Minimal rank factorizations of low rank polynomial matrices

Froilán M. Dopico

joint work with Andrii Dmytryshyn (Örebro University, Sweden) and Paul Van Dooren (UC Louvain, Belgium)

Departamento de Matemáticas
Universidad Carlos III de Madrid, Spain

Minisymposium "Bounded rank perturbations
in matrix theory and related problems"
25th ILAS Conference. Madrid. June 12, 2023

MINISTERIO
DE CIENCIA
EINNOVACION
uc3m | Universidad Carlos III de Madrid

Setting (I): The ambient vector space and its metric

- We will consider the vector space

$$
\mathrm{POL}_{d}^{m \times n}:=\left\{\begin{array}{c}
m \times n \text { complex matrix polynomials } \\
\text { with degree at most } d
\end{array}\right\} .
$$

- The Euclidean distance in $\mathrm{POL}_{d}^{m \times n}$ is defined as follows. Given

$$
\begin{array}{ll}
P(\lambda)=\lambda^{d} P_{d}+\cdots+\lambda P_{1}+P_{0} \in \operatorname{POL}_{d}^{m \times n}, & \left(P_{i} \in \mathbb{C}^{m \times n}\right), \\
Q(\lambda)=\lambda^{d} Q_{d}+\cdots+\lambda Q_{1}+Q_{0} \in \operatorname{POL}_{d}^{m \times n}, & \left(Q_{i} \in \mathbb{C}^{m \times n}\right),
\end{array}
$$

Setting (I): The ambient vector space and its metric

- We will consider the vector space

$$
\mathrm{POL}_{d}^{m \times n}:=\left\{\begin{array}{c}
m \times n \text { complex matrix polynomials } \\
\text { with degree at most } d
\end{array}\right\} .
$$

- The Euclidean distance in $\mathrm{POL}_{d}^{m \times n}$ is defined as follows. Given

$$
\begin{array}{ll}
P(\lambda)=\lambda^{d} P_{d}+\cdots+\lambda P_{1}+P_{0} \in \operatorname{POL}_{d}^{m \times n}, & \left(P_{i} \in \mathbb{C}^{m \times n}\right), \\
Q(\lambda)=\lambda^{d} Q_{d}+\cdots+\lambda Q_{1}+Q_{0} \in \operatorname{POL}_{d}^{m \times n}, & \left(Q_{i} \in \mathbb{C}^{m \times n}\right),
\end{array}
$$

Setting (I): The ambient vector space and its metric

- We will consider the vector space

$$
\mathrm{POL}_{d}^{m \times n}:=\left\{\begin{array}{c}
m \times n \text { complex matrix polynomials } \\
\text { with degree at most } d
\end{array}\right\} .
$$

- The Euclidean distance in $\mathrm{POL}_{d}^{m \times n}$ is defined as follows. Given

$$
\begin{array}{ll}
P(\lambda)=\lambda^{d} P_{d}+\cdots+\lambda P_{1}+P_{0} \in \operatorname{POL}_{d}^{m \times n}, & \left(P_{i} \in \mathbb{C}^{m \times n}\right), \\
Q(\lambda)=\lambda^{d} Q_{d}+\cdots+\lambda Q_{1}+Q_{0} \in \operatorname{POL}_{d}^{m \times n}, & \left(Q_{i} \in \mathbb{C}^{m \times n}\right),
\end{array}
$$

$$
\rho(P, Q):=\sqrt{\sum_{i=0}^{d}\left\|P_{i}-Q_{i}\right\|_{F}^{2}} .
$$

- It makes POL ${ }_{d}^{m \times n}$ a metric space and we can consider closures of subsets of POL ${ }_{d}^{m \times n}$, as well as any other topological concept.
- The closure of any set A is denoted by \bar{A}.

Setting (I): The ambient vector space and its metric

- We will consider the vector space

$$
\mathrm{POL}_{d}^{m \times n}:=\left\{\begin{array}{c}
m \times n \text { complex matrix polynomials } \\
\text { with degree at most } d
\end{array}\right\} .
$$

- The Euclidean distance in $\mathrm{POL}_{d}^{m \times n}$ is defined as follows. Given

$$
\begin{array}{ll}
P(\lambda)=\lambda^{d} P_{d}+\cdots+\lambda P_{1}+P_{0} \in \operatorname{POL}_{d}^{m \times n}, & \left(P_{i} \in \mathbb{C}^{m \times n}\right), \\
Q(\lambda)=\lambda^{d} Q_{d}+\cdots+\lambda Q_{1}+Q_{0} \in \operatorname{POL}_{d}^{m \times n}, & \left(Q_{i} \in \mathbb{C}^{m \times n}\right),
\end{array}
$$

$$
\rho(P, Q):=\sqrt{\sum_{i=0}^{d}\left\|P_{i}-Q_{i}\right\|_{F}^{2}}
$$

- It makes $\mathrm{POL}_{d}^{m \times n}$ a metric space and we can consider closures of subsets of $\mathrm{POL}_{d}^{m \times n}$, as well as any other topological concept.
- The closure of any set \mathcal{A} is denoted by $\overline{\mathcal{A}}$.

Setting (I): The ambient vector space and its metric

- We will consider the vector space

$$
\mathrm{POL}_{d}^{m \times n}:=\left\{\begin{array}{c}
m \times n \text { complex matrix polynomials } \\
\text { with degree at most } d
\end{array}\right\} .
$$

- The Euclidean distance in $\mathrm{POL}_{d}^{m \times n}$ is defined as follows. Given

$$
\begin{array}{ll}
P(\lambda)=\lambda^{d} P_{d}+\cdots+\lambda P_{1}+P_{0} \in \operatorname{POL}_{d}^{m \times n}, & \left(P_{i} \in \mathbb{C}^{m \times n}\right), \\
Q(\lambda)=\lambda^{d} Q_{d}+\cdots+\lambda Q_{1}+Q_{0} \in \operatorname{POL}_{d}^{m \times n}, & \left(Q_{i} \in \mathbb{C}^{m \times n}\right),
\end{array}
$$

$$
\rho(P, Q):=\sqrt{\sum_{i=0}^{d}\left\|P_{i}-Q_{i}\right\|_{F}^{2}}
$$

- It makes $\mathrm{POL}_{d}^{m \times n}$ a metric space and we can consider closures of subsets of $\mathrm{POL}_{d}^{m \times n}$, as well as any other topological concept.
- The closure of any set \mathcal{A} is denoted by $\overline{\mathcal{A}}$.

Setting (II): The subsets of $\mathrm{POL}_{d}^{m \times n}$ studied in this talk

- Our main goal is to describe the elements $P(\lambda)$ in the sets of singular polynomials

$$
\text { POL }_{d, r}^{m \times n}:=\left\{\begin{array}{c}
m \times n \text { complex matrix polynomials } \\
\text { with degree at most } d \\
\text { and (normal) rank at most } r<\min \{m, n\}
\end{array}\right\} \subset \operatorname{POL}_{d}^{m \times n}
$$

- as products of two polynomial factors $L(\lambda) \in \mathbb{C}[\lambda]^{m \times r}, R(\lambda) \in \mathbb{C}[\lambda]^{1 \times n}$

- with certain matching properties for the degrees of the columns of $L(\lambda)$ and the rows of $R(\lambda)$.
- Moreover, we will connect the new factor description and the one of $\mathrm{POL}_{d, r}^{m \times n}$ in terms of generic eigenstructures.

Setting (II): The subsets of $\mathrm{POL}_{d}^{m \times n}$ studied in this talk

- Our main goal is to describe the elements $P(\lambda)$ in the sets of singular polynomials

$$
\text { POL }_{d, r}^{m \times n}:=\left\{\begin{array}{c}
m \times n \text { complex matrix polynomials } \\
\text { with degree at most } d \\
\text { and (normal) rank at most } r<\min \{m, n\}
\end{array}\right\} \subset \operatorname{POL}_{d}^{m \times n}
$$

- as products of two polynomial factors $L(\lambda) \in \mathbb{C}[\lambda]^{m \times r}, R(\lambda) \in \mathbb{C}[\lambda]^{r \times n}$

$$
P(\lambda)=L(\lambda) R(\lambda)=\square
$$

- with certain matching properties for the degrees of the columns of $L(\lambda)$ and the rows of $R(\lambda)$.
- Moreover, we will connect the new factor description and the one of $\mathrm{POL}_{d, r}^{m \times n}$ in terms of generic eigenstructures.

Setting (II): The subsets of $\mathrm{POL}_{d}^{m \times n}$ studied in this talk

- Our main goal is to describe the elements $P(\lambda)$ in the sets of singular polynomials

$$
\text { POL }_{d, r}^{m \times n}:=\left\{\begin{array}{c}
m \times n \text { complex matrix polynomials } \\
\text { with degree at most } d \\
\text { and (normal) rank at most } r<\min \{m, n\}
\end{array}\right\} \subset \operatorname{POL}_{d}^{m \times n}
$$

- as products of two polynomial factors $L(\lambda) \in \mathbb{C}[\lambda]^{m \times r}, R(\lambda) \in \mathbb{C}[\lambda]^{r \times n}$

$$
P(\lambda)=L(\lambda) R(\lambda)=\square
$$

\square

- with certain matching properties for the degrees of the columns of $L(\lambda)$ and the rows of $R(\lambda)$.
- Moreover, we will connect the new factor description and the one of $\mathrm{POL}_{d, r}^{m \times n}$ in terms of generic eigenstructures.

Setting (II): The subsets of $\mathrm{POL}_{d}^{m \times n}$ studied in this talk

- Our main goal is to describe the elements $P(\lambda)$ in the sets of singular polynomials

$$
\text { POL }_{d, r}^{m \times n}:=\left\{\begin{array}{c}
m \times n \text { complex matrix polynomials } \\
\text { with degree at most } d \\
\text { and (normal) rank at most } r<\min \{m, n\}
\end{array}\right\} \subset \operatorname{POL}_{d}^{m \times n}
$$

- as products of two polynomial factors $L(\lambda) \in \mathbb{C}[\lambda]^{m \times r}, R(\lambda) \in \mathbb{C}[\lambda]^{r \times n}$

$$
P(\lambda)=L(\lambda) R(\lambda)=\square
$$

\square

- with certain matching properties for the degrees of the columns of $L(\lambda)$ and the rows of $R(\lambda)$.
- Moreover, we will connect the new factor description and the one of $\mathrm{POL}_{d, r}^{m \times n}$ in terms of generic eigenstructures.

[^0]
Setting (II): The subsets of $\mathrm{POL}_{d}^{m \times n}$ studied in this talk

- Our main goal is to describe the elements $P(\lambda)$ in the sets of singular polynomials

$$
\text { POL }_{d, r}^{m \times n}:=\left\{\begin{array}{c}
m \times n \text { complex matrix polynomials } \\
\text { with degree at most } d \\
\text { and (normal) rank at most } r<\min \{m, n\}
\end{array}\right\} \subset \operatorname{POL}_{d}^{m \times n}
$$

- as products of two polynomial factors $L(\lambda) \in \mathbb{C}[\lambda]^{m \times r}, R(\lambda) \in \mathbb{C}[\lambda]^{r \times n}$

$$
P(\lambda)=L(\lambda) R(\lambda)=
$$

\square

- with certain matching properties for the degrees of the columns of $L(\lambda)$ and the rows of $R(\lambda)$.
- Moreover, we will connect the new factor description and the one of $\mathrm{POL}_{d, r}^{m \times n}$ in terms of generic eigenstructures.
A. Dmytryshyn and F.M. Dopico, Generic complete eigenstructures for sets of matrix polynomials with bounded rank and degree, Linear Algebra Appl., 535 (2017) 213-230

Setting (III): Main "informal" result of this talk

Generically a matrix polynomial $P(\lambda) \in \mathrm{POL}_{d, r}^{m \times n}$ can be factorized as

in such a way that

- the degrees of the columns of $L(\lambda)$ differ at most by one (they try to be as equal as possible),
- the degrees of the rows of $R(\lambda)$ differ at most by one (they try to be as equal as possible), and
- $\operatorname{deg} \operatorname{col}_{i}(L)+\operatorname{deg} \operatorname{row}_{i}(R)=d, \quad$ for $i=1, \ldots, r$.
- We refer to these properties as "the column degrees of $L(\lambda)$ and the row degrees of $R(\lambda)$ are generically almost homogeneous and are paired-up

Setting (III): Main "informal" result of this talk

Generically a matrix polynomial $P(\lambda) \in \mathrm{POL}_{d, r}^{m \times n}$ can be factorized as

in such a way that

- the degrees of the columns of $L(\lambda)$ differ at most by one (they try to be as equal as possible),
- the degrees of the rows of $R(\lambda)$ differ at most by one (they try to be as equal as possible), and
- $\operatorname{deg} \operatorname{col}_{i}(L)+\operatorname{deg} \operatorname{row}_{(}(\boldsymbol{R})=d, \quad$ for $i=1$.
- We refer to these properties as "the column degrees of $L(\lambda)$ and the row degrees of $R(\lambda)$ are generically almost homogeneous and are paired-up

Setting (III): Main "informal" result of this talk

Generically a matrix polynomial $P(\lambda) \in \mathrm{POL}_{d, r}^{m \times n}$ can be factorized as

in such a way that

- the degrees of the columns of $L(\lambda)$ differ at most by one (they try to be as equal as possible),
- the degrees of the rows of $R(\lambda)$ differ at most by one (they try to be as equal as possible), and
- We refer to these properties as "the column degrees of $L(\lambda)$ and the row degrees of $R(\lambda)$ are generically almost homogeneous and are paired-up

Setting (III): Main "informal" result of this talk

Generically a matrix polynomial $P(\lambda) \in \mathrm{POL}_{d, r}^{m \times n}$ can be factorized as

in such a way that

- the degrees of the columns of $L(\lambda)$ differ at most by one (they try to be as equal as possible),
- the degrees of the rows of $R(\lambda)$ differ at most by one (they try to be as equal as possible), and
- $\operatorname{deg} \operatorname{col}_{i}(L)+\operatorname{deg}_{\operatorname{row}_{i}}(R)=d, \quad$ for $i=1, \ldots, r$.
- We refer to these properties as "the column degrees of $L(\lambda)$ and the row degrees of $R(\lambda)$ are generically almost homogeneous and are paired-up

Setting (III): Main "informal" result of this talk

Generically a matrix polynomial $P(\lambda) \in \mathrm{POL}_{d, r}^{m \times n}$ can be factorized as

in such a way that

- the degrees of the columns of $L(\lambda)$ differ at most by one (they try to be as equal as possible),
- the degrees of the rows of $R(\lambda)$ differ at most by one (they try to be as equal as possible), and

- We refer to these properties as "the column degrees of $L(\lambda)$ and the row degrees of $R(\lambda)$ are generically almost homogeneous and are paired-up to sum d."

Example illustrating the main result

$$
P(\lambda)=\left[\begin{array}{cc}
0 & \lambda^{2} \\
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & \lambda^{2} & 1 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
\lambda^{2} & 0 & 0 \\
1 & \lambda^{2} & 1 \\
0 & \lambda^{2} & 1
\end{array}\right] \in \mathrm{POL}_{2,2}^{3 \times 3}
$$

cannot be factorized with "almost homogeneous column and row degrees paired up to sum 2".
But if we perturb $P(\lambda)$ as follows

then $P_{\epsilon}(\lambda)$ can be factorized as

Example illustrating the main result

$$
P(\lambda)=\left[\begin{array}{cc}
0 & \lambda^{2} \\
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & \lambda^{2} & 1 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
\lambda^{2} & 0 & 0 \\
1 & \lambda^{2} & 1 \\
0 & \lambda^{2} & 1
\end{array}\right] \in \operatorname{POL}_{2,2}^{3 \times 3},
$$

cannot be factorized with "almost homogeneous column and row degrees paired up to sum 2". But if we perturb $P(\lambda)$ as follows

$$
P_{\epsilon}(\lambda)=\left[\begin{array}{ccc}
\lambda^{2} & 0 & -\epsilon \lambda \\
1 & \lambda^{2}+\epsilon \lambda & 1 \\
0 & \lambda^{2} & 1
\end{array}\right] \in \operatorname{POL}_{2,2}^{3 \times 3}
$$

then $P_{\epsilon}(\lambda)$ can be factorized as

Example illustrating the main result

$$
P(\lambda)=\left[\begin{array}{cc}
0 & \lambda^{2} \\
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & \lambda^{2} & 1 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
\lambda^{2} & 0 & 0 \\
1 & \lambda^{2} & 1 \\
0 & \lambda^{2} & 1
\end{array}\right] \in \operatorname{POL}_{2,2}^{3 \times 3},
$$

cannot be factorized with "almost homogeneous column and row degrees paired up to sum 2".
But if we perturb $P(\lambda)$ as follows

$$
P_{\epsilon}(\lambda)=\left[\begin{array}{ccc}
\lambda^{2} & 0 & -\epsilon \lambda \\
1 & \lambda^{2}+\epsilon \lambda & 1 \\
0 & \lambda^{2} & 1
\end{array}\right] \in \mathrm{POL}_{2,2}^{3 \times 3}
$$

then $P_{\epsilon}(\lambda)$ can be factorized as

$$
P_{\epsilon}(\lambda)=\left[\begin{array}{cc}
-\epsilon \lambda & 0 \\
1 & \frac{1}{\epsilon} \lambda+1 \\
1 & \frac{1}{\epsilon} \lambda
\end{array}\right]\left[\begin{array}{ccc}
-\frac{1}{\epsilon} \lambda & 0 & 1 \\
1 & \epsilon \lambda & 0
\end{array}\right] .
$$

Remark: the pairing of the degrees to sum d is essential

If not, one can do essentially "everything" with the degrees of the factors by cancelling high degree terms. For instance:

but at the cost of not "reading" the degree of the product from the degrees of the columns and rows, respectively, of the factors.

Remark: the pairing of the degrees to sum d is essential

If not, one can do essentially "everything" with the degrees of the factors by cancelling high degree terms. For instance:

$$
P(\lambda)=\left[\begin{array}{cc}
\lambda^{2} & \lambda^{2} \\
2 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & \lambda^{2} & 1 \\
1 & -\lambda^{2} & -1
\end{array}\right]=\left[\begin{array}{ccc}
\lambda^{2} & 0 & 0 \\
1 & \lambda^{2} & 1 \\
0 & \lambda^{2} & 1
\end{array}\right] \in \mathrm{POL}_{2,2}^{3 \times 3},
$$

but at the cost of not "reading" the degree of the product from the degrees of the columns and rows, respectively, of the factors.

Remark: the pairing of the degrees to sum d is essential

If not, one can do essentially "everything" with the degrees of the factors by cancelling high degree terms. For instance:

$$
P(\lambda)=\left[\begin{array}{cc}
\lambda^{2} & \lambda^{2} \\
2 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & \lambda^{2} & 1 \\
1 & -\lambda^{2} & -1
\end{array}\right]=\left[\begin{array}{ccc}
\lambda^{2} & 0 & 0 \\
1 & \lambda^{2} & 1 \\
0 & \lambda^{2} & 1
\end{array}\right] \in \mathrm{POL}_{2,2}^{3 \times 3},
$$

but at the cost of not "reading" the degree of the product from the degrees of the columns and rows, respectively, of the factors.

Setting (IV): Motivation for the problem considered in this talk

- In the case of matrix pencils, matrix polynomials of degree at most one,
- describing the set $\mathrm{POL}_{1 . r}^{m \times n}=:$ PENCIL $_{r}^{m \times n}$ in terms of factors
- has been fundamental for determining the generic change of the partial multiplicities of regular matrix pencils under low-rank perturbations for unstructured pencils
- and for structured pencils
- since such descriptions allow to parameterize PENCIL $r_{r}^{m \times n}$
- We hope that a "similar" description of $\mathrm{POL}_{d, n}^{m \times n}$ for arbitrary degrees d may help to solve the corresponding generic low-rank perturbation problem for matrix polynomials.

Setting (IV): Motivation for the problem considered in this talk

- In the case of matrix pencils, matrix polynomials of degree at most one,
- describing the set $\mathrm{POL}_{1, r}^{m \times n}=: \mathrm{PENCIL}_{r}^{m \times n}$ in terms of factors

F. De Teran, F.M. Dopico, J.M. Landsberg, An explicit description of the irreducible components of the set of matrix pencils with

 bounded normal rank, Linear Algebra Appl., 520 (2017) 80-103- has been fundamental for determining the generic change of the partial multiplicities of regular matrix pencils under low-rank perturbations for unstructured pencils

- and for structured pencils

> - since such descriptions allow to parameterize PENCIL ${ }_{r}^{m \times n}$
> - We hope that a "similar" description of POL ${ }_{d, n}^{m \times n}$ for arbitrary degrees d may help to solve the corresponding generic low-rank perturbation problem for matrix polynomials.

Setting (IV): Motivation for the problem considered in this talk

- In the case of matrix pencils, matrix polynomials of degree at most one,
- describing the set $\mathrm{POL}_{1, r}^{m \times n}=: \mathrm{PENCIL}_{r}^{m \times n}$ in terms of factors
F. De Terán, F.M. Dopico, J.M. Landsberg, An explicit description of the irreducible components of the set of matrix pencils with bounded normal rank, Linear Algebra Appl., 520 (2017) 80-103
- has been fundamental for determining the generic change of the partial multiplicities of regular matrix pencils under low-rank perturbations for unstructured pencils

- and for structured pencils

- since such descriptions allow to parameterize PENCIL $r_{r}^{m \times n}$
- We hope that a "similar" description of POL ${ }_{d, r}^{m \times n}$ for arbitrary degrees d may help to solve the corresponding generic low-rank perturbation problem for matrix polynomials.

Setting (IV): Motivation for the problem considered in this talk

- In the case of matrix pencils, matrix polynomials of degree at most one,
- describing the set $\mathrm{POL}_{1, r}^{m \times n}=: \mathrm{PENCIL}_{r}^{m \times n}$ in terms of factors
F. De Terán, F.M. Dopico, J.M. Landsberg, An explicit description of the irreducible components of the set of matrix pencils with bounded normal rank, Linear Algebra Appl., 520 (2017) 80-103
- has been fundamental for determining the generic change of the partial multiplicities of regular matrix pencils under low-rank perturbations for unstructured pencils

- and for structured pencils
- since such descriptions allow to parameterize PENCIL r_{r}^{m}
- We hope that a "similar" description of POL ${ }_{d, r}^{m \times n}$ for arbitrary degrees d
may help to solve the corresponding generic low-rank perturbation
problem for matrix polynomials.

Setting (IV): Motivation for the problem considered in this talk

- In the case of matrix pencils, matrix polynomials of degree at most one,
- describing the set $\mathrm{POL}_{1, r}^{m \times n}=: \mathrm{PENCIL}_{r}^{m \times n}$ in terms of factors
F. De Terán, F.M. Dopico, J.M. Landsberg, An explicit description of the irreducible components of the set of matrix pencils with bounded normal rank, Linear Algebra Appl., 520 (2017) 80-103
- has been fundamental for determining the generic change of the partial multiplicities of regular matrix pencils under low-rank perturbations for unstructured pencils
F. De Terán, F.M. Dopico, Generic change of the partial multiplicities of regular matrix pencils under low-rank perturbations, SIAM J. Matrix Anal. Appl., 37 (2016) 823-835
- and for structured pencils

Setting (IV): Motivation for the problem considered in this talk

- In the case of matrix pencils, matrix polynomials of degree at most one,
- describing the set $\mathrm{POL}_{1, r}^{m \times n}=: \mathrm{PENCIL}_{r}^{m \times n}$ in terms of factors
F. De Terán, F.M. Dopico, J.M. Landsberg, An explicit description of the irreducible components of the set of matrix pencils with bounded normal rank, Linear Algebra Appl., 520 (2017) 80-103
- has been fundamental for determining the generic change of the partial multiplicities of regular matrix pencils under low-rank perturbations for unstructured pencils
F. De Terán, F.M. Dopico, Generic change of the partial multiplicities of regular matrix pencils under low-rank perturbations, SIAM J. Matrix Anal. Appl., 37 (2016) 823-835
- and for structured pencils

- since such descriptions allow to parameterize PENCIL r_{r}^{m}
- We hope that a "similar" description of $\mathrm{POL}_{d, r}^{m \times n}$ for arbitrary degrees d
may help to solve the corresponding generic low-rank perturbation
problem for matrix polynomials.

Setting (IV): Motivation for the problem considered in this talk

- In the case of matrix pencils, matrix polynomials of degree at most one,
- describing the set $\mathrm{POL}_{1, r}^{m \times n}=: \mathrm{PENCIL}_{r}^{m \times n}$ in terms of factors

```
F. De Terán, F.M. Dopico, J.M. Landsberg, An explicit description of the irreducible components of the set of matrix pencils with bounded normal rank, Linear Algebra Appl., 520 (2017) 80-103
```

- has been fundamental for determining the generic change of the partial multiplicities of regular matrix pencils under low-rank perturbations for unstructured pencils

[^1]
- and for structured pencils

F. De Terán, C. Mehl, V. Mehrmann, Low-rank perturbation of regular matrix pencils with symmetry structures, Foundations of Computational Mathematics, 22 (2022) 257-311

- since such descriptions allow to parameterize PENCIL $r_{r}^{m \times n}$
- We hope that a "similar" description of P for arbitrary degrees dmay help to solve the corresponding generic low-rank perturbationproblem for matrix polynomials.

Setting (IV): Motivation for the problem considered in this talk

- In the case of matrix pencils, matrix polynomials of degree at most one,
- describing the set $\mathrm{POL}_{1, r}^{m \times n}=: \mathrm{PENCIL}_{r}^{m \times n}$ in terms of factors

```
F. De Terán, F.M. Dopico, J.M. Landsberg, An explicit description of the irreducible components of the set of matrix pencils with
bounded normal rank, Linear Algebra Appl., 520 (2017) 80-103
```

- has been fundamental for determining the generic change of the partial multiplicities of regular matrix pencils under low-rank perturbations for unstructured pencils

[^2]- and for structured pencils
F. De Terán, C. Mehl, V. Mehrmann, Low-rank perturbation of regular matrix pencils with symmetry structures, Foundations of Computational Mathematics, 22 (2022) 257-311
- since such descriptions allow to parameterize PENCIL $r_{r}^{m \times n}$.

Setting (IV): Motivation for the problem considered in this talk

- In the case of matrix pencils, matrix polynomials of degree at most one,
- describing the set POL $_{1, r}^{m \times n}=:$ PENCIL $_{r}^{m \times n}$ in terms of factors

```
F. De Terán, F.M. Dopico, J.M. Landsberg, An explicit description of the irreducible components of the set of matrix pencils with
bounded normal rank, Linear Algebra Appl., 520 (2017) 80-103
```

- has been fundamental for determining the generic change of the partial multiplicities of regular matrix pencils under low-rank perturbations for unstructured pencils

[^3]- and for structured pencils
F. De Terán, C. Mehl, V. Mehrmann, Low-rank perturbation of regular matrix pencils with symmetry structures, Foundations of Computational Mathematics, 22 (2022) 257-311
- since such descriptions allow to parameterize $\mathrm{PENCIL}_{r}^{m \times n}$.
- We hope that a "similar" description of $\mathrm{POL}_{d, r}^{m \times n}$ for arbitrary degrees d may help to solve the corresponding generic low-rank perturbation problem for matrix polynomials.

Outline

(1) A review of the results for pencils

2 The set of matrix polynomials with bounded rank and degree in terms of eigenstructures
(3) The set of matrix polynomials with bounded rank and degree in terms of factors

Outline

(1) A review of the results for pencils
(2) The set of matrix polynomials with bounded rank and degree in terms of eigenstructures
(3) The set of matrix polynomials with bounded rank and degree in terms of factors

Matrix pencils and Kronecker Canonical Form

- All the $m \times n$ pencils with the same complete eigenstructure form an orbit under strict equivalence:

$$
\mathrm{O}(\lambda A+B):=\{P(\lambda A+B) Q \mid \operatorname{det} P \cdot \operatorname{det} Q \neq 0\} .
$$

- The complete eigenstructure of a pencil is determined by its Kronecker canonical form (KCF) under strict equivalence, which is a direct sum of four types of canonical matrix pencils:
- the regular $k \times k$ Jordan blocks for finite and infinite eigenvalues
\square $J_{k}(\infty):=\left[\begin{array}{cccc}1 & \lambda & & \\ & 1 & \ddots & \\ & & \ddots & \\ & & & \\ & & & 1\end{array}\right]$
- the sinaular $k \times(k+1)$ and $(k+1$ indices of value k

Matrix pencils and Kronecker Canonical Form

- All the $m \times n$ pencils with the same complete eigenstructure form an orbit under strict equivalence:

$$
\mathrm{O}(\lambda A+B):=\{P(\lambda A+B) Q \mid \operatorname{det} P \cdot \operatorname{det} Q \neq 0\} .
$$

- The complete eigenstructure of a pencil is determined by its Kronecker canonical form (KCF) under strict equivalence, which is a direct sum of four types of canonical matrix pencils:

Matrix pencils and Kronecker Canonical Form

- All the $m \times n$ pencils with the same complete eigenstructure form an orbit under strict equivalence:

$$
\mathrm{O}(\lambda A+B):=\{P(\lambda A+B) Q \mid \operatorname{det} P \cdot \operatorname{det} Q \neq 0\} .
$$

- The complete eigenstructure of a pencil is determined by its Kronecker canonical form (KCF) under strict equivalence, which is a direct sum of four types of canonical matrix pencils:
- the regular $k \times k$ Jordan blocks for finite and infinite eigenvalues
$\mathcal{J}_{k}(\mu):=\left[\begin{array}{cccc}\lambda-\mu & 1 & & \\ & \lambda-\mu & \ddots & \\ & & \ddots & 1 \\ & & & \lambda-\mu\end{array}\right], \quad \mathcal{J}_{k}(\infty):=\left[\begin{array}{cccc}1 & \lambda & & \\ & 1 & \ddots & \\ & & \ddots & \lambda \\ & & & 1\end{array}\right] \quad k=1,2,3, \ldots$
- the singular $k \times(k+1)$ and $(k+1) \times k$ blocks for right and left minimal
indices of value k

Matrix pencils and Kronecker Canonical Form

- All the $m \times n$ pencils with the same complete eigenstructure form an orbit under strict equivalence:

$$
\mathrm{O}(\lambda A+B):=\{P(\lambda A+B) Q \mid \operatorname{det} P \cdot \operatorname{det} Q \neq 0\} .
$$

- The complete eigenstructure of a pencil is determined by its Kronecker canonical form (KCF) under strict equivalence, which is a direct sum of four types of canonical matrix pencils:
- the regular $k \times k$ Jordan blocks for finite and infinite eigenvalues
$\mathcal{J}_{k}(\mu):=\left[\begin{array}{cccc}\lambda-\mu & 1 & & \\ & \lambda-\mu & \ddots & \\ & & \ddots & 1 \\ & & & \lambda-\mu\end{array}\right], \quad \mathcal{J}_{k}(\infty):=\left[\begin{array}{cccc}1 & \lambda & & \\ & 1 & \ddots & \\ & & \ddots & \lambda \\ & & & 1\end{array}\right] \quad k=1,2,3, \ldots$
- the singular $k \times(k+1)$ and $(k+1) \times k$ blocks for right and left minimal indices of value k

$$
\mathcal{L}_{k}:=\left[\begin{array}{cccc}
\lambda & 1 & & \\
& \ddots & \ddots & \\
& & \lambda & 1
\end{array}\right], \quad \mathcal{L}_{k}^{T}, \quad k=0,1,2, \ldots
$$

The set of matrix pencils with rank at most r in terms of eigenstructures

Theorem (De Terán and D., SIMAX, 2008)

$$
\text { PENCIL }_{r}^{m \times n}=\left\{\begin{array}{c}
m \times n \text { complex matrix pencils } \\
\text { with rank at most } r<\min \{m, n\}
\end{array}\right\}=\bigcup_{0 \leq a \leq r} \overline{\mathrm{O}}\left(\mathcal{K}_{a}\right)
$$

where the $m \times n$ complex matrix pencils $\mathcal{K}_{a}, a=0,1, \ldots, r$, have rank r and the KCF


```
with \alpha=\lfloora/(n-r)\rfloor and s=a mod (n-r),
    \beta=\(r-a)/(m-r)\rfloor and t=(r-a) mod (m-r).
Moreover, }\overline{\textrm{O}}(\mp@subsup{\mathcal{K}}{a}{})\cap\textrm{O}(\mp@subsup{\mathcal{K}}{\mp@subsup{a}{}{\prime}}{\prime})=\varnothing\mathrm{ whenever }a\not=\mp@subsup{a}{}{\prime}(\mathrm{ but }\overline{\textrm{O}}(\mp@subsup{\mathcal{K}}{a}{})\cap\overline{\textrm{O}}(\mp@subsup{\mathcal{K}}{\mp@subsup{a}{}{\prime}}{})\not=\varnothing)
```

F. De Terán and F.M. Dopico, A note on generic Kronecker orbits of matrix pencils with fixed rank, SIAM J. Matrix Anal. Appl., 30 (2008) 491-496

The set of matrix pencils with rank at most r in terms of eigenstructures

Theorem (De Terán and D., SIMAX, 2008)

$$
\mathrm{PENCIL}_{r}^{m \times n}=\left\{\begin{array}{c}
m \times n \text { complex matrix pencils } \\
\text { with rank at most } r<\min \{m, n\}
\end{array}\right\}=\bigcup_{0 \leq a \leq r} \overline{\mathrm{O}}\left(\mathcal{K}_{a}\right),
$$

where the $m \times n$ complex matrix pencils $\mathcal{K}_{a}, a=0,1, \ldots, r$, have rank r and the KCF

$$
\mathcal{K}_{a}=\operatorname{diag}(\underbrace{\overbrace{\mathcal{L}_{\alpha+1}, \ldots, \mathcal{L}_{\alpha+1}}^{\underbrace{}_{s}, \underbrace{\mathcal{L}_{\alpha}, \ldots, \mathcal{L}_{\alpha}}_{n-r-s}} \overbrace{\underbrace{}_{t}}^{\overbrace{\mathcal{L}_{\beta+1}^{T}, \ldots, \mathcal{L}_{\beta+1}^{T}}^{\underbrace{T}_{t}, \underbrace{T}_{m-r-t}} \underbrace{\mathcal{L}_{\beta}^{T}, \ldots, \mathcal{L}_{\beta}^{T}}_{\text {rank }=r-a}}}_{\text {rank }=a} \text { left minimal indices })
$$

with $\alpha=\lfloor a /(n-r)\rfloor$ and $s=a \bmod (n-r)$,

$$
\beta=\lfloor(r-a) /(m-r)\rfloor \text { and } t=(r-a) \bmod (m-r) .
$$

F. De Terán and F.M. Dopico, A note on generic Kronecker orbits of matrix pencils with fixed rank, SIAM J. Matrix Anal. Appl., 30 (2008) 491-496

The set of matrix pencils with rank at most r in terms of eigenstructures

Theorem (De Terán and D., SIMAX, 2008)

$$
\mathrm{PENCIL}_{r}^{m \times n}=\left\{\begin{array}{c}
m \times n \text { complex matrix pencils } \\
\text { with rank at most } r<\min \{m, n\}
\end{array}\right\}=\bigcup_{0 \leq a \leq r} \overline{\mathrm{O}}\left(\mathcal{K}_{a}\right),
$$

where the $m \times n$ complex matrix pencils $\mathcal{K}_{a}, a=0,1, \ldots, r$, have rank r and the KCF

$$
\mathcal{K}_{a}=\operatorname{diag}(\underbrace{\text { right minimal indices }}_{\underbrace{\underbrace{}_{\mathcal{L}_{\alpha+1}, \ldots, \mathcal{L}_{\alpha+1}}, \underbrace{\mathcal{L}_{\alpha}, \ldots, \mathcal{L}_{\alpha}}_{n-r-s}}_{\text {rank }=a}}, \overbrace{\underbrace{\mathcal{L}_{\beta+1}^{T}, \ldots, \mathcal{L}_{\beta+1}^{T}}_{t}, \underbrace{\mathcal{L}_{\beta}^{T}, \ldots, \mathcal{L}_{\beta}^{T}}_{\text {rank }=r-a}}^{\text {left minimal indices }})
$$

with $\alpha=\lfloor a /(n-r)\rfloor$ and $s=a \bmod (n-r)$,

$$
\beta=\lfloor(r-a) /(m-r)\rfloor \text { and } t=(r-a) \bmod (m-r) .
$$

Moreover, $\overline{\mathrm{O}}\left(\mathcal{K}_{a}\right) \cap \mathrm{O}\left(\mathcal{K}_{a^{\prime}}\right)=\varnothing$ whenever $a \neq a^{\prime}\left(\right.$ but $\left.\overline{\mathrm{O}}\left(\mathcal{K}_{a}\right) \cap \overline{\mathrm{O}}\left(\mathcal{K}_{a^{\prime}}\right) \neq \varnothing\right)$.

The set of matrix pencils with rank at most r in terms of eigenstructures

Theorem (De Terán and D., SIMAX, 2008)

$$
\text { PENCIL }_{r}^{m \times n}=\left\{\begin{array}{c}
m \times n \text { complex matrix pencils } \\
\text { with rank at most } r<\min \{m, n\}
\end{array}\right\}=\bigcup_{0 \leq a \leq r} \overline{\mathrm{O}}\left(\mathcal{K}_{a}\right),
$$

where the $m \times n$ complex matrix pencils $\mathcal{K}_{a}, a=0,1, \ldots, r$, have rank r and the KCF

$$
\mathcal{K}_{a}=\operatorname{diag}(\underbrace{\overbrace{\mathcal{L}_{\alpha+1}, \ldots, \mathcal{L}_{\alpha+1}}^{\underbrace{}_{s}}, \underbrace{\mathcal{L}_{\alpha}, \ldots, \mathcal{L}_{\alpha}}_{n-r-s}}_{\text {rank }=a}, \overbrace{\underbrace{\mathcal{L}_{\beta+1}^{T}, \ldots, \mathcal{L}_{\beta+1}^{T}}_{\text {rank }=r-a}, \underbrace{\mathcal{L}_{\beta}^{T}, \ldots, \mathcal{L}_{\beta}^{T}}_{m-r-t}}^{\text {left minimal indices }})
$$

with $\alpha=\lfloor a /(n-r)\rfloor$ and $s=a \bmod (n-r)$,

$$
\beta=\lfloor(r-a) /(m-r)\rfloor \text { and } t=(r-a) \bmod (m-r) .
$$

Moreover, $\overline{\mathrm{O}}\left(\mathcal{K}_{a}\right) \cap \mathrm{O}\left(\mathcal{K}_{a^{\prime}}\right)=\varnothing$ whenever $a \neq a^{\prime}\left(\operatorname{but} \overline{\mathrm{O}}\left(\mathcal{K}_{a}\right) \cap \overline{\mathrm{O}}\left(\mathcal{K}_{a^{\prime}}\right) \neq \varnothing\right)$.
F. De Terán and F.M. Dopico, A note on generic Kronecker orbits of matrix pencils with fixed rank, SIAM J. Matrix Anal. Appl., 30 (2008) 491-496

The set of matrix pencils with rank at most r in terms of eigenstructures

Theorem (De Terán and D., SIMAX, 2008)

$$
\text { PENCIL }_{r}^{m \times n}=\left\{\begin{array}{c}
m \times n \text { complex matrix pencils } \\
\text { with rank at most } r<\min \{m, n\}
\end{array}\right\}=\overline{\bigcup_{0 \leq a \leq r} \mathrm{O}\left(\mathcal{K}_{a}\right)},
$$

where the $m \times n$ complex matrix pencils $\mathcal{K}_{a}, a=0,1, \ldots, r$ have rank r and the KCF

$$
\mathcal{K}_{a}=\operatorname{diag}(\underbrace{\overbrace{\mathcal{L}_{\alpha+1}, \ldots, \mathcal{L}_{\alpha+1}}, \underbrace{\mathcal{L}_{\alpha}, \ldots, \mathcal{L}_{\alpha}}_{n-r-s}, \underbrace{\text { right minimal indices }}_{t} \overbrace{\mathcal{L}_{\beta+1}^{T}, \ldots, \mathcal{L}_{\beta+1}^{T}}^{\text {Left minimal indices }} \underbrace{\mathcal{L}_{\beta}^{T}, \ldots, \mathcal{L}_{\beta}^{T}}_{m-r-t}}_{s})
$$

with $\alpha=\lfloor a /(n-r)\rfloor$ and $s=a \bmod (n-r)$,

$$
\beta=\lfloor(r-a) /(m-r)\rfloor \text { and } t=(r-a) \bmod (m-r) .
$$

Moreover, $\overline{\mathrm{O}}\left(\mathcal{K}_{a}\right) \cap \mathrm{O}\left(\mathcal{K}_{a^{\prime}}\right)=\varnothing$ whenever $a \neq a^{\prime}\left(\right.$ but $\left.\overline{\mathrm{O}}\left(\mathcal{K}_{a}\right) \cap \overline{\mathrm{O}}\left(\mathcal{K}_{a^{\prime}}\right) \neq \varnothing\right)$.
$\bigcup \mathrm{O}\left(\mathcal{K}_{a}\right)$ is an open dense subset of $\mathrm{PENCIL}_{r}^{m \times n}$. So, generically, the $m \times n$ pencils $0 \leq a \leq r$
with rank at most r have only $r+1$ possible KCFs given by \mathcal{K}_{a} for $a=0,1, \ldots, r$.

The previous result in simple words

The pencils in $\mathrm{O}\left(\mathcal{K}_{a}\right) \subset \mathrm{PENCIL}_{r}^{m \times n}$

- do not have eigenvalues (finite or infinite),
- have $n-r$ right minimal indices differing at most by 1 (almost homogeneous) and summing up a, and
- have m-r Ieft minimal indices differing at most by 1 (almost homogeneous) and summing up $r-a$.
- The parameter $a=0,1, \ldots, r$ determines how much rank is attached to the right minimal indices and, then, the rank attached to the left minimal indices is determined by the index sum theorem.
- These are the generic eigenstructures in PENCIL $r_{r}^{m \times n}$.

The previous result in simple words

The pencils in $\mathrm{O}\left(\mathcal{K}_{a}\right) \subset \mathrm{PENCIL}_{r}^{m \times n}$

- do not have eigenvalues (finite or infinite),
- have $n-r$ right minimal indices differing at most by 1 (almost homogeneous) and summing up a, and
- have $m-r$ left minimal indices differing at most by 1 (almost homogeneous) and summing up $r-a$.
- The parameter $a=0,1, \ldots, r$ determines how much rank is attached to the right minimal indices and, then, the rank attached to the left minimal indices is determined by the index sum theorem.
- These are the generic sigenstructures in PENCTI m×n

The previous result in simple words

The pencils in $\mathrm{O}\left(\mathcal{K}_{a}\right) \subset \mathrm{PENCIL}_{r}^{m \times n}$

- do not have eigenvalues (finite or infinite),
- have $n-r$ right minimal indices differing at most by 1 (almost homogeneous) and summing up a, and
- have $m-r$ left minimal indices differing at most by 1 (almost homogeneous) and summing up $r-a$.
- The parameter $a=0,1, \ldots, r$ determines how much rank is attached to the right minimal indices and, then, the rank attached to the left minimal indices is determined by the index sum theorem.
- These are the generic eigenstructures in PENCIL $r_{r}^{m \times n}$

The previous result in simple words

The pencils in $\mathrm{O}\left(\mathcal{K}_{a}\right) \subset \mathrm{PENCIL}_{r}^{m \times n}$

- do not have eigenvalues (finite or infinite),
- have $n-r$ right minimal indices differing at most by 1 (almost homogeneous) and summing up a, and
- have $m-r$ left minimal indices differing at most by 1 (almost homogeneous) and summing up $r-a$.
- The parameter $a=0,1, \ldots, r$ determines how much rank is attached to the right minimal indices and, then, the rank attached to the left minimal indices is determined by the index sum theorem.
- These are the generic eigenstructures in PENCIL ${ }_{r}^{m \times n}$

The previous result in simple words

The pencils in $\mathrm{O}\left(\mathcal{K}_{a}\right) \subset \mathrm{PENCIL}_{r}^{m \times n}$

- do not have eigenvalues (finite or infinite),
- have $n-r$ right minimal indices differing at most by 1 (almost homogeneous) and summing up a, and
- have $m-r$ left minimal indices differing at most by 1 (almost homogeneous) and summing up $r-a$.
- The parameter $a=0,1, \ldots, r$ determines how much rank is attached to the right minimal indices and, then, the rank attached to the left minimal indices is determined by the index sum theorem.
- These are the generic eigenstructures in PENCIL $r_{r}^{m \times n}$.

The set of matrix pencils with rank at most r in terms of factors

Theorem (De Terán, D., Landsberg, LAA, 2017)

$$
\mathrm{PENCIL}_{r}^{m \times n}=\left\{\begin{array}{c}
m \times n \text { complex matrix pencils } \\
\text { with rank at most } r<\min \{m, n\}
\end{array}\right\}=\bigcup_{0 \leq a \leq r} \mathcal{C}_{a},
$$

where, for $a=0,1, \ldots, r$,

$$
\mathcal{C}_{a}:=\left\{\begin{array}{ll}
L(\lambda) \in \mathrm{PENCIL}_{r}^{m \times r}, R(\lambda) \in \mathrm{PENCIL}_{r}^{r \times n}, \\
L(\lambda) R(\lambda): & \operatorname{deg} \operatorname{row}_{i}(R)=0, \quad \text { for } i=a+1, \ldots, r, \\
\operatorname{deg} \operatorname{col}_{i}(L)=0, \quad \text { for } i=1, \ldots, a
\end{array}\right\} .
$$

Moreover,

where \mathcal{K}_{a} are the $m \times n$ pencils with rank exactly r and with the generic eigenstructures defined in the previous slides.

The set of matrix pencils with rank at most r in terms of factors

Theorem (De Terán, D., Landsberg, LAA, 2017)

$$
\mathrm{PENCIL}_{r}^{m \times n}=\left\{\begin{array}{c}
m \times n \text { complex matrix pencils } \\
\text { with rank at most } r<\min \{m, n\}
\end{array}\right\}=\bigcup_{0 \leq a \leq r} \mathcal{C}_{a},
$$

where, for $a=0,1, \ldots, r$,

$$
\mathcal{C}_{a}:=\left\{\begin{array}{ll}
L(\lambda) \in \mathrm{PENCIL}_{r}^{m \times r}, R(\lambda) \in \mathrm{PENCIL}_{r}^{r \times n}, \\
L(\lambda) R(\lambda): \quad & \operatorname{deg} \operatorname{row}_{i}(R)=0, \quad \text { for } i=a+1, \ldots, r, \\
\operatorname{deg} \operatorname{col}_{i}(L)=0, \quad \text { for } i=1, \ldots, a
\end{array}\right\} .
$$

Moreover,

$$
\mathcal{C}_{a}=\overline{\mathrm{O}}\left(\mathcal{K}_{a}\right),
$$

where \mathcal{K}_{a} are the $m \times n$ pencils with rank exactly r and with the generic eigenstructures defined in the previous slides.

The set of matrix pencils with rank at most r in terms of factors

Theorem (De Terán, D., Landsberg, LAA, 2017)

$$
\mathrm{PENCIL}_{r}^{m \times n}=\left\{\begin{array}{c}
m \times n \text { complex matrix pencils } \\
\text { with rank at most } r<\min \{m, n\}
\end{array}\right\}=\bigcup_{0 \leq a \leq r} \mathcal{C}_{a},
$$

where, for $a=0,1, \ldots, r$,

$$
\mathcal{C}_{a}:=\left\{\begin{array}{ll}
L(\lambda) \in \mathrm{PENCIL}_{r}^{m \times r}, R(\lambda) \in \mathrm{PENCIL}_{r}^{r \times n}, \\
L(\lambda) R(\lambda): \quad & \operatorname{deg} \operatorname{row}_{i}(R)=0, \quad \text { for } i=a+1, \ldots, r, \\
\operatorname{deg} \operatorname{col}_{i}(L)=0, \quad \text { for } i=1, \ldots, a
\end{array}\right\} .
$$

Moreover,

$$
\mathcal{C}_{a}=\overline{\mathrm{O}}\left(\mathcal{K}_{a}\right),
$$

where \mathcal{K}_{a} are the $m \times n$ pencils with rank exactly r and with the generic eigenstructures defined in the previous slides.

Some comments on the previous theorem

- There are no closures involved in $\mathrm{PENCIL}_{r}^{m \times n}=\bigcup_{0 \leq a \leq r} \mathcal{C}_{a}$.
- The conditions of the theorem guarantee the pairing $\operatorname{deg} \operatorname{col}_{i}(L)+\operatorname{deg} \operatorname{col}_{i}(R) \leq 1$ for $i=1, \ldots, r$ (generically we will have equality) of the column degrees of $L(\lambda)$ and of the row degrees of $R(\lambda)$.
- Since $L(\lambda)$ and $R(\lambda)$ are pencils the degrees of its columns and rows, respectively, differ automatically at most by 1 .
- The factors $L(\lambda)$ and $R(\lambda)$ can be easily parameterized.
- The parameter $a=0,1, \ldots, r$ determines the (maximal) sum of the degrees of the rows of $R(\lambda)$.
- In addition, it was proved that $\mathcal{C}_{0}, \mathcal{C}_{1}, \ldots, \mathcal{C}_{r}$ are the irreducible components of the closed set PENCIL $r_{r}^{m \times n}$ (in the Zariski topology).

Some comments on the previous theorem

- There are no closures involved in $\mathrm{PENCIL}_{r}^{m \times n}=\bigcup_{0 \leq a \leq r} \mathcal{C}_{a}$.
- The conditions of the theorem guarantee the pairing $\operatorname{deg} \operatorname{col}_{i}(L)+\operatorname{deg} \operatorname{col}_{i}(R) \leq 1$ for $i=1, \ldots, r$ (generically we will have equality) of the column degrees of $L(\lambda)$ and of the row degrees of $R(\lambda)$.
- Since $L(\lambda)$ and $R(\lambda)$ are pencils the degrees of its columns and rows, respectively, differ automatically at most by 1
- The factors $I(\lambda)$ and $R(\lambda)$ can be easily narameterized.
- The parameter $a=0,1, \ldots, r$ determines the (maximal) sum of the degrees of the rows of $R(\lambda)$
- In addition, it was nroved that $C_{0}, C_{1}, \ldots, C_{r}$ are the irreducible components of the closed set PENCIL $r_{r}^{m \times n}$ (in the Zariski topology).

Some comments on the previous theorem

- There are no closures involved in $\mathrm{PENCIL}_{r}^{m \times n}=\bigcup_{0 \leq a \leq r} \mathcal{C}_{a}$.
- The conditions of the theorem guarantee the pairing $\operatorname{deg} \operatorname{col}_{i}(L)+\operatorname{deg} \operatorname{col}_{i}(R) \leq 1$ for $i=1, \ldots, r$ (generically we will have equality) of the column degrees of $L(\lambda)$ and of the row degrees of $R(\lambda)$.
- Since $L(\lambda)$ and $R(\lambda)$ are pencils the degrees of its columns and rows, respectively, differ automatically at most by 1 .
- The factors $L(\lambda)$ and $R(\lambda)$ can be easily parameterized.
- The parameter $a=0,1, \ldots, r$ determines the (maximal) sum of the degrees of the rows of $R(\lambda)$.
- In addition, it was proved that $\mathcal{C}_{0}, \mathcal{C}_{1}, \ldots, \mathcal{C}_{r}$ are the irreducible components of the closed set PENCIL $r_{r}^{m \times n}$ (in the Zariski topology).

Some comments on the previous theorem

- There are no closures involved in $\mathrm{PENCIL}_{r}^{m \times n}=\bigcup_{0 \leq a \leq r} \mathcal{C}_{a}$.
- The conditions of the theorem guarantee the pairing $\operatorname{deg} \operatorname{col}_{i}(L)+\operatorname{deg} \operatorname{col}_{i}(R) \leq 1$ for $i=1, \ldots, r$ (generically we will have equality) of the column degrees of $L(\lambda)$ and of the row degrees of $R(\lambda)$.
- Since $L(\lambda)$ and $R(\lambda)$ are pencils the degrees of its columns and rows, respectively, differ automatically at most by 1 .
- The factors $L(\lambda)$ and $R(\lambda)$ can be easily parameterized.
- The parameter $a=0,1, \ldots, r$ determines the (maximal) sum of the degrees of the rows of $R(\lambda)$.
- In addition, it was proved that $\mathcal{C}_{0}, \mathcal{C}_{1}, \ldots, \mathcal{C}_{r}$ are the irreducible components of the closed set PENCIL $r_{r}^{m \times n}$ (in the Zariski topology)

Some comments on the previous theorem

- There are no closures involved in PENCIL $r_{r}^{m \times n}=\bigcup_{0 \leq a \leq r} \mathcal{C}_{a}$.
- The conditions of the theorem guarantee the pairing $\operatorname{deg} \operatorname{col}_{i}(L)+\operatorname{deg} \operatorname{col}_{i}(R) \leq 1$ for $i=1, \ldots, r$ (generically we will have equality) of the column degrees of $L(\lambda)$ and of the row degrees of $R(\lambda)$.
- Since $L(\lambda)$ and $R(\lambda)$ are pencils the degrees of its columns and rows, respectively, differ automatically at most by 1 .
- The factors $L(\lambda)$ and $R(\lambda)$ can be easily parameterized.
- The parameter $a=0,1, \ldots, r$ determines the (maximal) sum of the degrees of the rows of $R(\lambda)$.
- In addition, it was proved that $\mathcal{C}_{0}, \mathcal{C}_{1}, \ldots, \mathcal{C}_{r}$ are the irreducible components of the closed set PENCIL $r_{r}^{m \times n}$ (in the Zariski topology)

Some comments on the previous theorem

- There are no closures involved in PENCIL $r_{r}^{m \times n}=\bigcup_{0 \leq a \leq r} \mathcal{C}_{a}$.
- The conditions of the theorem guarantee the pairing $\operatorname{deg} \operatorname{col}_{i}(L)+\operatorname{deg} \operatorname{col}_{i}(R) \leq 1$ for $i=1, \ldots, r$ (generically we will have equality) of the column degrees of $L(\lambda)$ and of the row degrees of $R(\lambda)$.
- Since $L(\lambda)$ and $R(\lambda)$ are pencils the degrees of its columns and rows, respectively, differ automatically at most by 1 .
- The factors $L(\lambda)$ and $R(\lambda)$ can be easily parameterized.
- The parameter $a=0,1, \ldots, r$ determines the (maximal) sum of the degrees of the rows of $R(\lambda)$.
- In addition, it was proved that $\mathcal{C}_{0}, \mathcal{C}_{1}, \ldots, \mathcal{C}_{r}$ are the irreducible components of the closed set PENCIL $r_{r}^{m \times n}$ (in the Zariski topology).

Outline

(1) A review of the results for pencils
(2) The set of matrix polynomials with bounded rank and degree in terms of eigenstructures
(3) The set of matrix polynomials with bounded rank and degree in terms of factors

Complete eigenstructure of matrix polynomials

$$
P(\lambda)=\lambda^{d} P_{d}+\cdots+\lambda P_{1}+P_{0}, \quad P_{i} \in \mathbb{C}^{m \times n}
$$

- Essentially the same as in pencils but definitions more complicated since there is NO KCF.
- Finite and infinite eigenvalues and their elementary divisors defined with Smith Form under unimodular equivalence of $P(\lambda)$ and $\operatorname{rev} P(\lambda)$:

$$
U(\lambda) P(\lambda) V(\lambda)=\operatorname{diag}\left(g_{1}(\lambda), \ldots, g_{r}(\lambda)\right) \oplus 0_{(m-r) \times(n-r)}, \quad g_{j}(\lambda) \mid g_{j+1}(\lambda) .
$$

Invariant polynomials: $g_{j}(\lambda)=\left(\lambda-\alpha_{1}\right)^{\delta_{j 1}} \cdot\left(\lambda-\alpha_{2}\right)^{\delta_{2}} \cdot \ldots \cdot\left(\lambda-\alpha_{l_{j}}\right)^{\delta_{l_{j}}}$ Elementary divisors: $\left(\lambda-\alpha_{k}\right)^{\delta_{j k}}$

- Left and right minimal indices defined through the minimal bases of left and right rational null spaces of $P(\lambda)$:

$$
\begin{aligned}
& \mathcal{N}_{\text {left }}(P):=\left\{y(\lambda)^{T} \in \mathbb{C}(\lambda)^{1 \times m}: y(\lambda)^{T} P(\lambda)=0_{1 \times n}\right\}, \\
& \mathcal{N}_{\text {right }}(P):=\left\{x(\lambda) \in \mathbb{C}(\lambda)^{n \times 1}: P(\lambda) x(\lambda)=0_{m \times 1}\right\} .
\end{aligned}
$$

- The definition of orbit does not involve a group action $O(P)=\left\{\begin{array}{l}\text { matrix polynomials of the same size. deare } \epsilon \\ \text { and with the same complete eigenstructure as } P(\lambda)\end{array}\right.$

Complete eigenstructure of matrix polynomials

$$
P(\lambda)=\lambda^{d} P_{d}+\cdots+\lambda P_{1}+P_{0}, \quad P_{i} \in \mathbb{C}^{m \times n}
$$

- Essentially the same as in pencils but definitions more complicated since there is NO KCF.
- Finite and infinite eigenvalues and their elementary divisors defined with Smith Form under unimodular equivalence of $P(\lambda)$ and $\operatorname{rev} P(\lambda)$: $U(\lambda) P(\lambda) V(\lambda)=\operatorname{diag}\left(g_{1}(\lambda) \ldots g_{f}(\lambda)\right) \oplus 0_{(m-r) \times(n-1), \quad g .(\lambda) \mid g_{j+1}(\lambda)}^{(\lambda)}$ Invariant polynomials: Elementary divisors:
- Left and right minimal indices defined through the minimal bases of left and right rational null spaces of $P(\lambda)$:
- The definition of orbit does not involve a group action

Complete eigenstructure of matrix polynomials

$$
P(\lambda)=\lambda^{d} P_{d}+\cdots+\lambda P_{1}+P_{0}, \quad P_{i} \in \mathbb{C}^{m \times n}
$$

- Essentially the same as in pencils but definitions more complicated since there is NO KCF.
- Finite and infinite eigenvalues and their elementary divisors defined with Smith Form under unimodular equivalence of $P(\lambda)$ and $\operatorname{rev} P(\lambda)$:

$$
U(\lambda) P(\lambda) V(\lambda)=\operatorname{diag}\left(g_{1}(\lambda), \ldots, g_{r}(\lambda)\right) \oplus 0_{(m-r) \times(n-r)}, \quad g_{j}(\lambda) \mid g_{j+1}(\lambda) .
$$

Invariant polynomials: $g_{j}(\lambda)=\left(\lambda-\alpha_{1}\right)^{\delta_{j 1}} \cdot\left(\lambda-\alpha_{2}\right)^{\delta_{j 2}} \ldots \ldots \cdot\left(\lambda-\alpha_{l_{j}}\right)^{\delta_{j_{j}}}$. Elementary divisors: $\left(\lambda-\alpha_{k}\right)^{\delta_{j k}}$.

- Left and right minimal indices defined through the minimal bases of left and right rational null spaces of $P(\lambda)$:
- The definition of orbit does not involve a group action

Complete eigenstructure of matrix polynomials

$$
P(\lambda)=\lambda^{d} P_{d}+\cdots+\lambda P_{1}+P_{0}, \quad P_{i} \in \mathbb{C}^{m \times n}
$$

- Essentially the same as in pencils but definitions more complicated since there is NO KCF.
- Finite and infinite eigenvalues and their elementary divisors defined with Smith Form under unimodular equivalence of $P(\lambda)$ and $\operatorname{rev} P(\lambda)$:

$$
U(\lambda) P(\lambda) V(\lambda)=\operatorname{diag}\left(g_{1}(\lambda), \ldots, g_{r}(\lambda)\right) \oplus 0_{(m-r) \times(n-r)}, \quad g_{j}(\lambda) \mid g_{j+1}(\lambda)
$$

Invariant polynomials: $g_{j}(\lambda)=\left(\lambda-\alpha_{1}\right)^{\delta_{j 1}} \cdot\left(\lambda-\alpha_{2}\right)^{\delta_{j 2}} \ldots . \cdot\left(\lambda-\alpha_{l_{j}}\right)^{\delta_{j_{j}}}$. Elementary divisors: $\left(\lambda-\alpha_{k}\right)^{\delta_{j k}}$.

- Left and right minimal indices defined through the minimal bases of left and right rational null spaces of $P(\lambda)$:

$$
\begin{aligned}
\mathcal{N}_{\text {left }}(P) & :=\left\{y(\lambda)^{T} \in \mathbb{C}(\lambda)^{1 \times m}: y(\lambda)^{T} P(\lambda)=0_{1 \times n}\right\} \\
\mathcal{N}_{\text {right }}(P) & :=\left\{x(\lambda) \in \mathbb{C}(\lambda)^{n \times 1}: P(\lambda) x(\lambda)=0_{m \times 1}\right\}
\end{aligned}
$$

- The definition of orbit does not involve a group action

Complete eigenstructure of matrix polynomials

$$
P(\lambda)=\lambda^{d} P_{d}+\cdots+\lambda P_{1}+P_{0}, \quad P_{i} \in \mathbb{C}^{m \times n}
$$

- Essentially the same as in pencils but definitions more complicated since there is NO KCF.
- Finite and infinite eigenvalues and their elementary divisors defined with Smith Form under unimodular equivalence of $P(\lambda)$ and $\operatorname{rev} P(\lambda)$:

$$
U(\lambda) P(\lambda) V(\lambda)=\operatorname{diag}\left(g_{1}(\lambda), \ldots, g_{r}(\lambda)\right) \oplus 0_{(m-r) \times(n-r)}, \quad g_{j}(\lambda) \mid g_{j+1}(\lambda) .
$$

Invariant polynomials: $g_{j}(\lambda)=\left(\lambda-\alpha_{1}\right)^{\delta_{j 1}} \cdot\left(\lambda-\alpha_{2}\right)^{\delta_{j 2}} \ldots \ldots \cdot\left(\lambda-\alpha_{l_{j}}\right)^{\delta_{j_{j}}}$. Elementary divisors: $\left(\lambda-\alpha_{k}\right)^{\delta_{j k}}$.

- Left and right minimal indices defined through the minimal bases of left and right rational null spaces of $P(\lambda)$:

$$
\begin{gathered}
\mathcal{N}_{\text {left }}(P):=\left\{y(\lambda)^{T} \in \mathbb{C}(\lambda)^{1 \times m}: y(\lambda)^{T} P(\lambda)=0_{1 \times n}\right\}, \\
\mathcal{N}_{\text {right }}(P):=\left\{x(\lambda) \in \mathbb{C}(\lambda)^{n \times 1}: P(\lambda) x(\lambda)=0_{m \times 1}\right\} .
\end{gathered}
$$

- The definition of orbit does not involve a group action

$$
\mathrm{O}(P)=\left\{\begin{array}{c}
\text { matrix polynomials of the same size, degree, } \\
\text { and with the same complete eigenstructure as } P(\lambda)
\end{array}\right\}
$$

The set of matrix polynomials with degree at most d and rank at most r

Theorem (Dmytryshyn and D., LAA, 2017)

$\mathrm{POL}_{d, r}^{m \times n}=\left\{\begin{array}{c}m \times n \text { complex matrix polynomials } \\ \text { with degree at most } d, \text { with rank at most } r<\min \{m, n\}\end{array}\right\}=\underset{0 \leq a \leq r d}{\bigcup} \overline{\mathrm{O}}\left(K_{a}\right)$,
where the $m \times n$ complex matrix polynomial $K_{a}, a=0,1, \ldots, r d$, has

- degree exactly d, rank exactly r, and
- the complete eigenstructure
right minimal indices
left minimal indices
where $\alpha=\lfloor a /(n-r)\rfloor$ and $s=a \bmod (n-r)$,

\square
Moreover, $\overline{\mathrm{O}}\left(K_{a}\right) \cap \mathrm{O}\left(K_{a^{\prime}}\right)=\varnothing$ whenever $a \neq a^{\prime}\left(\right.$ but $\left.\overline{\mathrm{O}}\left(K_{a}\right) \cap \overline{\mathrm{O}}\left(K_{a^{\prime}}\right) \neq \varnothing\right)$.
A. Dmytryshyn and F.M. Dopico, Generic complete eigenstructures for sets of matrix polynomials with bounded rank and degree

The set of matrix polynomials with degree at most d and rank at most r

Theorem (Dmytryshyn and D., LAA, 2017)

$$
\mathrm{POL}_{d, r}^{m \times n}=\left\{\begin{array}{c}
m \times n \text { complex matrix polynomials } \\
\text { with degree at most } d, \text { with rank at most } r<\min \{m, n\}
\end{array}\right\}=\bigcup_{0 \leq a \leq r d} \overline{\mathrm{O}}\left(K_{a}\right),
$$

where the $m \times n$ complex matrix polynomial $K_{a}, a=0,1, \ldots, r d$, has

- degree exactly d, rank exactly r, and
- the complete eigenstructure

where $\alpha=\lfloor a /(n-r)\rfloor$ and $s=a \bmod (n-r)$,

$$
\beta=\lfloor(r d-a) /(m-r)\rfloor \text { and } t=(r d-a) \bmod (m-r) \text {. }
$$

The set of matrix polynomials with degree at most d and rank at most r

Theorem (Dmytryshyn and D., LAA, 2017)

$$
\mathrm{POL}_{d, r}^{m \times n}=\left\{\begin{array}{c}
m \times n \text { complex matrix polynomials } \\
\text { with degree at most } d, \text { with rank at most } r<\min \{m, n\}
\end{array}\right\}=\bigcup_{0 \leq a \leq r d} \overline{\mathrm{O}}\left(K_{a}\right),
$$

where the $m \times n$ complex matrix polynomial $K_{a}, a=0,1, \ldots, r d$, has

- degree exactly d, rank exactly r, and
- the complete eigenstructure

where $\alpha=\lfloor a /(n-r)\rfloor$ and $s=a \bmod (n-r)$,

$$
\beta=\lfloor(r d-a) /(m-r)\rfloor \text { and } t=(r d-a) \bmod (m-r) \text {. }
$$

Moreover, $\overline{\mathrm{O}}\left(K_{a}\right) \cap \mathrm{O}\left(K_{a^{\prime}}\right)=\varnothing$ whenever $a \neq a^{\prime}\left(\right.$ but $\left.\overline{\mathrm{O}}\left(K_{a}\right) \cap \overline{\mathrm{O}}\left(K_{a^{\prime}}\right) \neq \varnothing\right)$.

[^4] Linear Algebra Appl., 535 (2017) 213-230

The set of matrix polynomials with degree at most d and rank at most r

Theorem (Dmytryshyn and D., LAA, 2017)

$\mathrm{POL}_{d, r}^{m \times n}=\left\{\begin{array}{c}m \times n \text { complex matrix polynomials } \\ \text { with degree at most } d, \text { with rank at most } r<\min \{m, n\}\end{array}\right\}=\bigcup_{0 \leq a \leq r d} \overline{\mathrm{O}}\left(K_{a}\right)$,
where the $m \times n$ complex matrix polynomial $K_{a}, a=0,1, \ldots, r d$, has

- degree exactly d, rank exactly r, and
- the complete eigenstructure

where $\alpha=\lfloor a /(n-r)\rfloor$ and $s=a \bmod (n-r)$,

$$
\beta=\lfloor(r d-a) /(m-r)\rfloor \text { and } t=(r d-a) \bmod (m-r) \text {. }
$$

Moreover, $\overline{\mathrm{O}}\left(K_{a}\right) \cap \mathrm{O}\left(K_{a^{\prime}}\right)=\varnothing$ whenever $a \neq a^{\prime}\left(b u t \overline{\mathrm{O}}\left(K_{a}\right) \cap \overline{\mathrm{O}}\left(K_{a^{\prime}}\right) \neq \varnothing\right)$.
A. Dmytryshyn and F.M. Dopico, Generic complete eigenstructures for sets of matrix polynomials with bounded rank and degree, Linear Algebra Appl., 535 (2017) 213-230

The set of matrix polynomials with degree at most d and rank at most r

Theorem (Dmytryshyn and D., LAA, 2017)

$$
\mathrm{POL}_{d, r}^{m \times n}=\left\{\begin{array}{c}
m \times n \text { complex matrix polynomials } \\
\text { with degree at most } d, \text { with rank at most } r<\min \{m, n\}
\end{array}\right\}=\overline{\bigcup_{0 \leq a \leq r d} \mathrm{O}\left(K_{a}\right)},
$$

where the $m \times n$ complex matrix polynomial $K_{a}, a=0,1, \ldots, r d$, has degree exactly d, rank exactly r, and the complete eigenstructure

where $\alpha=\lfloor a /(n-r)\rfloor$ and $s=a \bmod (n-r)$,

$$
\beta=\lfloor(r d-a) /(m-r)\rfloor \text { and } t=(r d-a) \bmod (m-r) \text {. }
$$

Moreover, $\overline{\mathrm{O}}\left(K_{a}\right) \cap \mathrm{O}\left(K_{a^{\prime}}\right)=\varnothing$ whenever $a \neq a^{\prime}\left(b u t \overline{\mathrm{O}}\left(K_{a}\right) \cap \overline{\mathrm{O}}\left(K_{a^{\prime}}\right) \neq \varnothing\right)$.
$\cup \mathrm{O}\left(K_{a}\right)$ is an open dense subset of $\mathrm{POL}_{d, r}^{m \times n}$. So, generically, the $m \times n$ matrix $0 \leq a \leq r d$ polys with degree at most d and with rank at most r have only $r d+1$ possible complete eigenstructures given by \mathbf{K}_{a} for $a=0,1, \ldots, r d$.

The previous result in simple words

The matrix polynomials in $\mathrm{O}\left(K_{a}\right) \subset \mathrm{POL}_{d, r}^{m \times n}$ of degree exactly d and rank exactly r

- do not have eigenvalues (finite or infinite),
- have $n-r$ right minimal indices differing at most by 1 (almost homogeneous) and summing up a, and
- have m - r left minimal indices differing at most by 1 (almost homogeneous) and summing up $r d-a$
- The parameter $a=0,1, \ldots, r d$ determines in the index sum theorem

how much of the total sum corresponds to the right minimal indices.
- These are the generic eigenstructures in POI $m \times n$

This description in terms of eigenstructures is very similar to the result for pencils, but the description of $\mathrm{POL}_{d+n}^{m \times n}$ in terms of factors is missing.

The previous result in simple words

The matrix polynomials in $\mathrm{O}\left(K_{a}\right) \subset \mathrm{POL}_{d, r}^{m \times n}$ of degree exactly d and rank exactly r

- do not have eigenvalues (finite or infinite),
- have $n-r$ right minimal indices differing at most by 1 (almost homogeneous) and summing up a, and
- have m - r left minimal indices differing at most by 1 (almost homogeneous) and summing up $r d-a$.
- The narameter $a=0,1, \ldots, r d$ determines in the index sum theorem

how much of the total sum corresponds to the right minimal indices.
- These are the generic eigenstructures in POI $m \times n$

This description in terms of eigenstructures is very similar to the result for pencils, but the description of $\mathrm{POL} \mathrm{L}^{m \times n}$ in terms of factors is missing.

The previous result in simple words

The matrix polynomials in $\mathrm{O}\left(K_{a}\right) \subset \mathrm{POL}_{d, r}^{m \times n}$ of degree exactly d and rank exactly r

- do not have eigenvalues (finite or infinite),
- have $n-r$ right minimal indices differing at most by 1 (almost homogeneous) and summing up a, and
- have $m-r$ left minimal indices differing at most by 1 (almost homogeneous) and summing up $r d-a$.
- The parameter $a=0,1, \ldots, r d$ determines in the index sum theorem

how much of the total sum corresponds to the right minimal indices.
- These are the generic eigenstructures in DOT $m \times n$

This description in terms of eigenstructures is very similar to the result for pencils, but the description of $\mathrm{POL}_{d r}^{m \times n}$ in terms of factors is missing.

The previous result in simple words

The matrix polynomials in $\mathrm{O}\left(K_{a}\right) \subset \mathrm{POL}_{d, r}^{m \times n}$ of degree exactly d and rank exactly r

- do not have eigenvalues (finite or infinite),
- have $n-r$ right minimal indices differing at most by 1 (almost homogeneous) and summing up a, and
- have $m-r$ left minimal indices differing at most by 1 (almost homogeneous) and summing up $r d-a$.
- The parameter $a=0,1, \ldots, r d$ determines in the index sum theorem

$$
\left(\sum \text { right minimal indices }\right)+\left(\sum \text { left minimal indices }\right)=r d
$$

how much of the total sum corresponds to the right minimal indices.

- These are the generic eigenstructures in POL_{d}^{n}

This description in terms of eigenstructures is very similar to the result for

The previous result in simple words

The matrix polynomials in $\mathrm{O}\left(K_{a}\right) \subset \mathrm{POL}_{d, r}^{m \times n}$ of degree exactly d and rank exactly r

- do not have eigenvalues (finite or infinite),
- have $n-r$ right minimal indices differing at most by 1 (almost homogeneous) and summing up a, and
- have $m-r$ left minimal indices differing at most by 1 (almost homogeneous) and summing up $r d-a$.
- The parameter $a=0,1, \ldots, r d$ determines in the index sum theorem

$$
\left(\sum \text { right minimal indices }\right)+\left(\sum \text { left minimal indices }\right)=r d
$$

how much of the total sum corresponds to the right minimal indices.

- These are the generic eigenstructures in $\mathrm{POL}_{d, r}^{m \times n}$.

This description in terms of eigenstructures is very similar to the result for pencils, but the description of $\mathrm{POL}_{d r}^{m \times n}$ in terms of factors is missing.

The previous result in simple words

The matrix polynomials in $\mathrm{O}\left(K_{a}\right) \subset \mathrm{POL}_{d, r}^{m \times n}$ of degree exactly d and rank exactly r

- do not have eigenvalues (finite or infinite),
- have $n-r$ right minimal indices differing at most by 1 (almost homogeneous) and summing up a, and
- have $m-r$ left minimal indices differing at most by 1 (almost homogeneous) and summing up $r d-a$.
- The parameter $a=0,1, \ldots, r d$ determines in the index sum theorem

$$
\left(\sum \text { right minimal indices }\right)+\left(\sum \text { left minimal indices }\right)=r d
$$

how much of the total sum corresponds to the right minimal indices.

- These are the generic eigenstructures in $\mathrm{POL}_{d, r}^{m \times n}$.

This description in terms of eigenstructures is very similar to the result for pencils, but the description of $\mathrm{POL}_{d, r}^{m \times n}$ in terms of factors is missing.

Outline

(1) A review of the results for pencils

(2) The set of matrix polynomials with bounded rank and degree in terms of eigenstructures
(3) The set of matrix polynomials with bounded rank and degree in terms of factors

Ideas, difficulties, and simple statement of results

- Any $m \times n$ constant matrix A of rank r can be written as

$$
A=L R, \quad \text { where } \quad\left\{\begin{array}{l}
L \text { is } m \times r \text { and } \operatorname{rank} L=r, \\
R \text { is } r \times n \text { and } \operatorname{rank} R=r .
\end{array}\right.
$$

- The idea is to get a similar description of $\mathrm{POL}_{d, r}^{m \times n}$ but the degree of the factors makes the problem not trivial: it might be cancellations of "high degrees", how to distribute degrees between the factors, etc.
- Nevertheless, generically, i.e., using closures of open dense sets, we can prove that if $P(\lambda) \in \mathrm{POL}_{d, r}^{m \times n}$

where
ค $L^{\prime}(\lambda)$ is an $m \times r$ matrix polynomial, rank $L(\lambda)=r$, and degrees of its
(2) $R(\lambda)$ is an $r \times n$ matrix polynomial, $\operatorname{rank} R(\lambda)=r$, and degrees of its
rows differ at most by one, and

Ideas, difficulties, and simple statement of results

- Any $m \times n$ constant matrix A of rank r can be written as

$$
A=L R, \quad \text { where } \quad\left\{\begin{array}{l}
L \text { is } m \times r \text { and } \operatorname{rank} L=r, \\
R \text { is } r \times n \text { and } \operatorname{rank} R=r .
\end{array}\right.
$$

- The idea is to get a similar description of $\mathrm{POL}_{d, r}^{m \times n}$ but the degree of the factors makes the problem not trivial: it might be cancellations of "high degrees", how to distribute degrees between the factors, etc.
- Nevertheless, generically, i.e., using closures of open dense sets, we can prove that if $P(\lambda) \in \mathrm{POL}_{d, r}^{m \times n}$
where

Ideas, difficulties, and simple statement of results

- Any $m \times n$ constant matrix A of rank r can be written as

$$
A=L R, \quad \text { where } \quad\left\{\begin{array}{l}
L \text { is } m \times r \text { and } \operatorname{rank} L=r, \\
R \text { is } r \times n \text { and } \operatorname{rank} R=r .
\end{array}\right.
$$

- The idea is to get a similar description of $\mathrm{POL}_{d, r}^{m \times n}$ but the degree of the factors makes the problem not trivial: it might be cancellations of "high degrees", how to distribute degrees between the factors, etc.
- Nevertheless, generically, i.e., using closures of open dense sets, we can prove that if $P(\lambda) \in \mathrm{POL}_{d, r}^{m \times n}$

$$
P(\lambda)=L(\lambda) R(\lambda),
$$

where
(1) $L(\lambda)$ is an $m \times r$ matrix polynomial, $\operatorname{rank} L(\lambda)=r$, and degrees of its columns differ at most by one,
(2) $R(\lambda)$ is an $r \times n$ matrix polynomial, $\operatorname{rank} R(\lambda)=r$, and degrees of its rows differ at most by one, and
(3) $\operatorname{deg} \operatorname{col}_{i}(L(\lambda))+\operatorname{deg}^{r o w_{i}}(R(\lambda))=d$, for $i=1, \ldots, r$.

The precise main new result

Theorem (Dmytryshyn, D., Van Dooren)

$\mathrm{POL}_{d, r}^{m \times n}=\left\{\begin{array}{c}m \times n \text { complex matrix polynomials } \\ \text { with degree at most } d \text {, with rank at most } r<\min \{m, n\}\end{array}\right\}=\bigcup_{0 \leq a \leq r d} \overline{\mathcal{B}_{a}}$, where, for $a=0,1, \ldots, r d$,

$$
\mathcal{B}_{a}:=\left\{\begin{array}{ll}
L(\lambda) \in \mathbb{C}[\lambda]^{m \times r}, R(\lambda) \in \mathbb{C}[\lambda]^{r \times n}, \\
L(\lambda) R(\lambda): & \operatorname{deg} \operatorname{row}_{i}(R)=d_{R}+1, \quad \text { for } i=1, \ldots, t_{R}, \\
\operatorname{deg} \operatorname{row}_{i}(R)=d_{R}, \quad \text { for } i=t_{R}+1, \ldots, r, \\
\operatorname{deg} \operatorname{col}_{i}(L)=d-\operatorname{deg} \operatorname{row}_{i}(R), \quad \text { for } i=1, \ldots, r
\end{array}\right\},
$$

with $d_{R}=\lfloor a / r\rfloor$ and $t_{R}=a \bmod r$. Moreover,
where K_{a} are the $m \times n$ matrix polynomials of degree exactly d and rank exactly r with the generic eigenstructures defined in the previous section.

The precise main new result

Theorem (Dmytryshyn, D., Van Dooren)

$\mathrm{POL}_{d, r}^{m \times n}=\left\{\begin{array}{c}m \times n \text { complex matrix polynomials } \\ \text { with degree at most } d, \text { with rank at most } r<\min \{m, n\}\end{array}\right\}=\bigcup_{0 \leq a \leq r d} \overline{\mathcal{B}_{a}}$, where, for $a=0,1, \ldots, r d$,

$$
\mathcal{B}_{a}:=\left\{\begin{array}{ll}
L(\lambda) \in \mathbb{C}[\lambda]^{m \times r}, R(\lambda) \in \mathbb{C}[\lambda]^{r \times n}, \\
L(\lambda) R(\lambda): & \operatorname{deg} \operatorname{row}_{i}(R)=d_{R}+1, \quad \text { for } i=1, \ldots, t_{R}, \\
\operatorname{deg} \operatorname{row}_{i}(R)=d_{R}, \quad \text { for } i=t_{R}+1, \ldots, r, \\
\operatorname{deg} \operatorname{col}_{i}(L)=d-\operatorname{deg} \operatorname{row}_{i}(R), \quad \text { for } i=1, \ldots, r
\end{array}\right\},
$$

with $d_{R}=\lfloor a / r\rfloor$ and $t_{R}=a \bmod r$. Moreover,

$$
\overline{\mathcal{B}_{a}}=\overline{\mathrm{O}}\left(K_{a}\right),
$$

where K_{a} are the $m \times n$ matrix polynomials of degree exactly d and rank exactly r with the generic eigenstructures defined in the previous section.

Some comments

- The factors $L(\lambda)$ and $R(\lambda)$ can be easily parameterized.
- The parameter $a=0,1, \ldots, r d$ determines the sum of the degrees of the rows of $R(\lambda)$.
- Though $\overline{\mathcal{B}_{a}}=\overline{\mathrm{O}}\left(K_{a}\right)$, it is easy to see that, in general, $\mathcal{B}_{a} \neq \mathrm{O}\left(K_{a}\right)$, even more $\mathcal{B}_{a} \not \ddagger \mathrm{O}\left(K_{a}\right)$ and $\mathrm{O}\left(K_{a}\right) \notin \mathcal{B}_{a}$.
- The proof of the main theorem is rather technical and needs several preliminary results but a key idea is the fact that $r \times n(r<n)$ rectangular matrix polynomials with given row degrees are generically minimal bases with almost homogeneous right minimal indices.

Some comments

- The factors $L(\lambda)$ and $R(\lambda)$ can be easily parameterized.
- The parameter $a=0,1, \ldots, r d$ determines the sum of the degrees of the rows of $R(\lambda)$.
- Though $\overline{\mathcal{B}_{a}}=\overline{\mathrm{O}}\left(K_{a}\right)$, it is easy to see that, in general, $\mathcal{B}_{a} \neq \mathrm{O}\left(K_{a}\right)$, even more $\mathcal{B}_{a} \notin \mathrm{O}\left(K_{a}\right)$ and $\mathrm{O}\left(K_{a}\right) \notin \mathcal{B}_{a}$.
- The proof of the main theorem is rather technical and needs several preliminary results but a key idea is the fact that $r \times n(r<n)$ rectangular matrix polynomials with given row degrees are generically minimal bases with almost homogeneous right minimal indices.

Some comments

- The factors $L(\lambda)$ and $R(\lambda)$ can be easily parameterized.
- The parameter $a=0,1, \ldots, r d$ determines the sum of the degrees of the rows of $R(\lambda)$.
- Though $\overline{\mathcal{B}_{a}}=\overline{\mathrm{O}}\left(K_{a}\right)$, it is easy to see that, in general, $\mathcal{B}_{a} \neq \mathrm{O}\left(K_{a}\right)$, even more $\mathcal{B}_{a} \notin \mathrm{O}\left(K_{a}\right)$ and $\mathrm{O}\left(K_{a}\right) \notin \mathcal{B}_{a}$.
- The proof of the main theorem is rather technical and needs several preliminary results but a key idea is the fact that $r \times n(r<n)$ rectangular matrix polynomials with given row degrees are generically minimal bases with almost homogeneous right minimal indices.

Some comments

- The factors $L(\lambda)$ and $R(\lambda)$ can be easily parameterized.
- The parameter $a=0,1, \ldots, r d$ determines the sum of the degrees of the rows of $R(\lambda)$.
- Though $\overline{\mathcal{B}_{a}}=\overline{\mathrm{O}}\left(K_{a}\right)$, it is easy to see that, in general, $\mathcal{B}_{a} \neq \mathrm{O}\left(K_{a}\right)$, even more $\mathcal{B}_{a} \notin \mathrm{O}\left(K_{a}\right)$ and $\mathrm{O}\left(K_{a}\right) \notin \mathcal{B}_{a}$.
- The proof of the main theorem is rather technical and needs several preliminary results but a key idea is the fact that $r \times n(r<n)$ rectangular matrix polynomials with given row degrees are generically minimal bases with almost homogeneous right minimal indices.

Some comments

- The factors $L(\lambda)$ and $R(\lambda)$ can be easily parameterized.
- The parameter $a=0,1, \ldots, r d$ determines the sum of the degrees of the rows of $R(\lambda)$.
- Though $\overline{\mathcal{B}_{a}}=\overline{\mathrm{O}}\left(K_{a}\right)$, it is easy to see that, in general, $\mathcal{B}_{a} \neq \mathrm{O}\left(K_{a}\right)$, even more $\mathcal{B}_{a} \notin \mathrm{O}\left(K_{a}\right)$ and $\mathrm{O}\left(K_{a}\right) \notin \mathcal{B}_{a}$.
- The proof of the main theorem is rather technical and needs several preliminary results but a key idea is the fact that $r \times n(r<n)$ rectangular matrix polynomials with given row degrees are generically minimal bases with almost homogeneous right minimal indices.
F.M. Dopico and P. Van Dooren, Robustness and perturbations of minimal bases II: The case with given row degrees, Linear Algebra and its Applications, 576 (2019) 268-300

THANK YOU VERY MUCH FOR YOUR ATTENTION!!

[^0]: A. Dmytryshyn and F.M. Dopico, Generic complete eigenstructures for sets of matrix polynomials with bounded rank and degree

[^1]: F. De Terán, F.M. Dopico, Generic change of the partial multiplicities of regular matrix pencils under low-rank perturbations, SIAM J. Matrix Anal. Appl., 37 (2016) 823-835

[^2]: F. De Terán, F.M. Dopico, Generic change of the partial multiplicities of regular matrix pencils under low-rank perturbations, SIAM J. Matrix Anal. Appl., 37 (2016) 823-835

[^3]: F. De Terán, F.M. Dopico, Generic change of the partial multiplicities of regular matrix pencils under low-rank perturbations, SIAM J. Matrix Anal. Appl., 37 (2016) 823-835

[^4]: A. Dmytryshyn and F.M. Dopico, Generic complete eigenstructures for sets of matrix polynomials with bounded rank and degree,

