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The first time I heard about David Watkins ... Autumn 1994 (I)

I was preparing a graduate
course on “Numerical Linear Al-
gebra”, that I had to teach in the
second semester. I had no ex-
perience on the topic and some-
body recommended me Golub
& Van Loan’s book as the main
reference for that topic. To be
honest, to understand clearly
and fully the QR-algorithm was
not easy for me, and I was dis-
couraged but ...
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The first time I heard about David Watkins ... Autumn 1994 (II)

in Golub & Van Loan’s p. 360,
I read “Deeper insight into the
convergence of the QR algo-
rithm can be attained by read-
ing ... ” and, encouraged by
the abstract, I did it! I was re-
ally impressed by the clarity and
the depth of the exposition and,
then, I looked for more informa-
tion about the author. Of course,
I discovered the first edition of
Watkins, “Fundamentals of Ma-
trix Computations” (1991) and
since then I have read and used
David’s books for my courses
and for my research.
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The first time I met David Watkins in person was in ...

III International Workshop on Accurate Solution of Eigenvalue Problems,
Hagen, Germany, July 2000. David’s talk was “Solving large, sparse
eigenvalue problems with Hamiltonian structure”.
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SIAG/LA-SIMUMAT INTERNATIONAL SUMMER SCHOOL ON NUMERICAL

LINEAR ALGEBRA, July 21-25, 2008, Castro-Urdiales, Spain

David’s course was “Structured eigenvalue problems: modern theory
and computational practice”.
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Congratulations David for all your achievements

Thank you very much for writing so many wonderful books and papers,
and I hope to share with you many great moments in the future.
Happy birthday!!
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Matrix eigenvalue problems and linearizations

1 BEP: (λIn −A) v = 0

2 GEP: (λB −A) v = 0 !!!!

3 PEP: (Pdλ
d + · · ·+ P1λ+ P0)v = 0 !!!!

4 REP: G(λ)v = 0 !!!!

5 NEP: F (λ)v = 0

We focus on PEPs and REPs.

Key idea: PEPs and REPs can be solved by transforming the
problem into a GEP via a process known as LINEARIZATION.

This transformation is exact: the obtained GEP contains (or allows us to
easily extract) exactly all the eigen-information of the original PEP or REP.

The use of linearizations is one of the most reliable approaches for
solving numerically PEPs and REPs, because there exist very reliable
algorithms for solving GEPs.
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The goals of the talk

So far, the linearizations used in the literature for PEPs fit into the
classical definition of Gohberg-Lancaster-Rodman (GLR),

and the ones for REPs fit into combining the GLR-approach with
Rosenbrock’s polynomial system matrices (Alam, Behera (SIMAX,
2016); Amparan, D, Marcaida, Zaballa (SIMAX, 2018)).

We will introduce a new unified definition of particular linearizations of
PEPs and REPs (strongly minimal linearizations) that guarantee
stronger properties than those of GLR-linearizarions.

Moreover, we will show how to construct such linearizations for any
polynomial or rational matrix in such a way that

for structured PEPs and REPs (Hermitian, skew-Hermitian, alternating
odd and even) always preserve such structures,

which is not always possible for GLR-linearizations,

in particular for polynomial matrices of even-degree (Mackey, Mackey,
Mehl, Mehrmann, De Terán, D).
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Outline

1 Brief reminder of “Eigenstructures” of PEPs and REPs

2 Gohberg-Lancaster-Rodman linearizations of PEPs (and REPs)

3 Strongly minimal linearizations of polynomial and rational matrices

4 Constructing strongly minimal linearizations of polynomial matrices

5 Constructing strongly minimal linearizations of rational matrices

6 Conclusions
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GEPs-PEPs-REPs have more spectral “structural” data than BEPs

1 BEP: (λIn −A) v = 0

2 GEP: (λB −A) v = 0

3 PEP: (Pdλ
d + · · ·+ P1λ+ P0)v = 0

4 REP: G(λ)v = 0

So far, we only consider finite eigenvalues, but

GEPs, PEPs, REPs may have also infinite eigenvalues.

GEPs, PEPs, REPs may be singular, i.e., rectangular or square with
identically zero determinant, (BEPs are always regular) and to have, in
addition to eigenvalues, minimal indices.

Moreover, REPs have poles.

We define quickly these concepts.
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Finite and infinite eigenvalues of PEPs

Given P (λ) = Pdλ
d + · · ·+ P1λ+ P0 ∈ C[λ]m×n ,

λ0 ∈ C is a finite eigenvalue of P (λ) if

rankP (λ0) < max
λ∈C

rankP (λ)

The infinite eigenvalue of P (λ) is defined through the reversal
polynomial.

The reversal of P (λ) is

revP (λ) := λdP ( 1λ ) = P0λ
d + · · ·+ Pd−1λ+ Pd .

Then the infinite eigenvalue (and its mutiplicities) of P (λ) correspond to
the zero eigenvalue (and its mutiplicities) of revP (λ).
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Minimal indices of singular PEPs

PEPs are singular when P (λ) = Pdλ
d + · · ·+ P1λ+ P0 is either

rectangular or square with detP (λ) ≡ 0.

In addition to eigenvalues, singular matrix polynomials have other
“interesting numbers” called minimal indices,

which are related to the fact that a singular m× n matrix polynomial P (λ)
has non-trivial left and/or right null-spaces over the field C(λ) of rational
functions:

Nℓ(P ) :=
{
y(λ)T ∈ F(λ)1×m : y(λ)TP (λ) ≡ 0T

}
,

Nr(P ) :=
{
x(λ) ∈ F(λ)n×1 : P (λ)x(λ) ≡ 0

}
.

They have bases consisting entirely of vector polynomials.

The polynomial bases with “minimal sum of the degrees” of their vectors
are the minimal bases of P (λ). The minimal indices of P (λ) are the
degrees of the vectors of any minimal basis.
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The complete “eigenstructure” of a polynomial matrix

Definition
The complete “eigenstructure” of a polynomial matrix P (λ) is comprised of:

its finite eigenvalues, together with their partial multiplicities,

its infinite eigenvalue, together with its partial multiplicities,

its right minimal indices, and

its left minimal indices.
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The complete “eigenstructure” of a rational matrix

Analogously, we define:

Definition
The complete “eigenstructure” of a rational matrix G(λ) is comprised of:

its finite zeros and poles, together with their partial multiplicities,

its infinite zeros and poles, together with its partial multiplicities,

its right minimal indices, and

its left minimal indices.

Remarks

The infinite zeros and poles, together with its partial multiplicities, of G(λ)
are defined as the zeros and poles at λ = 0, together with its partial
multiplicities, of G(1/λ).
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Definition: GLR strong linearizations of polynomial matrices

Gohberg, Lancaster, Rodman, Matrix Polynomials, 1982 and Gohberg,
Kaashoek, Lancaster, Integr. Eq. Operator Theory (1988).

Definition

A linear polynomial matrix (or matrix pencil) L(λ) is a (GLR)
linearization of P (λ) = Pd λ

d + · · ·+ P1λ+ P0 if there exist unimodular
polynomial matrices U(λ), V (λ) such that

U(λ)L(λ)V (λ) =

[
Is 0
0 P (λ)

]
.

L(λ) is a (GLR) strong linearization of P (λ) if, in addition, revL(λ) is a
linearization for revP (λ), i.e.,

Ũ(λ) (revL(λ)) Ṽ (λ) =

[
Is 0
0 revP (λ)

]
,

with Ũ(λ) and Ṽ (λ) unimodular.
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Spectral characterization of linearizations of polynomial matrices

Theorem
A matrix pencil L(λ) is a (GLR) linearization of a polynomial matrix P (λ) if
and only if

(1) L(λ) and P (λ) have the same number of right minimal indices.

(2) L(λ) and P (λ) have the same number of left minimal indices.

(3) L(λ) and P (λ) have the same finite eigenvalues with the same partial
multiplicities.

L(λ) is a (GLR) strong linearization of P (λ) if and only if (1), (2), (3) and

(4) L(λ) and P (λ) have the same infinite eigenvalues with the same partial
multiplicities.

Remark: The minimal indices of L(λ) may have arbitrarily different values
from those of P (λ), though in the most important classes of (GLR)
linearizations they are easily related.
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The most famous strong linearization

The classical Frobenius companion form of the m× n matrix polynomial

P (λ) = Pdλ
d + · · ·+ P1λ+ P0

is

C1(λ) :=



λPd + Pd−1 Pd−2 · · · P1 P0

−In λIn
. . .

. . .

. . . λIn
−In λIn

 ∈ C[λ](m+n(d−1))×nd
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Some comments on (GLR + Rosenbrock) linearizations of REPs

For brevity, I will not present a definition of (GLR + Rosenbrock)-based
linearizations and strong linearizations of rational matrices.

In contrast with the polynomial case, there is no agreement in the
community for a unique definition of (strong) linearization of a rational
matrix.

Amparan, D, Marcaida, and Zaballa, Strong linearizations of rational
matrices, SIMAX 2018 gave a definition of strong linearization of any
rational matrix R(λ) that reduces to GLR when R(λ) is a polynomial
matrix.

Another related approach was initiated by Alam and Behera,
Linearizations for rational matrix functions and Rosenbrock system
polynomials, SIMAX 2016.

María C. Quintana, Linearizations of rational matrices, PhD Thesis,
UC3M, 2021 contains several different approaches to the problem.
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Definition of strongly minimal linearizations

Since polynomial matrices are also rational matrices the next definition applies
to both. R(λ) ∈ C(λ)m×n denotes that R(λ) is a m× n rational matrix.

Definition (D, Quintana, Van Dooren, SIMAX, 2022)

A strongly minimal linearization of R(λ) ∈ C(λ)m×n is a matrix pencil

L(λ) =

[
A1λ+A0 −(B1λ+B0)
C1λ+ C0 D1λ+D0

]
∈ C[λ](p+m)×(p+n)

such that:

(a) R(λ) = (D1λ+D0) + (C1λ+ C0)(A1λ+A0)
−1(B1λ+B0),

(b)
[
A1λ+A0 −(B1λ+B0)

]
and

[
A1λ+A0

C1λ+ C0

]
have full row and column

rank for all λ0 ∈ C, respectively, and

(c)
[
A1 −B1

]
and

[
A1

C1

]
have full row and column rank, respectively.
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Properties of strongly minimal linearizations (I)

Theorem (D, Quintana, Van Dooren, SIMAX, 2022)

If

L(λ) =

[
A1λ+A0 −(B1λ+B0)
C1λ+ C0 D1λ+D0

]
∈ C[λ](p+m)×(p+n)

is a strongly minimal linearization of R(λ) ∈ C(λ)m×n then:

The finite eigenvalue structure of L(λ) coincides exactly with the finite
zero structure of R(λ).

The finite eigenvalue structure of A1λ+A0 coincides exactly with the
finite pole structure of R(λ).

The infinite eigenvalue structure of L(λ) and A1λ+A0 allows us to
recover exactly the infinite zero/pole structure of R(λ).

L(λ) and R(λ) have the same left and right minimal indices.
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Properties of strongly minimal linearizations (II)

Recovery of eigenvectors and minimal bases

The eigenvectors and minimal bases of R(λ) can be recovered from those of
L(λ) simply by removing the first p entries.

Relation with GLR linearizations

Strongly minimal linearizations are GLR-linearizations.

Strongly minimal linearizations are NOT strong GLR-linearizations.

GLR-linearizations are not strongly minimal linearizations.
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A famous pencil by Lancaster (which is not in general a linearization)

For any
P (λ) = Pdλ

d + · · ·+ P1λ+ P0 ∈ C[λ]m×n

we define

Ls(λ) =



−Pd λPd

. .
.

λPd − Pd−1

...

−Pd . .
. ...

...

−Pd λPd − Pd−1 . . . λP3 − P2 λP2

λPd . . . . . . λP2 λP1 + P0


It was proposed by Lancaster for regular polynomial matrices with Pd

invertible in Lancaster, Lambda-Matrices and Vibrating Systems, 1966.

If Pd is invertible, then Ls(λ) is a GLR strong linearization of P (λ). If Pd is
NOT invertible, Ls(λ) is not a GLR-linearization.

Ls(λ) is one of the famous DL(P ) pencils introduced by Mackey, Mackey,
Mehl and Mehrmann (SIMAX, 2006).
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A rank revealing factorization of a constant matrix associated to Ls(λ)

Based on

Ls(λ) =



−Pd λPd

. .
.

λPd − Pd−1

...

−Pd . .
. ...

...

−Pd λPd − Pd−1 . . . λP3 − P2 λP2

λPd . . . . . . λP2 λP1 + P0


,

we define

T =


Pd

. .
.

Pd−1

Pd . .
. ...

Pd Pd−1 . . . P2


and consider a rank-revealing factorization of T , for instance a SVD,

U∗TV =

[
0 0

0 T̂

]
,

where U , V , and T̂ ∈ Cr×r are invertible.
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A strongly minimal linearization for P (λ)

Theorem (D, Quintana, Van Dooren, SIMAX, 2022)

[
U∗

Im

]


−Pd λPd

. .
.

λPd − Pd−1

...

−Pd . .
. ...

...

−Pd λPd − Pd−1 . . . λP3 − P2 λP2

λPd . . . . . . λP2 λP1 + P0


[

V
In

]

=

 0 0 0

0 Âs(λ) −B̂s(λ)

0 Ĉs(λ) D̂s(λ)

 , where Âs(λ) ∈ C[λ]r×r is regular

and

L̂s(λ) =

[
Âs(λ) −B̂s(λ)

Ĉs(λ) D̂s(λ)

]
is a strongly minimal linearization of P (λ).
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Comments on preservation of structures

Ls(λ) =



−Pd λPd

. .
.

λPd − Pd−1

...

−Pd . .
. ...

...

−Pd λPd − Pd−1 . . . λP3 − P2 λP2

λPd . . . . . . λP2 λP1 + P0


is Hermitian (resp. skew-Hermitian) if P (λ) is.

Moreover, the rank-revealing factorization of T can be chosen to preserve
the Hermitian (resp. skew-Hermitian) structure and, so, to get a

Hermitian (resp. skew-Hermitian) strongly minimal linearization of P (λ).

The Lancaster-pencil and the process above can be easily adapted to
preserve alternating structures of P (λ).
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Quadratic polynomial matrices (with low rank leading coefficient)

P (λ) = P0 + λP1 + λ2P2 ∈ C[λ]m×n

The Lancaster pencil is very simple in the quadratic case

Ls(λ) =

[
−P2 λP2

λP2 λP1 + P0

]
∈ C[λ]2m×2n and T = P2.

If P2 = U2T̂ V
∗
2 , with T̂ ∈ Cr2×r2 invertible and U2 ∈ Cm×r2 , V2 ∈ Cn×r2

with orthornormal columns. Then

L̂s(λ) =

[
−T̂ λT̂V ∗

2

λU2T̂ λP1 + P0

]
∈ C[λ](r2+m)×(r2+n)

is a strongly minimal linearization of P (λ).

In important applications, the leading coefficient P2 has low rank r2.
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Polynomial and strictly proper parts of a rational matrix

Any rational matrix R(λ) can be uniquely expressed as

R(λ)=P (λ) +Rsp(λ),

where

1 P (λ) is a polynomial matrix (polynomial part of R(λ)), and

2 the rational matrix Rsp(λ) is strictly proper (strictly proper part of R(λ)),
i.e., lim

λ→∞
Rsp(λ) = 0.
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Strongly minimal linearizations for strictly proper rational matrices (I)

For strictly proper rational matrices Rsp(λ) ∈ C(λ)m×n, we represent them via
a Laurent expansion around the point at infinity

Rsp(λ) := R−1λ
−1 +R−2λ

−2 +R−3λ
−3 + . . .

and consider the block Hankel matrix H and shifted block Hankel matrix Hσ:

H :=



R−1 R−2 . . . R−k

R−2 . .
.

R−k−1

... . .
.

. .
. ...

R−k R−k−1 . . . R−2k+1


, Hσ :=



R−2 R−3 . . . R−k−1

R−3 . .
.

R−k−2

... . .
.

. .
. ...

R−k−1 R−k−2 . . . R−2k


.

For sufficiently large k the rank rf of H equals the total polar degree of the
finite poles and does not increase more with k.
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Strongly minimal linearizations for strictly proper rational matrices (II)

Theorem (D, Quintana, Van Dooren, SIMAX, 2022)

Let Rsp(λ) ∈ C(λ)m×n be a strictly proper rational matrix. Let H and Hσ be the
block Hankel matrices and rf := rankH. Let U :=

[
U1 U2

]
and

V :=
[
V1 V2

]
be unitary matrices such that

U∗HV =

[
Ĥ 0
0 0

]
=

[
U∗
1HV1 0
0 0

]
,

where Ĥ is rf × rf and invertible. Partition the matrices U1 and V1 as

U1 =

[
U11

U21

]
, and V1 =

[
V11

V21

]
,

where the matrices U11 and V11 have dimension m× rf and n× rf . Then

Lsp(λ) :=

[
U∗
1HσV1 − λĤ ĤV ∗

11

U11Ĥ 0

]

is a strongly minimal linearization for Rsp(λ). Consider U = VU = VU = V if Rsp(λ) is
Hermitian or skew-Hermitian.
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Strongly minimal linearizations for rational matrices

Theorem (D, Quintana, Van Dooren, SIMAX, 2022)

Let R(λ) ∈ C(λ)m×n be an arbitrary (resp. structured) rational matrix. Let

R(λ) = P (λ) +Rsp(λ),

with P (λ) polynomial and Rsp(λ) strictly proper. Let

L̂s(λ) :=

[
Âs(λ) B̂s(λ)

− Ĉs(λ) D̂s(λ)

]
and Lsp(λ) :=

[
Asp(λ) Bsp(λ)

− Csp(λ) 0

]

be (resp. structured) strongly minimal linearizations of P (λ) and Rsp(λ),
respectively. Then

L(λ) :=

 Âs(λ) 0 B̂s(λ)
0 Asp(λ) Bsp(λ)

−Ĉs(λ) −Csp(λ) D̂s(λ)


is a (structured) strongly minimal linearization of R(λ).

F. M. Dopico (U. Carlos III, Madrid) Strongly minimal linearizations May 10, 2024 35 / 37



Outline

1 Brief reminder of “Eigenstructures” of PEPs and REPs

2 Gohberg-Lancaster-Rodman linearizations of PEPs (and REPs)

3 Strongly minimal linearizations of polynomial and rational matrices

4 Constructing strongly minimal linearizations of polynomial matrices

5 Constructing strongly minimal linearizations of rational matrices

6 Conclusions

F. M. Dopico (U. Carlos III, Madrid) Strongly minimal linearizations May 10, 2024 36 / 37



Conclusions

We have introduced the new definition of strongly minimal linearizations.

It is simultaneously valid for polynomial and rational matrices.

We have proved that they have excellent recovery properties.

We showed that they exist for any rational matrix

and we have shown how to construct them via stable rank-revealing
decompositions of constant matrices (SVD, for instance).

Our constructions always preserve the Hermitian, skew-Hermitian, and
alternating structures,

which is not always possible for GLR-strong linearizations.
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