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Matrix Pencils

This talk deals with square complex matrix pencils A + λB ∈ C[λ]n×n
1 or

polynomial matrices of degree 1, where A,B ∈ Cn×n.

Matrix pencils arise naturally in differential-algebraic equations and in
linear time invariant control systems

− Bẋ = Ax + Fu, y = Cx (1)

by taking Laplace transforms.

The pencil A + λB is regular if its characteristic polynomial
p(λ) = det(A + λB) is NOT identically zero. Otherwise, the pencil is
singular, i.e., if p(λ) = det(A + λB) ≡ 0.

The regularity of A + λB implies that a solution of (1) exists for all smooth
enough controls and for consistent initial conditions.

This existence is no longer guaranteed if the pencil A + λB is singular.
Therefore, the distance of a regular pencil A + λB to a nearest singular
pencil is a measure of the robustness of the problem (1).
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The problem

Problem
Given a square regular pencil A + λB ∈ C[λ]n×n

1 find a singular pencil nearest
to it.

We measure the distances in Frobenius norm:

∥A + λB∥F ∶= ∥[A B]∥
F
.

It is also possible and interesting to look for a nearest real singular pencil
when A and B are real. The approach we present can be extended directly to
the real case. We omit the details of the real case for brevity.

Problem (Refined)

Given A+λB ∈ C[λ]n×n
1 , find a minimizer for the distance ∥(A+λB) − (S +λT)∥F

amongst all pencils S + λT ∈ C[λ]n×n
1 that satisfy det(S + λT) ≡ 0.
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Previous works (I)

The problem was posed for the first time by Byers, He and Mehrmann in
1998, who collected lower and upper bounds and proposed several
characterizations of the distance to singularity but could not provide an exact
solution (except in very special cases) nor an efficient algorithm.

R. Byers, C. He and V. Mehrmann, Where is the nearest non-regular pencil?, Linear Algebra Appl., 285 (1998) 81–105.

D. Kressner and M. Voigt wrote in 2015 the survey

D. Kressner and M. Voigt, Distance problems for linear dynamical systems, in: P. Benner, M. Bollhöfer, D. Kressner, C. Mehl, T.
Stykel (Editors), Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory (pp. 559-583), Springer,
Berlin, 2015.

where they comment

“...explicit formulas are not known for the general case and, even worse, devising
a numerical method for computing the distance to singularity or bounds thereof
turned out to be an extremely difficult problem. Since the publication of [15],
almost no progress has been made in this direction.”
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Previous works (II)

Since then, several works have been published on this problem. We mention the
following ones:

M. Giesbrecht, J. Haraldson and G. Labahn presented in 2017 a method based
on structured perturbations of mosaic Toeplitz matrices with an asymptotic
complexity of O(n12

) flops per iteration.

M. Giesbrecht, J. Haraldson and G. Labahn, Computing the nearest rank-deficient matrix polynomial, in: Proceedings of the 2017
ACM on International Symposium on Symbolic and Algebraic Computation (pp. 181-188), 2017.

N. Guglielmi, C. Lubich and V. Mehrmann presented in 2017 an ODE-approach
based on expressing the set of n × n singular pencils as those pencils whose
characteristic polynomial is zero when it is evaluated in n+ 1 given distinct points.

N. Guglielmi, C. Lubich and V. Mehrmann, On the nearest singular matrix pencil, SIAM J. Matrix Anal. Appl., 38(3) (2017)
776–806.

This method needs to compute the smallest singular value of n matrices in each
iteration and therefore is slow, though it is flexible for incorporating structures
and for being extended to polynomial matrices.
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Previous works (III)

B. Das and S. Bora presented in 2023 a method based on structured
perturbations of the Gantmacher’s block Toeplitz matrices associated with a
pencil and on a careful analysis of the properties of singular polynomial matrices.

B. Das and S. Bora, Nearest rank deficient matrix polynomials, Linear Algebra Appl., 674 (2023) 304–350.

This method is still very slow, but much more efficient than previous methods,
and can be applied/extended to matrix polynomials of degree larger than 1.
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In summary:

1 The problem is very difficult:
no general solution formula exists,
the running time of all the numerical methods proposed so far is
very high even for pencils of moderate size,
the number of local minima seems to increase fast with the size of
the pencil, making it hard to find global minima (which in general
are not unique).

2 The existing methods rely generally on either
ODE-based techniques or
structured perturbations of (potentially very large for moderate
sizes) block (or mosaic) Toeplitz matrices.

3 The method in this talk uses a novel approach based on Riemannian
optimization inspired in the recent work by V. Noferini and F. Poloni
(2021)

V. Noferini and F. Poloni, Nearest Ω-stable matrix via Riemannian optimization, Numer. Math., 148(4) (2021) 817–851.

for solving some pure matrix nearness problems (not pencil).
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Pros and cons of Riemannian optimization for nearest singular pencil

Pros:

Relatively fast → works in reasonable times for larger pencils than
previous approaches (e.g. 100 × 100).
Yields competitive candidate solutions.
Publicly available and easy to use.

Current Cons:

It cannot be (at least easily) extended to find the nearest singular
polynomial matrix to a given regular polynomial matrix of arbitrary
degree.
It is less flexible than the ODE-approach for dealing with pencils
with particular structures.
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Outline

1 Reformulating the problem for using Riemannian optimization

2 Minimizing the objective function: basic approach

3 Mathematical difficulties and other algorithms

4 Numerical experiments

5 Conclusions
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Reformulating the problem (I)

The main tool for the reformulation is the Generalized Schur form [Stewart,
1972] of matrix pencils, which let us split the problem in

finding a nearest singular upper triangular pencil and

solving a minimization problem over unitary matrices (justified later).

We denote by U(n) the set of n × n unitary matrices.

Theorem (Generalized Schur form)

For any pair A,B ∈ Cn×n there exist Q,Z ∈ U(n) such that QAZ and QBZ are
both upper triangular.

Lemma (Singular upper triangular pencil)

An upper triangular square pencil A+ λB is singular if and only if it has at least
one zero diagonal element.
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Reformulating the problem (II)

Proposition (Nearest singular upper triangular pencil)

Let A + λB ∈ C[λ]n×n
1 . Let k be any index such that

∣Akk∣2 + ∣Bkk∣2 = min
1≤i≤n
{∣Aii∣2 + ∣Bii∣2}.

An upper triangular singular pencil nearest to A + λB is P(A) + λP(B) where

P(A)ij =
⎧⎪⎪⎨⎪⎪⎩

Aij if i < j or i = j ≠ k;
0 otherwise;

P(B)ij =
⎧⎪⎪⎨⎪⎪⎩

Bij if i < j or i = j ≠ k;
0 otherwise;

i.e., P(A) and P(B) are obtained by setting to zero the lower triangular parts
of A and B, respectively, and Akk and Bkk.

In particular, the squared distance of A + λB from P(A) + λP(B) is

F(A + λB) = ∑
i>j
(∣Aij∣2 + ∣Bij∣2) +min

1≤i≤n
{∣Aii∣2 + ∣Bii∣2}.
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Reformulating the problem (III)

Theorem (Nearest singular pencil via minimization over U(n) ×U(n))
If A + λB ∈ C[λ]n×n

1 , then the squared distance of A + λB to a nearest singular
pencil is

min
(Q,Z)∈U(n)×U(n)

f (Q,Z),

where

f (Q,Z) ∶= F(QAZ + λQBZ) = ∥(QAZ + λQBZ) − (P(QAZ) + λP(QBZ))∥2F.

Moreover, if (Q0,Z0) is a global minimizer of f (Q,Z) over U(n) ×U(n), then
the pencil

Q∗0P(Q0AZ0)Z∗0 + λQ∗0P(Q0BZ0)Z∗0
is a singular pencil nearest to A + λB.
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Reformulating the problem (IV)

Proof.
Let Sn,Tn ⊂ C[λ]n×n

1 denote the set of singular pencils and the set of singular
upper triangular pencils, respectively. Then,

min
S+λT∈Sn

∥(A − S) + λ(B − T)∥2F = min
Q,Z∈U(n)

min
X+λY∈Tn

∥(A −Q∗XZ∗) + λ(B −Q∗YZ∗)∥2F

= min
Q,Z∈U(n)

min
X+λY∈Tn

∥(QAZ − X) + λ(QBZ − Y)∥2F

= min
Q,Z∈U(n)

F(QAZ + λQBZ).
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Summary of the reformulation

Squared distance of A + λB to a nearest singular upper triangular pencil
is

F(A + λB) = ∑
i>j
(∣Aij∣2 + ∣Bij∣2) +min

1≤i≤n
(∣Aii∣2 + ∣Bii∣2).

The objective function in U(n) ×U(n) is

f (Q,Z) ∶= F(QAZ + λQBZ).

We are interested in finding

(Q0,Z0) ∈ argmin
(Q,Z)∈U(n)×U(n)

f (Q,Z).

A singular pencil nearest to A + λB is given by

Q∗0P(Q0AZ0)Z∗0 + λQ∗0P(Q0BZ0)Z∗0 .
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Minimizing the objective function

How to find

(Q0,Z0) ∈ argmin
(Q,Z)∈U(n)×U(n)

f (Q,Z)

with

f (Q,Z) ∶= ∑
i>j
(∣(QAZ)ij∣2 + ∣(QBZ)ij∣2) +min

1≤i≤n
(∣(QAZ)ii∣2 + ∣(QBZ)ii∣2)?
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Books on optimization on matrix manifolds

Princeton University Press,
2008

Cambridge University Press,
2023
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Minimizing the objective function

How to find

(Q0,Z0) ∈ argmin
(Q,Z)∈U(n)×U(n)

f (Q,Z)?

We use MATLAB toolbox Manopt 7.1 for optimization on matrix
manifolds, in particular its trustregions method.

N. Boumal, B. Mishra, P. A. Absil and R. Sepulchre, Manopt, a Matlab toolbox for optimization on manifolds, The Journal of
Machine Learning Research, 15(1) (2014) 1455-1459.

P. A. Absil, R. Mahony and R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, 2008.

N. Boumal, An Introduction to Optimization on Smooth Manifolds, Cambridge University Press, 2023.

Problem is non-convex: computed minimum is not necessarily global.

Manopt requires for high-efficiency that the user provides MATLAB
functions for the Riemannian gradient and the Riemannian Hessian
on the manifold U(n) ×U(n) of the objective function.

This requires considerable work. We omit explanations for brevity.
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Non-smoothness of the objective function

The algorithm described always converged to a stationary point for a
large volume of randomly generated inputs, as well as on all problems
previously appeared in the literature, but

the objective function is not smooth, because

f (Q,Z) = ∑
i>j
(∣(QAZ)ij∣2 + ∣(QBZ)ij∣2) +min

1≤i≤n
(∣(QAZ)ii∣2 + ∣(QBZ)ii∣2).

Thus, global convergence of the Riemannian trustregions algorithm to
a stationary point is not guaranteed.

Nevertheless, we have been able to prove that

Theorem
For every pencil A + λB, the function f (Q,Z) is real-differentiable at all its local
minima.

This indicates that the lack of smoothness is not dramatic.
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Two alternative globally convergent algorithms

1 Smoothen the objective function via the Boltzmann operator, i.e., replace

min (x1, . . . , xn) Ð→ Sα (x1, . . . , xn) =
∑n

i=1 xieαxi

∑n
i=1 eαxi

,

with α negative of sufficiently large magnitude. Note that
Sα (x1, . . . , xn) →min (x1, . . . , xn) as α → −∞.

2 Minimize over U(n) ×U(n) each of the n everywhere smooth functions

fℓ(Q,Z) = ∑
i>j
(∣(QAZ)ij∣2 + ∣(QBZ)ij∣2) + (∣(QAZ)ℓℓ∣2 + ∣(QBZ)ℓℓ∣2),

ℓ = 1, . . .n, and pick as solution of our problem the one associated with
the smallest minimum fℓ(Qℓ

0,Z
ℓ
0).

Each minimization subproblem min fℓ(Q,Z) finds a nearest singular
pencil with a specified (right) minimal index equal to ℓ − 1.

These two algorithms are slower than the basic one!!!
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Numerical experiment I: Comparison with ODE-approach

We only show results for the basic algorithm.

First, we benchmark against the ODE-approach [Guglielmi et al., 2017].

We use 103 complex random 6 × 6 pencils.

Statistical comparisons with much larger pencils are not feasible
because the current implementation of the ODE-approach is too slow.

Real and imaginary parts of the matrix coefficients are drawn from
N(0,1).

Method Frequency of best output Median distance Average distance

ODE 37.3 % 1.8925 2.0601
Riemann 62.7 % 1.8042 1.8231
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Numerical experiment II: Comparison with Das-Bora algorithm (1)

We benchmark against the Das-Bora algorithm [Das and Bora, 2023].

For each n = 6,15,30,50 we use 103 complex random n × n pencils as in
Experiment I.

Statistical comparisons with larger pencils are not feasible because the
Das-Bora algorithm is too slow. (We sincerely thank Das and Bora for
providing the MATLAB codes of their algorithm).

The quality of the output of the Riemannian algorithm was typically
worse than that of Das-Bora algorithm for very small inputs n = 6,15, but
slightly better for n = 30 and already much better for n = 50.

In terms of running time, the Riemannian algorithm outperformed
Das-Bora algorithm already for n = 15; for n = 50 the difference was
already striking, with a ratio of average running times ≈ 29 in favour of
our method.
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Numerical experiment II: Comparison with Das-Bora algorithm (2)

5 10 15 20 25 30 35 40 45 50
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)

Riemann
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Comparison of the running time between the Riemannian method and
the Das-Bora algorithm for n ∈ {6,15,30,50}. Running times were measured
using MATLAB R2023a on an Intel Core i5-12600K.
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Numerical experiment III: How large pencils can we handle? (1)

For each n, we generate random n × n pencils as before, and measure
the running time.

Average running time (of 50 runs) in logarithmic scale (left) and linear
scale (right) for 20 ≤ n ≤ 80. The least squares fit yields approximately

t = k n2.93,

where k ≈ 3.8310 × 10−4. We used MATLAB R2023a and an Intel Core
i5-12600K Processor.
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Numerical experiment III: How large pencils can we handle? (2)

Average running time (of 24 runs) in logarithmic scale (left) and linear
scale (right) for 130 ≤ n ≤ 200. The least squares fit yields approximately

t = k n4.58,

where k ≈ 7.3423 ⋅ 10−7. We used MATLAB R2023a and its internal
parallelization with 24 processes on a 2x12 core Xeon E5 2690 v3 2.60GHz.
The computational resources were provided by the Aalto Science-IT project.
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Conclusions

We have described a novel algorithm to compute the nearest singular
pencil to a given one, based on Riemannian optimization.

The new method makes it practically feasible, for the first time, to solve
the problem for pencils of moderate size, say, a few hundreds
rows-columns.

The Riemannian method does better than other methods in terms of the
quality of the output when the size of the problem is not very small.

Furthermore, the performance is also very favourable to the new
algorithm in terms of computational time.
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