Strongly minimal self-conjugate linearizations for polynomial and rational matrices

Froilán M. Dopico

joint work with **María C. Quintana** (Aalto University, Finland) and **Paul Van Dooren** (UC Louvain, Belgium)

Depto de Matemáticas, Universidad Carlos III de Madrid, Spain Part of "Proyecto de I+D+i PID2019-106362GB-I00 financiado por MCIN/AEI/10.13039/501100011033"

A Workshop on the occasion of the 75th Birthday of David S. Watkins KU Leuven, Belgium. 9-10 May 2024

I was preparing a graduate course on "Numerical Linear Algebra", that I had to teach in the second semester. I had no experience on the topic and somebody recommended me Golub & Van Loan's book as the main reference for that topic. To be honest, to understand clearly and fully the QR-algorithm was not easy for me, and I was discouraged but ...

SIAM REVIEW Vol. 24, No. 4, October 1982 © 1982 Society for Industrial and Applied Mathematics 0036-1445/82/2404-0004 \$01.00/0

UNDERSTANDING THE QR ALGORITHM*

DAVID S. WATKINS†

Abstract. The QR algorithm is currently the most popular method for finding all eigenvalues of a full matrix. While OR is now well understood by specialists in eigenvalue computations, this understanding is not being conveyed effectively to the mathematical public. Many accounts present Wilkinson's 1965 convergence proof. Others establish some of the connections between the OR algorithm, the power method and inverse iteration. Usually much emphasis is (rightly) placed on the refinements, such as shifts of origin, which are required to make the algorithm competitive. But practically all accounts fail to explain the basic meaning of QR iterations. As a consequence, the QR algorithm is widely thought to be difficult to understand. The purpose of this paper is to try to convince the reader that the opposite is true. In fact, the QR algorithm is neither more nor less than a clever implementation of simultaneous iteration, which is itself a natural, easily understood extension of the power method. This point of view deserves pre-eminence because it shows exactly what QR iterations are and evokes a clear geometric picture of the OR process. Furthermore, it provides a framework within which the rapid convergence associated with shifts of origin may be explained. No reference to inverse iteration is necessary. Inverse iteration has not, however, been hanished from the namer-one section is devoted to an explanation of the interplay between inverse iteration, direct iteration and the OR algorithm. The key result of that section is a duality theorem which shows that whenever direct iteration takes place, inverse iteration automatically takes place at the same time.

 Introduction. The QR algorithm is currently the most popular method for calculating the complete set of eigenvalues of a full (i.e., smil) matrix. A descendant of Ruitshauser's (1955), (1958), QR algorithm, it was discovered independently by Francis (1961), (1962) and Kubahonskaya (1961). The basic algorithm is as follows: Given a matrix A whose eigenvalues are desired, let Ag-A. Then, given Ag-, if ndi unitary Qgand upper triangular R-such tat Ag-, Q-R., Finally define Ag-, RQ-, Thus

$A_{m-1} = Q_m R_m, \qquad A_m = R_m Q_m.$

One's first reaction on seeing this procedure is likely to be, "What does this have to do with eigenvalues?" or "What do here manipulation scomplish?" Most accounts answer these questions by presenting Wilkinson's (1965, p. 517) proof that, under suitable form. That proof has its merits, For one, it is relatively brief and elementary. Also, it was the best available in the sixtice. Informatizely, it does not show what press on in a *QN* terms being the site of the sixtice information of the ground of the site of the

in Golub & Van Loan's p. 360, I read "Deeper insight into the convergence of the QR algorithm can be attained by reading ... " and, encouraged by the abstract. I did it! I was really impressed by the clarity and the depth of the exposition and, then. I looked for more information about the author. Of course, I discovered the first edition of Watkins. "Fundamentals of Matrix Computations" (1991) and since then I have read and used David's books for my courses and for my research.

The first time I met David Watkins in person was in ...

III International Workshop on Accurate Solution of Eigenvalue Problems, Hagen, Germany, July 2000. David's talk was "Solving large, sparse eigenvalue problems with Hamiltonian structure".

F. M. Dopico (U. Carlos III, Madrid)

Strongly minimal linearizations

The first time I met David Watkins in person was in ...

III International Workshop on Accurate Solution of Eigenvalue Problems, Hagen, Germany, July 2000. David's talk was "Solving large, sparse eigenvalue problems with Hamiltonian structure".

F. M. Dopico (U. Carlos III, Madrid)

Strongly minimal linearizations

SIAG/LA-SIMUMAT INTERNATIONAL SUMMER SCHOOL ON NUMERICAL LINEAR ALGEBRA, July 21-25, 2008, Castro-Urdiales, Spain

David's course was "Structured eigenvalue problems: modern theory and computational practice".

F. M. Dopico (U. Carlos III, Madrid)

Strongly minimal linearizations

May 10, 2024

5/37

Congratulations David for all your achievements

Thank you very much for writing so many wonderful books and papers, and I hope to share with you many great moments in the future. Happy birthday!!

F. M. Dopico (U. Carlos III, Madrid)

Strongly minimal linearizations

May 10, 2024

6/37

D BEP:
$$(\lambda I_n - A) v = 0$$

2 GEP:
$$(\lambda B - A) v = 0$$
 !!!

3 PEP:
$$(P_d\lambda^d + \dots + P_1\lambda + P_0)v = 0$$
 11

5 NEP: $F(\lambda)v = 0$

We focus on PEPs and REPs.

- Key idea: PEPs and REPs can be solved by transforming the problem into a GEP via a process known as LINEARIZATION.
- This transformation is exact: the obtained GEP contains (or allows us to easily extract) exactly all the eigen-information of the original PEP or REP.
- The use of linearizations is one of the most reliable approaches for solving numerically PEPs and REPs, because there exist very reliable algorithms for solving GEPs.

D BEP:
$$(\lambda I_n - A) v = 0$$

2 GEP:
$$(\lambda B - A) v = 0$$
 !!!

3 PEP:
$$(P_d\lambda^d + \dots + P_1\lambda + P_0)v = 0$$
 III

• **REP**:
$$G(\lambda)v = 0$$
 III

5 NEP:
$$F(\lambda)v = 0$$

We focus on PEPs and REPs.

- Key idea: PEPs and REPs can be solved by transforming the problem into a GEP via a process known as LINEARIZATION.
- This transformation is exact: the obtained GEP contains (or allows us to easily extract) exactly all the eigen-information of the original PEP or REP.
- The use of linearizations is one of the most reliable approaches for solving numerically PEPs and REPs, because there exist very reliable algorithms for solving GEPs.

D BEP:
$$(\lambda I_n - A) v = 0$$

3 GEP:
$$(\lambda B - A) v = 0$$
 !!!!

3 PEP:
$$(P_d\lambda^d + \dots + P_1\lambda + P_0)v = 0$$
 !!!!

5 NEP:
$$F(\lambda)v = 0$$

- We focus on PEPs and REPs.
- Key idea: PEPs and REPs can be solved by transforming the problem into a GEP via a process known as LINEARIZATION.
- This transformation is exact: the obtained GEP contains (or allows us to easily extract) exactly all the eigen-information of the original PEP or REP
- The use of linearizations is one of the most reliable approaches for solving numerically PEPs and REPs, because there exist very reliable algorithms for solving GEPs.

D BEP:
$$(\lambda I_n - A) v = 0$$

2 GEP:
$$(\lambda B - A) v = 0$$
 !!!!

3 PEP:
$$(P_d\lambda^d + \dots + P_1\lambda + P_0)v = 0$$
 !!!!

5 NEP:
$$F(\lambda)v = 0$$

- We focus on PEPs and REPs.
- Key idea: PEPs and REPs can be solved by transforming the problem into a GEP via a process known as LINEARIZATION.
- This transformation is exact: the obtained GEP contains (or allows us to easily extract) exactly all the eigen-information of the original PEP or REP.

 The use of linearizations is one of the most reliable approaches for solving numerically PEPs and REPs, because there exist very reliable algorithms for solving GEPs.

D BEP:
$$(\lambda I_n - A) v = 0$$

2 GEP:
$$(\lambda B - A) v = 0$$
 !!!!

3 PEP:
$$(P_d\lambda^d + \dots + P_1\lambda + P_0)v = 0$$
 !!!!

5 NEP:
$$F(\lambda)v = 0$$

- We focus on PEPs and REPs.
- Key idea: PEPs and REPs can be solved by transforming the problem into a GEP via a process known as LINEARIZATION.
- This transformation is exact: the obtained GEP contains (or allows us to easily extract) exactly all the eigen-information of the original PEP or REP.
- The use of linearizations is one of the most reliable approaches for solving numerically PEPs and REPs, because there exist very reliable algorithms for solving GEPs.

- So far, the linearizations used in the literature for **PEPs** fit into the classical definition of **Gohberg-Lancaster-Rodman (GLR)**,
- and the ones for REPs fit into combining the GLR-approach with Rosenbrock's polynomial system matrices (Alam, Behera (SIMAX, 2016); Amparan, D, Marcaida, Zaballa (SIMAX, 2018)).
- We will introduce a new unified definition of particular linearizations of PEPs and REPs (strongly minimal linearizations) that guarantee stronger properties than those of GLR-linearizations.
- Moreover, we will show how to construct such linearizations for any polynomial or rational matrix in such a way that
- for structured PEPs and REPs (Hermitian, skew-Hermitian, alternating odd and even) **always preserve such structures**,
- which is not always possible for GLR-linearizations,
- in particular for polynomial matrices of even-degree (Mackey, Mackey, Mehl, Mehrmann, De Terán, D).

- So far, the linearizations used in the literature for PEPs fit into the classical definition of Gohberg-Lancaster-Rodman (GLR),
- and the ones for REPs fit into combining the GLR-approach with Rosenbrock's polynomial system matrices (Alam, Behera (SIMAX, 2016); Amparan, D, Marcaida, Zaballa (SIMAX, 2018)).
- We will introduce a new unified definition of particular linearizations of PEPs and REPs (strongly minimal linearizations) that guarantee stronger properties than those of GLR-linearizations.
- Moreover, we will show how to construct such linearizations for any polynomial or rational matrix in such a way that
- for structured PEPs and REPs (Hermitian, skew-Hermitian, alternating odd and even) always preserve such structures,
- which is not always possible for GLR-linearizations,
- in particular for polynomial matrices of even-degree (Mackey, Mackey, Mehl, Mehrmann, De Terán, D).

- So far, the linearizations used in the literature for PEPs fit into the classical definition of Gohberg-Lancaster-Rodman (GLR),
- and the ones for REPs fit into combining the GLR-approach with Rosenbrock's polynomial system matrices (Alam, Behera (SIMAX, 2016); Amparan, D, Marcaida, Zaballa (SIMAX, 2018)).
- We will introduce a new unified definition of particular linearizations of PEPs and REPs (strongly minimal linearizations) that guarantee stronger properties than those of GLR-linearizations.
- Moreover, we will show how to construct such linearizations for any polynomial or rational matrix in such a way that
- for structured PEPs and REPs (Hermitian, skew-Hermitian, alternating odd and even) always preserve such structures,
- which is not always possible for GLR-linearizations,
- in particular for polynomial matrices of even-degree (Mackey, Mackey, Mehl, Mehrmann, De Terán, D).

- So far, the linearizations used in the literature for PEPs fit into the classical definition of Gohberg-Lancaster-Rodman (GLR),
- and the ones for REPs fit into combining the GLR-approach with Rosenbrock's polynomial system matrices (Alam, Behera (SIMAX, 2016); Amparan, D, Marcaida, Zaballa (SIMAX, 2018)).
- We will introduce a new unified definition of particular linearizations of PEPs and REPs (strongly minimal linearizations) that guarantee stronger properties than those of GLR-linearizations.
- Moreover, we will show how to construct such linearizations for any polynomial or rational matrix in such a way that
- for structured PEPs and REPs (Hermitian, skew-Hermitian, alternating odd and even) always preserve such structures,
- which is not always possible for GLR-linearizations,
- in particular for polynomial matrices of even-degree (Mackey, Mackey, Mehl, Mehrmann, De Terán, D).

- So far, the linearizations used in the literature for PEPs fit into the classical definition of Gohberg-Lancaster-Rodman (GLR),
- and the ones for REPs fit into combining the GLR-approach with Rosenbrock's polynomial system matrices (Alam, Behera (SIMAX, 2016); Amparan, D, Marcaida, Zaballa (SIMAX, 2018)).
- We will introduce a new unified definition of particular linearizations of PEPs and REPs (strongly minimal linearizations) that guarantee stronger properties than those of GLR-linearizations.
- Moreover, we will show how to construct such linearizations for any polynomial or rational matrix in such a way that
- for structured PEPs and REPs (Hermitian, skew-Hermitian, alternating odd and even) always preserve such structures,
- which is not always possible for GLR-linearizations,
- in particular for polynomial matrices of even-degree (Mackey, Mackey, Mehl, Mehrmann, De Terán, D).

- So far, the linearizations used in the literature for PEPs fit into the classical definition of Gohberg-Lancaster-Rodman (GLR),
- and the ones for REPs fit into combining the GLR-approach with Rosenbrock's polynomial system matrices (Alam, Behera (SIMAX, 2016); Amparan, D, Marcaida, Zaballa (SIMAX, 2018)).
- We will introduce a new unified definition of particular linearizations of PEPs and REPs (strongly minimal linearizations) that guarantee stronger properties than those of GLR-linearizations.
- Moreover, we will show how to construct such linearizations for any polynomial or rational matrix in such a way that
- for structured PEPs and REPs (Hermitian, skew-Hermitian, alternating odd and even) always preserve such structures,
- which is not always possible for GLR-linearizations,
- in particular for polynomial matrices of even-degree (Mackey, Mackey, Mehl, Mehrmann, De Terán, D).

- So far, the linearizations used in the literature for PEPs fit into the classical definition of Gohberg-Lancaster-Rodman (GLR),
- and the ones for REPs fit into combining the GLR-approach with Rosenbrock's polynomial system matrices (Alam, Behera (SIMAX, 2016); Amparan, D, Marcaida, Zaballa (SIMAX, 2018)).
- We will introduce a new unified definition of particular linearizations of PEPs and REPs (strongly minimal linearizations) that guarantee stronger properties than those of GLR-linearizations.
- Moreover, we will show how to construct such linearizations for any polynomial or rational matrix in such a way that
- for structured PEPs and REPs (Hermitian, skew-Hermitian, alternating odd and even) always preserve such structures,
- which is not always possible for GLR-linearizations,
- in particular for polynomial matrices of even-degree (Mackey, Mackey, Mehl, Mehrmann, De Terán, D).

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Brief reminder of "Eigenstructures" of PEPs and REPs

- 2 Gohberg-Lancaster-Rodman linearizations of PEPs (and REPs)
- **3** Strongly minimal linearizations of polynomial and rational matrices
- 4 Constructing strongly minimal linearizations of polynomial matrices
- **5** Constructing strongly minimal linearizations of rational matrices
- 6 Conclusions

Brief reminder of "Eigenstructures" of PEPs and REPs

- 2 Gohberg-Lancaster-Rodman linearizations of PEPs (and REPs)
- 3 Strongly minimal linearizations of polynomial and rational matrices
- Constructing strongly minimal linearizations of polynomial matrices
- 5 Constructing strongly minimal linearizations of rational matrices
- 6 Conclusions

D BEP:
$$(\lambda I_n - A) v = 0$$

2 GEP:
$$(\lambda B - A) v = 0$$

3 PEP:
$$(P_d\lambda^d + \dots + P_1\lambda + P_0)v = 0$$

- So far, we only consider finite eigenvalues, but
- GEPs, PEPs, REPs may have also infinite eigenvalues.
- GEPs, PEPs, REPs may be singular, i.e., rectangular or square with identically zero determinant, (BEPs are always regular) and to have, in addition to eigenvalues, minimal indices.
- Moreover, REPs have poles.
- We define quickly these concepts.

< 6 b

D BEP:
$$(\lambda I_n - A) v = 0$$

2 GEP:
$$(\lambda B - A) v = 0$$

3 PEP:
$$(P_d\lambda^d + \dots + P_1\lambda + P_0)v = 0$$

So far, we only consider finite eigenvalues, but

GEPs, PEPs, REPs may have also infinite eigenvalues.

- GEPs, PEPs, REPs may be singular, i.e., rectangular or square with identically zero determinant, (BEPs are always regular) and to have, in addition to eigenvalues, minimal indices.
- Moreover, REPs have poles.
- We define quickly these concepts.

< 17 ▶

D BEP:
$$(\lambda I_n - A) v = 0$$

2 GEP:
$$(\lambda B - A) v = 0$$

3 PEP:
$$(P_d\lambda^d + \dots + P_1\lambda + P_0)v = 0$$

So far, we only consider finite eigenvalues, but

GEPs, PEPs, REPs may have also infinite eigenvalues.

- GEPs, PEPs, REPs may be singular, i.e., rectangular or square with identically zero determinant, (BEPs are always regular) and to have, in addition to eigenvalues, minimal indices.
- Moreover, REPs have poles.
- We define quickly these concepts.

D BEP:
$$(\lambda I_n - A) v = 0$$

2 GEP:
$$(\lambda B - A) v = 0$$

3 PEP:
$$(P_d\lambda^d + \dots + P_1\lambda + P_0)v = 0$$

- So far, we only consider finite eigenvalues, but
- GEPs, PEPs, REPs may have also infinite eigenvalues.
- GEPs, PEPs, REPs may be singular, i.e., rectangular or square with identically zero determinant, (BEPs are always regular) and to have, in addition to eigenvalues, minimal indices.
- Moreover, REPs have poles.
- We define quickly these concepts.

D BEP:
$$(\lambda I_n - A) v = 0$$

2 GEP:
$$(\lambda B - A) v = 0$$

3 PEP:
$$(P_d\lambda^d + \dots + P_1\lambda + P_0)v = 0$$

- So far, we only consider finite eigenvalues, but
- GEPs, PEPs, REPs may have also infinite eigenvalues.
- GEPs, PEPs, REPs may be singular, i.e., rectangular or square with identically zero determinant, (BEPs are always regular) and to have, in addition to eigenvalues, minimal indices.
- Moreover, REPs have poles.
- We define quickly these concepts.

D BEP:
$$(\lambda I_n - A) v = 0$$

2 GEP:
$$(\lambda B - A) v = 0$$

3 PEP:
$$(P_d\lambda^d + \dots + P_1\lambda + P_0)v = 0$$

- So far, we only consider finite eigenvalues, but
- GEPs, PEPs, REPs may have also infinite eigenvalues.
- GEPs, PEPs, REPs may be singular, i.e., rectangular or square with identically zero determinant, (BEPs are always regular) and to have, in addition to eigenvalues, minimal indices.
- Moreover, REPs have poles.
- We define quickly these concepts.

Given
$$P(\lambda) = P_d \lambda^d + \dots + P_1 \lambda + P_0 \in \mathbb{C}[\lambda]^{m \times n}$$

 $\operatorname{rank} P(\lambda_0) < \max_{\lambda \in \mathbb{C}} \operatorname{rank} P(\lambda)$

• The infinite eigenvalue of $P(\lambda)$ is defined through the reversal polynomial.

• The reversal of $P(\lambda)$ is

 $\operatorname{rev} P(\lambda) := \lambda^d P(\frac{1}{\lambda}) = P_0 \lambda^d + \dots + P_{d-1} \lambda + P_d$

• Then the **infinite eigenvalue** (and its mutiplicities) of $P(\lambda)$ correspond to the **zero eigenvalue** (and its mutiplicities) of $rev P(\lambda)$.

Given
$$P(\lambda) = P_d \lambda^d + \dots + P_1 \lambda + P_0 \in \mathbb{C}[\lambda]^{m \times n}$$

 $\operatorname{rank} P(\lambda_0) < \max_{\lambda \in \mathbb{C}} \operatorname{rank} P(\lambda)$

The infinite eigenvalue of P(λ) is defined through the reversal polynomial.

• The reversal of $P(\lambda)$ is

 $\operatorname{rev} P(\lambda) := \lambda^d P(\frac{1}{\lambda}) = P_0 \lambda^d + \dots + P_{d-1} \lambda + P_d$

• Then the **infinite eigenvalue** (and its mutiplicities) of $P(\lambda)$ correspond to the **zero eigenvalue** (and its mutiplicities) of $rev P(\lambda)$.

Given
$$P(\lambda) = P_d \lambda^d + \dots + P_1 \lambda + P_0 \in \mathbb{C}[\lambda]^{m \times n}$$

$$\operatorname{rank} P(\lambda_0) < \max_{\lambda \in \mathbb{C}} \operatorname{rank} P(\lambda)$$

The infinite eigenvalue of P(λ) is defined through the reversal polynomial.

• The reversal of $P(\lambda)$ is

$$\operatorname{rev} P(\lambda) := \lambda^d P(\frac{1}{\lambda}) = P_0 \lambda^d + \dots + P_{d-1} \lambda + P_d$$

• Then the **infinite eigenvalue** (and its mutiplicities) of $P(\lambda)$ correspond to the **zero eigenvalue** (and its mutiplicities) of $rev P(\lambda)$.

A (10) A (10) A (10)

Given
$$P(\lambda) = P_d \lambda^d + \dots + P_1 \lambda + P_0 \in \mathbb{C}[\lambda]^{m \times n}$$

$$\operatorname{rank} P(\lambda_0) < \max_{\lambda \in \mathbb{C}} \operatorname{rank} P(\lambda)$$

- The infinite eigenvalue of P(λ) is defined through the reversal polynomial.
- The reversal of $P(\lambda)$ is

$$\operatorname{rev} P(\lambda) := \lambda^d P(\frac{1}{\lambda}) = P_0 \lambda^d + \dots + P_{d-1} \lambda + P_d$$

 Then the infinite eigenvalue (and its mutiplicities) of P(λ) correspond to the zero eigenvalue (and its mutiplicities) of revP(λ).

4 A N

Minimal indices of singular PEPs

- PEPs are singular when $P(\lambda) = P_d \lambda^d + \dots + P_1 \lambda + P_0$ is either rectangular or square with det $P(\lambda) \equiv 0$.
- In addition to eigenvalues, singular matrix polynomials have other "interesting numbers" called minimal indices,
- which are related to the fact that a singular m × n matrix polynomial P(λ) has non-trivial left and/or right null-spaces over the field C(λ) of rational functions:

$$\mathcal{N}_{\ell}(P) := \left\{ y(\lambda)^T \in \mathbb{F}(\lambda)^{1 \times m} : y(\lambda)^T P(\lambda) \equiv 0^T \right\}, \mathcal{N}_r(P) := \left\{ x(\lambda) \in \mathbb{F}(\lambda)^{n \times 1} : P(\lambda) x(\lambda) \equiv 0 \right\}.$$

- They have bases consisting entirely of vector polynomials.
- The polynomial bases with "minimal sum of the degrees" of their vectors are the minimal bases of P(λ). The minimal indices of P(λ) are the degrees of the vectors of any minimal basis.

- PEPs are singular when $P(\lambda) = P_d \lambda^d + \dots + P_1 \lambda + P_0$ is either rectangular or square with det $P(\lambda) \equiv 0$.
- In addition to eigenvalues, singular matrix polynomials have other "interesting numbers" called minimal indices,
- which are related to the fact that a singular m × n matrix polynomial P(λ) has non-trivial left and/or right null-spaces over the field C(λ) of rational functions:

$$\mathcal{N}_{\ell}(P) := \left\{ y(\lambda)^T \in \mathbb{F}(\lambda)^{1 \times m} : y(\lambda)^T P(\lambda) \equiv 0^T \right\}, \mathcal{N}_{r}(P) := \left\{ x(\lambda) \in \mathbb{F}(\lambda)^{n \times 1} : P(\lambda) x(\lambda) \equiv 0 \right\}.$$

- They have bases consisting entirely of vector polynomials.
- The polynomial bases with "minimal sum of the degrees" of their vectors are the minimal bases of P(λ). The minimal indices of P(λ) are the degrees of the vectors of any minimal basis.

- PEPs are singular when $P(\lambda) = P_d \lambda^d + \dots + P_1 \lambda + P_0$ is either rectangular or square with det $P(\lambda) \equiv 0$.
- In addition to eigenvalues, singular matrix polynomials have other "interesting numbers" called minimal indices,
- which are related to the fact that a singular m × n matrix polynomial P(λ) has non-trivial left and/or right null-spaces over the field C(λ) of rational functions:

$$\mathcal{N}_{\ell}(P) := \left\{ y(\lambda)^T \in \mathbb{F}(\lambda)^{1 \times m} : y(\lambda)^T P(\lambda) \equiv 0^T \right\}, \mathcal{N}_r(P) := \left\{ x(\lambda) \in \mathbb{F}(\lambda)^{n \times 1} : P(\lambda) x(\lambda) \equiv 0 \right\}.$$

- They have bases consisting entirely of vector polynomials.
- The polynomial bases with "minimal sum of the degrees" of their vectors are the minimal bases of P(λ). The minimal indices of P(λ) are the degrees of the vectors of any minimal basis.

- PEPs are singular when $P(\lambda) = P_d \lambda^d + \dots + P_1 \lambda + P_0$ is either rectangular or square with det $P(\lambda) \equiv 0$.
- In addition to eigenvalues, singular matrix polynomials have other "interesting numbers" called minimal indices,
- which are related to the fact that a singular m × n matrix polynomial P(λ) has non-trivial left and/or right null-spaces over the field C(λ) of rational functions:

$$\mathcal{N}_{\ell}(P) := \left\{ y(\lambda)^T \in \mathbb{F}(\lambda)^{1 \times m} : y(\lambda)^T P(\lambda) \equiv 0^T \right\}, \mathcal{N}_r(P) := \left\{ x(\lambda) \in \mathbb{F}(\lambda)^{n \times 1} : P(\lambda) x(\lambda) \equiv 0 \right\}.$$

They have bases consisting entirely of vector polynomials.

• The polynomial bases with "minimal sum of the degrees" of their vectors are the minimal bases of P(λ). The minimal indices of P(λ) are the degrees of the vectors of any minimal basis.

- PEPs are singular when $P(\lambda) = P_d \lambda^d + \dots + P_1 \lambda + P_0$ is either rectangular or square with det $P(\lambda) \equiv 0$.
- In addition to eigenvalues, singular matrix polynomials have other "interesting numbers" called minimal indices,
- which are related to the fact that a singular m × n matrix polynomial P(λ) has non-trivial left and/or right null-spaces over the field C(λ) of rational functions:

$$\mathcal{N}_{\ell}(P) := \left\{ y(\lambda)^T \in \mathbb{F}(\lambda)^{1 \times m} : y(\lambda)^T P(\lambda) \equiv 0^T \right\}, \mathcal{N}_{r}(P) := \left\{ x(\lambda) \in \mathbb{F}(\lambda)^{n \times 1} : P(\lambda) x(\lambda) \equiv 0 \right\}.$$

- They have bases consisting entirely of vector polynomials.
- The polynomial bases with "minimal sum of the degrees" of their vectors are the minimal bases of P(λ). The minimal indices of P(λ) are the degrees of the vectors of any minimal basis.
Definition

The **complete** "eigenstructure" of a polynomial matrix $P(\lambda)$ is comprised of:

- its finite eigenvalues, together with their partial multiplicities,
- its infinite eigenvalue, together with its partial multiplicities,
- its right minimal indices, and
- its left minimal indices.

< ロ > < 同 > < 回 > < 回 >

Analogously, we define:

Definition

The **complete** "eigenstructure" of a rational matrix $G(\lambda)$ is comprised of:

- its finite zeros and **poles**, together with their partial multiplicities,
- its infinite zeros and **poles**, together with its partial multiplicities,
- its right minimal indices, and
- its left minimal indices.

Remarks

The infinite zeros and poles, together with its partial multiplicities, of G(λ) are defined as the zeros and poles at λ = 0, together with its partial multiplicities, of G(1/λ).

Analogously, we define:

Definition

The **complete** "eigenstructure" of a rational matrix $G(\lambda)$ is comprised of:

- its finite zeros and poles, together with their partial multiplicities,
- its infinite zeros and **poles**, together with its partial multiplicities,
- its right minimal indices, and
- its left minimal indices.

Remarks

• The infinite zeros and poles, together with its partial multiplicities, of $G(\lambda)$ are defined as the zeros and poles at $\lambda = 0$, together with its partial multiplicities, of $G(1/\lambda)$.

Brief reminder of "Eigenstructures" of PEPs and REPs

2 Gohberg-Lancaster-Rodman linearizations of PEPs (and REPs)

- 3 Strongly minimal linearizations of polynomial and rational matrices
- Constructing strongly minimal linearizations of polynomial matrices
- **5** Constructing strongly minimal linearizations of rational matrices
- 6 Conclusions

Definition: GLR strong linearizations of polynomial matrices

Gohberg, Lancaster, Rodman, *Matrix Polynomials*, 1982 and Gohberg, Kaashoek, Lancaster, Integr. Eq. Operator Theory (1988).

Definition

• A linear polynomial matrix (or matrix pencil) $L(\lambda)$ is a (GLR) linearization of $P(\lambda) = P_d \lambda^d + \cdots + P_1 \lambda + P_0$ if there exist unimodular polynomial matrices $U(\lambda), V(\lambda)$ such that

$$U(\lambda) L(\lambda) V(\lambda) = \begin{bmatrix} I_s & 0\\ 0 & P(\lambda) \end{bmatrix} \,.$$

• $L(\lambda)$ is a (GLR) strong linearization of $P(\lambda)$ if, in addition, rev $L(\lambda)$ is a linearization for rev $P(\lambda)$, i.e.,

$$\widetilde{U}(\lambda) \left(\operatorname{rev} L(\lambda) \right) \widetilde{V}(\lambda) = \begin{bmatrix} I_s & 0\\ 0 & \operatorname{rev} P(\lambda) \end{bmatrix} \,,$$

with $\widetilde{U}(\lambda)$ and $\widetilde{V}(\lambda)$ unimodular.

F. M. Dopico (U. Carlos III, Madrid)

Strongly minimal linearizations

May 10, 2024

Theorem

A matrix pencil $L(\lambda)$ is a (GLR) linearization of a polynomial matrix $P(\lambda)$ if and only if

- (1) $L(\lambda)$ and $P(\lambda)$ have the same number of right minimal indices.
- (2) $L(\lambda)$ and $P(\lambda)$ have the same number of left minimal indices.
- (3) $L(\lambda)$ and $P(\lambda)$ have the same finite eigenvalues with the same partial multiplicities.
- $L(\lambda)$ is a (GLR) strong linearization of $P(\lambda)$ if and only if (1), (2), (3) and
 - (4) $L(\lambda)$ and $P(\lambda)$ have the same infinite eigenvalues with the same partial multiplicities.

Remark: The minimal indices of $L(\lambda)$ may have arbitrarily different values from those of $P(\lambda)$, though in the most important classes of (GLR) linearizations they are easily related.

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Theorem

A matrix pencil $L(\lambda)$ is a (GLR) linearization of a polynomial matrix $P(\lambda)$ if and only if

- (1) $L(\lambda)$ and $P(\lambda)$ have the same number of right minimal indices.
- (2) $L(\lambda)$ and $P(\lambda)$ have the same number of left minimal indices.
- (3) $L(\lambda)$ and $P(\lambda)$ have the same finite eigenvalues with the same partial multiplicities.

$L(\lambda)$ is a (GLR) strong linearization of $P(\lambda)$ if and only if (1), (2), (3) and

(4) $L(\lambda)$ and $P(\lambda)$ have the same infinite eigenvalues with the same partial multiplicities.

Remark: The minimal indices of $L(\lambda)$ may have arbitrarily different values from those of $P(\lambda)$, though in the most important classes of (GLR) linearizations they are easily related.

< 日 > < 同 > < 回 > < 回 > < □ > <

Theorem

A matrix pencil $L(\lambda)$ is a (GLR) linearization of a polynomial matrix $P(\lambda)$ if and only if

- (1) $L(\lambda)$ and $P(\lambda)$ have the same number of right minimal indices.
- (2) $L(\lambda)$ and $P(\lambda)$ have the same number of left minimal indices.
- (3) $L(\lambda)$ and $P(\lambda)$ have the same finite eigenvalues with the same partial multiplicities.

$L(\lambda)$ is a (GLR) strong linearization of $P(\lambda)$ if and only if (1), (2), (3) and

(4) $L(\lambda)$ and $P(\lambda)$ have the same infinite eigenvalues with the same partial multiplicities.

Remark: The minimal indices of $L(\lambda)$ may have arbitrarily different values from those of $P(\lambda)$, though in the most important classes of (GLR) linearizations they are easily related.

< 日 > < 同 > < 回 > < 回 > < □ > <

The classical Frobenius companion form of the $m \times n$ matrix polynomial

$$P(\lambda) = P_d \lambda^d + \dots + P_1 \lambda + P_0$$

is

(

$$C_{1}(\lambda) := \begin{bmatrix} \lambda P_{d} + P_{d-1} & P_{d-2} & \cdots & P_{1} & P_{0} \\ -I_{n} & \lambda I_{n} & & & \\ & \ddots & \ddots & & \\ & & \ddots & \ddots & \\ & & & \ddots & \lambda I_{n} \\ & & & & -I_{n} & \lambda I_{n} \end{bmatrix} \in \mathbb{C}[\lambda]^{(m+n(d-1)) \times nd}$$

< ロ > < 同 > < 回 > < 回 >

Some comments on (GLR + Rosenbrock) linearizations of REPs

- For brevity, I will not present a definition of (GLR + Rosenbrock)-based linearizations and strong linearizations of rational matrices.
- In contrast with the polynomial case, there is no agreement in the community for a unique definition of (strong) linearization of a rational matrix.
- Amparan, D, Marcaida, and Zaballa, *Strong linearizations of rational matrices*, SIMAX 2018 gave a definition of strong linearization of any rational matrix $R(\lambda)$ that reduces to GLR when $R(\lambda)$ is a polynomial matrix.
- Another related approach was initiated by Alam and Behera, Linearizations for rational matrix functions and Rosenbrock system polynomials, SIMAX 2016.
- María C. Quintana, Linearizations of rational matrices, PhD Thesis, UC3M, 2021 contains several different approaches to the problem.

Some comments on (GLR + Rosenbrock) linearizations of REPs

- For brevity, I will not present a definition of (GLR + Rosenbrock)-based linearizations and strong linearizations of rational matrices.
- In contrast with the polynomial case, there is no agreement in the community for a unique definition of (strong) linearization of a rational matrix.
- Amparan, D, Marcaida, and Zaballa, *Strong linearizations of rational matrices*, SIMAX 2018 gave a definition of strong linearization of any rational matrix $R(\lambda)$ that reduces to GLR when $R(\lambda)$ is a polynomial matrix.
- Another related approach was initiated by Alam and Behera, Linearizations for rational matrix functions and Rosenbrock system polynomials, SIMAX 2016.
- María C. Quintana, Linearizations of rational matrices, PhD Thesis, UC3M, 2021 contains several different approaches to the problem.

- For brevity, I will not present a definition of (GLR + Rosenbrock)-based linearizations and strong linearizations of rational matrices.
- In contrast with the polynomial case, there is no agreement in the community for a unique definition of (strong) linearization of a rational matrix.
- Amparan, D, Marcaida, and Zaballa, *Strong linearizations of rational matrices*, SIMAX 2018 gave a definition of strong linearization of any rational matrix $R(\lambda)$ that reduces to GLR when $R(\lambda)$ is a polynomial matrix.
- Another related approach was initiated by Alam and Behera, Linearizations for rational matrix functions and Rosenbrock system polynomials, SIMAX 2016.
- María C. Quintana, Linearizations of rational matrices, PhD Thesis, UC3M, 2021 contains several different approaches to the problem.

- For brevity, I will not present a definition of (GLR + Rosenbrock)-based linearizations and strong linearizations of rational matrices.
- In contrast with the polynomial case, there is no agreement in the community for a unique definition of (strong) linearization of a rational matrix.
- Amparan, D, Marcaida, and Zaballa, *Strong linearizations of rational matrices*, SIMAX 2018 gave a definition of strong linearization of any rational matrix $R(\lambda)$ that reduces to GLR when $R(\lambda)$ is a polynomial matrix.
- Another related approach was initiated by Alam and Behera, Linearizations for rational matrix functions and Rosenbrock system polynomials, SIMAX 2016.
- María C. Quintana, Linearizations of rational matrices, PhD Thesis, UC3M, 2021 contains several different approaches to the problem.

- For brevity, I will not present a definition of (GLR + Rosenbrock)-based linearizations and strong linearizations of rational matrices.
- In contrast with the polynomial case, there is no agreement in the community for a unique definition of (strong) linearization of a rational matrix.
- Amparan, D, Marcaida, and Zaballa, *Strong linearizations of rational matrices*, SIMAX 2018 gave a definition of strong linearization of any rational matrix $R(\lambda)$ that reduces to GLR when $R(\lambda)$ is a polynomial matrix.
- Another related approach was initiated by Alam and Behera, Linearizations for rational matrix functions and Rosenbrock system polynomials, SIMAX 2016.
- María C. Quintana, Linearizations of rational matrices, PhD Thesis, UC3M, 2021 contains several different approaches to the problem.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Brief reminder of "Eigenstructures" of PEPs and REPs

2 Gohberg-Lancaster-Rodman linearizations of PEPs (and REPs)

3 Strongly minimal linearizations of polynomial and rational matrices

- 4 Constructing strongly minimal linearizations of polynomial matrices
- 5 Constructing strongly minimal linearizations of rational matrices
- 6 Conclusions

Definition of strongly minimal linearizations

Since polynomial matrices are also rational matrices the next definition applies to both. $R(\lambda) \in \mathbb{C}(\lambda)^{m \times n}$ denotes that $R(\lambda)$ is a $m \times n$ rational matrix.

Definition (D, Quintana, Van Dooren, SIMAX, 2022)

A strongly minimal linearization of $R(\lambda) \in \mathbb{C}(\lambda)^{m \times n}$ is a matrix pencil

$$L(\lambda) = \begin{bmatrix} A_1\lambda + A_0 & -(B_1\lambda + B_0) \\ C_1\lambda + C_0 & D_1\lambda + D_0 \end{bmatrix} \in \mathbb{C}[\lambda]^{(p+m)\times(p+n)}$$

such that:

(a)
$$R(\lambda) = (D_1\lambda + D_0) + (C_1\lambda + C_0)(A_1\lambda + A_0)^{-1}(B_1\lambda + B_0),$$

(b) $\begin{bmatrix} A_1\lambda + A_0 & -(B_1\lambda + B_0) \end{bmatrix}$ and $\begin{bmatrix} A_1\lambda + A_0 \\ C_1\lambda + C_0 \end{bmatrix}$ have full row and column rank for all $\lambda_0 \in \mathbb{C}$, respectively, and

(c) $\begin{bmatrix} A_1 & -B_1 \end{bmatrix}$ and $\begin{bmatrix} A_1 \\ C_1 \end{bmatrix}$ have full row and column rank, respectively.

Definition of strongly minimal linearizations

Since polynomial matrices are also rational matrices the next definition applies to both. $R(\lambda) \in \mathbb{C}(\lambda)^{m \times n}$ denotes that $R(\lambda)$ is a $m \times n$ rational matrix.

Definition (D, Quintana, Van Dooren, SIMAX, 2022)

A strongly minimal linearization of $R(\lambda) \in \mathbb{C}(\lambda)^{m \times n}$ is a matrix pencil

$$L(\lambda) = \begin{bmatrix} A_1\lambda + A_0 & -(B_1\lambda + B_0) \\ C_1\lambda + C_0 & D_1\lambda + D_0 \end{bmatrix} \in \mathbb{C}[\lambda]^{(p+m)\times(p+n)}$$

such that:

(a)
$$R(\lambda) = (D_1\lambda + D_0) + (C_1\lambda + C_0)(A_1\lambda + A_0)^{-1}(B_1\lambda + B_0),$$

(b) $\begin{bmatrix} A_1\lambda + A_0 & -(B_1\lambda + B_0) \end{bmatrix}$ and $\begin{bmatrix} A_1\lambda + A_0 \\ C_1\lambda + C_0 \end{bmatrix}$ have full row and column rank for all $\lambda_0 \in \mathbb{C}$, respectively, and

(c)
$$\begin{bmatrix} A_1 & -B_1 \end{bmatrix}$$
 and $\begin{bmatrix} A_1 \\ C_1 \end{bmatrix}$ have full row and column rank, respectively.

ヘロア 人間 アイヨア・

Theorem (D, Quintana, Van Dooren, SIMAX, 2022)

$$L(\lambda) = \begin{bmatrix} A_1\lambda + A_0 & -(B_1\lambda + B_0) \\ C_1\lambda + C_0 & D_1\lambda + D_0 \end{bmatrix} \in \mathbb{C}[\lambda]^{(p+m)\times(p+n)}$$

is a strongly minimal linearization of $R(\lambda) \in \mathbb{C}(\lambda)^{m \times n}$ then:

- The finite eigenvalue structure of L(λ) coincides exactly with the finite zero structure of R(λ).
- The finite eigenvalue structure of $A_1\lambda + A_0$ coincides exactly with the finite pole structure of $R(\lambda)$.
- The infinite eigenvalue structure of L(λ) and A₁λ + A₀ allows us to recover exactly the infinite zero/pole structure of R(λ).
- $L(\lambda)$ and $R(\lambda)$ have the same left and right minimal indices.

lf

<ロ> <問> <問> < 回> < 回> 、

Recovery of eigenvectors and minimal bases

The eigenvectors and minimal bases of $R(\lambda)$ can be recovered from those of $L(\lambda)$ simply by removing the first p entries.

Relation with GLR linearizations

- Strongly minimal linearizations are GLR-linearizations.
- Strongly minimal linearizations are NOT strong GLR-linearizations.
- GLR-linearizations are not strongly minimal linearizations.

< ロ > < 同 > < 回 > < 回 >

Recovery of eigenvectors and minimal bases

The eigenvectors and minimal bases of $R(\lambda)$ can be recovered from those of $L(\lambda)$ simply by removing the first p entries.

Relation with GLR linearizations

- Strongly minimal linearizations are GLR-linearizations.
- Strongly minimal linearizations are NOT strong GLR-linearizations.
- GLR-linearizations are not strongly minimal linearizations.

Brief reminder of "Eigenstructures" of PEPs and REPs

- 2 Gohberg-Lancaster-Rodman linearizations of PEPs (and REPs)
- 3 Strongly minimal linearizations of polynomial and rational matrices

4 Constructing strongly minimal linearizations of polynomial matrices

5 Constructing strongly minimal linearizations of rational matrices

6 Conclusions

For any

we

$$P(\lambda) = P_d \lambda^d + \dots + P_1 \lambda + P_0 \in \mathbb{C}[\lambda]^{m \times n}$$

define
$$L_s(\lambda) = \begin{bmatrix} -P_d & \lambda P_d \\ \ddots & \lambda P_d - P_{d-1} & \vdots \\ -P_d & \ddots & \vdots & \vdots \\ \frac{-P_d & \lambda P_d - P_{d-1} & \dots & \lambda P_3 - P_2 & \lambda P_2}{\lambda P_d & \dots & \dots & \lambda P_2 & \lambda P_1 + P_0 \end{bmatrix}$$

- It was proposed by Lancaster for regular polynomial matrices with P_d invertible in Lancaster, Lambda-Matrices and Vibrating Systems, 1966.
- If P_d is invertible, then $L_s(\lambda)$ is a GLR strong linearization of $P(\lambda)$. If P_d is NOT invertible, $L_s(\lambda)$ is not a GLR-linearization.
- $L_s(\lambda)$ is one of the famous $\mathbb{DL}(P)$ pencils introduced by Mackey, Mackey, Mehl and Mehrmann (SIMAX, 2006).

F. M. Dopico (U. Carlos III, Madrid)

For any

$$P(\lambda) = P_d \lambda^d + \dots + P_1 \lambda + P_0 \in \mathbb{C}[\lambda]^{m \times n}$$

we define
$$L_s(\lambda) = \begin{bmatrix} -P_d & \lambda P_d \\ & \ddots & \lambda P_d - P_{d-1} \\ & -P_d & \ddots & \vdots \\ \hline -P_d & \lambda P_d - P_{d-1} & \dots & \lambda P_3 - P_2 \\ \hline \lambda P_d & \dots & \dots & \lambda P_2 & \lambda P_1 + P_0 \end{bmatrix}$$

- It was proposed by Lancaster for regular polynomial matrices with P_d invertible in Lancaster, Lambda-Matrices and Vibrating Systems, 1966.
- If P_d is invertible, then $L_s(\lambda)$ is a GLR strong linearization of $P(\lambda)$. If P_d is NOT invertible, $L_s(\lambda)$ is not a GLR-linearization.
- $L_s(\lambda)$ is one of the famous $\mathbb{DL}(P)$ pencils introduced by Mackey, Mackey, Mehl and Mehrmann (SIMAX, 2006).

F. M. Dopico (U. Carlos III, Madrid)

For any

$$P(\lambda) = P_d \lambda^d + \dots + P_1 \lambda + P_0 \in \mathbb{C}[\lambda]^{m \times n}$$

we define
$$L_s(\lambda) = \begin{bmatrix} -P_d & \lambda P_d \\ & \ddots & \lambda P_d - P_{d-1} \\ & -P_d & \ddots & \vdots \\ \hline -P_d & \lambda P_d - P_{d-1} & \dots & \lambda P_3 - P_2 \\ \hline \lambda P_d & \dots & \dots & \lambda P_2 & \lambda P_1 + P_0 \end{bmatrix}$$

- It was proposed by Lancaster for regular polynomial matrices with P_d invertible in Lancaster, Lambda-Matrices and Vibrating Systems, 1966.
- If P_d is invertible, then $L_s(\lambda)$ is a GLR strong linearization of $P(\lambda)$. If P_d is NOT invertible, $L_s(\lambda)$ is not a GLR-linearization.
- $L_s(\lambda)$ is one of the famous $\mathbb{DL}(P)$ pencils introduced by Mackey, Mackey, Mehl and Mehrmann (SIMAX, 2006).

F. M. Dopico (U. Carlos III, Madrid)

May 10, 2024

For any

we d

efine

$$P(\lambda) = P_d \lambda^d + \dots + P_1 \lambda + P_0 \in \mathbb{C}[\lambda]^{m \times n}$$

$$L_s(\lambda) = \begin{bmatrix} -P_d & \lambda P_d \\ \ddots & \lambda P_d - P_{d-1} \\ -P_d & \ddots & \vdots \\ -P_d & \lambda P_d - P_{d-1} & \dots & \lambda P_3 - P_2 \\ \hline \lambda P_d & \dots & \dots & \lambda P_2 & \lambda P_1 + P_0 \end{bmatrix}$$

- It was proposed by Lancaster for regular polynomial matrices with P_d invertible in Lancaster, Lambda-Matrices and Vibrating Systems, 1966.
- If P_d is invertible, then $L_s(\lambda)$ is a GLR strong linearization of $P(\lambda)$. If P_d is NOT invertible, $L_s(\lambda)$ is not a GLR-linearization.
- $L_s(\lambda)$ is one of the famous $\mathbb{DL}(P)$ pencils introduced by Mackey, Mackey, Mehl and Mehrmann (SIMAX, 2006).

F. M. Dopico (U. Carlos III, Madrid)

Based on

$$L_{s}(\lambda) = \begin{bmatrix} -P_{d} & \lambda P_{d} \\ & \ddots & \lambda P_{d} - P_{d-1} & \vdots \\ & -P_{d} & \ddots & \vdots & \vdots \\ \hline -P_{d} & \lambda P_{d} - P_{d-1} & \dots & \lambda P_{3} - P_{2} & \lambda P_{2} \\ \hline \lambda P_{d} & \dots & \dots & \lambda P_{2} & \lambda P_{1} + P_{0} \end{bmatrix},$$

we define

$$T = \begin{bmatrix} & P_d \\ & \ddots & P_{d-1} \\ P_d & \ddots & \vdots \\ P_d & P_{d-1} & \dots & P_2 \end{bmatrix}$$

and consider a rank-revealing factorization of T, for instance a SVD,

$$U^*TV = \left[\begin{array}{cc} 0 & 0\\ 0 & \widehat{T} \end{array} \right]$$

where U, V, and $\widehat{T} \in \mathbb{C}^{r \times r}$ are invertible

F. M. Dopico (U. Carlos III, Madrid)

(日)

Based on
$$L_{s}(\lambda) = \begin{bmatrix} -P_{d} & \lambda P_{d} \\ \vdots & \lambda P_{d} - P_{d-1} & \vdots \\ -P_{d} & \ddots & \vdots & \vdots \\ \frac{-P_{d} & \lambda P_{d} - P_{d-1} & \dots & \lambda P_{3} - P_{2} & \lambda P_{2} \\ \hline \lambda P_{d} & \dots & \dots & \lambda P_{2} & \lambda P_{1} + P_{0} \end{bmatrix},$$

we define

$$T = \begin{bmatrix} & P_d \\ & \ddots & P_{d-1} \\ P_d & \ddots & \vdots \\ P_d & P_{d-1} & \dots & P_2 \end{bmatrix}$$

and consider a rank-revealing factorization of T, for instance a SVD,

$$U^*TV = \left[\begin{array}{cc} 0 & 0\\ 0 & \widehat{T} \end{array} \right]$$

where U, V, and $\widehat{T} \in \mathbb{C}^{r \times r}$ are invertible.

F. M. Dopico (U. Carlos III, Madrid)

∃ ► < ∃ ►</p>

Based on

$$L_s(\lambda) = \begin{bmatrix} -P_d & \lambda P_d \\ & \ddots & \lambda P_d - P_{d-1} & \vdots \\ & -P_d & \ddots & \vdots & \vdots \\ \hline -P_d & \lambda P_d - P_{d-1} & \dots & \lambda P_3 - P_2 & \lambda P_2 \\ \hline \lambda P_d & \dots & \dots & \lambda P_2 & \lambda P_1 + P_0 \end{bmatrix},$$

we define

$$T = \begin{bmatrix} & P_d \\ & \ddots & P_{d-1} \\ P_d & \ddots & \vdots \\ P_d & P_{d-1} & \dots & P_2 \end{bmatrix}$$

and consider a rank-revealing factorization of T, for instance a SVD,

$$U^*TV = \left[\begin{array}{cc} 0 & 0\\ 0 & \widehat{T} \end{array} \right],$$

where U, V, and $\widehat{T} \in \mathbb{C}^{r \times r}$ are invertible.

F. M. Dopico (U. Carlos III, Madrid)

∃ ► < ∃ ►</p>

Based on

$$L_s(\lambda) = \begin{bmatrix} -P_d & \lambda P_d \\ & \ddots & \lambda P_d - P_{d-1} & \vdots \\ & -P_d & \ddots & \vdots & \vdots \\ \hline -P_d & \lambda P_d - P_{d-1} & \dots & \lambda P_3 - P_2 & \lambda P_2 \\ \hline \lambda P_d & \dots & \dots & \lambda P_2 & \lambda P_1 + P_0 \end{bmatrix},$$

we define

$$T = \begin{bmatrix} & P_d \\ & \ddots & P_{d-1} \\ P_d & \ddots & \vdots \\ P_d & P_{d-1} & \dots & P_2 \end{bmatrix}$$

and consider a rank-revealing factorization of T, for instance a SVD,

$$U^*TV = \left[\begin{array}{cc} 0 & 0\\ 0 & \widehat{T} \end{array} \right],$$

where U, V, and $\widehat{T} \in \mathbb{C}^{r \times r}$ are invertible.

F. M. Dopico (U. Carlos III, Madrid)

프 > + 프 > -

Based on

$$L_s(\lambda) = \begin{bmatrix} -P_d & \lambda P_d \\ & \ddots & \lambda P_d - P_{d-1} & \vdots \\ & -P_d & \ddots & \vdots & \vdots \\ \hline -P_d & \lambda P_d - P_{d-1} & \dots & \lambda P_3 - P_2 & \lambda P_2 \\ \hline \lambda P_d & \dots & \dots & \lambda P_2 & \lambda P_1 + P_0 \end{bmatrix},$$

we define

$$T = \begin{bmatrix} & P_d \\ & \ddots & P_{d-1} \\ P_d & \ddots & \vdots \\ P_d & P_{d-1} & \dots & P_2 \end{bmatrix}$$

and consider a rank-revealing factorization of T, for instance a SVD,

$$U^*TV = \left[\begin{array}{cc} 0 & 0\\ 0 & \widehat{T} \end{array} \right],$$

where U, V, and $\widehat{T} \in \mathbb{C}^{r \times r}$ are invertible.

F. M. Dopico (U. Carlos III, Madrid)

A strongly minimal linearization for $P(\lambda)$

Theorem (D, Quintana, Van Dooren, SIMAX, 2022)

and

$$\widehat{L}_s(\lambda) = \begin{bmatrix} \widehat{A}_s(\lambda) & -\widehat{B}_s(\lambda) \\ \hline \widehat{C}_s(\lambda) & \widehat{D}_s(\lambda) \end{bmatrix}$$

is a strongly minimal linearization of $P(\lambda)$.

F. M. Dopico (U. Carlos III, Madrid)

Strongly minimal linearizations

May 10, 2024

A strongly minimal linearization for $P(\lambda)$

Theorem (D, Quintana, Van Dooren, SIMAX, 2022)

$$\begin{bmatrix} U^* \\ & \ddots \\ & \lambda P_d - P_{d-1} \\ & \vdots \\ & -P_d \\ & \ddots \\ & \vdots \\ & \vdots \\ & -P_d \\ & \lambda P_d - P_{d-1} \\ & & \lambda P_3 - P_2 \\ & \lambda P_2 \\ & \lambda P_1 + P_0 \end{bmatrix} \begin{bmatrix} V \\ & -P_d \\ & & \lambda P_d \\ & & \ddots \\ & & \lambda P_2 \\ & \lambda P_1 + P_0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & \hat{A}_s(\lambda) & -\hat{B}_s(\lambda) \\ & 0 & \hat{C}_s(\lambda) & \hat{D}_s(\lambda) \end{bmatrix}, \quad \text{where } \hat{A}_s(\lambda) \in \mathbb{C}[\lambda]^{r \times r} \text{ is regular}$$
and
$$\begin{bmatrix} \hat{A}_s(\lambda) & -\hat{B}_s(\lambda) \\ & 0 & \hat{C}_s(\lambda) & \hat{D}_s(\lambda) \end{bmatrix}$$

is a strongly minimal linearization of $P(\lambda).$

F. M. Dopico (U. Carlos III, Madrid)

Strongly minimal linearizations

May 10, 2024

A strongly minimal linearization for $P(\lambda)$

Theorem (D, Quintana, Van Dooren, SIMAX, 2022)

$$\begin{bmatrix} U^* & & \\ & \ddots & \lambda P_d - P_{d-1} & \vdots \\ & & \ddots & \lambda P_d - P_{d-1} & \vdots \\ & & -P_d & \ddots & \vdots & \vdots \\ & & -P_d & \lambda P_d - P_{d-1} & \dots & \lambda P_3 - P_2 & \lambda P_2 \\ \hline \lambda P_d & \dots & & \lambda P_2 & \lambda P_1 + P_0 \end{bmatrix} \begin{bmatrix} V & \\ & I_n \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & \hat{A}_s(\lambda) & -\hat{B}_s(\lambda) \\ \hline 0 & \hat{C}_s(\lambda) & \hat{D}_s(\lambda) \end{bmatrix}, \quad \text{ where } \hat{A}_s(\lambda) \in \mathbb{C}[\lambda]^{r \times r} \text{ is regular}$$

and

$$\widehat{L}_s(\lambda) = \begin{bmatrix} \widehat{A}_s(\lambda) & -\widehat{B}_s(\lambda) \\ \hline \widehat{C}_s(\lambda) & \widehat{D}_s(\lambda) \end{bmatrix}$$

is a strongly minimal linearization of $P(\lambda)$.

Comments on preservation of structures

$$L_s(\lambda) = \begin{bmatrix} -P_d & \lambda P_d \\ \vdots & \lambda P_d - P_{d-1} & \vdots \\ -P_d & \vdots & \vdots \\ \frac{-P_d & \lambda P_d - P_{d-1} & \dots & \lambda P_3 - P_2 & \lambda P_2}{\lambda P_d & \dots & \dots & \lambda P_2 & \lambda P_1 + P_0 \end{bmatrix}$$

• is Hermitian (resp. skew-Hermitian) if $P(\lambda)$ is.

- Moreover, the rank-revealing factorization of T can be chosen to preserve the Hermitian (resp. skew-Hermitian) structure and, so, to get a
- Hermitian (resp. skew-Hermitian) strongly minimal linearization of $P(\lambda)$.
- The Lancaster-pencil and the process above can be easily adapted to preserve alternating structures of P(λ).

Comments on preservation of structures

$$L_s(\lambda) = \begin{bmatrix} -P_d & \lambda P_d \\ \vdots & \lambda P_d - P_{d-1} & \vdots \\ -P_d & \vdots & \vdots \\ \frac{-P_d & \lambda P_d - P_{d-1} & \dots & \lambda P_3 - P_2 & \lambda P_2}{\lambda P_d & \dots & \dots & \lambda P_2 & \lambda P_1 + P_0 \end{bmatrix}$$

- is Hermitian (resp. skew-Hermitian) if $P(\lambda)$ is.
- Moreover, the rank-revealing factorization of T can be chosen to preserve the Hermitian (resp. skew-Hermitian) structure and, so, to get a
- Hermitian (resp. skew-Hermitian) strongly minimal linearization of $P(\lambda)$.
- The Lancaster-pencil and the process above can be easily adapted to preserve alternating structures of P(λ).

Comments on preservation of structures

$$L_s(\lambda) = \begin{bmatrix} -P_d & \lambda P_d \\ \vdots & \lambda P_d - P_{d-1} & \vdots \\ -P_d & \vdots & \vdots \\ \frac{-P_d & \lambda P_d - P_{d-1} & \dots & \lambda P_3 - P_2 & \lambda P_2}{\lambda P_d & \dots & \dots & \lambda P_2 & \lambda P_1 + P_0 \end{bmatrix}$$

- is Hermitian (resp. skew-Hermitian) if $P(\lambda)$ is.
- Moreover, the rank-revealing factorization of T can be chosen to preserve the Hermitian (resp. skew-Hermitian) structure and, so, to get a
- Hermitian (resp. skew-Hermitian) strongly minimal linearization of $P(\lambda)$.
- The Lancaster-pencil and the process above can be easily adapted to preserve alternating structures of P(λ).
Comments on preservation of structures

$$L_s(\lambda) = \begin{bmatrix} -P_d & \lambda P_d \\ \vdots & \lambda P_d - P_{d-1} & \vdots \\ -P_d & \vdots & \vdots \\ \frac{-P_d & \lambda P_d - P_{d-1} & \dots & \lambda P_3 - P_2 & \lambda P_2}{\lambda P_d & \dots & \dots & \lambda P_2 & \lambda P_1 + P_0 \end{bmatrix}$$

- is Hermitian (resp. skew-Hermitian) if $P(\lambda)$ is.
- Moreover, the rank-revealing factorization of T can be chosen to preserve the Hermitian (resp. skew-Hermitian) structure and, so, to get a
- Hermitian (resp. skew-Hermitian) strongly minimal linearization of $P(\lambda)$.
- The Lancaster-pencil and the process above can be easily adapted to preserve alternating structures of P(λ).

$$P(\lambda) = P_0 + \lambda P_1 + \lambda^2 P_2 \in \mathbb{C}[\lambda]^{m \times n}$$

• The Lancaster pencil is very simple in the quadratic case

$$L_s(\lambda) = \begin{bmatrix} -P_2 & \lambda P_2 \\ \hline \lambda P_2 & \lambda P_1 + P_0 \end{bmatrix} \in \mathbb{C}[\lambda]^{2m \times 2n} \text{ and } T = P_2.$$

• If $P_2 = U_2 \widehat{T} V_2^*$, with $\widehat{T} \in \mathbb{C}^{r_2 \times r_2}$ invertible and $U_2 \in \mathbb{C}^{m \times r_2}$, $V_2 \in \mathbb{C}^{n \times r_2}$ with orthornormal columns. Then

$$\widehat{L}_s(\lambda) = \begin{bmatrix} -\widehat{T} & \lambda \widehat{T} V_2^* \\ \hline \lambda U_2 \widehat{T} & \lambda P_1 + P_0 \end{bmatrix} \in \mathbb{C}[\lambda]^{(r_2+m) \times (r_2+n)}$$

is a strongly minimal linearization of $P(\lambda)$.

• In important applications, the leading coefficient P_2 has low rank r_2 .

< 日 > < 同 > < 回 > < 回 > < 回 > <

$$P(\lambda) = P_0 + \lambda P_1 + \lambda^2 P_2 \in \mathbb{C}[\lambda]^{m \times n}$$

• The Lancaster pencil is very simple in the quadratic case

$$L_s(\lambda) = \begin{bmatrix} -P_2 & \lambda P_2 \\ \hline \lambda P_2 & \lambda P_1 + P_0 \end{bmatrix} \in \mathbb{C}[\lambda]^{2m \times 2n} \text{ and } T = P_2.$$

• If $P_2 = U_2 \widehat{T} V_2^*$, with $\widehat{T} \in \mathbb{C}^{r_2 \times r_2}$ invertible and $U_2 \in \mathbb{C}^{m \times r_2}$, $V_2 \in \mathbb{C}^{n \times r_2}$ with orthornormal columns. Then

$$\widehat{L}_s(\lambda) = \begin{bmatrix} -\widehat{T} & \lambda \widehat{T} V_2^* \\ \hline \lambda U_2 \widehat{T} & \lambda P_1 + P_0 \end{bmatrix} \in \mathbb{C}[\lambda]^{(r_2+m) \times (r_2+n)}$$

is a strongly minimal linearization of $P(\lambda)$.

• In important applications, the leading coefficient P_2 has low rank r_2 .

イロト 不得 トイヨト イヨト

$$P(\lambda) = P_0 + \lambda P_1 + \lambda^2 P_2 \in \mathbb{C}[\lambda]^{m \times n}$$

The Lancaster pencil is very simple in the quadratic case

$$L_s(\lambda) = \begin{bmatrix} -P_2 & \lambda P_2 \\ \hline \lambda P_2 & \lambda P_1 + P_0 \end{bmatrix} \in \mathbb{C}[\lambda]^{2m \times 2n} \text{ and } T = P_2.$$

• If $P_2 = U_2 \widehat{T} V_2^*$, with $\widehat{T} \in \mathbb{C}^{r_2 \times r_2}$ invertible and $U_2 \in \mathbb{C}^{m \times r_2}$, $V_2 \in \mathbb{C}^{n \times r_2}$ with orthornormal columns. Then

$$\widehat{L}_s(\lambda) = \begin{bmatrix} -\widehat{T} & \lambda \widehat{T} V_2^* \\ \hline \lambda U_2 \widehat{T} & \lambda P_1 + P_0 \end{bmatrix} \in \mathbb{C}[\lambda]^{(r_2 + m) \times (r_2 + n)}$$

is a strongly minimal linearization of $P(\lambda)$.

• In important applications, the leading coefficient P_2 has low rank r_2 .

イロト 不得 トイヨト イヨト

$$P(\lambda) = P_0 + \lambda P_1 + \lambda^2 P_2 \in \mathbb{C}[\lambda]^{m \times n}$$

The Lancaster pencil is very simple in the quadratic case

$$L_s(\lambda) = \begin{bmatrix} -P_2 & \lambda P_2 \\ \hline \lambda P_2 & \lambda P_1 + P_0 \end{bmatrix} \in \mathbb{C}[\lambda]^{2m \times 2n} \text{ and } T = P_2.$$

• If $P_2 = U_2 \widehat{T} V_2^*$, with $\widehat{T} \in \mathbb{C}^{r_2 \times r_2}$ invertible and $U_2 \in \mathbb{C}^{m \times r_2}$, $V_2 \in \mathbb{C}^{n \times r_2}$ with orthornormal columns. Then

$$\widehat{L}_s(\lambda) = \begin{bmatrix} -\widehat{T} & \lambda \widehat{T} V_2^* \\ \hline \lambda U_2 \widehat{T} & \lambda P_1 + P_0 \end{bmatrix} \in \mathbb{C}[\lambda]^{(\mathbf{r_2} + m) \times (\mathbf{r_2} + n)}$$

is a strongly minimal linearization of $P(\lambda)$.

• In important applications, the leading coefficient P_2 has low rank r_2 .

Brief reminder of "Eigenstructures" of PEPs and REPs

- 2 Gohberg-Lancaster-Rodman linearizations of PEPs (and REPs)
- 3 Strongly minimal linearizations of polynomial and rational matrices
- 4 Constructing strongly minimal linearizations of polynomial matrices

5 Constructing strongly minimal linearizations of rational matrices

6) Conclusions

Any rational matrix $R(\lambda)$ can be uniquely expressed as

 $R(\lambda) = P(\lambda) + R_{sp}(\lambda),$

where

- **1** $P(\lambda)$ is a polynomial matrix (polynomial part of $R(\lambda)$), and
- 2 the rational matrix $R_{sp}(\lambda)$ is strictly proper (strictly proper part of $R(\lambda)$), i.e., $\lim_{\lambda \to \infty} R_{sp}(\lambda) = 0$.

For strictly proper rational matrices $R_{sp}(\lambda) \in \mathbb{C}(\lambda)^{m \times n}$, we represent them via a Laurent expansion around the point at infinity

 $R_{sp}(\lambda) := R_{-1}\lambda^{-1} + R_{-2}\lambda^{-2} + R_{-3}\lambda^{-3} + \dots$

and consider the block Hankel matrix H and shifted block Hankel matrix H_{σ} :

 $H := \begin{bmatrix} R_{-1} & R_{-2} & \dots & R_{-k} \\ R_{-2} & \ddots & R_{-k-1} \\ \vdots & \ddots & \ddots & \vdots \\ R_{-k} & R_{-k-1} & \dots & R_{-2k+1} \end{bmatrix}, H_{\sigma} := \begin{bmatrix} R_{-2} & R_{-3} & \dots & R_{-k-1} \\ R_{-3} & \ddots & R_{-k-2} \\ \vdots & \ddots & \ddots & \vdots \\ R_{-k-1} & R_{-k-2} & \dots & R_{-2k} \end{bmatrix}$

For sufficiently large k the rank r_f of H equals the total polar degree of the finite poles and does not increase more with k.

For strictly proper rational matrices $R_{sp}(\lambda) \in \mathbb{C}(\lambda)^{m \times n}$, we represent them via a Laurent expansion around the point at infinity

$$R_{sp}(\lambda) := R_{-1}\lambda^{-1} + R_{-2}\lambda^{-2} + R_{-3}\lambda^{-3} + \dots$$

and consider the block Hankel matrix H and shifted block Hankel matrix H_{σ} :

 $H := \begin{bmatrix} R_{-1} & R_{-2} & \dots & R_{-k} \\ R_{-2} & & \ddots & R_{-k-1} \\ \vdots & & \ddots & \ddots & \vdots \\ R_{-k} & R_{-k-1} & \dots & R_{-2k+1} \end{bmatrix}, H_{\sigma} := \begin{bmatrix} R_{-2} & R_{-3} & \dots & R_{-k-1} \\ R_{-3} & & \ddots & R_{-k-2} \\ \vdots & & \ddots & \ddots & \vdots \\ R_{-k-1} & R_{-k-2} & \dots & R_{-2k} \end{bmatrix}.$

For sufficiently large k the rank r_f of H equals the total polar degree of the finite poles and does not increase more with k.

ヨト イヨト ニヨ

Strongly minimal linearizations for strictly proper rational matrices (II)

Theorem (D, Quintana, Van Dooren, SIMAX, 2022)

Let $R_{sp}(\lambda) \in \mathbb{C}(\lambda)^{m \times n}$ be a strictly proper rational matrix. Let H and H_{σ} be the block Hankel matrices and $r_f := \operatorname{rank} H$. Let $U := \begin{bmatrix} U_1 & U_2 \end{bmatrix}$ and $V := \begin{bmatrix} V_1 & V_2 \end{bmatrix}$ be unitary matrices such that

$$U^*HV = \begin{bmatrix} \widehat{H} & 0\\ 0 & 0 \end{bmatrix} = \begin{bmatrix} U_1^*HV_1 & 0\\ 0 & 0 \end{bmatrix},$$

where \widehat{H} is $r_f \times r_f$ and invertible. Partition the matrices U_1 and V_1 as $U_1 = \begin{bmatrix} U_{11} \\ U_{21} \end{bmatrix}$, and $V_1 = \begin{bmatrix} V_{11} \\ V_{21} \end{bmatrix}$,

where the matrices U_{11} and V_{11} have dimension $m \times r_f$ and $n \times r_f$. Then

$$L_{sp}(\lambda) := \begin{bmatrix} U_1^* H_\sigma V_1 - \lambda \widehat{H} & \widehat{H} V_{11}^* \\ \hline U_{11} \widehat{H} & 0 \end{bmatrix}$$

is a strongly minimal linearization for $R_{sp}(\lambda)$. Consider U = V if $R_{sp}(\lambda)$ is Hermitian or skew-Hermitian.

F. M. Dopico (U. Carlos III, Madrid)

Strongly minimal linearizations for rational matrices

Theorem (D, Quintana, Van Dooren, SIMAX, 2022)

Let $R(\lambda) \in \mathbb{C}(\lambda)^{m \times n}$ be an arbitrary (resp. structured) rational matrix. Let

 $R(\lambda) = P(\lambda) + R_{sp}(\lambda),$

with $P(\lambda)$ polynomial and $R_{sp}(\lambda)$ strictly proper. Let

$$\widehat{L}_s(\lambda) := \begin{bmatrix} \widehat{A}_s(\lambda) & \widehat{B}_s(\lambda) \\ \hline -\widehat{C}_s(\lambda) & \widehat{D}_s(\lambda) \end{bmatrix} \text{ and } L_{sp}(\lambda) := \begin{bmatrix} A_{sp}(\lambda) & B_{sp}(\lambda) \\ \hline -C_{sp}(\lambda) & 0 \end{bmatrix}$$

be (resp. structured) strongly minimal linearizations of $P(\lambda)$ and $R_{sp}(\lambda)$, respectively. Then

$$L(\lambda) := egin{bmatrix} \widehat{A}_s(\lambda) & 0 & \widehat{B}_s(\lambda) \ 0 & A_{sp}(\lambda) & B_{sp}(\lambda) \ \hline -\widehat{C}_s(\lambda) & -C_{sp}(\lambda) & \widehat{D}_s(\lambda) \end{bmatrix}$$

is a (structured) strongly minimal linearization of $R(\lambda)$.

F. M. Dopico (U. Carlos III, Madrid)

Brief reminder of "Eigenstructures" of PEPs and REPs

- 2 Gohberg-Lancaster-Rodman linearizations of PEPs (and REPs)
- 3 Strongly minimal linearizations of polynomial and rational matrices
- Constructing strongly minimal linearizations of polynomial matrices
- 5 Constructing strongly minimal linearizations of rational matrices

< ロ > < 同 > < 回 > < 回 >

We have introduced the new definition of strongly minimal linearizations.

- It is simultaneously valid for polynomial and rational matrices.
- We have proved that they have excellent recovery properties.
- We showed that they exist for any rational matrix
- and we have shown how to construct them via stable rank-revealing decompositions of constant matrices (SVD, for instance).
- Our constructions always preserve the Hermitian, skew-Hermitian, and alternating structures,
- which is not always possible for GLR-strong linearizations.

- We have introduced the new definition of strongly minimal linearizations.
- It is simultaneously valid for polynomial and rational matrices.
- We have proved that they have excellent recovery properties.
- We showed that they exist for any rational matrix
- and we have shown how to construct them via stable rank-revealing decompositions of constant matrices (SVD, for instance).
- Our constructions always preserve the Hermitian, skew-Hermitian, and alternating structures,
- which is not always possible for GLR-strong linearizations.

- We have introduced the new definition of strongly minimal linearizations.
- It is simultaneously valid for polynomial and rational matrices.
- We have proved that they have excellent recovery properties.
- We showed that they exist for any rational matrix
- and we have shown how to construct them via stable rank-revealing decompositions of constant matrices (SVD, for instance).
- Our constructions always preserve the Hermitian, skew-Hermitian, and alternating structures,
- which is not always possible for GLR-strong linearizations.

- We have introduced the new definition of strongly minimal linearizations.
- It is simultaneously valid for polynomial and rational matrices.
- We have proved that they have excellent recovery properties.
- We showed that they exist for any rational matrix
- and we have shown how to construct them via stable rank-revealing decompositions of constant matrices (SVD, for instance).
- Our constructions always preserve the Hermitian, skew-Hermitian, and alternating structures,
- which is not always possible for GLR-strong linearizations.

- We have introduced the new definition of strongly minimal linearizations.
- It is simultaneously valid for polynomial and rational matrices.
- We have proved that they have excellent recovery properties.
- We showed that they exist for any rational matrix
- and we have shown how to construct them via stable rank-revealing decompositions of constant matrices (SVD, for instance).
- Our constructions always preserve the Hermitian, skew-Hermitian, and alternating structures,
- which is not always possible for GLR-strong linearizations.

- We have introduced the new definition of strongly minimal linearizations.
- It is simultaneously valid for polynomial and rational matrices.
- We have proved that they have excellent recovery properties.
- We showed that they exist for any rational matrix
- and we have shown how to construct them via stable rank-revealing decompositions of constant matrices (SVD, for instance).
- Our constructions always preserve the Hermitian, skew-Hermitian, and alternating structures,
- which is not always possible for GLR-strong linearizations.

- We have introduced the new definition of strongly minimal linearizations.
- It is simultaneously valid for polynomial and rational matrices.
- We have proved that they have excellent recovery properties.
- We showed that they exist for any rational matrix
- and we have shown how to construct them via stable rank-revealing decompositions of constant matrices (SVD, for instance).
- Our constructions always preserve the Hermitian, skew-Hermitian, and alternating structures,
- which is not always possible for GLR-strong linearizations.