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Different classes of matrix eigenvalue problems (I)

From a simplified point of view, we can consider the following matrix eigenvalue
problems:

The basic eigenvalue problem (BEP). Given A ∈ Cn×n, compute
scalars λ (eigenvalues) and nonzero vectors v ∈ Cn (eigenvectors) such
that

Av = λv ⇐⇒ (λIn −A) v = 0

The GENERALIZED eigenvalue problem (GEP). Given A,B ∈ Cm×n,
compute scalars λ (eigenvalues) and nonzero vectors v ∈ Cn

(eigenvectors) such that

Av = λBv ⇐⇒ (λB −A) v = 0 ,

often (but not always) under the regularity assumption that A and B are
square and det(zB −A) is not zero for all z ∈ C.
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Different classes of matrix eigenvalue problems (II)

The POLYNOMIAL eigenvalue problem (PEP). Given
P0, P1, . . . , Pd ∈ Cm×n, compute scalars λ (eigenvalues) and nonzero
vectors v ∈ Cn (eigenvectors) such that

(Pdλ
d + · · ·+ P1λ+ P0)v = 0 ,

often (but not always) under the regularity assumption that Pi are square
and det(Pdz

d + · · ·+ P1z + P0) ̸≡ 0.

The RATIONAL eigenvalue problem (REP). Given a rational matrix
G(z) ∈ C(z)m×n, i.e., such that G(z)ij is a scalar rational function of
z ∈ C, for 1 ≤ i, j ≤ n, compute scalars λ (eigenvalues) and nonzero
vectors v ∈ Cn (eigenvectors) such that λ is not a pole of any G(z)ij and

G(λ)v = 0 ,

often (but not always) under the regularity assumption det(G(z)) ̸≡ 0.

We focus in this talk on PEPs and REPs, which are important by themselves
but also as approximations of more general nonlinear eigenvalue problems.
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A key idea on matrix eigenvalue problems

1 BEP: (λIn −A) v = 0

2 GEP: (λB −A) v = 0 !!!!

3 PEP: (Pdλ
d + · · ·+ P1λ+ P0)v = 0

4 REP: G(λ)v = 0

Key idea: PEPs and REPs can be solved by transforming the
problem into a GEP via a process known as LINEARIZATION.

This transformation is exact, i.e., the obtained GEP contains (or allows us
to easily extract) exactly all the eigen-information of the original PEP or
REP.

The use of linearizations is one of the most reliable approaches for
solving numerically PEPs and REPs, because there exist very reliable
algorithms for solving GEPs.

This approach has been studied by many researchers in the last two
decades.
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The goal of the talk

We will study the backward stability of solving a polynomial or a rational
eigenvalue problem

by applying a backward stable generalized eigenvalue algorithm to a wide
family of its linearizations.

As we will see, this backward stability problem is nontrivial because the
linearizations are highly structured pencils and the backward errors of the
generalized eigenvalue algorithm destroy such structures.
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Outline

1 Brief reminder of “Eigenstructures” of PEPs and REPs

2 Linearizations of polynomial and rational matrices

3 Block Kronecker linearizations of polynomial matrices

4 Block Kronecker linearizations of rational matrices

5 Global backward stability of PEPs solved with linearizations

6 Global backward stability of REPs solved with linearizations

7 Conclusions
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GEPs-PEPs-REPs have more spectral “structural” data than BEPs

1 BEP: (λIn −A) v = 0

2 GEP: (λB −A) v = 0

3 PEP: (Pdλ
d + · · ·+ P1λ+ P0)v = 0

4 REP: G(λ)v = 0

So far, we have only considered informally finite eigenvalues, but

GEPs, PEPs, REPs may have also infinite eigenvalues.

GEPs, PEPs, REPs may be singular, i.e., rectangular or square with
identically zero determinant, (BEPs are always regular) and to have, in
addition to eigenvalues, minimal indices.

Moreover, REPs have poles.

We define quickly these concepts.
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Finite and infinite eigenvalues of PEPs

Given P (λ) = Pdλ
d + · · ·+ P1λ+ P0 ∈ C[λ]m×n ,

λ0 ∈ C is a finite eigenvalue of P (λ) if

rankP (λ0) < max
λ∈C

rankP (λ)

The infinite eigenvalue of P (λ) is defined through the reversal
polynomial.

The reversal of P (λ) is

revP (λ) := λdP ( 1λ ) = P0λ
d + · · ·+ Pd−1λ+ Pd .

Then the infinite eigenvalue (and its mutiplicities) of P (λ) correspond to
the zero eigenvalue (and its mutiplicities) of revP (λ).
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Minimal indices of singular PEPs

PEPs are singular when P (λ) = Pdλ
d + · · ·+ P1λ+ P0 is either

rectangular or square with detP (λ) ≡ 0.

Singular PEPs appear in applications, in particular in Multivariable
System Theory and Control Theory.

In addition to eigenvalues, singular matrix polynomials have other
“interesting numbers” called minimal indices,

which are related to the fact that a singular m× n matrix polynomial P (λ)
has non-trivial left and/or right null-spaces over the field C(λ) of rational
functions:

Nℓ(P ) :=
{
y(λ)T ∈ F(λ)1×m : y(λ)TP (λ) ≡ 0T

}
,

Nr(P ) :=
{
x(λ) ∈ F(λ)n×1 : P (λ)x(λ) ≡ 0

}
.

They have bases consisting entirely of vector polynomials.

The polynomial bases with “minimal sum of the degrees” of their vectors
are the minimal bases of P (λ). The minimal indices of P (λ) are the
degrees of the vectors of any minimal basis.
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The complete “eigenstructure” of a polynomial matrix

As a consequence of the previous discussion, we define:

Definition
The complete “eigenstructure” of a polynomial matrix P (λ) is comprised of:

its finite eigenvalues, together with their partial multiplicities,

its infinite eigenvalue, together with its partial multiplicities,

its right minimal indices, and

its left minimal indices.

Remarks

The partial multiplicities are defined through the Smith form of P (λ) and
for matrices and pencils they are just the sizes of the Jordan blocks
associated to each eigenvalue.
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its left minimal indices.
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The complete “eigenstructure” of a rational matrix

Analogously, we define:

Definition
The complete “eigenstructure” of a rational matrix G(λ) is comprised of:

its finite zeros and poles, together with their partial multiplicities,

its infinite zeros and poles, together with its partial multiplicities,

its right minimal indices, and

its left minimal indices.

Remarks

The partial multiplicities are defined through the Smith-McMillan form of
G(λ).

The infinite zeros and poles, together with its partial multiplicities, of G(λ)
are defined as the zeros and poles at λ = 0, together with its partial
multiplicities, of G(1/λ).
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Definition: strong linearizations of polynomial matrices

Definition

A linear polynomial matrix (or matrix pencil) L(λ) is a linearization of
P (λ) = Pd λ

d + · · ·+ P1λ+ P0 if there exist unimodular polynomial
matrices U(λ), V (λ) such that

U(λ)L(λ)V (λ) =

[
Is 0
0 P (λ)

]
.

L(λ) is a strong linearization of P (λ) if, in addition, revL(λ) is a
linearization for revP (λ), i.e.,

Ũ(λ) (revL(λ)) Ṽ (λ) =

[
Is 0
0 revP (λ)

]
,

with Ũ(λ) and Ṽ (λ) unimodular.
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Spectral characterization of linearizations of polynomial matrices

Theorem
A matrix pencil L(λ) is a linearization of a polynomial matrix P (λ) if and
only if

(1) L(λ) and P (λ) have the same number of right minimal indices.

(2) L(λ) and P (λ) have the same number of left minimal indices.

(3) L(λ) and P (λ) have the same finite eigenvalues with the same partial
multiplicities.

L(λ) is a strong linearization of P (λ) if and only if (1), (2), (3) and

(4) L(λ) and P (λ) have the same infinite eigenvalues with the same partial
multiplicities.

Remark: The minimal indices of L(λ) may have arbitrarily different values
from those of P (λ), though in the most important classes of linearizations they
are easily related.
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The most famous strong linearization

The classical Frobenius companion form of the m× n matrix polynomial

P (λ) = Pdλ
d + · · ·+ P1λ+ P0

is

C1(λ) :=



λPd + Pd−1 Pd−2 · · · P1 P0

−In λIn
. . .

. . .

. . . λIn
−In λIn

 ∈ C[λ](m+n(d−1))×nd

Theorem (C1(λ) is much more than a strong linearization!!)

(a) If 0 ≤ ε1 ≤ · · · ≤ εp are the right minimal indices of P (λ), then the right
minimal indices of C1(λ) are ε1 + d− 1 ≤ · · · ≤ εp + d− 1 .

(b) If 0 ≤ η1 ≤ · · · ≤ ηq are the left minimal indices of P (λ), then the left
minimal indices of C1(λ) are η1 ≤ · · · ≤ ηq.
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Some comments on linearizations of rational matrices

For brevity, I will not present the definition of linearizations and strong
linearizations of rational matrices.

In contrast with the polynomial case, there is no agreement in the
community on the definition of (strong) linearization of a rational matrix.

Pioneering works on linearizations of rational matrices where developed
by Van Dooren and Verghese in late 70s & early 80s though they did not
give a general definition.

Amparan, D, Marcaida, and Zaballa, Strong linearizations of rational
matrices, SIMAX 2018 introduced a definition of strong linearization of
any rational matrix R(λ) that reduces to the one for polynomials when
R(λ) is a polynomial matrix. They also constructed explicitly many of such
linearizations.

Another closely related approach for defining linearizations of rational
matrices was initiated by Alam and Behera, Linearizations for rational
matrix functions and Rosenbrock system polynomials, SIMAX 2016 and
followed by other students of Alam.

F. M. Dopico (U. Carlos III, Madrid) Backward stability poly-rational e-problems July 3, 2023 17 / 50



Some comments on linearizations of rational matrices

For brevity, I will not present the definition of linearizations and strong
linearizations of rational matrices.

In contrast with the polynomial case, there is no agreement in the
community on the definition of (strong) linearization of a rational matrix.

Pioneering works on linearizations of rational matrices where developed
by Van Dooren and Verghese in late 70s & early 80s though they did not
give a general definition.

Amparan, D, Marcaida, and Zaballa, Strong linearizations of rational
matrices, SIMAX 2018 introduced a definition of strong linearization of
any rational matrix R(λ) that reduces to the one for polynomials when
R(λ) is a polynomial matrix. They also constructed explicitly many of such
linearizations.

Another closely related approach for defining linearizations of rational
matrices was initiated by Alam and Behera, Linearizations for rational
matrix functions and Rosenbrock system polynomials, SIMAX 2016 and
followed by other students of Alam.

F. M. Dopico (U. Carlos III, Madrid) Backward stability poly-rational e-problems July 3, 2023 17 / 50



Some comments on linearizations of rational matrices

For brevity, I will not present the definition of linearizations and strong
linearizations of rational matrices.

In contrast with the polynomial case, there is no agreement in the
community on the definition of (strong) linearization of a rational matrix.

Pioneering works on linearizations of rational matrices where developed
by Van Dooren and Verghese in late 70s & early 80s though they did not
give a general definition.

Amparan, D, Marcaida, and Zaballa, Strong linearizations of rational
matrices, SIMAX 2018 introduced a definition of strong linearization of
any rational matrix R(λ) that reduces to the one for polynomials when
R(λ) is a polynomial matrix. They also constructed explicitly many of such
linearizations.

Another closely related approach for defining linearizations of rational
matrices was initiated by Alam and Behera, Linearizations for rational
matrix functions and Rosenbrock system polynomials, SIMAX 2016 and
followed by other students of Alam.

F. M. Dopico (U. Carlos III, Madrid) Backward stability poly-rational e-problems July 3, 2023 17 / 50



Some comments on linearizations of rational matrices

For brevity, I will not present the definition of linearizations and strong
linearizations of rational matrices.

In contrast with the polynomial case, there is no agreement in the
community on the definition of (strong) linearization of a rational matrix.

Pioneering works on linearizations of rational matrices where developed
by Van Dooren and Verghese in late 70s & early 80s though they did not
give a general definition.

Amparan, D, Marcaida, and Zaballa, Strong linearizations of rational
matrices, SIMAX 2018 introduced a definition of strong linearization of
any rational matrix R(λ) that reduces to the one for polynomials when
R(λ) is a polynomial matrix. They also constructed explicitly many of such
linearizations.

Another closely related approach for defining linearizations of rational
matrices was initiated by Alam and Behera, Linearizations for rational
matrix functions and Rosenbrock system polynomials, SIMAX 2016 and
followed by other students of Alam.

F. M. Dopico (U. Carlos III, Madrid) Backward stability poly-rational e-problems July 3, 2023 17 / 50



Some comments on linearizations of rational matrices

For brevity, I will not present the definition of linearizations and strong
linearizations of rational matrices.

In contrast with the polynomial case, there is no agreement in the
community on the definition of (strong) linearization of a rational matrix.

Pioneering works on linearizations of rational matrices where developed
by Van Dooren and Verghese in late 70s & early 80s though they did not
give a general definition.

Amparan, D, Marcaida, and Zaballa, Strong linearizations of rational
matrices, SIMAX 2018 introduced a definition of strong linearization of
any rational matrix R(λ) that reduces to the one for polynomials when
R(λ) is a polynomial matrix. They also constructed explicitly many of such
linearizations.

Another closely related approach for defining linearizations of rational
matrices was initiated by Alam and Behera, Linearizations for rational
matrix functions and Rosenbrock system polynomials, SIMAX 2016 and
followed by other students of Alam.

F. M. Dopico (U. Carlos III, Madrid) Backward stability poly-rational e-problems July 3, 2023 17 / 50



Some comments on linearizations of rational matrices (II)

In simple words, a linearization L(λ) of a rational matrix R(λ) is a matrix
pencil (i.e., a matrix polynomial of degree 1) whose eigenvalues are the
finite zeros of R(λ) and such that the eigenvalues of a certain square and
nonsingular submatrix of L(λ) are the finite poles of R(λ),

with equal partial multiplicities for zeros and poles.

If L(λ) contains also the pole-zero information of R(λ) at infinity, then it is
said to be a strong linearization of R(λ).

There are many families of strong linearizations of polynomial and rational
matrices.

The family considered in this talk includes (modulo permutations) many of
the linearizations available in the literature.
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Auxiliary polynomial matrices

Two fundamental auxiliary polynomial matrices in the rest of the talk are

Lk(λ) :=


−1 λ

−1 λ
. . .

. . .

−1 λ

 ∈ C[λ]k×(k+1),

Λk(λ)
T :=

[
λk λk−1 · · · λ 1

]
∈ C[λ]1×(k+1),

and their Kronecker products by identities

Lk(λ)⊗ In :=


−In λIn

−In λIn
. . .

. . .

−In λIn

 ∈ C[λ]nk×n(k+1),

Λk(λ)
T ⊗ In :=

[
λkIn λk−1In · · · λIn In

]
∈ C[λ]n×n(k+1).
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We have seen one of these matrices before

in the Frobenius companion form of the m× n matrix polynomial
P (λ) = Pdλ

d + · · ·+ P1λ+ P0

C1(λ) :=



λPd + Pd−1 Pd−2 · · · P1 P0

−In λIn
. . .

. . .

. . . λIn
−In λIn

 ,

which can be compactly written with the polynomials defined above as

C1(λ) :=

[
λPd + Pd−1 Pd−2 · · · P1 P0

Ld−1(λ)⊗ In

]
.

Observe also that

P (λ) =
[
λPd + Pd−1 Pd−2 · · · P1 P0

]
(Λd−1(λ)⊗ In).
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Block-Kronecker linearizations of polynomial matrices

Definition (D, Lawrence, Pérez, Van Dooren, Numer. Math., 2018)

Let M(λ) be an arbitrary pencil. Then any pencil of the form

L(λ) =
[

M(λ) Lη(λ)
T ⊗ Im

Lε(λ)⊗ In 0

] }
(η+1)m

} εn︸ ︷︷ ︸
(ε+1)n

︸ ︷︷ ︸
ηm

,

is called a block Kronecker pencil (one-block row and column cases included).

Theorem (D, Lawrence, Pérez, Van Dooren, Numer. Math., 2018)

Any block Kronecker pencil L(λ) is a strong linearization of the matrix
polynomial

Q(λ) := (Λη(λ)
T ⊗ Im)M(λ)(Λε(λ)⊗ In) ∈ C[λ]m×n ,

the right minimal indices of L(λ) are those of Q(λ) plus ε, and the left minimal
indices of L(λ) are those of Q(λ) plus η.
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Examples of block Kronecker linearizations of polynomial matrices (I)

(apart from the Frobenius companion form!!!)

P (λ) = λ5P5 + λ4P4 + λ3P3 + λ2P2 + λP1 + P0 ∈ C[λ]m×n


λP5 + P4 0 0 −Im 0

0 λP3 + P2 0 λIm −Im
0 0 λP1 + P0 0 λIm

−In λIn 0 0 0
0 −In λIn 0 0
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Examples of block Kronecker linerizations of polynomial matrices (II)

P (λ) = λ5P5 + λ4P4 + λ3P3 + λ2P2 + λP1 + P0 ∈ C[λ]m×n


λP5 λP4 λP3 −Im 0
0 0 λP2 λIm −Im
0 0 λP1 + P0 0 λIm

−In λIn 0 0 0
0 −In λIn 0 0



F. M. Dopico (U. Carlos III, Madrid) Backward stability poly-rational e-problems July 3, 2023 23 / 50



Outline

1 Brief reminder of “Eigenstructures” of PEPs and REPs

2 Linearizations of polynomial and rational matrices

3 Block Kronecker linearizations of polynomial matrices

4 Block Kronecker linearizations of rational matrices

5 Global backward stability of PEPs solved with linearizations

6 Global backward stability of REPs solved with linearizations

7 Conclusions

F. M. Dopico (U. Carlos III, Madrid) Backward stability poly-rational e-problems July 3, 2023 24 / 50



Rational matrices and their representations

Rational matrices can be represented in different forms.

In this talk, we consider that the rational matrix is represented as

R(λ) = Rp(λ) +D(λ) = C(λIℓ −A)−1B +

d∑
i=0

Diλ
i ∈ C(λ)m×n ,

where the triple {A,B,C} is a minimal state-space realization of the
strictly proper part Rp(λ), and d is the degree of the polynomial part.

This minimality means that
[
λ0Iℓ −A

C

]
and

[
λ0Iℓ −A B

]
have full

column and row ranks, respectively, for any λ0 ∈ C.

Any rational matrix can be represented in this form, which is one of
the most standard representations in linear systems theory.
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This representation captures many rational matrices coming from NLEPs

Loaded elastic string (Betcke et al., NLEVP, (2013); Solov’ëv (2006)):

R(λ) = A− λB +
λ

λ− σ
E = (A+ E)− λB +

σ

λ− σ
E ∈ C(λ)n×n.

Damped vibration of a viscoelastic structure (Mehrmann & Voss, (2004)):

R(λ) = λ2M +K −
k∑

i=1

1

1 + biλ
∆Gi ∈ C(λ)n×n.

El-Guide, Miedlar, Saad (2020) consider for approximating some NLEPs

R(λ) = −B0 + λA0 +
B1

λ− σ1
+ · · ·+ Bs

λ− σs
∈ C(λ)p×p,

= −B0 + λA0 +
[
B1 · · · Bs

] (λ− σ1)Ip
. . .

(λ− σs)Ip


−1  Ip

...
Ip
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... but does not capture all interesting cases

NLEIGS-Rational Eigenvalue Problems (REPs) coming from linear
rational interpolation of NLEPs (Güttel, Van Beeumen, Meerbergen,
Michiels (2014)).

REPs appearing in “Automatic rational approximation and linearization of
nonlinear eigenvalue problems” (2022) by Lietaert, Meerbergen, Pérez,
Vandereycken.
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More auxiliary pencils

We have used so far

Lk(λ) :=


1 −λ

1 −λ
. . .

. . .

1 −λ

 ∈ C[λ]k×(k+1),

Λk(λ)
T :=

[
λk λk−1 · · · λ 1

]
∈ C[λ]1×(k+1).

and their Kronecker products by identities

K1(λ) := Lϵ(λ)⊗ In,

K2(λ) := Lη(λ)⊗ Im.

Now, we introduce

K̂1 := eTϵ+1 ⊗ In =
[
0 · · · 0 1

]︸ ︷︷ ︸
ϵ+1

⊗In,

K̂2 := eTη+1 ⊗ Im =
[
0 · · · 0 1

]︸ ︷︷ ︸
η+1

⊗Im .
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Block Kronecker linearizations of rational matrices

Theorem (Amparan, D, Marcaida, Zaballa, SIMAX, 2018)
Let

A ∈ Cℓ×ℓ, B ∈ Cℓ×n, C ∈ Cm×ℓ be arbitrary constant matrices and M(λ)
be an arbitrary pencil of adequate size, and

K1(λ), K2(λ), K̂1, K̂2 be the pencils and matrices in the previous slide.

Let us consider the pencil

S(λ) =

 A− λIℓ BK̂1 0

K̂T
2 C M(λ) K2(λ)

T

0 K1(λ) 0

 ,

and the rational matrix

R(λ) = (Λη(λ)
T ⊗ Im)M(λ)(Λϵ(λ)⊗ In)︸ ︷︷ ︸

D(λ) := poly. part

+C(λIℓ −A)−1B︸ ︷︷ ︸
strict. proper. part

.

If {A,B,C} is a minimal state-space realization, then S(λ) is a strong
linearization of R(λ).
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Example of block Kronecker lin: Van Dooren & De Wilde, LAA, (1983)

Given the rational matrix:

R(λ) = C(λIℓ −A)−1B +

d∑
i=0

Diλ
i ∈ C(λ)m×n ,

where the triple {A,B,C} is a minimal state-space realization,

the following pencil

L(λ) =



A− λIℓ B
In −λIn

In
. . .

. . . −λIn
In −λIn

C λDd . . . . . . λD2 λD1 +D0


is a (permuted) Block Kronecker (strong) linearization of R(λ).
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Example of block Kronecker lin: Su & Bai, SIMAX, (2011)

Given the rational matrix:

R(λ) = C(λIℓ −A)−1B +

d∑
i=0

Diλ
i ∈ C(λ)m×n ,

where the triple {A,B,C} is a minimal state-space realization,

the following pencil

L(λ) =



A− λIℓ B
C λDd +Dd−1 Dd−2 · · · D1 D0

In −λIn
. . .

. . .

. . . −λIn
In −λIn


,

is a Block Kronecker (strong) linearization of R(λ).
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Example of block Kronecker lin: Amparan, D, Marcaida, Zaballa, SIMAX,

(2018)

Given the rational matrix:

R(λ) = C(λIℓ −A)−1B +

5∑
i=0

Diλ
i ∈ C(λ)m×n,

where the triple {A,B,C} is a minimal state-space realization,

the following “symmetrizable” pencil

L(λ) =


A− λIℓ 0 0 B 0 0

0 λD5 +D4 0 0 Im 0
0 0 λD3 +D2 0 −λIm Im
C 0 0 λD1 +D0 0 −λIm
0 In −λIn 0 0 0
0 0 In −λIn 0 0


is a Block Kronecker (strong) linearization of R(λ).
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Outline

1 Brief reminder of “Eigenstructures” of PEPs and REPs

2 Linearizations of polynomial and rational matrices

3 Block Kronecker linearizations of polynomial matrices

4 Block Kronecker linearizations of rational matrices

5 Global backward stability of PEPs solved with linearizations

6 Global backward stability of REPs solved with linearizations

7 Conclusions
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The Setting

We consider a general m× n polynomial matrix of degree d

P (λ) = Pdλ
d + · · ·+ P1λ+ P0 , Pi ∈ Cm×n,

and we assume that its complete eigenstructure

has been computed by applying a backward stable algorithm
(QZ for regular, Staircase for singular)

to a strong linearization L(λ) in the class of block Kronecker
linearizations of P (λ).
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Backward stable algorithms on strong linearizations and question

The computed complete eigenstructure of L(λ) is the exact complete
eigenstructure of a matrix pencil L(λ) + ∆L(λ) such that

∥∆L(λ)∥F
∥L(λ)∥F

= O(u),

where u ≈ 10−16 is the unit roundoff and

∥ · ∥F is the Frobenius norm, i.e., for any matrix polynomial

∥Qkλ
k + · · ·+Q1λ+Q0∥F =

√
∥Qk∥2F + · · ·+ ∥Q1∥2F + ∥Q0∥2F .

But, does this imply that the computed complete eigenstructure of P (λ) is
the exact complete eigenstructure of a polynomial matrix of the same
degree P (λ) + ∆P (λ) such that

∥∆P (λ)∥F
∥P (λ)∥F

= O(u)??
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Why is not obvious to answer this question?

because block Kronecker linearizations are highly structured pencils and
perturbations destroy the structure!!

Example: The Frobenius Companion Form

C1(λ) :=



λPd + Pd−1 Pd−2 · · · P1 P0

−In λIn
. . .

. . .

. . . λIn
−In λIn


C1(λ) + ∆L(λ) =

λ(Pd + E11) + (Pd−1 + F11) λE12 + Pd−2 + F12 · · · λE1,d−1 + P1 + F1,d−1 · · ·
λE21 − In + F21 λ(In + E22) + F22 λE23 + F23

λE31 + F31 λE32 + F32

. . .

...
...

. . . λ(In + Ed−1,d−1) + Fd−1,d−1
λEd1 + Fd1 λEd2 + Fd2 λEd,d−1 + Fd,d−1 − In · · ·



F. M. Dopico (U. Carlos III, Madrid) Backward stability poly-rational e-problems July 3, 2023 36 / 50



Why is not obvious to answer this question?

because block Kronecker linearizations are highly structured pencils and
perturbations destroy the structure!!

Example: The Frobenius Companion Form

C1(λ) :=



λPd + Pd−1 Pd−2 · · · P1 P0

−In λIn
. . .

. . .

. . . λIn
−In λIn


C1(λ) + ∆L(λ) =

λ(Pd + E11) + (Pd−1 + F11) λE12 + Pd−2 + F12 · · · λE1,d−1 + P1 + F1,d−1 · · ·
λE21 − In + F21 λ(In + E22) + F22 λE23 + F23

λE31 + F31 λE32 + F32

. . .

...
...

. . . λ(In + Ed−1,d−1) + Fd−1,d−1
λEd1 + Fd1 λEd2 + Fd2 λEd,d−1 + Fd,d−1 − In · · ·



F. M. Dopico (U. Carlos III, Madrid) Backward stability poly-rational e-problems July 3, 2023 36 / 50



The matrix perturbation problems to be solved

Problem 1: To establish conditions on ∥∆L(λ)∥F such that L(λ) + ∆L(λ)
is a strong linearization for some polynomial matrix P (λ) + ∆P (λ) of
degree d.

Problem 2: To prove a perturbation bound

∥∆P (λ)∥F
∥P (λ)∥F

≤ CP,L
∥∆L(λ)∥F
∥L(λ)∥F

,

with CP,L a number depending on P (λ) and L(λ).

For those P (λ) and L(λ) s.t. CP,L is moderate, to use global backward
stable algorithms on L(λ) gives global backward stability for P (λ).
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The main perturbation theorem for polynomial matrices

Theorem (D, Lawrence, Pérez, Van Dooren, Numer. Math., 2018)

Let L(λ) be a block Kronecker pencil for P (λ) =
∑d

i=0 Piλ
i ∈ C[λ]m×n, i.e.,

L(λ) =
[

M(λ) Lη(λ)
T ⊗ Im

Lε(λ)⊗ In 0

]
.

If ∆L(λ) is any pencil with the same size as L(λ) and such that

∥∆L(λ)∥F <
(
√
2− 1)2

d5/2
1

1 + ∥M(λ)∥F
,

then L(λ) + ∆L(λ) is a strong linearization of a polynomial matrix
P (λ) + ∆P (λ) with grade d and such that

∥∆P (λ)∥F
∥P (λ)∥F

≤ 14 d5/2
∥L(λ)∥F
∥P (λ)∥F

(1 + ∥M(λ)∥F + ∥M(λ)∥2F )
∥∆L(λ)∥F
∥L(λ)∥F

.
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Discussion of the perturbation bound for block Kronecker pencils

L(λ) =
[

M(λ) Lη(λ)
T ⊗ Im

Lε(λ)⊗ In 0

]
.

∥∆P (λ)∥F
∥P (λ)∥F

≤ 14 d5/2
∥L(λ)∥F
∥P (λ)∥F

(1 + ∥M(λ)∥F + ∥M(λ)∥2F )︸ ︷︷ ︸
CP,L

∥∆L(λ)∥F
∥L(λ)∥F

.

It can be proved that if ∥P (λ)∥F ≪ 1 or ∥P (λ)∥F ≫ 1, then CP,L ≫ 1,

and that, if ∥M(λ)∥F ≫ 1, then CP,L ≫ 1.

Therefore, for getting “backward stability” from Block Kronecker
linearizations, one needs to normalize the matrix poly ∥P (λ)∥F = 1 and
to use pencils such that ∥M(λ)∥F ≈ ∥P (λ)∥F , then

∥∆P (λ)∥F
∥P (λ)∥F

≲ d3
√
m+ n

∥∆L(λ)∥F
∥L(λ)∥F

.

For Fiedler, Frobenius, etc linearizations ∥M(λ)∥F = ∥P (λ)∥F .
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We need some additional norms....

We have already used the Frobenius norm of a matrix polynomial.
For D(λ) =

∑d
i=0 Diλ

i, we define

∥D(λ)∥F :=

√√√√ d∑
i=0

∥Di∥2F .

“Norm” of a rational matrix represented as

R(λ) = C(λIℓ −A)−1B +
d∑

i=0

Diλ
i ,

∥R(λ)∥F :=∥
[
A− λIℓ B

C
∑d

i=0 Diλ
i

]
∥F =

√√√√ℓ+ ∥A∥2F + ∥B∥2F + ∥C∥2F +
d∑

i=0

∥Di∥2F

Two-norm of a matrix pencil.

∥S(λ)∥2 = ∥S1λ+ S0∥2 := ∥
[
S1 S0

]
∥2
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Statement of the problem (I)

Given a rational matrix represented as

R(λ) = C(λIℓ −A)−1B +

d∑
i=0

Diλ
i ,

its zeros (and minimal indices) are computed by applying a backward
stable algorithm (QZ for regular, Staircase for singular) for computing the
eigenvalues (and minimal indices) of its block Kronecker linearization

S(λ) =

 M(λ) K̂T
2 C K2(λ)

T

BK̂1 A− λIℓ 0
K1(λ) 0 0

,
where

∑d
i=0 Diλ

i = (Λη(λ)
T ⊗ Im)M(λ)(Λϵ(λ)⊗ In) .

This means that we have computed the exact eigenvalues (and
minimal indices) of a pencil

Ŝ(λ) := S(λ) + ∆S(λ), with
∥∆S(λ)∥F
∥S(λ)∥F

= O(u),

with u ≈ 10−16 the unit roundoff of the computer.
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Statement of the problem (II)

But, does this imply that we have computed the exact zeros of a
nearby rational matrix?

Nearby in the following structural sense:

R̃(λ) = (C +∆C)(λIℓ − (A+∆A))−1(B +∆B) +

d∑
i=0

(Di +∆Di)λ
i ,

with

∥∆R∥F
∥R(λ)∥F

:=

√
∥∆A∥2F + ∥∆B∥2F + ∥∆C∥2F +

∑d
i=0 ∥∆Di∥2F

∥R(λ)∥F
= O(u) ??

Again, this problem is not easy because the perturbation pencil ∆S(λ)
destroys completely the delicate structure of S(λ).

In fact, this problem is considerably harder than in the polynomial
case, because the corresponding block Kronecker pencils are more
complicated and have additional structures, and requires additional
techniques.
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The main perturbation theorem

Theorem (D, Quintana, Van Dooren, Calcolo, 2023)

Given R(λ) = C(λIℓ −A)−1B +
∑d

i=0 Diλ
i, let S(λ) be any of its block Kronecker

linearizations, and let us perturb it with a pencil to get

Ŝ(λ) = S(λ) + ∆S(λ)

If ∥∆S(λ)∥F is sufficiently small, then the eigenvalues and min. indices of Ŝ(λ) are the
zeros and shifted min. indices of

R̃(λ) = (C +∆C)(λIℓ − (A+∆A))−1(B +∆B) +

d∑
i=0

(Di +∆Di)λ
i

such that, to first order in ∥∆S(λ)∥F ,√
∥∆A∥2F + ∥∆B∥2F + ∥∆C∥2F +

∑d
i=0 ∥∆Di∥2F

∥R(λ)∥F
≤ CS,R

∥∆S(λ)∥F
∥S(λ)∥F

,

where
CS,R =

√
2min(ε+ 1, η + 1) (1 + f1∥S(λ)∥2)(1 + f2∥S(λ)∥2)(1 + f3∥S(λ)∥2)

∥S(λ)∥F
∥R(λ)∥F
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The main perturbation theorem (II)

Theorem (continuation)
where

α := 1 + 2εmax(1, ∥A∥ε2),
β := 1 + 2ηmax(1, ∥A∥η2),

γ :=
ε+ η

2
√
2
,

s := max(α, β, γ) + γ(β∥B∥2 + α∥C∥2)

and

f1 :=
4
√
2s

2−
√
3
,

f2 :=

√
2 (4max(ε, η)− 1)

3
,

f3 :=
√
2 [1 + 2max(η, ε)max(1, ∥A∥max(η,ε)

2 )]

only depend on the initial data.
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The previous bound does not guarantee structural backward stability

We should have

CS,R =
√

2min(ε+ 1, η + 1) (1 + f1∥S(λ)∥2)(1 + f2∥S(λ)∥2)(1 + f3∥S(λ)∥2)
∥S(λ)∥F
∥R(λ)∥F

moderate for guaranteeing structural backward stability.

However this magnitude can be very large if ∥S(λ)∥2 is large or, under the
weaker condition that ∥R(λ)∥F is large,

and we have performed numerical experiments that confirm that under
such conditions the structured backward errors can be indeed very large.

Thus, additional conditions are needed in order to guarantee structural
backward stability.
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Thus, additional conditions are needed in order to guarantee structural
backward stability.
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Sufficient conditions for structural backward stability

Theorem (D, Quintana, Van Dooren, Calcolo, 2023)

Let R(λ) = C(λIℓ −A)−1B +
∑d

i=0 Diλ
i ∈ C(λ)m×n and S(λ) be any of its

block Kronecker linearizations. If

max(∥A∥F , ∥B∥F , ∥C∥F , ∥D(λ)∥F ) ≤ 1 and ∥M(λ)∥F ≈ ∥D(λ)∥F

then
CS,R ≤ g d5

√
m+ n ,

where g is a moderate number (a constant that does not depend on d,m, n, ℓ)
and, to first order in ∥∆S(λ)∥F ,√

∥∆A∥2F + ∥∆B∥2F + ∥∆C∥2F +
∑d

i=0 ∥∆Di∥2F
∥R(λ)∥F

≲ d5
√
m+ n

∥∆S(λ)∥F
∥S(λ)∥F

.
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What to do if these conditions do not hold? SCALING!!!

There are rational matrices for which

max(∥A∥F , ∥B∥F , ∥C∥F , ∥D(λ)∥F ) ≤ 1

do not hold.

In such cases, we can scale the original rational matrix R(λ) as

R̂(λ̂) := D̂(λ̂) + Ĉ(λ̂Iℓ − Â)−1B̂ := dRR(λ̂/dλ)

where

Â := dλT
−1AT, B̂ :=

√
dλdR T−1B, Ĉ :=

√
dλdR CT, D̂i := dRd

−i
λ Di,

i = 0, 1, . . . , d, and T = diag(d1, . . . , dℓ),

to obtain a rational matrix R̂(λ̂) that satisfies the desired conditions.

Moreover, this can be done without errors with parameters that are integer
powers of 2.

However, this requires to scale also the variable λ in contrast with the
polynomial case.
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where
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Conclusions

We have proved that the computation of the complete eigenstructure of a
matrix polynomial P (λ) (regular or singular) via block Kronecker
linearizations is backward stable from the polynomial point of view

if the polynomial is multiplied by a number in such a way that ∥P (λ)∥F = 1

and the linearization is chosen to satisfy ∥M(λ)∥F ≈ ∥P (λ)∥F , which
happens for many of the linearizations used in the literature.

We have obtained similar results for rational matrices expressed as
R(λ) = C(λIℓ −A)−1B +

∑d
i=0 Diλ

i ∈ C(λ)m×n

though in this case a delicate scaling of the rational matrix, which requires
to scale the variable, is needed.

We have also analyzed (D, Pérez, Van Dooren, Math. Comp., 2019)
structured polynomial matrices (Hermitian, alternating, palindromic, ... )
with structure preserving backward errors and we have obtained similar
positive results.
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