}
U_{1}^{*} H_{\sigma} V_{1}-\lambda \widehat{H} & \widehat{H} V_{11}^{*} \\
\hline U_{11} \widehat{H} & 0
\end{array}\right]
$$

is a strongly minimal linearization for $R_{s p}(\lambda)$. Consider $U=V$ if $R_{s p}(\lambda)$ is Hermitian or skew-Hermitian.

Strongly minimal linearizations for rational matrices

Theorem (D, Quintana, Van Dooren, SIMAX, 2022)

Let $R(\lambda) \in \mathbb{C}(\lambda)^{m \times n}$ be an arbitrary (resp. structured) rational matrix. Let

$$
R(\lambda)=P(\lambda)+R_{s p}(\lambda)
$$

with $P(\lambda)$ polynomial and $R_{s p}(\lambda)$ strictly proper. Let

$$
\widehat{L}_{s}(\lambda):=\left[\begin{array}{c|c}
\widehat{A}_{s}(\lambda) & \widehat{B}_{s}(\lambda) \\
\hline-\widehat{C}_{s}(\lambda) & \widehat{D}_{s}(\lambda)
\end{array}\right] \quad \text { and } \quad L_{s p}(\lambda):=\left[\begin{array}{c|c}
A_{s p}(\lambda) & B_{s p}(\lambda) \\
\hline-C_{s p}(\lambda) & 0
\end{array}\right]
$$

be (resp. structured) strongly minimal linearizations of $P(\lambda)$ and $R_{s p}(\lambda)$, respectively. Then

$$
L(\lambda):=\left[\begin{array}{cc|c}
\widehat{A}_{s}(\lambda) & 0 & \widehat{B}_{s}(\lambda) \\
0 & A_{s p}(\lambda) & B_{s p}(\lambda) \\
\hline-\widehat{C}_{s}(\lambda) & -C_{s p}(\lambda) & \widehat{D}_{s}(\lambda)
\end{array}\right]
$$

is a (structured) strongly minimal linearization of $R(\lambda)$.

Outline

(1)

Brief reminder of "Eigenstructures" of PEPs and REPs

(2) Gohberg-Lancaster-Rodman linearizations of PEPs (and REPs)
(3) Strongly minimal linearizations of polynomial and rational matrices

4 Constructing strongly minimal linearizations of polynomial matrices
(5) Constructing strongly minimal linearizations of rational matrices
(6) Conclusions
F. M. Dopico (U. Carlos III, Madrid)

Strongly minimal linearizations

Conclusions

- We have introduced the new definition of strongly minimal linearizations.
- It is simultaneously valid for polynomial and rational matrices.
- We have proved that they have excellent recovery properties.
- We showed that they exist for any rational matrix
- and we have shown how to construct them via stable rank-revealing decompositions of constant matrices (SVD, for instance).
- Our constructions always preserve the Hermitian, skew-Hermitian, and alternating structures,
- which is not always possible for GLR-strong linearizations.

Conclusions

- We have introduced the new definition of strongly minimal linearizations.
- It is simultaneously valid for polynomial and rational matrices.
- We have proved that they have excellent recovery properties.
- We showed that they exist for any rational matrix
- and we have shown how to construct them via stable rank-revealing decompositions of constant matrices (SVD, for instance).
- Our constructions always preserve the Hermitian, skew-Hermitian, and alternating structures,
- which is not always possible for GLR-strong linearizations.

Conclusions

- We have introduced the new definition of strongly minimal linearizations.
- It is simultaneously valid for polynomial and rational matrices.
- We have proved that they have excellent recovery properties.
- We showed that they exist for any rational matrix
- and we have shown how to construct them via stable rank-revealing decompositions of constant matrices (SVD, for instance).
- Our constructions always preserve the Hermitian, skew-Hermitian, and alternating structures,
- which is not always possible for GLR-strong linearizations.

Conclusions

- We have introduced the new definition of strongly minimal linearizations.
- It is simultaneously valid for polynomial and rational matrices.
- We have proved that they have excellent recovery properties.
- We showed that they exist for any rational matrix
- and we have shown how to construct them via stable rank-revealing decompositions of constant matrices (SVD, for instance).
- Our constructions always preserve the Hermitian, skew-Hermitian, and alternating structures,
- which is not always possible for GLR-strong linearizations.

Conclusions

- We have introduced the new definition of strongly minimal linearizations.
- It is simultaneously valid for polynomial and rational matrices.
- We have proved that they have excellent recovery properties.
- We showed that they exist for any rational matrix
- and we have shown how to construct them via stable rank-revealing decompositions of constant matrices (SVD, for instance).
- Our constructions always preserve the Hermitian, skew-Hermitian, and alternating structures,
- which is not always possible for GLR-strong linearizations.

Conclusions

- We have introduced the new definition of strongly minimal linearizations.
- It is simultaneously valid for polynomial and rational matrices.
- We have proved that they have excellent recovery properties.
- We showed that they exist for any rational matrix
- and we have shown how to construct them via stable rank-revealing decompositions of constant matrices (SVD, for instance).
- Our constructions always preserve the Hermitian, skew-Hermitian, and alternating structures,
- which is not always possible for GLR-strong linearizations.

Conclusions

- We have introduced the new definition of strongly minimal linearizations.
- It is simultaneously valid for polynomial and rational matrices.
- We have proved that they have excellent recovery properties.
- We showed that they exist for any rational matrix
- and we have shown how to construct them via stable rank-revealing decompositions of constant matrices (SVD, for instance).
- Our constructions always preserve the Hermitian, skew-Hermitian, and alternating structures,
- which is not always possible for GLR-strong linearizations.

[^0]: Preiation with GL.R inearizations

 - Strongly minimal linearizations are GLR-linearizations.
 - Strongly minimal linearizations are NOT strong GLR-linearizations.
 - GLR-linearizations are not in general strongly minimal linearizations.

