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Rational matrices and linear polynomial system matrices

A rational matrix R(t) ∈ C(t)p×m is a matrix whose entries are univariate
rational functions with coefficients in C.

Rational matrices play a fundamental role in systems and control theory,
where they typically represent transfer functions of linear time invariant
systems.

Recently they have been also applied in the numerical solution of
nonlinear eigenvalue problems, since they are used to approximate other
more general nonlinear matrix functions.

Relevant quantities of rational matrices, as their pole, zero and null space
structures, are usually studied/computed trough linear polynomial system
matrices related to them, i.e., through special pencils which are often
called linearizations.

Rational matrices appearing in applications often have particular
structures. We consider in this talk some of such structures and
linearizations that “try” to preserve these structures.
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Local Smith-McMillan form

Let λ0 ∈ C. Any rational matrix R(t) ∈ C(t)p×m is equivalent at λ0 to a
diagonal rational matrix of the form


(t− λ0)

ν1

. . .

(t− λ0)
νr

(t− λ0)
ν1

. . .

(t− λ0)
νr

(t− λ0)
ν1

. . .

(t− λ0)
νr

0r×(m−r)

0(p−r)×r 0(p−r)×(m−r)

 = U(t)R(t)V (t).

U(t) and V (t) are rational matrices invertible at λ0.

The integers ν1 ≤ · · · ≤ νrν1 ≤ · · · ≤ νrν1 ≤ · · · ≤ νr are the invariant orders at λ0 of R(t).

The diagonal matrix is the local Smith–McMillan form of R(t) at λ0.

r = rankR(t).
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Poles and zeros of a rational matrix

Finite poles and zeros: Let R(t) ∈ C(t)p×m and λ0 ∈ C. Let

ν1 ≤ · · · ≤ νk < 0 = νk+1 = · · · = νu−1 < νu ≤ · · · ≤ νr

be the invariant orders at λ0 of R(t). Then λ0 is

a pole of R(t) with partial multiplicities −νk, . . . ,−ν1, if k ≥ 1,

a zero of R(t) with partial multiplicities νu, . . . , νr, if u ≤ r.

Pole, zero and partial multiplicities at ∞ of R(t) are those at 0 of R
(
1

t

)
.

Moreover,

The pole structure of R(t) is the set of its poles together with their partial
multiplicities.

The zero structure of R(t) is the set of its zeros together with their partial
multiplicities.
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Singular or null space structure of a rational matrix

A rational matrix R(t) is singular when is either rectangular or square
with detR(t) ≡ 0.

In addition to poles and zeros, singular rational matrices have other
“important numbers” called minimal indices,

which are related to the fact that a singular R(t) ∈ C(t)p×m has non-trivial
left and/or right null spaces over the field C(t) of rational functions:

Nℓ(R) :=
{
y(t) ∈ C(t)p : y(t)TR(t) = 0

}
,

Nr(R) := {x(t) ∈ C(t)m : R(t)x(t) = 0} .

We skip the detailed definition of these concepts for brevity.
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Polynomial system matrices (Rosenbrock, 1970)

Any rational matrix R(t) ∈ C(t)p×m can be written as

R(t) = D(t) + C(t)A(t)−1B(t)

for some polynomial matrices A(t) ∈ C[t]n×n, B(t) ∈ C[t]n×m,
C(t) ∈ C[t]p×n and D(t) ∈ C[t]p×m with A(t) nonsingular.

The polynomial matrix

S(t) =

[
A(t) B(t)
−C(t) D(t)

]
∈ C[t](n+p)×(n+m)

is called a polynomial system matrix of R(t), i.e., R(t) is the Schur
complement of A(t) in S(t).

R(t) is called the transfer function matrix of S(t).
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Minimal polynomial system matrices

The polynomial system matrix

S(t) =

[
A(t) B(t)
−C(t) D(t)

]
is minimal, if the matrices

[
A(λ0) B(λ0)

]
and

[
A(λ0)
−C(λ0)

]
have, respectively, full row and column rank for all λ0 ∈ C.

Theorem (Rosenbrock, 1970)
Let

R(t) = D(t) + C(t)A(t)−1B(t)

be the transfer function matrix of S(t). If S(t) is minimal, then

the finite pole structure of R(t) = the finite zero structure of A(t),

the finite zero structure of R(t) = the finite zero structure of S(t).
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Definition: Strongly minimal linearization

Definition (D, Marcaida, Quintana, Van Dooren, LAA 2020)

Consider a linear polynomial system matrix

L(t) :=

[
tA1 −A0 tB1 −B0

−tC1 + C0 tD1 −D0

]
=:

[
A(t) B(t)
−C(t) D(t)

]
.

such that

1 L(t) is minimal, that is,[
λ0A1 −A0 λ0B1 −B0

]
and [

λ0A1 −A0

−λ0C1 + C0

]
have, respectively, full row and
column rank for all λ0 ∈ C, and,

2 L(t) is minimal at ∞, that is,[
A1 B1

]
and [

A1

−C1

]
have, respectively, full row and
column rank, then

L(t) is a strongly minimal linearization of R(t) := D(t) + C(t)A(t)−1B(t).
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Properties of strongly minimal linearizations

Theorem (D, Quintana, Van Dooren, SIMAX 2022)
Let

L(t) :=

[
tA1 −A0 tB1 −B0

−tC1 + C0 tD1 −D0

]
=:

[
A(t) B(t)
−C(t) D(t)

]
be a strongly minimal linearization of

R(t) := D(t) + C(t)A(t)−1B(t).

Then

1 The finite zero structure of R(t) = the finite zero structure of L(t).

2 The finite pole structure of R(t) = the finite zero structure of A(t).

3 The infinite pole and zero structure of R(t) can be recovered from the
infinite pole and zero structures of L(t) and A(t).

4 The left and right minimal indices of R(t) and L(t) are the same.

5 The eigenvectors and minimal bases of R(t) can be easily recovered from
those of L(t) through block extraction.
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Structured rational matrices: Poles, zeros, minimal indices symmetries

Symmetry with respect to Hermitian: Skew-Hermitian:

the real line R : (λ, λ) R∗ (x) = R(x) R∗ (x) = −R(x)

Symmetry with respect to Even: Odd:

the imaginary axis iR : (λ,−λ) R∗ (s) = R(−s) R∗ (s) = −R(−s)

Symmetry with respect to Para-Hermitian: Para-skew-Hermitian:

the unit circle S1 : (λ, 1/λ) R∗(z) = R (1/z) R∗(z) = −R (1/z)

R∗(t) = (R( t ))∗.

The symmetries of poles and
zeros include partial
multiplicities.

For all these rational matrices
the left minimal indices are
equal to the right ones.
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Preserving poles, zeros and minimal indices symmetries

These symmetries are very important and should be preserved when
computing the poles, zeros and minimal indices of a structured rational
matrix R(t).

Such special structures occur in numerous applications in engineering,
mechanics, control, ... For instance, para-Hermitian rational matrices are
relevant in signal processing.

In D, Quintana, Van Dooren, Strongly minimal self-conjugate
linearizations for polynomial and rational matrices, SIMAX 2022,
we constructed strongly minimal linearizations preserving the
structure for Hermitian, skew-Hermitian, even and odd rational matrices
that can be used for structure preserving computations.

In this talk, we summarize very briefly these results and

consider in more detail the corresponding problem for para-Hermitian
(and para-skew-Hermitian) rational matrices recently submitted in

D, Noferini, Quintana, Van Dooren, Para-Hermitian rational matrices,
submitted (arXiv:2407.13563).
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Main results for (skew) Hermitian, even and odd rational matrices

Theorem (D, Quintana, Van Dooren, SIMAX 2022)

A rational matrix R(t) is Hermitian (resp. skew-Hermitian or even or odd) if and
only if there exists a strongly minimal Hermitian (resp. skew-Hermitian or even
or odd) linearization of R(t).

Moreover such strongly minimal linearizations can be computed by
performing unitary transformations on constant matrices

constructed from the coefficients of the Laurent expansion of R(t) around
the point at infinity or

constructed from the coefficients of the polynomial part of R(t) and from a
minimal state-space realization of the strictly proper part of R(t).
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First obstacle and the palindromic structure

First obstacle: Para-Hermitian (nonconstant) rational matrices
R∗(z) = R(1/z) do not have strongly minimal para-Hermitian
linearizations, because there are no para-Hermitian pencils
L(z) = zL1 + L0.

Possible solution: Look for a class of structured pencils whose
eigenvalues and minimal indices have the same symmetries of the poles,
zeros and minimal indices of para-Hermitian matrices and try to linearize
R(z) with a pencil of this class.

Definition (Mackey, Mackey, Mehl, Mehrmann, SIMAX 2006)

A polynomial matrix P (z) of degree d is palindromic if it satisfies

zdP (1/z) = P ∗(z).

In particular a pencil is palindromic if and only if L(z) = zF + F ∗.

Lemma

The eigenvalues of palindromic polynomial matrices appear in pairs (λ, 1/λ),
i.e., they are symmetric with respect to S1, and their left minimal indices are
equal to the right ones.
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2ndobstacle: para-Hermitian matrix cannot have palindromic system matrix

Theorem (D, Noferini, Quintana, Van Dooren, 2024)

The transfer function H(z) of a palindromic linear system matrix L(z) satisfies

z H (1/z) = H∗(z).

Proposition (D, Noferini, Quintana, Van Dooren, 2024)

z H (1/z) = H∗(z) ⇐⇒ 1

1 + z
H(z) is para-Hermitian.

Strategy to circumvent the 2nd obstacle:

Given a para-Hermitian rational matrix R(z)

construct a strongly minimal palindromic linearization of

H(z) := (1 + z)R(z).
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Invariant orders and minimal indices relations: R(z) vs. H(z) = (1 + z)R(z)

For any finite λ ̸= −1 the invariant orders of H(z) and R(z) at λ are the
same.

ν1 ≤ · · · ≤ νr are the invariant orders at −1 of H(z) if and only if
ν1 − 1 ≤ · · · ≤ νr − 1 are the invariant orders at −1 of R(z).

ν1 ≤ · · · ≤ νr are the invariant orders at ∞ of H(z) if and only if
ν1 + 1 ≤ · · · ≤ νr + 1 are the invariant orders at ∞ of R(z).

The minimal indices of H(z) and R(z) are the same.
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Para-Hermitian rational matrices and Möbius transform

We solve the problem via the following Möbius transform T and its inverse T−1:

T : x 7−→ z =
i− x

i+ x
and T−1 : z 7−→ x = i

1− z

1 + z
.

Remark: T maps x ∈ R to T (x) ∈ S1 and T−1 maps z ∈ S1 to T−1(z) ∈ R.

Lemma (D, Noferini, Quintana, Van Dooren, 2024)

Let R(z) ∈ C(z)m×m be a rational matrix. Then

R(z) is para-Hermitian ⇐⇒ G(x) := R(T (x)) is Hermitian.
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Main result for para-Hermitian rational matrices

Theorem (D, Noferini, Quintana, Van Dooren, 2024)

A rational matrix R(z) is para-Hermitian (resp. para-skew-Hermitian) if and
only if there exists a strongly minimal palindromic (resp. anti-palindromic)
linearization of (1 + z)R(z).

Proof of necessity: Given a para-Hermitian rational matrix R(z):

1 Consider T : x 7−→ z =
i− x

i+ x
. Then G(x) := R(T (x)) is Hermitian.

2 Construct a strongly minimal Hermitian linearization S(x) of G(x) as in
(D, Quintana, Van Dooren, Strongly minimal self-conjugate linearizations
for polynomial and rational matrices, SIMAX 2022).

3 Consider T−1, then the rational matrix Q(z) := S(T−1(z)) must be
para-Hermitian with least common denominator (1 + z).

4 Finally, we obtain that
L(z) := (1 + z)Q(z)

is a strongly minimal palindromic linearization for (1 + z)R(z).
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Remarks on previous theorem

The proof is constructive but due to the Möbius transform does not
operate directly on constant matrices.

For rational para-Hermitian matrices R(z) without poles on the unit
circle S1, we see in the next slides how to construct strongly minimal
palindromic linearizations of (1 + z)R(z) without using Möbius
transforms.

The Möbius transform used in the proof involves complex arithmetic,
which is not desirable if the rational matrix R(z) has real coefficients. To
avoid this, we can use another Möbius transform:

B : s 7−→ z =
1 + s

1− s
and B−1 : z 7−→ s =

z − 1

z + 1
.

which satisfies

Lemma
R(z) is para-Hermitian ⇐⇒ G(s) := R(B(s)) is even.

Then, follow a similar approach based on (D, Quintana, Van Dooren,
SIMAX 2022).
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Decomposition into stable and anti-stable parts

Lemma

Let R(t) ∈ C(t)m×n be a rational matrix. Then there is a unique decomposition:

R(t) = Rin(t) +Rout(t) +RS1(t) +R0,

Rin(t) is a strictly proper rational matrix that has all its poles inside S1

(stable part);

Rout(t) is such that Rout(0) = 0 and has all its poles, infinity included,
outside S1 (anti-stable part);

RS1(t) is a strictly proper rational matrix that has all its poles on S1;

R0 is a constant matrix.

In addition, R(z) is para-Hermitian if and only if

R∗
in(z) = Rout(1/z),

and the proper rational matrix Rp(z) := RS1(z) +R0 is para-Hermitian.
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Constructing strongly minimal linearizations if no poles on the unit circle

If R(z) is para-Hermitian and has no poles on the unit circle:

R(z) = Rin(z) + Rout(z) + R0 , with R∗
in(z) = Rout(1/z) and R∗

0 = R0.

Theorem (D, Noferini, Quintana, Van Dooren, 2024)

Let R(z) be a para-Hermitian rational matrix having no poles on the unit circle.
Consider a minimal generalized state-space realization of Rin(z):

Rin(z) = B(zA1 −A0)
−1C,

with A1 invertible. Then,

Rout(z) = zC∗(A∗
1 − zA∗

0)
−1B∗

is a minimal generalized state-space realization of Rout(z), and L(z) is a
strongly minimal palindromic linearization of (1 + z)R(z):

L(z) =

 0 A0 − zA1 C
zA∗

0 −A∗
1 0 B∗(1 + z)

zC∗ B(1 + z) R0(1 + z)

 .
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Conclusions

We have shown that for Hermitian, skew-Hermitian, even and odd rational
matrices, it is always possible to construct strongly minimal linearizations
that preserve such structures.

We have seen that for para-Hermitian (resp. para-skew-Hermitian)
rational matrices R(z) some unavoidable obstructions arise that make it
impossible to construct strongly minimal linearizations that preserve such
structure, but

we have shown that it is always possible to construct strongly minimal
palindromic (resp. anti-palindromic) linearizations of (1 + z)R(z).
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