

Polynomial and rational matrices with prescribed data

Froilán M. Dopico

Dept of Matemáticas, Universidad Carlos III de Madrid, Spain

Part of “Proyecto de I+D+i PID2019-106362GB-I00 financiado por
MCIN/AEI/10.13039/501100011033”

**35th International Workshop on Operator Theory
and its Applications (IWOTA 2024)**

University of Kent, Canterbury, UK

August 12-16, 2024

uc3m | Universidad Carlos III de Madrid

The results presented in this talk are based on the following joint works:

- [Anguas](#), Dopico, [Hollister](#), [Mackey](#), Van Dooren's index sum theorem and rational matrices with prescribed structural data, *SIAM Journal on Matrix Analysis and Applications* **40**, (2019), 720–738.
- [Baragaña](#), Dopico, [Marcaida](#), [Roca](#), Polynomial and rational matrices with the invariant rational functions and the four sequences of minimal indices prescribed, *in preparation*.
- [De Terán](#), Dopico, [Mackey](#), [Van Dooren](#), Polynomial zigzag matrices, dual minimal bases, and the realization of completely singular polynomials, *Linear Algebra and its Applications* **488**, (2016), 460–504.
- [De Terán](#), Dopico, [Van Dooren](#), Matrix polynomials with completely prescribed eigenstructure, *SIAM Journal on Matrix Analysis and Applications* **36**, (2015), 302–328.

The results presented in this talk are based on the following joint works:

- Anguas, Dopico, Hollister, Mackey, Van Dooren's index sum theorem and rational matrices with prescribed structural data, *SIAM Journal on Matrix Analysis and Applications* **40**, (2019), 720–738.
- Baragaña, Dopico, Marcaida, Roca, Polynomial and rational matrices with the invariant rational functions and the four sequences of minimal indices prescribed, **in preparation**.
- De Terán, Dopico, Mackey, Van Dooren, Polynomial zigzag matrices, dual minimal bases, and the realization of completely singular polynomials, *Linear Algebra and its Applications* **488**, (2016), 460–504.
- De Terán, Dopico, Van Dooren, Matrix polynomials with completely prescribed eigenstructure, *SIAM Journal on Matrix Analysis and Applications* **36**, (2015), 302–328.

- 1 Preliminaries: Which are the data to be prescribed?
- 2 Goals of the talk
- 3 The Index Sum Theorems
- 4 Prescribed complete eigenstructures
- 5 Prescribed data with minimal indices of row and column spaces
- 6 Conclusions

- 1 Preliminaries: Which are the data to be prescribed?
- 2 Goals of the talk
- 3 The Index Sum Theorems
- 4 Prescribed complete eigenstructures
- 5 Prescribed data with minimal indices of row and column spaces
- 6 Conclusions

- In this talk, \mathbb{F} is an algebraically closed field.
- If it helps, consider $\mathbb{F} = \mathbb{C}$.
- However, many of the results hold for arbitrary fields. This will be recalled in some important cases.
- Restricting to algebraically closed fields simplifies the statement of some key results and, I hope, makes it easier to understand the talk.

- In this talk, \mathbb{F} is an algebraically closed field.
- If it helps, consider $\mathbb{F} = \mathbb{C}$.
- However, many of the results hold for arbitrary fields. This will be recalled in some important cases.
- Restricting to algebraically closed fields simplifies the statement of some key results and, I hope, makes it easier to understand the talk.

- In this talk, \mathbb{F} is an algebraically closed field.
- If it helps, consider $\mathbb{F} = \mathbb{C}$.
- However, many of the results hold for arbitrary fields. This will be recalled in some important cases.
- Restricting to algebraically closed fields simplifies the statement of some key results and, I hope, makes it easier to understand the talk.

- In this talk, \mathbb{F} is an algebraically closed field.
- If it helps, consider $\mathbb{F} = \mathbb{C}$.
- However, many of the results hold for arbitrary fields. This will be recalled in some important cases.
- Restricting to algebraically closed fields simplifies the statement of some key results and, I hope, makes it easier to understand the talk.

Rational matrices and polynomial matrices

- A rational matrix $R(s)$ is a matrix whose entries are univariate rational functions with coefficients in \mathbb{F} .
- A polynomial matrix $P(s)$ is a matrix whose entries are univariate polynomials with coefficients in \mathbb{F} .
- Polynomial are particular cases of rational matrices, but they are important on their own. The results in this talk were obtained first for polynomial matrices and will be presented in that order.
- Any rational matrix $R(s)$ can be uniquely expressed as

$$R(s) = P(s) + R_{sp}(s), \quad \text{where}$$

- $P(s)$ is a polynomial matrix (polynomial part), and
- the rational matrix $R_{sp}(s)$ is the strictly proper part, whose entries have numerators with smaller degrees than the denominators.
- Unimodular matrices are square polynomial matrices with constant nonzero determinant.
- Polynomial and rational matrices arise in many applications.

Rational matrices and polynomial matrices

- A rational matrix $R(s)$ is a matrix whose entries are univariate rational functions with coefficients in \mathbb{F} .
- A polynomial matrix $P(s)$ is a matrix whose entries are univariate polynomials with coefficients in \mathbb{F} .
- Polynomial are particular cases of rational matrices, but they are important on their own. The results in this talk were obtained first for polynomial matrices and will be presented in that order.
- Any rational matrix $R(s)$ can be uniquely expressed as

$$R(s) = P(s) + R_{sp}(s), \quad \text{where}$$

- $P(s)$ is a polynomial matrix (polynomial part), and
- the rational matrix $R_{sp}(s)$ is the strictly proper part, whose entries have numerators with smaller degrees than the denominators.
- Unimodular matrices are square polynomial matrices with constant nonzero determinant.
- Polynomial and rational matrices arise in many applications.

Rational matrices and polynomial matrices

- A rational matrix $R(s)$ is a matrix whose entries are univariate rational functions with coefficients in \mathbb{F} .
- A polynomial matrix $P(s)$ is a matrix whose entries are univariate polynomials with coefficients in \mathbb{F} .
- Polynomial are particular cases of rational matrices, but they are important on their own. The results in this talk were obtained first for polynomial matrices and will be presented in that order.
- Any rational matrix $R(s)$ can be uniquely expressed as

$$R(s) = P(s) + R_{sp}(s), \quad \text{where}$$

- $P(s)$ is a polynomial matrix (polynomial part), and
- the rational matrix $R_{sp}(s)$ is the strictly proper part, whose entries have numerators with smaller degrees than the denominators.
- Unimodular matrices are square polynomial matrices with constant nonzero determinant.
- Polynomial and rational matrices arise in many applications.

Rational matrices and polynomial matrices

- A rational matrix $R(s)$ is a matrix whose entries are univariate rational functions with coefficients in \mathbb{F} .
- A polynomial matrix $P(s)$ is a matrix whose entries are univariate polynomials with coefficients in \mathbb{F} .
- Polynomial are particular cases of rational matrices, but they are important on their own. The results in this talk were obtained first for polynomial matrices and will be presented in that order.
- Any rational matrix $R(s)$ can be uniquely expressed as

$$R(s) = P(s) + R_{sp}(s), \quad \text{where}$$

- $P(s)$ is a polynomial matrix (polynomial part), and
- the rational matrix $R_{sp}(s)$ is the strictly proper part, whose entries have numerators with smaller degrees than the denominators.
- Unimodular matrices are square polynomial matrices with constant nonzero determinant.
- Polynomial and rational matrices arise in many applications.

Rational matrices and polynomial matrices

- A rational matrix $R(s)$ is a matrix whose entries are univariate rational functions with coefficients in \mathbb{F} .
- A polynomial matrix $P(s)$ is a matrix whose entries are univariate polynomials with coefficients in \mathbb{F} .
- Polynomial are particular cases of rational matrices, but they are important on their own. The results in this talk were obtained first for polynomial matrices and will be presented in that order.
- Any rational matrix $R(s)$ can be uniquely expressed as

$$R(s) = P(s) + R_{sp}(s), \quad \text{where}$$

- $P(s)$ is a polynomial matrix (polynomial part), and
- the rational matrix $R_{sp}(s)$ is the strictly proper part, whose entries have numerators with smaller degrees than the denominators.
- Unimodular matrices are square polynomial matrices with constant nonzero determinant.
- Polynomial and rational matrices arise in many applications.

Rational matrices and polynomial matrices

- A rational matrix $R(s)$ is a matrix whose entries are univariate rational functions with coefficients in \mathbb{F} .
- A polynomial matrix $P(s)$ is a matrix whose entries are univariate polynomials with coefficients in \mathbb{F} .
- Polynomial are particular cases of rational matrices, but they are important on their own. The results in this talk were obtained first for polynomial matrices and will be presented in that order.
- Any rational matrix $R(s)$ can be uniquely expressed as

$$R(s) = P(s) + R_{sp}(s), \quad \text{where}$$

- $P(s)$ is a polynomial matrix (polynomial part), and
- the rational matrix $R_{sp}(s)$ is the strictly proper part, whose entries have numerators with smaller degrees than the denominators.
- Unimodular matrices are square polynomial matrices with constant nonzero determinant.
- Polynomial and rational matrices arise in many applications.

The Smith-McMillan form of a Rational Matrix

Definition

The **Smith-McMillan form** of a rational matrix $R(s) \in \mathbb{F}(s)^{m \times n}$ is the following **diagonal matrix** obtained under unimodular transformations $U(s)$ and $V(s)$:

$$U(s)R(s)V(s) = \left[\begin{array}{c|c} \begin{matrix} \frac{\epsilon_1(s)}{\psi_1(s)} \\ \vdots \\ \frac{\epsilon_r(s)}{\psi_r(s)} \end{matrix} & \begin{matrix} 0_{r \times (n-r)} \\ \hline 0_{(m-r) \times r} \end{matrix} \\ \hline 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{array} \right].$$

- $\epsilon_1(s) | \dots | \epsilon_r(s)$ and $\psi_r(s) | \dots | \psi_1(s)$ are scalar monic polynomials,
- the fractions $\frac{\epsilon_i(s)}{\psi_i(s)}$ are irreducible (invariant rational functions of $R(s)$),
- $r = \text{rank } R(s)$ (or normal rank of $R(s)$).

The Smith-McMillan form of a Rational Matrix

Definition

The **Smith-McMillan form** of a rational matrix $R(s) \in \mathbb{F}(s)^{m \times n}$ is the following **diagonal matrix** obtained under unimodular transformations $U(s)$ and $V(s)$:

$$U(s)R(s)V(s) = \left[\begin{array}{c|c} \begin{matrix} \frac{\epsilon_1(s)}{\psi_1(s)} \\ \vdots \\ \frac{\epsilon_r(s)}{\psi_r(s)} \end{matrix} & \begin{matrix} 0_{r \times (n-r)} \\ \hline 0_{(m-r) \times r} \end{matrix} \\ \hline 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{array} \right].$$

- $\epsilon_1(s) | \dots | \epsilon_r(s)$ and $\psi_r(s) | \dots | \psi_1(s)$ are scalar monic polynomials,
- the fractions $\frac{\epsilon_i(s)}{\psi_i(s)}$ are irreducible (invariant rational functions of $R(s)$),
- $r = \text{rank } R(s)$ (or normal rank of $R(s)$).

The Smith-McMillan form of a Rational Matrix

Definition

The **Smith-McMillan form** of a rational matrix $R(s) \in \mathbb{F}(s)^{m \times n}$ is the following **diagonal matrix** obtained under unimodular transformations $U(s)$ and $V(s)$:

$$U(s)R(s)V(s) = \left[\begin{array}{c|c} \begin{matrix} \frac{\epsilon_1(s)}{\psi_1(s)} \\ \vdots \\ \frac{\epsilon_r(s)}{\psi_r(s)} \end{matrix} & \begin{matrix} 0_{r \times (n-r)} \\ \hline 0_{(m-r) \times r} \end{matrix} \\ \hline 0_{(m-r) \times (n-r)} & 0_{(m-r) \times (n-r)} \end{array} \right].$$

- $\epsilon_1(s) | \dots | \epsilon_r(s)$ and $\psi_r(s) | \dots | \psi_1(s)$ are scalar monic polynomials,
- the fractions $\frac{\epsilon_i(s)}{\psi_i(s)}$ are irreducible (invariant rational functions of $R(s)$),
- $r = \text{rank } R(s)$ (or normal rank of $R(s)$).

The Smith-McMillan form of a Rational Matrix

Definition

The **Smith-McMillan form** of a rational matrix $R(s) \in \mathbb{F}(s)^{m \times n}$ is the following **diagonal matrix** obtained under unimodular transformations $U(s)$ and $V(s)$:

$$U(s)R(s)V(s) = \left[\begin{array}{c|c} \begin{matrix} \frac{\epsilon_1(s)}{\psi_1(s)} \\ \vdots \\ \frac{\epsilon_r(s)}{\psi_r(s)} \end{matrix} & \begin{matrix} 0_{r \times (n-r)} \\ \hline 0_{(m-r) \times r} \end{matrix} \\ \hline 0_{(m-r) \times (n-r)} & 0_{(m-r) \times (n-r)} \end{array} \right].$$

- $\epsilon_1(s) | \dots | \epsilon_r(s)$ and $\psi_r(s) | \dots | \psi_1(s)$ are scalar monic polynomials,
- the fractions $\frac{\epsilon_i(s)}{\psi_i(s)}$ are irreducible (invariant rational functions of $R(s)$),
- $r = \text{rank } R(s)$ (or normal rank of $R(s)$).

Definition (finite zeros and finite poles)

Given the **Smith-McMillan form** of a rational matrix $R(s) \in \mathbb{F}(s)^{m \times n}$:

$$\text{diag} \left(\frac{\epsilon_1(s)}{\psi_1(s)}, \dots, \frac{\epsilon_r(s)}{\psi_r(s)}, 0_{(m-r) \times (n-r)} \right)$$

The **finite zeros** of $R(s)$ are the roots of the numerators and the **finite poles** are the roots of the denominators.

Remark

Given any $c \in \mathbb{F}$, one can write for each $i = 1, \dots, r$,

$$\frac{\epsilon_i(s)}{\psi_i(s)} = (s - c)^{\sigma_i(c)} \frac{\tilde{\epsilon}_i(s)}{\tilde{\psi}_i(s)}, \quad \text{with } \tilde{\epsilon}_i(c) \neq 0, \tilde{\psi}_i(c) \neq 0.$$

Definition (Invariant orders at c)

The invariant orders at c of $R(s)$ are

$$S(R, c) = (\sigma_1(c) \leq \sigma_2(c) \leq \dots \leq \sigma_r(c)).$$

Definition (finite zeros and finite poles)

Given the **Smith-McMillan form** of a rational matrix $R(s) \in \mathbb{F}(s)^{m \times n}$:

$$\text{diag} \left(\frac{\epsilon_1(s)}{\psi_1(s)}, \dots, \frac{\epsilon_r(s)}{\psi_r(s)}, 0_{(m-r) \times (n-r)} \right)$$

The **finite zeros** of $R(s)$ are the roots of the numerators and the **finite poles** are the roots of the denominators.

Remark

Given any $c \in \mathbb{F}$, one can write for each $i = 1, \dots, r$,

$$\frac{\epsilon_i(s)}{\psi_i(s)} = (s - c)^{\sigma_i(c)} \frac{\tilde{\epsilon}_i(s)}{\tilde{\psi}_i(s)}, \quad \text{with } \tilde{\epsilon}_i(c) \neq 0, \tilde{\psi}_i(c) \neq 0.$$

Definition (Invariant orders at c)

The invariant orders at c of $R(s)$ are

$$S(R, c) = (\sigma_1(c) \leq \sigma_2(c) \leq \dots \leq \sigma_r(c)).$$

Definition (finite zeros and finite poles)

Given the **Smith-McMillan form** of a rational matrix $R(s) \in \mathbb{F}(s)^{m \times n}$:

$$\text{diag} \left(\frac{\epsilon_1(s)}{\psi_1(s)}, \dots, \frac{\epsilon_r(s)}{\psi_r(s)}, 0_{(m-r) \times (n-r)} \right)$$

The **finite zeros** of $R(s)$ are the roots of the numerators and the **finite poles** are the roots of the denominators.

Remark

Given any $c \in \mathbb{F}$, one can write for each $i = 1, \dots, r$,

$$\frac{\epsilon_i(s)}{\psi_i(s)} = (s - c)^{\sigma_i(c)} \frac{\tilde{\epsilon}_i(s)}{\tilde{\psi}_i(s)}, \quad \text{with } \tilde{\epsilon}_i(c) \neq 0, \tilde{\psi}_i(c) \neq 0.$$

Definition (Invariant orders at c)

The invariant orders at c of $R(s)$ are

$$S(R, c) = (\sigma_1(c) \leq \sigma_2(c) \leq \dots \leq \sigma_r(c)).$$

Example: invariant rational functions and invariant orders at finite values

The rational matrix

$$R(s) = \begin{bmatrix} \frac{s}{s-1} & & & & & \\ & \frac{1}{s-1} & & & & \\ & & (s-1)^2 & & & \\ & & & 1 & s^2 & \\ & & & & 1 & s^7 \end{bmatrix} \in \mathbb{C}(s)^{5 \times 6}$$

has the Smith-McMillan form

$$R(s) \sim \begin{bmatrix} \frac{1}{s-1} & & & & & \\ & \frac{1}{s-1} & & & & \\ & & 1 & & & \\ & & & 1 & & \\ & & & & (s-1)^2 s & 0 \end{bmatrix},$$

and the invariant orders ($\text{rank}(R) = 5$)

- $S(R, 1) = (-1, -1, 0, 0, 2)$ (pole and zero),
- $S(R, 0) = (0, 0, 0, 0, 1)$ (zero),
- $S(R, c) = (0, 0, 0, 0, 0)$ for $c \in \mathbb{C}, c \neq 0, 1$ (nor zero, nor pole).

Example: invariant rational functions and invariant orders at finite values

The rational matrix

$$R(s) = \begin{bmatrix} \frac{s}{s-1} & & & & & \\ & \frac{1}{s-1} & & & & \\ & & (s-1)^2 & & & \\ & & & 1 & s^2 & \\ & & & & 1 & s^7 \end{bmatrix} \in \mathbb{C}(s)^{5 \times 6}$$

has the Smith-McMillan form

$$R(s) \sim \begin{bmatrix} \frac{1}{s-1} & & & & & \\ & \frac{1}{s-1} & & & & \\ & & 1 & & & \\ & & & 1 & & \\ & & & & (s-1)^2 s & 0 \end{bmatrix},$$

and the invariant orders ($\text{rank}(R) = 5$)

- $S(R, 1) = (-1, -1, 0, 0, 2)$ (pole and zero),
- $S(R, 0) = (0, 0, 0, 0, 1)$ (zero),
- $S(R, c) = (0, 0, 0, 0, 0)$ for $c \in \mathbb{C}, c \neq 0, 1$ (nor zero, nor pole).

Example: invariant rational functions and invariant orders at finite values

The rational matrix

$$R(s) = \begin{bmatrix} \frac{s}{s-1} & & & & & \\ & \frac{1}{s-1} & & & & \\ & & (s-1)^2 & & & \\ & & & 1 & s^2 & \\ & & & & 1 & s^7 \end{bmatrix} \in \mathbb{C}(s)^{5 \times 6}$$

has the Smith-McMillan form

$$R(s) \sim \begin{bmatrix} \frac{1}{s-1} & & & & & \\ & \frac{1}{s-1} & & & & \\ & & 1 & & & \\ & & & 1 & & \\ & & & & (s-1)^2 s & 0 \end{bmatrix},$$

and the invariant orders ($\text{rank}(R) = 5$)

- $S(R, 1) = (-1, -1, 0, 0, 2)$ (pole and zero),
- $S(R, 0) = (0, 0, 0, 0, 1)$ (zero),
- $S(R, c) = (0, 0, 0, 0, 0)$ for $c \in \mathbb{C}, c \neq 0, 1$ (nor zero, nor pole).

The Smith form of a Polynomial Matrix

If $P(s)$ is a polynomial matrix, the denominators of its invariant rational functions are all 1 and the Smith-McMillan form reduces to the Smith form.

Definition

The **Smith form** of a polynomial matrix $P(s) \in \mathbb{F}[s]^{m \times n}$ is the following diagonal matrix obtained under unimodular transformations $U(s)$ and $V(s)$:

$$U(s)P(s)V(s) = \left[\begin{array}{cccc|c} \alpha_1(s) & 0 & \dots & 0 & \\ 0 & \alpha_2(s) & \ddots & \vdots & 0_{r \times (n-r)} \\ \vdots & \ddots & \ddots & 0 & \\ 0 & \dots & 0 & \alpha_r(s) & \\ \hline & & & & 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{array} \right].$$

- $\alpha_1(s), \dots, \alpha_r(s)$ are monic scalar polynomials (**invariant factors**).
- The invariant orders at $c \in \mathbb{F}$ are always nonnegative, are called the **partial multiplicities** at c , and the zeros of the invariant factors are called the **finite eigenvalues**.

The Smith form of a Polynomial Matrix

If $P(s)$ is a polynomial matrix, the denominators of its invariant rational functions are all 1 and the Smith-McMillan form reduces to the Smith form.

Definition

The **Smith form** of a polynomial matrix $P(s) \in \mathbb{F}[s]^{m \times n}$ is the following diagonal matrix obtained under unimodular transformations $U(s)$ and $V(s)$:

$$U(s)P(s)V(s) = \left[\begin{array}{cccc|c} \alpha_1(s) & 0 & \dots & 0 & \\ 0 & \alpha_2(s) & \ddots & \vdots & 0_{r \times (n-r)} \\ \vdots & \ddots & \ddots & 0 & \\ 0 & \dots & 0 & \alpha_r(s) & \\ \hline & & & & 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{array} \right].$$

- $\alpha_1(s) | \dots | \alpha_r(s)$ are monic scalar polynomials (**invariant factors**).
- The invariant orders at $c \in \mathbb{F}$ are always nonnegative, are called the partial multiplicities at c , and the zeros of the invariant factors are called the **finite eigenvalues**.

The Smith form of a Polynomial Matrix

If $P(s)$ is a polynomial matrix, the denominators of its invariant rational functions are all 1 and the Smith-McMillan form reduces to the Smith form.

Definition

The **Smith form** of a polynomial matrix $P(s) \in \mathbb{F}[s]^{m \times n}$ is the following diagonal matrix obtained under unimodular transformations $U(s)$ and $V(s)$:

$$U(s)P(s)V(s) = \left[\begin{array}{cccc|c} \alpha_1(s) & 0 & \dots & 0 & \\ 0 & \alpha_2(s) & \ddots & \vdots & 0_{r \times (n-r)} \\ \vdots & \ddots & \ddots & 0 & \\ 0 & \dots & 0 & \alpha_r(s) & \\ \hline & & & & 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{array} \right].$$

- $\alpha_1(s) | \dots | \alpha_r(s)$ are monic scalar polynomials (**invariant factors**).
- The invariant orders at $c \in \mathbb{F}$ are always nonnegative, are called the partial multiplicities at c , and the zeros of the invariant factors are called the **finite eigenvalues**.

The Smith form of a Polynomial Matrix

If $P(s)$ is a polynomial matrix, the denominators of its invariant rational functions are all 1 and the Smith-McMillan form reduces to the Smith form.

Definition

The **Smith form** of a polynomial matrix $P(s) \in \mathbb{F}[s]^{m \times n}$ is the following diagonal matrix obtained under unimodular transformations $U(s)$ and $V(s)$:

$$U(s)P(s)V(s) = \left[\begin{array}{cccc|c} \alpha_1(s) & 0 & \dots & 0 & \\ 0 & \alpha_2(s) & \ddots & \vdots & 0_{r \times (n-r)} \\ \vdots & \ddots & \ddots & 0 & \\ 0 & \dots & 0 & \alpha_r(s) & \\ \hline & & & & 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{array} \right].$$

- $\alpha_1(s) | \dots | \alpha_r(s)$ are monic scalar polynomials (**invariant factors**).
- The invariant orders at $c \in \mathbb{F}$ are always nonnegative, are called the partial multiplicities at c , and the zeros of the invariant factors are called the **finite eigenvalues**.

Example: invariant factors and partial multiplicities at finite values

The polynomial matrix

$$P(s) = \begin{bmatrix} 1 & & & \\ & s-1 & & \\ & & (s-1)(s+3)^2 & \\ & & & 0 \end{bmatrix} \in \mathbb{C}[s]^{4 \times 4}$$

is already in **Smith form**.

- Invariant factors of $P(s)$:

$$\alpha_1(s) = 1, \alpha_2(s) = (s-1), \alpha_3(s) = (s-1)(s+3)^2.$$

- Finite eigenvalues of $P(s)$: $1, -3$.
- Partial multiplicities: $(\text{rank}(P) = 3)$

- $S(P, 1) = (0, 1, 1)$,
- $S(P, -3) = (0, 0, 2)$,
- $S(P, c) = (0, 0, 0)$ for $c \in \mathbb{C}, c \neq -3, 1$ (no eigenvalue).

Example: invariant factors and partial multiplicities at finite values

The polynomial matrix

$$P(s) = \begin{bmatrix} 1 & & & \\ & s-1 & & \\ & & (s-1)(s+3)^2 & \\ & & & 0 \end{bmatrix} \in \mathbb{C}[s]^{4 \times 4}$$

is already in Smith form.

- Invariant factors of $P(s)$:

$$\alpha_1(s) = 1, \alpha_2(s) = (s-1), \alpha_3(s) = (s-1)(s+3)^2.$$

- Finite eigenvalues of $P(s)$: $1, -3$.
- Partial multiplicities: $(\text{rank}(P) = 3)$
 - $S(P, 1) = (0, 1, 1)$,
 - $S(P, -3) = (0, 0, 2)$,
 - $S(P, c) = (0, 0, 0)$ for $c \in \mathbb{C}, c \neq -3, 1$ (no eigenvalue).

Example: invariant factors and partial multiplicities at finite values

The polynomial matrix

$$P(s) = \begin{bmatrix} 1 & & & \\ & s-1 & & \\ & & (s-1)(s+3)^2 & \\ & & & 0 \end{bmatrix} \in \mathbb{C}[s]^{4 \times 4}$$

is already in Smith form.

- Invariant factors of $P(s)$:

$$\alpha_1(s) = 1, \alpha_2(s) = (s-1), \alpha_3(s) = (s-1)(s+3)^2.$$

- Finite eigenvalues of $P(s)$: $1, -3$.

- Partial multiplicities: $(\text{rank}(P) = 3)$

- $S(P, 1) = (0, 1, 1)$,
- $S(P, -3) = (0, 0, 2)$,
- $S(P, c) = (0, 0, 0)$ for $c \in \mathbb{C}, c \neq -3, 1$ (no eigenvalue).

Example: invariant factors and partial multiplicities at finite values

The polynomial matrix

$$P(s) = \begin{bmatrix} 1 & & & \\ & s-1 & & \\ & & (s-1)(s+3)^2 & \\ & & & 0 \end{bmatrix} \in \mathbb{C}[s]^{4 \times 4}$$

is already in Smith form.

- Invariant factors of $P(s)$:

$$\alpha_1(s) = 1, \alpha_2(s) = (s-1), \alpha_3(s) = (s-1)(s+3)^2.$$

- Finite eigenvalues of $P(s)$: $1, -3$.
- Partial multiplicities: $(\text{rank}(P) = 3)$

- $S(P, 1) = (0, 1, 1)$,
- $S(P, -3) = (0, 0, 2)$,
- $S(P, c) = (0, 0, 0)$ for $c \in \mathbb{C}, c \neq -3, 1$ (no eigenvalue).

Definition

The invariant orders of a rational matrix $R(s)$ at ∞ are the invariant orders of $R\left(\frac{1}{s}\right)$ at $s = 0$.

Proposition: The smallest invariant order at infinity (Amparan, Marcaida, Zaballa, ELA 2015)

The smallest invariant order of $R(s)$ at infinity is

- 1 –degree (polynomial part of $R(s)$), if this polynomial part is nonzero,
- 2 positive, otherwise.

Definition

The invariant orders of a rational matrix $R(s)$ at ∞ are the invariant orders of $R\left(\frac{1}{s}\right)$ at $s = 0$.

Proposition: The smallest invariant order at infinity (Amparan, Marcaida, Zaballa, ELA 2015)

The smallest invariant order of $R(s)$ at infinity is

- 1 –degree (polynomial part of $R(s)$), if this polynomial part is nonzero,
- 2 positive, otherwise.

Structure at infinity: partial multiplicities at infinity of a Polynomial Matrix

Remark: Though polynomial matrices are rational matrices and their invariant orders at ∞ can be defined as in the previous slide, the literature on polynomial matrices uses another equivalent but different definition for the structure at ∞ and use another name.

Definition

Let

$$P(s) = P_d s^d + P_{d-1} s^{d-1} + \cdots + P_0, \quad P_d \neq 0,$$

be a **polynomial matrix of degree d** . The **reversal** of $P(s)$ is

$$\text{rev}P(s) := s^d P\left(\frac{1}{s}\right) = P_d + P_{d-1} s + \cdots + P_0 s^d.$$

Definition (Eigenvalue and partial mutiplicities at ∞)

- 1 The partial multiplicities of $P(s)$ at ∞ are the partial multiplicities of $\text{rev}P(s)$ at 0.
- 2 ∞ is an eigenvalue of $P(s)$ if 0 is an eigenvalue of $\text{rev}P(s)$.

Structure at infinity: partial multiplicities at infinity of a Polynomial Matrix

Remark: Though polynomial matrices are rational matrices and their invariant orders at ∞ can be defined as in the previous slide, the literature on polynomial matrices uses another equivalent but different definition for the structure at ∞ and use another name.

Definition

Let

$$P(s) = P_d s^d + P_{d-1} s^{d-1} + \cdots + P_0, \quad P_d \neq 0,$$

be a **polynomial matrix of degree d** . The **reversal** of $P(s)$ is

$$\text{rev}P(s) := s^d P\left(\frac{1}{s}\right) = P_d + P_{d-1} s + \cdots + P_0 s^d.$$

Definition (Eigenvalue and partial mutiplicities at ∞)

- 1 The partial multiplicities of $P(s)$ at ∞ are the partial multiplicities of $\text{rev}P(s)$ at 0.
- 2 ∞ is an eigenvalue of $P(s)$ if 0 is an eigenvalue of $\text{rev}P(s)$.

Structure at infinity: partial multiplicities at infinity of a Polynomial Matrix

Remark: Though polynomial matrices are rational matrices and their invariant orders at ∞ can be defined as in the previous slide, the literature on polynomial matrices uses another equivalent but different definition for the structure at ∞ and use another name.

Definition

Let

$$P(s) = P_d s^d + P_{d-1} s^{d-1} + \cdots + P_0, \quad P_d \neq 0,$$

be a **polynomial matrix of degree d** . The **reversal** of $P(s)$ is

$$\text{rev}P(s) := s^d P\left(\frac{1}{s}\right) = P_d + P_{d-1} s + \cdots + P_0 s^d.$$

Definition (Eigenvalue and partial mutiplicities at ∞)

- 1 The partial multiplicities of $P(s)$ at ∞ are the partial multiplicities of $\text{rev}P(s)$ at 0.
- 2 ∞ is an eigenvalue of $P(s)$ if 0 is an eigenvalue of $\text{rev}P(s)$.

Proposition

Let $P(s) \in \mathbb{F}[s]^{m \times n}$ be a **polynomial matrix** of degree d and rank r .

- ① $\sigma_1 \leq \sigma_2 \leq \cdots \leq \sigma_r$ are the **invariant orders** of $P(s)$ at ∞ if and only if $\sigma_1 + d \leq \sigma_2 + d \leq \cdots \leq \sigma_r + d$ are the **partial multiplicities** of $P(s)$ at ∞ .
- ② The smallest partial multiplicity of $P(s)$ at ∞ is zero.

Comments

- The reason of (2) is that $\text{rev}P(0) = P_d \neq 0$.
- The trivial restriction (2) on the smallest partial multiplicity at ∞ of a polynomial matrix is a consequence of the definition and will appear in several of the results we will present.

Proposition

Let $P(s) \in \mathbb{F}[s]^{m \times n}$ be a **polynomial matrix** of degree d and rank r .

- ① $\sigma_1 \leq \sigma_2 \leq \cdots \leq \sigma_r$ are the **invariant orders** of $P(s)$ at ∞ if and only if $\sigma_1 + d \leq \sigma_2 + d \leq \cdots \leq \sigma_r + d$ are the **partial multiplicities** of $P(s)$ at ∞ .
- ② The smallest partial multiplicity of $P(s)$ at ∞ is zero.

Comments

- The reason of (2) is that $\text{rev}P(0) = P_d \neq 0$.
- The trivial restriction (2) on the smallest partial multiplicity at ∞ of a polynomial matrix is a consequence of the definition and will appear in several of the results we will present.

Proposition

Let $P(s) \in \mathbb{F}[s]^{m \times n}$ be a **polynomial matrix** of degree d and rank r .

- ① $\sigma_1 \leq \sigma_2 \leq \cdots \leq \sigma_r$ are the **invariant orders** of $P(s)$ at ∞ if and only if $\sigma_1 + d \leq \sigma_2 + d \leq \cdots \leq \sigma_r + d$ are the **partial multiplicities** of $P(s)$ at ∞ .
- ② The smallest partial multiplicity of $P(s)$ at ∞ is zero.

Comments

- The reason of (2) is that $\text{rev}P(0) = P_d \neq 0$.
- The trivial restriction (2) on the smallest partial multiplicity at ∞ of a polynomial matrix is a consequence of the definition and will appear in several of the results we will present.

In this talk:

- $\mathbb{F}[s]$ is the ring of univariate polynomials with coefficients in \mathbb{F} .
- $\mathbb{F}(s)$ is the field of univariate rational functions over \mathbb{F} and
- $\mathbb{F}(s)^n$ is the vector space over $\mathbb{F}(s)$ of n -tuples with entries in $\mathbb{F}(s)$.
- Example:

$$\begin{bmatrix} \frac{s+2}{s^2} \\ \frac{1}{(s+1)^3} \end{bmatrix} \in \mathbb{C}(s)^2$$

- $\mathbb{F}(s)^n$ is said to be a rational vector space and its subspaces are rational vector subspaces. (Forney, SIAM J. Control 1975)

In this talk:

- $\mathbb{F}[s]$ is the ring of univariate polynomials with coefficients in \mathbb{F} .
- $\mathbb{F}(s)$ is the field of univariate rational functions over \mathbb{F} and
- $\mathbb{F}(s)^n$ is the vector space over $\mathbb{F}(s)$ of n -tuples with entries in $\mathbb{F}(s)$.
- Example:

$$\begin{bmatrix} \frac{s+2}{s^2} \\ \frac{1}{(s+1)^3} \end{bmatrix} \in \mathbb{C}(s)^2$$

- $\mathbb{F}(s)^n$ is said to be a rational vector space and its subspaces are rational vector subspaces. (Forney, SIAM J. Control 1975)

In this talk:

- $\mathbb{F}[s]$ is the ring of univariate polynomials with coefficients in \mathbb{F} .
- $\mathbb{F}(s)$ is the field of univariate rational functions over \mathbb{F} and
- $\mathbb{F}(s)^n$ is the vector space over $\mathbb{F}(s)$ of n -tuples with entries in $\mathbb{F}(s)$.
- Example:

$$\begin{bmatrix} \frac{s+2}{s^2} \\ \frac{1}{(s+1)^3} \end{bmatrix} \in \mathbb{C}(s)^2$$

- $\mathbb{F}(s)^n$ is said to be a rational vector space and its subspaces are rational vector subspaces. (Forney, SIAM J. Control 1975)

In this talk:

- $\mathbb{F}[s]$ is the ring of univariate polynomials with coefficients in \mathbb{F} .
- $\mathbb{F}(s)$ is the field of univariate rational functions over \mathbb{F} and
- $\mathbb{F}(s)^n$ is the vector space over $\mathbb{F}(s)$ of n -tuples with entries in $\mathbb{F}(s)$.
- **Example:**

$$\begin{bmatrix} \frac{s+2}{s^2} \\ \frac{1}{(s+1)^3} \end{bmatrix} \in \mathbb{C}(s)^2$$

- $\mathbb{F}(s)^n$ is said to be a rational vector space and its subspaces are rational vector subspaces. (Forney, SIAM J. Control 1975)

In this talk:

- $\mathbb{F}[s]$ is the ring of univariate polynomials with coefficients in \mathbb{F} .
- $\mathbb{F}(s)$ is the field of univariate rational functions over \mathbb{F} and
- $\mathbb{F}(s)^n$ is the vector space over $\mathbb{F}(s)$ of n -tuples with entries in $\mathbb{F}(s)$.
- **Example:**

$$\begin{bmatrix} \frac{s+2}{s^2} \\ \frac{1}{(s+1)^3} \end{bmatrix} \in \mathbb{C}(s)^2$$

- $\mathbb{F}(s)^n$ is said to be a rational vector space and its subspaces are rational vector subspaces. (Forney, SIAM J. Control 1975)

- Any rational subspace $\mathcal{V} \subseteq \mathbb{F}(s)^n$ has bases consisting entirely of vector polynomials \rightarrow **polynomial bases of \mathcal{V}** .
- Example:**

$$\begin{bmatrix} \frac{s+2}{s^2} \\ \frac{1}{(s+1)^3} \end{bmatrix} \in \mathcal{V} \implies s^2(s+1)^3 \begin{bmatrix} \frac{s+2}{s^2} \\ \frac{1}{(s+1)^3} \end{bmatrix} = \begin{bmatrix} (s+2)(s+1)^3 \\ s^2 \end{bmatrix} \in \mathcal{V}$$

Definition (Minimal basis)

A **minimal basis** of a rational subspace $\mathcal{V} \subseteq \mathbb{F}(s)^n$ is a basis

- consisting of vector polynomials
- whose sum of degrees is minimal among all bases of \mathcal{V} consisting of vector polynomials.

- Any rational subspace $\mathcal{V} \subseteq \mathbb{F}(s)^n$ has bases consisting entirely of vector polynomials \rightarrow **polynomial bases of \mathcal{V}** .
- Example:**

$$\begin{bmatrix} \frac{s+2}{s^2} \\ 1 \\ \frac{1}{(s+1)^3} \end{bmatrix} \in \mathcal{V} \implies s^2 (s+1)^3 \begin{bmatrix} \frac{s+2}{s^2} \\ 1 \\ \frac{1}{(s+1)^3} \end{bmatrix} = \begin{bmatrix} (s+2)(s+1)^3 \\ s^2 \end{bmatrix} \in \mathcal{V}$$

Definition (Minimal basis)

A **minimal basis** of a rational subspace $\mathcal{V} \subseteq \mathbb{F}(s)^n$ is a basis

- consisting of vector polynomials
- whose sum of degrees is minimal among all bases of \mathcal{V} consisting of vector polynomials.

- Any rational subspace $\mathcal{V} \subseteq \mathbb{F}(s)^n$ has bases consisting entirely of vector polynomials \rightarrow **polynomial bases of \mathcal{V}** .
- Example:**

$$\begin{bmatrix} \frac{s+2}{s^2} \\ 1 \\ \frac{1}{(s+1)^3} \end{bmatrix} \in \mathcal{V} \implies s^2 (s+1)^3 \begin{bmatrix} \frac{s+2}{s^2} \\ 1 \\ \frac{1}{(s+1)^3} \end{bmatrix} = \begin{bmatrix} (s+2)(s+1)^3 \\ s^2 \end{bmatrix} \in \mathcal{V}$$

Definition (Minimal basis)

A **minimal basis** of a rational subspace $\mathcal{V} \subseteq \mathbb{F}(s)^n$ is a basis

- consisting of vector polynomials
- whose sum of degrees is minimal among all bases of \mathcal{V} consisting of vector polynomials.

There are infinitely many minimal bases of a rational subspace $\mathcal{V} \subseteq \mathbb{F}(s)^n$, but...

Theorem (Forney, SIAM J. Control 1975)

The ordered list of degrees of the vector polynomials in any minimal basis of $\mathcal{V} \subseteq \mathbb{F}(s)^n$ is always the same.

Definition

These degrees are called the **minimal indices** of $\mathcal{V} \subseteq \mathbb{F}(s)^n$.

Remark: Minimal bases and indices of rational subspaces will play a very relevant role in this talk. So, it is important to grasp these concepts.

There are infinitely many minimal bases of a rational subspace $\mathcal{V} \subseteq \mathbb{F}(s)^n$, but...

Theorem (Forney, SIAM J. Control 1975)

The ordered list of degrees of the vector polynomials in any minimal basis of $\mathcal{V} \subseteq \mathbb{F}(s)^n$ is always the same.

Definition

These degrees are called the **minimal indices** of $\mathcal{V} \subseteq \mathbb{F}(s)^n$.

Remark: Minimal bases and indices of rational subspaces will play a very relevant role in this talk. So, it is important to grasp these concepts.

There are infinitely many minimal bases of a rational subspace $\mathcal{V} \subseteq \mathbb{F}(s)^n$, but...

Theorem (Forney, SIAM J. Control 1975)

The ordered list of degrees of the vector polynomials in any minimal basis of $\mathcal{V} \subseteq \mathbb{F}(s)^n$ is always the same.

Definition

These degrees are called the **minimal indices** of $\mathcal{V} \subseteq \mathbb{F}(s)^n$.

Remark: Minimal bases and indices of rational subspaces will play a very relevant role in this talk. So, it is important to grasp these concepts.

There are infinitely many minimal bases of a rational subspace $\mathcal{V} \subseteq \mathbb{F}(s)^n$, but...

Theorem (Forney, SIAM J. Control 1975)

The ordered list of degrees of the vector polynomials in any minimal basis of $\mathcal{V} \subseteq \mathbb{F}(s)^n$ is always the same.

Definition

These degrees are called the **minimal indices** of $\mathcal{V} \subseteq \mathbb{F}(s)^n$.

Remark: Minimal bases and indices of rational subspaces will play a very relevant role in this talk. So, it is important to grasp these concepts.

Some historical comments on minimal bases and indices

I have attributed these concepts to Forney (1975) and I have presented them in the way he did but:

- Kailath in p. 460 of *Linear Systems* (Prentice Hall, 1980) wrote
"I.C. Gohberg pointed out to the author that the significance of minimal bases was perhaps first realized by J. Plemelj in 1908 and then substantially developed in 1943 by N.I. Muskhelishvili and N.P. Vekua ... These authors were studying the ... Riemann-Hilbert problem, which was ... related to ... Wiener-Hopf integral equations, as described ... in the definitive paper of Gohberg and Krein (1958)",
- Fuhrmann and Helmke in p. 40 of *The Mathematics of Networks of Linear Systems* (Springer, 2015) wrote
"The existence of such basis matrices for $\mathbb{F}[s]$ -modules of rational function spaces goes back to the early work by Dedekind and Weber (1882), where they are called normal bases. More recent contributions have been made by Forney (1975) ..."

Remark: Minimal bases and indices of the **null spaces** of rational matrices (transfer functions) play a relevant role in several problems of Linear Systems and Control Theory that reduce to **solving equations for rational matrices**.

Some historical comments on minimal bases and indices

I have attributed these concepts to Forney (1975) and I have presented them in the way he did but:

- Kailath in p. 460 of *Linear Systems* (Prentice Hall, 1980) wrote
"I.C. Gohberg pointed out to the author that the significance of minimal bases was perhaps first realized by J. Plemelj in 1908 and then substantially developed in 1943 by N.I. Muskhelishvili and N.P. Vekua ... These authors were studying the ... Riemann-Hilbert problem, which was ... related to ... Wiener-Hopf integral equations, as described ... in the definitive paper of Gohberg and Krein (1958)",
- Fuhrmann and Helmke in p. 40 of *The Mathematics of Networks of Linear Systems* (Springer, 2015) wrote
"The existence of such basis matrices for $\mathbb{F}[s]$ -modules of rational function spaces goes back to the early work by Dedekind and Weber (1882), where they are called normal bases. More recent contributions have been made by Forney (1975) ..."

Remark: Minimal bases and indices of the **null spaces** of rational matrices (transfer functions) play a relevant role in several problems of Linear Systems and Control Theory that reduce to **solving equations for rational matrices**.

Some historical comments on minimal bases and indices

I have attributed these concepts to Forney (1975) and I have presented them in the way he did but:

- Kailath in p. 460 of *Linear Systems* (Prentice Hall, 1980) wrote
"I.C. Gohberg pointed out to the author that the significance of minimal bases was perhaps first realized by J. Plemelj in 1908 and then substantially developed in 1943 by N.I. Muskhelishvili and N.P. Vekua ... These authors were studying the ... Riemann-Hilbert problem, which was ... related to ... Wiener-Hopf integral equations, as described ... in the definitive paper of Gohberg and Krein (1958)",
- Fuhrmann and Helmke in p. 40 of *The Mathematics of Networks of Linear Systems* (Springer, 2015) wrote
"The existence of such basis matrices for $\mathbb{F}[s]$ -modules of rational function spaces goes back to the early work by Dedekind and Weber (1882), where they are called normal bases. More recent contributions have been made by Forney (1975) ..."

Remark: Minimal bases and indices of the **null spaces** of rational matrices (transfer functions) play a relevant role in several problems of Linear Systems and Control Theory that reduce to **solving equations for rational matrices**.

Some historical comments on minimal bases and indices

I have attributed these concepts to Forney (1975) and I have presented them in the way he did but:

- Kailath in p. 460 of *Linear Systems* (Prentice Hall, 1980) wrote
"I.C. Gohberg pointed out to the author that the significance of minimal bases was perhaps first realized by J. Plemelj in 1908 and then substantially developed in 1943 by N.I. Muskhelishvili and N.P. Vekua ... These authors were studying the ... Riemann-Hilbert problem, which was ... related to ... Wiener-Hopf integral equations, as described ... in the definitive paper of Gohberg and Krein (1958)",
- Fuhrmann and Helmke in p. 40 of *The Mathematics of Networks of Linear Systems* (Springer, 2015) wrote
"The existence of such basis matrices for $\mathbb{F}[s]$ -modules of rational function spaces goes back to the early work by Dedekind and Weber (1882), where they are called normal bases. More recent contributions have been made by Forney (1975) ..."

Remark: Minimal bases and indices of the **null spaces** of rational matrices (transfer functions) play a relevant role in several problems of Linear Systems and Control Theory that reduce to **solving equations for rational matrices**.

Rational null spaces of rational matrices and their minimal indices

An $m \times n$ rational matrix $R(s) \in \mathbb{F}(s)^{m \times n}$ whose rank r is smaller than m and/or n has non-trivial **left** and/or **right rational null spaces** (over the field $\mathbb{F}(s)$ of rational functions):

$$\begin{aligned}\mathcal{N}_\ell(R) &:= \{y(s) \in \mathbb{F}(s)^m : y(s)^T R(s) \equiv 0^T\} \subseteq \mathbb{F}(s)^m, \\ \mathcal{N}_r(R) &:= \{x(s) \in \mathbb{F}(s)^n : R(s)x(s) \equiv 0\} \subseteq \mathbb{F}(s)^n.\end{aligned}$$

Definition

- The **left minimal bases and indices** of $R(s)$ are those of $\mathcal{N}_\ell(R)$.
- The **right minimal bases and indices** of $R(s)$ are those of $\mathcal{N}_r(R)$.

Remark: The rational matrices without left and right minimal indices are the regular ones, that is, **square** $R(s) \in \mathbb{F}(s)^{n \times n}$ and $\det R(s) \not\equiv 0$.
Regular polynomial and rational matrices are very important in many applications, but they are not in the center of this talk.

Rational null spaces of rational matrices and their minimal indices

An $m \times n$ rational matrix $R(s) \in \mathbb{F}(s)^{m \times n}$ whose rank r is smaller than m and/or n has non-trivial **left** and/or **right rational null spaces** (over the field $\mathbb{F}(s)$ of rational functions):

$$\begin{aligned}\mathcal{N}_\ell(R) &:= \{y(s) \in \mathbb{F}(s)^m : y(s)^T R(s) \equiv 0^T\} \subseteq \mathbb{F}(s)^m, \\ \mathcal{N}_r(R) &:= \{x(s) \in \mathbb{F}(s)^n : R(s)x(s) \equiv 0\} \subseteq \mathbb{F}(s)^n.\end{aligned}$$

Definition

- The **left minimal bases and indices** of $R(s)$ are those of $\mathcal{N}_\ell(R)$.
- The **right minimal bases and indices** of $R(s)$ are those of $\mathcal{N}_r(R)$.

Remark: The rational matrices without left and right minimal indices are the regular ones, that is, **square** $R(s) \in \mathbb{F}(s)^{n \times n}$ and $\det R(s) \not\equiv 0$.

Regular polynomial and rational matrices are very important in many applications, but they are not in the center of this talk.

Rational null spaces of rational matrices and their minimal indices

An $m \times n$ rational matrix $R(s) \in \mathbb{F}(s)^{m \times n}$ whose rank r is smaller than m and/or n has non-trivial **left** and/or **right rational null spaces** (over the field $\mathbb{F}(s)$ of rational functions):

$$\begin{aligned}\mathcal{N}_\ell(R) &:= \{y(s) \in \mathbb{F}(s)^m : y(s)^T R(s) \equiv 0^T\} \subseteq \mathbb{F}(s)^m, \\ \mathcal{N}_r(R) &:= \{x(s) \in \mathbb{F}(s)^n : R(s)x(s) \equiv 0\} \subseteq \mathbb{F}(s)^n.\end{aligned}$$

Definition

- The **left minimal bases and indices** of $R(s)$ are those of $\mathcal{N}_\ell(R)$.
- The **right minimal bases and indices** of $R(s)$ are those of $\mathcal{N}_r(R)$.

Remark: The rational matrices without left and right minimal indices are the regular ones, that is, **square** $R(s) \in \mathbb{F}(s)^{n \times n}$ and $\det R(s) \not\equiv 0$.

Regular polynomial and rational matrices are very important in many applications, but they are not in the center of this talk.

Example of left/right minimal bases and indices of a rational matrix

$$P(s) = \begin{bmatrix} 1 & -s^3 & & & \\ & & 1 & -s & \\ & & & 1 & -s \end{bmatrix} \in \mathbb{C}(s)^{3 \times 5}$$

$$\mathcal{N}_r(P) = \text{Span}\left\{\underbrace{\begin{bmatrix} s^3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}}_{u_1}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ s^2 \\ s \\ 1 \end{bmatrix}}_{u_2}\right\} = \text{Span}\left\{\underbrace{\begin{bmatrix} s^3 \\ 1 \\ s^3 \\ s^2 \\ s \end{bmatrix}}_{w_1}, \underbrace{\begin{bmatrix} s^5 \\ s^2 \\ s^2 \\ s \\ 1 \end{bmatrix}}_{w_2}\right\}$$

Sum of degrees of $\{u_1, u_2\} = 3 + 2 = 5$ (right minimal bases of $P(s)$)

Sum of degrees of $\{w_1, w_2\} = 3 + 5 = 8$.

Right minimal indices of $P(s)$ = 3, 2.

$P(s)$ has no left minimal indices because $\mathcal{N}_l(P) = \{0\}$

Example of left/right minimal bases and indices of a rational matrix

$$P(s) = \begin{bmatrix} 1 & -s^3 & & & \\ & 1 & -s & & \\ & & 1 & -s \end{bmatrix} \in \mathbb{C}(s)^{3 \times 5}$$

$$\mathcal{N}_r(P) = \text{Span}\left\{\underbrace{\begin{bmatrix} s^3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}}_{u_1}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ s^2 \\ s \\ 1 \end{bmatrix}}_{u_2}\right\} = \text{Span}\left\{\underbrace{\begin{bmatrix} s^3 \\ 1 \\ s^3 \\ s^2 \\ s \end{bmatrix}}_{w_1}, \underbrace{\begin{bmatrix} s^5 \\ s^2 \\ s^2 \\ s \\ 1 \end{bmatrix}}_{w_2}\right\}$$

Sum of degrees of $\{u_1, u_2\} = 3 + 2 = 5$ (right minimal bases of $P(s)$)

Sum of degrees of $\{w_1, w_2\} = 3 + 5 = 8$.

Right minimal indices of $P(s)$ = 3, 2.

$P(s)$ has no left minimal indices because $\mathcal{N}_l(P) = \{0\}$

Example of left/right minimal bases and indices of a rational matrix

$$P(s) = \begin{bmatrix} 1 & -s^3 & & & \\ & 1 & -s & & \\ & & 1 & -s \end{bmatrix} \in \mathbb{C}(s)^{3 \times 5}$$

$$\mathcal{N}_r(P) = \text{Span}\left\{\underbrace{\begin{bmatrix} s^3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}}_{u_1}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ s^2 \\ s \\ 1 \end{bmatrix}}_{u_2}\right\} = \text{Span}\left\{\underbrace{\begin{bmatrix} s^3 \\ 1 \\ s^3 \\ s^2 \\ s \end{bmatrix}}_{w_1}, \underbrace{\begin{bmatrix} s^5 \\ s^2 \\ s^2 \\ s \\ 1 \end{bmatrix}}_{w_2}\right\}$$

Sum of degrees of $\{u_1, u_2\} = 3 + 2 = 5$ (right minimal bases of $P(s)$)

Sum of degrees of $\{w_1, w_2\} = 3 + 5 = 8$.

Right minimal indices of $P(s) = 3, 2$.

$P(s)$ has no left minimal indices because $\mathcal{N}_l(P) = \{0\}$

Example of left/right minimal bases and indices of a rational matrix

$$P(s) = \begin{bmatrix} 1 & -s^3 & & & \\ & 1 & -s & & \\ & & 1 & -s \end{bmatrix} \in \mathbb{C}(s)^{3 \times 5}$$

$$\mathcal{N}_r(P) = \text{Span}\left\{\underbrace{\begin{bmatrix} s^3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}}_{u_1}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ s^2 \\ s \\ 1 \end{bmatrix}}_{u_2}\right\} = \text{Span}\left\{\underbrace{\begin{bmatrix} s^3 \\ 1 \\ s^3 \\ s^2 \\ s \end{bmatrix}}_{w_1}, \underbrace{\begin{bmatrix} s^5 \\ s^2 \\ s^2 \\ s \\ 1 \end{bmatrix}}_{w_2}\right\}$$

Sum of degrees of $\{u_1, u_2\} = 3 + 2 = 5$ (right minimal bases of $P(s)$)

Sum of degrees of $\{w_1, w_2\} = 3 + 5 = 8$.

Right minimal indices of $P(s) = 3, 2$.

$P(s)$ has no left minimal indices because $\mathcal{N}_l(P) = \{0\}$

Example of left/right minimal bases and indices of a rational matrix

$$P(s) = \begin{bmatrix} 1 & -s^3 & & & \\ & 1 & -s & & \\ & & 1 & -s \end{bmatrix} \in \mathbb{C}(s)^{3 \times 5}$$

$$\mathcal{N}_r(P) = \text{Span}\left\{\underbrace{\begin{bmatrix} s^3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}}_{u_1}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ s^2 \\ s \\ 1 \end{bmatrix}}_{u_2}\right\} = \text{Span}\left\{\underbrace{\begin{bmatrix} s^3 \\ 1 \\ s^3 \\ s^2 \\ s \end{bmatrix}}_{w_1}, \underbrace{\begin{bmatrix} s^5 \\ s^2 \\ s^2 \\ s \\ 1 \end{bmatrix}}_{w_2}\right\}$$

Sum of degrees of $\{u_1, u_2\} = 3 + 2 = 5$ (right minimal bases of $P(s)$)

Sum of degrees of $\{w_1, w_2\} = 3 + 5 = 8$.

Right minimal indices of $P(s)$ = 3, 2.

$P(s)$ has no left minimal indices because $\mathcal{N}_l(P) = \{0\}$

Example of left/right minimal bases and indices of a rational matrix

$$P(s) = \begin{bmatrix} 1 & -s^3 & & & \\ & 1 & -s & & \\ & & 1 & -s \end{bmatrix} \in \mathbb{C}(s)^{3 \times 5}$$

$$\mathcal{N}_r(P) = \text{Span}\left\{\underbrace{\begin{bmatrix} s^3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}}_{u_1}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ s^2 \\ s \\ 1 \end{bmatrix}}_{u_2}\right\} = \text{Span}\left\{\underbrace{\begin{bmatrix} s^3 \\ 1 \\ s^3 \\ s^2 \\ s \end{bmatrix}}_{w_1}, \underbrace{\begin{bmatrix} s^5 \\ s^2 \\ s^2 \\ s \\ 1 \end{bmatrix}}_{w_2}\right\}$$

Sum of degrees of $\{u_1, u_2\} = 3 + 2 = 5$ (right minimal bases of $P(s)$)

Sum of degrees of $\{w_1, w_2\} = 3 + 5 = 8$.

Right minimal indices of $P(s)$ = 3, 2.

$P(s)$ has no left minimal indices because $\mathcal{N}_l(P) = \{0\}$.

Definition

Given a rational matrix $R(s) \in \mathbb{F}(s)^{m \times n}$ with rank r , the **complete eigenstructure** of $R(s)$ consists of the following lists

(i) the **invariant rational functions**

$$\frac{\epsilon_1(s)}{\psi_1(s)}, \dots, \frac{\epsilon_r(s)}{\psi_r(s)} \quad (\text{finite pole/zero structure}),$$

(ii) the **invariant orders at ∞** $q_1 \leq \dots \leq q_r$ **(infinite pole/zero structure)**,
(iii) the **right minimal indices** $d_1 \geq \dots \geq d_{n-r}$ **(right singular structure)**,
(iv) the **left minimal indices** $v_1 \geq \dots \geq v_{m-r}$ **(left singular structure)**.

Remark 1: the name “eigenstructure” comes from Van Dooren (PhD Thesis, 1979) and has been used by Van Dooren in several papers since then. Other authors use zero, pole and nullspace (or singular) structures (Kailath, 1980).

Remark 2: given the complete eigenstructure, one can recover the rank and the size.

Definition

Given a rational matrix $R(s) \in \mathbb{F}(s)^{m \times n}$ with rank r , the **complete eigenstructure** of $R(s)$ consists of the following lists

(i) the **invariant rational functions**

$$\frac{\epsilon_1(s)}{\psi_1(s)}, \dots, \frac{\epsilon_r(s)}{\psi_r(s)} \quad (\text{finite pole/zero structure}),$$

(ii) the **invariant orders at ∞** $q_1 \leq \dots \leq q_r$ **(infinite pole/zero structure)**,
(iii) the **right minimal indices** $d_1 \geq \dots \geq d_{n-r}$ **(right singular structure)**,
(iv) the **left minimal indices** $v_1 \geq \dots \geq v_{m-r}$ **(left singular structure)**.

Remark 1: the name “eigenstructure” comes from Van Dooren (PhD Thesis, 1979) and has been used by Van Dooren in several papers since then. Other authors use zero, pole and nullspace (or singular) structures (Kailath, 1980).

Remark 2: given the complete eigenstructure, one can recover the rank and the size.

Definition

Given a rational matrix $R(s) \in \mathbb{F}(s)^{m \times n}$ with rank r , the **complete eigenstructure** of $R(s)$ consists of the following lists

(i) the **invariant rational functions**

$$\frac{\epsilon_1(s)}{\psi_1(s)}, \dots, \frac{\epsilon_r(s)}{\psi_r(s)} \quad (\text{finite pole/zero structure}),$$

(ii) the **invariant orders at ∞** $q_1 \leq \dots \leq q_r$ **(infinite pole/zero structure)**,
(iii) the **right minimal indices** $d_1 \geq \dots \geq d_{n-r}$ **(right singular structure)**,
(iv) the **left minimal indices** $v_1 \geq \dots \geq v_{m-r}$ **(left singular structure)**.

Remark 1: the name “eigenstructure” comes from Van Dooren (PhD Thesis, 1979) and has been used by Van Dooren in several papers since then. Other authors use zero, pole and nullspace (or singular) structures (Kailath, 1980).

Remark 2: given the complete eigenstructure, one can recover the rank and the size.

Definition

Given a polynomial matrix $P(s) \in \mathbb{F}[s]^{m \times n}$ with rank r , the **complete eigenstructure** of $P(s)$ consists of the following lists

- (i) the **invariant factors** $\alpha_1(s) \mid \cdots \mid \alpha_r(s)$ (finite eigenvalue structure),
- (ii) the **partial multiplicities at ∞** $f_1 \leq \cdots \leq f_r$ (infinite eigenvalue structure),
- (iii) the **right minimal indices** $d_1 \geq \cdots \geq d_{n-r}$ (right singular structure),
- (iv) the **left minimal indices** $v_1 \geq \cdots \geq v_{m-r}$ (left singular structure).

Remark 1: If the degree of $P(s)$ is one, i.e., $P(s)$ is a pencil, then its complete eigenstructure is revealed by the sizes of the blocks of the Kronecker Canonical Form under strict equivalence.

Remark 2: Such a form does not exist for rational and polynomial matrices (of degree larger than one), which makes it challenging the problems considered in this talk. No canonical form reveals the complete eigenstructure.

Definition

Given a polynomial matrix $P(s) \in \mathbb{F}[s]^{m \times n}$ with rank r , the **complete eigenstructure** of $P(s)$ consists of the following lists

- (i) the **invariant factors** $\alpha_1(s) \mid \cdots \mid \alpha_r(s)$ (finite eigenvalue structure),
- (ii) the **partial multiplicities at ∞** $f_1 \leq \cdots \leq f_r$ (infinite eigenvalue structure),
- (iii) the **right minimal indices** $d_1 \geq \cdots \geq d_{n-r}$ (right singular structure),
- (iv) the **left minimal indices** $v_1 \geq \cdots \geq v_{m-r}$ (left singular structure).

Remark 1: If the degree of $P(s)$ is one, i.e., $P(s)$ is a pencil, then its complete eigenstructure is revealed by the sizes of the blocks of the Kronecker Canonical Form under strict equivalence.

Remark 2: Such a form does not exist for rational and polynomial matrices (of degree larger than one), which makes it challenging the problems considered in this talk. No canonical form reveals the complete eigenstructure.

Definition

Given a polynomial matrix $P(s) \in \mathbb{F}[s]^{m \times n}$ with rank r , the **complete eigenstructure** of $P(s)$ consists of the following lists

- (i) the **invariant factors** $\alpha_1(s) \mid \cdots \mid \alpha_r(s)$ (finite eigenvalue structure),
- (ii) the **partial multiplicities at ∞** $f_1 \leq \cdots \leq f_r$ (infinite eigenvalue structure),
- (iii) the **right minimal indices** $d_1 \geq \cdots \geq d_{n-r}$ (right singular structure),
- (iv) the **left minimal indices** $v_1 \geq \cdots \geq v_{m-r}$ (left singular structure).

Remark 1: If the degree of $P(s)$ is one, i.e., $P(s)$ is a pencil, then its complete eigenstructure is revealed by the sizes of the blocks of the Kronecker Canonical Form under strict equivalence.

Remark 2: Such a form does not exist for rational and polynomial matrices (of degree larger than one), which makes it challenging the problems considered in this talk. **No canonical form reveals the complete eigenstructure.**

- The structural data described above have received a lot of attention in the literature on polynomial and rational matrices,
- but, as we teach in basic Linear Algebra courses, every matrix has four fundamental subspaces
- and, so far, we have only used two: the left and right null spaces.
- Given a rational matrix $R(s) \in \mathbb{F}(s)^{m \times n}$ the other two are

$$\text{Row}(R) = \{R(s)^T w(s) : w(s) \in \mathbb{F}(s)^m\} \subseteq \mathbb{F}(s)^n,$$

$$\text{Col}(R) = \{R(s)v(s) : v(s) \in \mathbb{F}(s)^n\} \subseteq \mathbb{F}(s)^m,$$

- which have minimal bases and indices as any other rational subspace.
- Thus a rational matrix has four sequences of minimal indices.
- As far as we know, minimal bases and indices of row and column spaces have not received much attention in the literature, but are fundamental for constructing rank revealing factorizations of polynomial matrices with good properties (Dmytryshyn, D, Van Dooren, submitted, 2023).

- The structural data described above have received a lot of attention in the literature on polynomial and rational matrices,
- but, as we teach in basic Linear Algebra courses, **every matrix has four fundamental subspaces**
- and, so far, **we have only used two: the left and right null spaces.**
- Given a rational matrix $R(s) \in \mathbb{F}(s)^{m \times n}$ the other two are

$$\text{Row}(R) = \{R(s)^T w(s) : w(s) \in \mathbb{F}(s)^m\} \subseteq \mathbb{F}(s)^n,$$

$$\text{Col}(R) = \{R(s)v(s) : v(s) \in \mathbb{F}(s)^n\} \subseteq \mathbb{F}(s)^m,$$

- which have minimal bases and indices as any other rational subspace.
- Thus a rational matrix has **four sequences of minimal indices**.
- As far as we know, minimal bases and indices of **row and column spaces** have not received much attention in the literature, but are fundamental for **constructing rank revealing factorizations** of polynomial matrices with good properties (Dmytryshyn, D, Van Dooren, submitted, 2023).

- The structural data described above have received a lot of attention in the literature on polynomial and rational matrices,
- but, as we teach in basic Linear Algebra courses, **every matrix has four fundamental subspaces**
- and, so far, **we have only used two: the left and right null spaces.**
- Given a rational matrix $R(s) \in \mathbb{F}(s)^{m \times n}$ the other two are

$$\text{Row}(R) = \{R(s)^T w(s) : w(s) \in \mathbb{F}(s)^m\} \subseteq \mathbb{F}(s)^n,$$

$$\text{Col}(R) = \{R(s)v(s) : v(s) \in \mathbb{F}(s)^n\} \subseteq \mathbb{F}(s)^m,$$

- which have minimal bases and indices as any other rational subspace.
- Thus a rational matrix has **four sequences of minimal indices**.
- As far as we know, minimal bases and indices of **row and column spaces** have not received much attention in the literature, but are fundamental for **constructing rank revealing factorizations** of polynomial matrices with good properties (Dmytryshyn, D, Van Dooren, submitted, 2023).

- The structural data described above have received a lot of attention in the literature on polynomial and rational matrices,
- but, as we teach in basic Linear Algebra courses, **every matrix has four fundamental subspaces**
- and, so far, **we have only used two: the left and right null spaces.**
- Given a rational matrix $R(s) \in \mathbb{F}(s)^{m \times n}$ the other two are

$$\mathcal{R}ow(R) = \{R(s)^T w(s) : w(s) \in \mathbb{F}(s)^m\} \subseteq \mathbb{F}(s)^n,$$

$$\mathcal{C}ol(R) = \{R(s)v(s) : v(s) \in \mathbb{F}(s)^n\} \subseteq \mathbb{F}(s)^m,$$

- which have minimal bases and indices as any other rational subspace.
- Thus a rational matrix has **four sequences of minimal indices**.
- As far as we know, minimal bases and indices of **row and column spaces** have not received much attention in the literature, but are fundamental **for constructing rank revealing factorizations** of polynomial matrices with good properties (Dmytryshyn, D, Van Dooren, submitted, 2023).

- The structural data described above have received a lot of attention in the literature on polynomial and rational matrices,
- but, as we teach in basic Linear Algebra courses, **every matrix has four fundamental subspaces**
- and, so far, **we have only used two: the left and right null spaces.**
- Given a rational matrix $R(s) \in \mathbb{F}(s)^{m \times n}$ the other two are

$$\mathcal{R}ow(R) = \{R(s)^T w(s) : w(s) \in \mathbb{F}(s)^m\} \subseteq \mathbb{F}(s)^n,$$

$$\mathcal{C}ol(R) = \{R(s)v(s) : v(s) \in \mathbb{F}(s)^n\} \subseteq \mathbb{F}(s)^m,$$

- which have minimal bases and indices as any other rational subspace.
- Thus a rational matrix has four sequences of minimal indices.
- As far as we know, minimal bases and indices of **row and column spaces** have not received much attention in the literature, but are fundamental for **constructing rank revealing factorizations** of polynomial matrices with good properties (Dmytryshyn, D, Van Dooren, submitted, 2023).

- The structural data described above have received a lot of attention in the literature on polynomial and rational matrices,
- but, as we teach in basic Linear Algebra courses, **every matrix has four fundamental subspaces**
- and, so far, **we have only used two: the left and right null spaces.**
- Given a rational matrix $R(s) \in \mathbb{F}(s)^{m \times n}$ the other two are

$$\mathcal{R}ow(R) = \{R(s)^T w(s) : w(s) \in \mathbb{F}(s)^m\} \subseteq \mathbb{F}(s)^n,$$

$$\mathcal{C}ol(R) = \{R(s)v(s) : v(s) \in \mathbb{F}(s)^n\} \subseteq \mathbb{F}(s)^m,$$

- which have minimal bases and indices as any other rational subspace.
- Thus **a rational matrix has four sequences of minimal indices.**
- As far as we know, minimal bases and indices of **row and column spaces** have not received much attention in the literature, but are fundamental for **constructing rank revealing factorizations** of polynomial matrices with good properties (Dmytryshyn, D, Van Dooren, submitted, 2023).

- The structural data described above have received a lot of attention in the literature on polynomial and rational matrices,
- but, as we teach in basic Linear Algebra courses, **every matrix has four fundamental subspaces**
- and, so far, **we have only used two: the left and right null spaces.**
- Given a rational matrix $R(s) \in \mathbb{F}(s)^{m \times n}$ the other two are

$$\mathcal{R}ow(R) = \{R(s)^T w(s) : w(s) \in \mathbb{F}(s)^m\} \subseteq \mathbb{F}(s)^n,$$

$$\mathcal{C}ol(R) = \{R(s)v(s) : v(s) \in \mathbb{F}(s)^n\} \subseteq \mathbb{F}(s)^m,$$

- which have minimal bases and indices as any other rational subspace.
- Thus **a rational matrix has four sequences of minimal indices.**
- As far as we know, minimal bases and indices of **row and column spaces** have not received much attention in the literature, but are **fundamental for constructing rank revealing factorizations** of polynomial matrices with good properties **(Dmytryshyn, D, Van Dooren, submitted, 2023).**

Example of minimal bases and indices of $\text{Row}(R)$ and $\text{Col}(R)$

$$P(s) = \begin{bmatrix} 1 & -s^3 & & & \\ & & 1 & -s & \\ & & & 1 & -s \end{bmatrix} \in \mathbb{C}(s)^{3 \times 5}$$

- Since $\text{rank } P(s) = 3$, $\text{Col}(P) = \mathbb{C}(s)^3$, $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$ is a minimal basis of $\text{Col}(P)$ and, so, the **minimal indices of $\text{Col}(P)$** = 0, 0, 0.
- Remark: the columns of I_n are a minimal basis of $\mathbb{F}(s)^n$ which, therefore, has n minimal indices equal to 0.**

$$\text{Row}(P) = \text{Span} \left\{ \begin{bmatrix} 1 \\ -s^3 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ -s \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\},$$

- the vectors above are a minimal basis of $\text{Row}(P)$ and the **minimal indices of $\text{Row}(P)$** = 3, 1, 1.

Example of minimal bases and indices of $\text{Row}(R)$ and $\text{Col}(R)$

$$P(s) = \begin{bmatrix} 1 & -s^3 & & & \\ & 1 & -s & & \\ & & 1 & -s & \end{bmatrix} \in \mathbb{C}(s)^{3 \times 5}$$

- Since $\text{rank } P(s) = 3$, $\text{Col}(P) = \mathbb{C}(s)^3$, $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$ is a minimal basis of $\text{Col}(P)$ and, so, the **minimal indices of $\text{Col}(P)$** = 0, 0, 0.
- Remark: the columns of I_n are a minimal basis of $\mathbb{F}(s)^n$ which, therefore, has n minimal indices equal to 0.

$$\text{Row}(P) = \text{Span} \left\{ \begin{bmatrix} 1 \\ -s^3 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ -s \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\},$$

- the vectors above are a minimal basis of $\text{Row}(P)$ and the **minimal indices of $\text{Row}(P)$** = 3, 1, 1.

Example of minimal bases and indices of $\text{Row}(R)$ and $\text{Col}(R)$

$$P(s) = \begin{bmatrix} 1 & -s^3 & & & \\ & 1 & -s & & \\ & & 1 & -s & \end{bmatrix} \in \mathbb{C}(s)^{3 \times 5}$$

- Since $\text{rank } P(s) = 3$, $\text{Col}(P) = \mathbb{C}(s)^3$, $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$ is a minimal basis of $\text{Col}(P)$ and, so, the **minimal indices of $\text{Col}(P)$** = 0, 0, 0.
- Remark: the columns of I_n are a minimal basis of $\mathbb{F}(s)^n$ which, therefore, has n minimal indices equal to 0.**

$$\text{Row}(P) = \text{Span} \left\{ \begin{bmatrix} 1 \\ -s^3 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ -s \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\},$$

- the vectors above are a minimal basis of $\text{Row}(P)$ and the **minimal indices of $\text{Row}(P)$** = 3, 1, 1.

Example of minimal bases and indices of $\text{Row}(R)$ and $\text{Col}(R)$

$$P(s) = \begin{bmatrix} 1 & -s^3 & & & \\ & 1 & -s & & \\ & & 1 & -s & \end{bmatrix} \in \mathbb{C}(s)^{3 \times 5}$$

- Since $\text{rank } P(s) = 3$, $\text{Col}(P) = \mathbb{C}(s)^3$, $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$ is a minimal basis of $\text{Col}(P)$ and, so, the **minimal indices of $\text{Col}(P)$** = 0, 0, 0.
- Remark: the columns of I_n are a minimal basis of $\mathbb{F}(s)^n$ which, therefore, has n minimal indices equal to 0.**

$$\text{Row}(P) = \text{Span} \left\{ \begin{bmatrix} 1 \\ -s^3 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ -s \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\},$$

- the vectors above are a minimal basis of $\text{Row}(P)$ and the **minimal indices of $\text{Row}(P)$** = 3, 1, 1.

- 1 Preliminaries: Which are the data to be prescribed?
- 2 Goals of the talk
- 3 The Index Sum Theorems
- 4 Prescribed complete eigenstructures
- 5 Prescribed data with minimal indices of row and column spaces
- 6 Conclusions

- 1 If a **complete eigenstructure** is prescribed and a **degree d is also prescribed**, to find necessary and sufficient conditions for **the existence** of a **polynomial matrix** with precisely this complete eigenstructure and **this degree**.
- 2 If a **complete eigenstructure** is prescribed, to find necessary and sufficient conditions for **the existence of a rational matrix** with precisely this complete eigenstructure.
- 3 Consider necessary and sufficient conditions for the existence problems above when **the minimal indices of the row and column spaces are prescribed**
 - instead of the minimal indices of the right and left null spaces
 - or
 - in addition to the complete eigenstructure.

- 1 If a **complete eigenstructure** is prescribed and a **degree d is also prescribed**, to find necessary and sufficient conditions for **the existence** of a **polynomial matrix** with precisely this complete eigenstructure and **this degree**.
- 2 If a **complete eigenstructure** is prescribed, to find necessary and sufficient conditions for **the existence of a rational matrix** with precisely this complete eigenstructure.
- 3 Consider necessary and sufficient conditions for the existence problems above when **the minimal indices of the row and column spaces are prescribed**
 - instead of the minimal indices of the right and left null spaces
 - or
 - in addition to the complete eigenstructure.

- ① If a **complete eigenstructure** is prescribed and a **degree d is also prescribed**, to find necessary and sufficient conditions for **the existence** of a **polynomial matrix** with precisely this complete eigenstructure and **this degree**.
- ② If a **complete eigenstructure** is prescribed, to find necessary and sufficient conditions for **the existence of a rational matrix** with precisely this complete eigenstructure.
- ③ Consider necessary and sufficient conditions for the existence problems above when **the minimal indices of the row and column spaces are prescribed**
 - ① instead of the minimal indices of the right and left null spaces
or
 - ② in addition to the complete eigenstructure.

- ① If a **complete eigenstructure** is prescribed and a **degree d is also prescribed**, to find necessary and sufficient conditions for **the existence** of a **polynomial matrix** with precisely this complete eigenstructure and **this degree**.
- ② If a **complete eigenstructure** is prescribed, to find necessary and sufficient conditions for **the existence of a rational matrix** with precisely this complete eigenstructure.
- ③ Consider necessary and sufficient conditions for the existence problems above when **the minimal indices of the row and column spaces are prescribed**
 - ① instead of the minimal indices of the right and left null spaces
or
 - ② in addition to the complete eigenstructure.

- ① If a **complete eigenstructure** is prescribed and a **degree d is also prescribed**, to find necessary and sufficient conditions for **the existence** of a **polynomial matrix** with precisely this complete eigenstructure and **this degree**.
- ② If a **complete eigenstructure** is prescribed, to find necessary and sufficient conditions for **the existence of a rational matrix** with precisely this complete eigenstructure.
- ③ Consider necessary and sufficient conditions for the existence problems above when **the minimal indices of the row and column spaces are prescribed**
 - ① instead of the minimal indices of the right and left null spaces
or
 - ② in addition to the complete eigenstructure.

- All these problems are inverse eigenstructure problems.
- In the polynomial case if the prescribed degree is 1 (pencil case!!), then the first problem is easy: write the prescribed structure (after factorizing the invariant factors as products of irreducible polynomials) in terms of the corresponding blocks of the Kronecker canonical form of pencils and check if they adjust the prescribed rank and size.
- All the results on inverse polynomial matrix eigen problems previous to our work did not consider simultaneously the complete eigenstructure and an arbitrary degree.

- All these problems are inverse eigenstructure problems.
- In the polynomial case **if the prescribed degree is 1 (pencil case!!), then the first problem is easy**: write the prescribed structure (after factorizing the invariant factors as products of irreducible polynomials) in terms of the corresponding blocks of the **Kronecker canonical form** of pencils and check if they adjust the prescribed rank and size.
- All the results on inverse polynomial matrix eigen problems previous to our work **did not consider simultaneously the complete eigenstructure and an arbitrary degree**.

- All these problems are inverse eigenstructure problems.
- In the polynomial case **if the prescribed degree is 1 (pencil case!!), then the first problem is easy**: write the prescribed structure (after factorizing the invariant factors as products of irreducible polynomials) in terms of the corresponding blocks of the **Kronecker canonical form** of pencils and check if they adjust the prescribed rank and size.
- All the results on inverse polynomial matrix eigen problems previous to our work **did not consider simultaneously the complete eigenstructure and an arbitrary degree**.

- Marques de Sá, LAA 1979: **regular** polys with nonsingular leading coefficient, arbitrary degree.
- Gohberg, Lancaster, Rodman, Matrix Polynomials (book), 1982: **regular** monic polys, arbitrary degree.
- Lancaster, SIMAX 2007: **regular**, degree 2, some symmetries, e-vectors.
- Taslaman, Tisseur, Zaballa, LAA 2013: general polys, arbitrary degree, **no minimal indices prescribed**.
- Johansson, Kågström, Van Dooren, LAA 2013: general polys with **full rank** (having only left or right minimal indices), arbitrary degree.
- Other related **structured** works:
 - Lancaster, Zaballa, SIMAX 2014: real-symmetric, **regular, deg 2**.
 - Batzke, Mehl, LAA, 2014: **regular** T-alternating, T-palindromic.
 - De Terán, D, Mackey, Perović, LAA 2019: **quadratic** palindromic.
 - Perović, Mackey, LAMA 2023: **quadratic** real palindromic.

- Marques de Sá, LAA 1979: **regular** polys with nonsingular leading coefficient, arbitrary degree.
- Gohberg, Lancaster, Rodman, Matrix Polynomials (book), 1982: **regular** monic polys, arbitrary degree.
- Lancaster, SIMAX 2007: **regular**, degree 2, some symmetries, e-vectors.
- Taslaman, Tisseur, Zaballa, LAA 2013: general polys, arbitrary degree, no minimal indices prescribed.
- Johansson, Kågström, Van Dooren, LAA 2013: general polys with **full rank** (having only left or right minimal indices), arbitrary degree.
- Other related **structured** works:
 - Lancaster, Zaballa, SIMAX 2014: real-symmetric, **regular**, deg 2.
 - Batzke, Mehl, LAA, 2014: **regular** T-alternating, T-palindromic.
 - De Terán, D, Mackey, Perović, LAA 2019: **quadratic** palindromic.
 - Perović, Mackey, LAMA 2023: **quadratic** real palindromic.

- Marques de Sá, LAA 1979: **regular** polys with nonsingular leading coefficient, arbitrary degree.
- Gohberg, Lancaster, Rodman, Matrix Polynomials (book), 1982: **regular** monic polys, arbitrary degree.
- Lancaster, SIMAX 2007: **regular**, degree 2, some symmetries, e-vectors.
- Taslaman, Tisseur, Zaballa, LAA 2013: general polys, arbitrary degree, no minimal indices prescribed.
- Johansson, Kågström, Van Dooren, LAA 2013: general polys with **full rank** (having only left or right minimal indices), arbitrary degree.
- Other related **structured** works:
 - Lancaster, Zaballa, SIMAX 2014: real-symmetric, **regular**, deg 2.
 - Batzke, Mehl, LAA, 2014: **regular** T-alternating, T-palindromic.
 - De Terán, D, Mackey, Perović, LAA 2019: **quadratic** palindromic.
 - Perović, Mackey, LAMA 2023: **quadratic** real palindromic.

- Marques de Sá, LAA 1979: **regular** polys with nonsingular leading coefficient, arbitrary degree.
- Gohberg, Lancaster, Rodman, Matrix Polynomials (book), 1982: **regular** monic polys, arbitrary degree.
- Lancaster, SIMAX 2007: **regular**, degree 2, some symmetries, e-vectors.
- Taslaman, Tisseur, Zaballa, LAA 2013: general polys, arbitrary degree, **no minimal indices prescribed**.
- Johansson, Kågström, Van Dooren, LAA 2013: general polys with **full rank** (having only left or right minimal indices), arbitrary degree.
- Other related **structured** works:
 - Lancaster, Zaballa, SIMAX 2014: real-symmetric, **regular, deg 2**.
 - Batzke, Mehl, LAA, 2014: **regular** T-alternating, T-palindromic.
 - De Terán, D, Mackey, Perović, LAA 2019: **quadratic** palindromic.
 - Perović, Mackey, LAMA 2023: **quadratic** real palindromic.

- Marques de Sá, LAA 1979: **regular** polys with nonsingular leading coefficient, arbitrary degree.
- Gohberg, Lancaster, Rodman, Matrix Polynomials (book), 1982: **regular** monic polys, arbitrary degree.
- Lancaster, SIMAX 2007: **regular**, degree 2, some symmetries, e-vectors.
- Taslaman, Tisseur, Zaballa, LAA 2013: general polys, arbitrary degree, **no minimal indices prescribed**.
- Johansson, Kågström, Van Dooren, LAA 2013: general polys with **full rank** (having only left or right minimal indices), arbitrary degree.
- Other related **structured** works:
 - Lancaster, Zaballa, SIMAX 2014: real-symmetric, **regular**, deg 2.
 - Batzke, Mehl, LAA, 2014: **regular** T-alternating, T-palindromic.
 - De Terán, D, Mackey, Perović, LAA 2019: **quadratic** palindromic.
 - Perović, Mackey, LAMA 2023: **quadratic** real palindromic.

- Marques de Sá, LAA 1979: **regular** polys with nonsingular leading coefficient, arbitrary degree.
- Gohberg, Lancaster, Rodman, Matrix Polynomials (book), 1982: **regular** monic polys, arbitrary degree.
- Lancaster, SIMAX 2007: **regular**, degree 2, some symmetries, e-vectors.
- Taslaman, Tisseur, Zaballa, LAA 2013: general polys, arbitrary degree, **no minimal indices prescribed**.
- Johansson, Kågström, Van Dooren, LAA 2013: general polys with **full rank** (having only left or right minimal indices), arbitrary degree.
- Other related **structured** works:
 - Lancaster, Zaballa, SIMAX 2014: real-symmetric, **regular, deg 2**.
 - Batzke, Mehl, LAA, 2014: **regular** T-alternating, T-palindromic.
 - De Terán, D, Mackey, Perović, LAA 2019: **quadratic** palindromic.
 - Perović, Mackey, LAMA 2023: **quadratic** real palindromic.

- 1 Preliminaries: Which are the data to be prescribed?
- 2 Goals of the talk
- 3 The Index Sum Theorems
- 4 Prescribed complete eigenstructures
- 5 Prescribed data with minimal indices of row and column spaces
- 6 Conclusions

- They are key results that link all the components of the complete eigenstructure of polynomial and rational matrices.
- They have been rediscovered several times in the literature.
- The oldest references I know are [Van Dooren](#), PhD Thesis 1979 and [Vergheze, Van Dooren, Kailath](#), Int. J. Control 1979 (where credit is given to Van Dooren) which present the result for general rational matrices.
- [Praagman](#), Proceedings of the First European Control Conference, Grenoble 1991, presents for the first time the specific result for polynomial matrices, which seemed very different from that of general rational matrices, and does not refer to previous works.
- [Kublanovskaya](#)'s long survey in Journal of Mathematical Sciences 1999 includes both versions providing the references [Khazanov](#), PhD Thesis 1983, and [Van Dooren](#), PhD Thesis 1979.

- They are key results that link all the components of the complete eigenstructure of polynomial and rational matrices.
- They have been rediscovered several times in the literature.
- The oldest references I know are [Van Dooren](#), PhD Thesis 1979 and [Vergheze, Van Dooren, Kailath](#), Int. J. Control 1979 (where credit is given to Van Dooren) which present the result for general rational matrices.
- [Praagman](#), Proceedings of the First European Control Conference, Grenoble 1991, presents for the first time the specific result for polynomial matrices, which seemed very different from that of general rational matrices, and does not refer to previous works.
- [Kublanovskaya](#)'s long survey in Journal of Mathematical Sciences 1999 includes both versions providing the references [Khazanov](#), PhD Thesis 1983, and [Van Dooren](#), PhD Thesis 1979.

- They are key results that link all the components of the complete eigenstructure of polynomial and rational matrices.
- They have been rediscovered several times in the literature.
- The oldest references I know are [Van Dooren](#), PhD Thesis [1979](#) and [Vergheze, Van Dooren, Kailath](#), [Int. J. Control 1979](#) (where credit is given to Van Dooren) which present the result for general rational matrices.
- [Praagman](#), [Proceedings of the First European Control Conference, Grenoble 1991](#), presents for the first time the specific result for polynomial matrices, which seemed very different from that of general rational matrices, and does not refer to previous works.
- [Kublanovskaya](#)'s long survey in [Journal of Mathematical Sciences 1999](#) includes both versions providing the references [Khazanov](#), PhD Thesis [1983](#), and [Van Dooren](#), PhD Thesis [1979](#).

- They are key results that link all the components of the complete eigenstructure of polynomial and rational matrices.
- They have been rediscovered several times in the literature.
- The oldest references I know are [Van Dooren](#), PhD Thesis [1979](#) and [Vergheze, Van Dooren, Kailath](#), [Int. J. Control 1979](#) (where credit is given to Van Dooren) which present the result for general rational matrices.
- [Praagman](#), [Proceedings of the First European Control Conference, Grenoble 1991](#), presents for the first time the specific result for polynomial matrices, which seemed very different from that of general rational matrices, and does not refer to previous works.
- [Kublanovskaya](#)'s long survey in [Journal of Mathematical Sciences 1999](#) includes both versions providing the references [Khazanov](#), PhD Thesis [1983](#), and [Van Dooren](#), PhD Thesis [1979](#).

- They are key results that link all the components of the complete eigenstructure of polynomial and rational matrices.
- They have been rediscovered several times in the literature.
- The oldest references I know are [Van Dooren](#), PhD Thesis [1979](#) and [Vergheze, Van Dooren, Kailath](#), [Int. J. Control 1979](#) (where credit is given to Van Dooren) which present the result for general rational matrices.
- [Praagman](#), [Proceedings of the First European Control Conference, Grenoble 1991](#), presents for the first time the specific result for polynomial matrices, which seemed very different from that of general rational matrices, and does not refer to previous works.
- [Kublanovskaya](#)'s long survey in [Journal of Mathematical Sciences 1999](#) includes both versions providing the references [Khazanov](#), PhD Thesis [1983](#), and [Van Dooren](#), PhD Thesis [1979](#).

The Index Sum Theorem for Polynomial Matrices

Theorem

Let $P(s) \in \mathbb{F}[s]^{m \times n}$ be a polynomial matrix of degree d and normal rank r , with

- (i) invariant factors $\alpha_1(s) \mid \cdots \mid \alpha_r(s),$
- (ii) partial multiplicities at ∞ $f_1 \leq \cdots \leq f_r,$
- (iii) right minimal indices $d_1 \geq \cdots \geq d_{n-r},$
- (iv) left minimal indices $v_1 \geq \cdots \geq v_{m-r}.$

Then,

$$\sum_{i=1}^r \deg(\alpha_i) + \sum_{i=1}^r f_i + \sum_{i=1}^{n-r} d_i + \sum_{i=1}^{m-r} v_i = rd.$$

The Index Sum Theorem for Rational Matrices

Theorem

Let $R(s) \in \mathbb{F}(s)^{m \times n}$ be a rational matrix of **normal rank r** , with

(i) *invariant rational functions*

$$\frac{\epsilon_1(s)}{\psi_1(s)}, \dots, \frac{\epsilon_r(s)}{\psi_r(s)},$$

(ii) *invariant orders at ∞* $q_1 \leq \dots \leq q_r,$

(iii) *right minimal indices* $d_1 \geq \dots \geq d_{n-r},$

(iv) *left minimal indices* $v_1 \geq \dots \geq v_{m-r}.$

Then,

$$\sum_{i=1}^r \deg(\epsilon_i) - \sum_{i=1}^r \deg(\psi_i) + \sum_{i=1}^r q_i + \sum_{i=1}^{n-r} d_i + \sum_{i=1}^{m-r} v_i = 0.$$

- Though both results seem different,
- this is due to the fact that the polynomial one uses partial multiplicities at ∞ , $f_1 \leq \dots \leq f_r$,
- and the rational one uses invariant orders at ∞ , $q_1 \leq \dots \leq q_r$.
- The Polynomial Index Sum Theorem is a particular case of the Rational Index Sum Theorem, as it can be easily seen from the relation

$$f_i = q_i + d, \quad \text{for } i = 1, \dots, r.$$

- 1 Preliminaries: Which are the data to be prescribed?
- 2 Goals of the talk
- 3 The Index Sum Theorems
- 4 **Prescribed complete eigenstructures**
- 5 Prescribed data with minimal indices of row and column spaces
- 6 Conclusions

The polynomial result

Theorem

There exists a polynomial matrix $P(s) \in \mathbb{F}[s]^{m \times n}$ with degree d and normal rank $r \leq \min\{m, n\}$, and with

- (i) invariant factors $\alpha_1(s) \mid \cdots \mid \alpha_r(s),$
- (ii) partial multiplicities at ∞ $f_1 \leq \cdots \leq f_r,$
- (iii) right minimal indices $d_1 \geq \cdots \geq d_{n-r},$
- (iv) left minimal indices $v_1 \geq \cdots \geq v_{m-r},$

if and only if

1

$$\sum_{i=1}^r \deg(\alpha_i) + \sum_{i=1}^r f_i + \sum_{i=1}^{n-r} d_i + \sum_{i=1}^{m-r} v_i = rd$$

2 and

$$f_1 = 0.$$

The polynomial result

Theorem

There exists a polynomial matrix $P(s) \in \mathbb{F}[s]^{m \times n}$ with degree d and normal rank $r \leq \min\{m, n\}$, and with

- (i) *invariant factors* $\alpha_1(s) \mid \cdots \mid \alpha_r(s),$
- (ii) *partial multiplicities at ∞* $f_1 \leq \cdots \leq f_r,$
- (iii) *right minimal indices* $d_1 \geq \cdots \geq d_{n-r},$
- (iv) *left minimal indices* $v_1 \geq \cdots \geq v_{m-r},$

if and only if

1

$$\sum_{i=1}^r \deg(\alpha_i) + \sum_{i=1}^r f_i + \sum_{i=1}^{n-r} d_i + \sum_{i=1}^{m-r} v_i = rd$$

2 and

$$f_1 = 0.$$

- This result was proved by De Terán, D, Van Dooren, SIMAX 2015, for infinite fields \mathbb{F}
- and extended to any field very recently by Amparan, Baragaña, Marcaida, Roca, SIMAX 2024, via a completely different proof
- which uses previous works by Dodig, Stošić, SIMAX 2019 on completions of pencils.
- The proof from 2015 is constructive (though long and nontrivial), as well as the one from 2024, though in this case one has to dig hard into the proofs of previous results in several papers by Dodig, Stošić.
- For algebraically closed fields, it is possible to give a different proof which leads to a more transparent construction combining results of Marques de Sá, Czech. Math. J. 1980 and De Terán, D, Mackey, Van Dooren, LAA 2016.

- This result was proved by De Terán, D, Van Dooren, SIMAX 2015, for infinite fields \mathbb{F}
- and **extended to any field** very recently by Amparan, Baragaña, Marcaida, Roca, SIMAX 2024, via a completely different proof
- which uses previous works by Dodig, Stošić, SIMAX 2019 on completions of pencils.
- The proof from 2015 is constructive (though long and nontrivial), as well as the one from 2024, though in this case one has to dig hard into the proofs of previous results in several papers by Dodig, Stošić.
- For algebraically closed fields, it is possible to give a different proof which leads to a more transparent construction combining results of Marques de Sá, Czech. Math. J. 1980 and De Terán, D, Mackey, Van Dooren, LAA 2016.

- This result was proved by De Terán, D, Van Dooren, SIMAX 2015, for infinite fields \mathbb{F}
- and **extended to any field** very recently by Amparan, Baragaña, Marcaida, Roca, SIMAX 2024, via a completely different proof
- which uses previous works by Dodig, Stošić, SIMAX 2019 on completions of pencils.
- The proof from 2015 is constructive (though long and nontrivial), as well as the one from 2024, though in this case one has to dig hard into the proofs of previous results in several papers by Dodig, Stošić.
- For algebraically closed fields, it is possible to give a different proof which leads to a more transparent construction combining results of Marques de Sá, Czech. Math. J. 1980 and De Terán, D, Mackey, Van Dooren, LAA 2016.

- This result was proved by De Terán, D, Van Dooren, SIMAX 2015, for infinite fields \mathbb{F}
- and **extended to any field** very recently by Amparan, Baragaña, Marcaida, Roca, SIMAX 2024, via a completely different proof
- which uses previous works by Dodig, Stošić, SIMAX 2019 on completions of pencils.
- The proof from 2015 is constructive (though long and nontrivial), as well as the one from 2024, though in this case one has to dig hard into the proofs of previous results in several papers by Dodig, Stošić.
- For algebraically closed fields, it is possible to give a different proof which leads to a more transparent construction combining results of Marques de Sá, Czech. Math. J. 1980 and De Terán, D, Mackey, Van Dooren, LAA 2016.

- This result was proved by De Terán, D, Van Dooren, SIMAX 2015, for infinite fields \mathbb{F}
- and **extended to any field** very recently by Amparan, Baragaña, Marcaida, Roca, SIMAX 2024, via a completely different proof
- which uses previous works by Dodig, Stošić, SIMAX 2019 on completions of pencils.
- The proof from 2015 is constructive (though long and nontrivial), as well as the one from 2024, though in this case one has to dig hard into the proofs of previous results in several papers by Dodig, Stošić.
- For algebraically closed fields, it is possible to give a different proof which leads to a more transparent construction combining results of Marques de Sá, Czech. Math. J. 1980 and De Terán, D, Mackey, Van Dooren, LAA 2016.

Theorem (Anguas, D, Hollister, Mackey, SIMAX 2019)

There exists a rational matrix $R(s) \in \mathbb{F}(s)^{m \times n}$ with normal rank $r \leq \min\{m, n\}$, with

(i) invariant rational functions

$$\frac{\epsilon_1(s)}{\psi_1(s)}, \dots, \frac{\epsilon_r(s)}{\psi_r(s)},$$

(ii) invariant orders at ∞ $q_1 \leq \dots \leq q_r,$

(iii) right minimal indices $d_1 \geq \dots \geq d_{n-r},$

(iv) left minimal indices $v_1 \geq \dots \geq v_{m-r},$

if and only if

$$\sum_{i=1}^r \deg(\epsilon_i) - \sum_{i=1}^r \deg(\psi_i) + \sum_{i=1}^r q_i + \sum_{i=1}^{n-r} d_i + \sum_{i=1}^{m-r} v_i = 0.$$

- The rational result follows from the polynomial result.
- The key idea to see this is that any rational matrix $R(s)$ can be expressed as

$$R(s) = \frac{1}{\psi_1(s)} P(s),$$

where $P(s)$ is polynomial and $\psi_1(s)$ is the least common denominator of the entries of $R(s)$, which is also the denominator of its first invariant rational function.

- Then, it is possible to transform the rational prescribed data into polynomial prescribed data, realize such data with a polynomial matrix and obtain the desired rational matrix with the formula above.

- The rational result follows from the polynomial result.
- The key idea to see this is that any rational matrix $R(s)$ can be expressed as

$$R(s) = \frac{1}{\psi_1(s)} P(s),$$

where $P(s)$ is polynomial and $\psi_1(s)$ is the least common denominator of the entries of $R(s)$, which is also the denominator of its first invariant rational function.

- Then, it is possible to transform the rational prescribed data into polynomial prescribed data, realize such data with a polynomial matrix and obtain the desired rational matrix with the formula above.

- The rational result follows from the polynomial result.
- The key idea to see this is that any rational matrix $R(s)$ can be expressed as

$$R(s) = \frac{1}{\psi_1(s)} P(s),$$

where $P(s)$ is polynomial and $\psi_1(s)$ is the least common denominator of the entries of $R(s)$, which is also the denominator of its first invariant rational function.

- Then, it is possible to transform the rational prescribed data into polynomial prescribed data, realize such data with a polynomial matrix and obtain the desired rational matrix with the formula above.

- 1 Preliminaries: Which are the data to be prescribed?
- 2 Goals of the talk
- 3 The Index Sum Theorems
- 4 Prescribed complete eigenstructures
- 5 **Prescribed data with minimal indices of row and column spaces**
- 6 Conclusions

Theorem (consequence of Forney, SIAM J. Control 1975)

Let $R(s) \in \mathbb{F}(s)^{m \times n}$ be a rational matrix of normal rank r , with

- (i) *right minimal indices* $d_1 \geq \dots \geq d_{n-r}$,
- (ii) *left minimal indices* $v_1 \geq \dots \geq v_{m-r}$,
- (iii) *minimal indices of Row(R)* $\ell_1 \geq \dots \geq \ell_r$,
- (iv) *minimal indices of Col(R)* $k_1 \geq \dots \geq k_r$.

Then,

$$\sum_{i=1}^{m-r} v_i = \sum_{i=1}^r k_i \quad \text{and} \quad \sum_{i=1}^{n-r} d_i = \sum_{i=1}^r \ell_i.$$

This immediately implies a...

Theorem (consequence of Forney, SIAM J. Control 1975)

Let $R(s) \in \mathbb{F}(s)^{m \times n}$ be a rational matrix of normal rank r , with

- (i) *right minimal indices* $d_1 \geq \dots \geq d_{n-r}$,
- (ii) *left minimal indices* $v_1 \geq \dots \geq v_{m-r}$,
- (iii) *minimal indices of Row(R)* $\ell_1 \geq \dots \geq \ell_r$,
- (iv) *minimal indices of Col(R)* $k_1 \geq \dots \geq k_r$.

Then,

$$\sum_{i=1}^{m-r} v_i = \sum_{i=1}^r k_i \quad \text{and} \quad \sum_{i=1}^{n-r} d_i = \sum_{i=1}^r \ell_i.$$

This immediately implies a...

Theorem

Let $P(s) \in \mathbb{F}[s]^{m \times n}$ be a polynomial matrix of degree d and normal rank r , with

- (i) invariant factors $\alpha_1(s) \mid \cdots \mid \alpha_r(s),$
- (ii) partial multiplicities at ∞ $f_1 \leq \cdots \leq f_r,$
- (iii) minimal indices of $\text{Row}(P)$ $\ell_1 \geq \cdots \geq \ell_r,$
- (iv) minimal indices of $\text{Col}(P)$ $k_1 \geq \cdots \geq k_r.$

Then,

$$\sum_{i=1}^r \deg(\alpha_i) + \sum_{i=1}^r f_i + \sum_{i=1}^r \ell_i + \sum_{i=1}^r k_i = rd.$$

Remark: This result hints a neat solution for the problem of the existence of a polynomial matrix with all these data prescribed, but this dream is too beautiful to be true.

Theorem

Let $P(s) \in \mathbb{F}[s]^{m \times n}$ be a polynomial matrix of degree d and normal rank r , with

- (i) invariant factors $\alpha_1(s) \mid \cdots \mid \alpha_r(s),$
- (ii) partial multiplicities at ∞ $f_1 \leq \cdots \leq f_r,$
- (iii) minimal indices of $\text{Row}(P)$ $\ell_1 \geq \cdots \geq \ell_r,$
- (iv) minimal indices of $\text{Col}(P)$ $k_1 \geq \cdots \geq k_r.$

Then,

$$\sum_{i=1}^r \deg(\alpha_i) + \sum_{i=1}^r f_i + \sum_{i=1}^r \ell_i + \sum_{i=1}^r k_i = rd.$$

Remark: This result hints a neat solution for the problem of the existence of a polynomial matrix with all these data prescribed, but this dream is too beautiful to be true.

Definition

Let

$$\mathbf{a} = (a_1 \geq \cdots \geq a_m) \quad \text{and} \quad \mathbf{b} = (b_1 \geq \cdots \geq b_m)$$

be two decreasingly ordered sequences of integers.

It is said that **a** is *majorized* by **b**, denoted by

$$\mathbf{a} \prec \mathbf{b},$$

if

$$\sum_{i=1}^k a_i \leq \sum_{i=1}^k b_i \quad \text{for } 1 \leq k \leq m-1 \text{ and}$$
$$\sum_{i=1}^m a_i = \sum_{i=1}^m b_i.$$

Theorem (Baragaña, D, Marcaida, Roca, in preparation 2024)

There exists a polynomial matrix $P(s) \in \mathbb{F}[s]^{m \times n}$ with degree d and normal rank $r < \min\{m, n\}$, with

- (i) invariant factors $\alpha_1(s) \mid \cdots \mid \alpha_r(s),$
- (ii) partial multiplicities at ∞ $f_1 \leq \cdots \leq f_r,$
- (iii) minimal indices of $\text{Row}(P)$ $\ell_1 \geq \cdots \geq \ell_r,$
- (iv) minimal indices of $\text{Col}(P)$ $k_1 \geq \cdots \geq k_r,$

if and only if

(1)

$$(d - g_r, \dots, d - g_1) \prec (\deg(\alpha_r) + f_r, \dots, \deg(\alpha_1) + f_1),$$

where $g_1 \geq \cdots \geq g_r$ is the decreasing reordering of $k_r + \ell_1, \dots, k_1 + \ell_r,$

(2) and $f_1 = 0.$

Theorem (Baragaña, D, Marcaida, Roca, in preparation 2024)

There exists a polynomial matrix $P(s) \in \mathbb{F}[s]^{m \times n}$ with degree d and normal rank $r < \min\{m, n\}$, with

- (i) invariant factors $\alpha_1(s) \mid \cdots \mid \alpha_r(s),$
- (ii) partial multiplicities at ∞ $f_1 \leq \cdots \leq f_r,$
- (iii) minimal indices of $\text{Row}(P)$ $\ell_1 \geq \cdots \geq \ell_r,$
- (iv) minimal indices of $\text{Col}(P)$ $k_1 \geq \cdots \geq k_r,$

if and only if

(1)

$$(d - g_r, \dots, d - g_1) \prec (\deg(\alpha_r) + f_r, \dots, \deg(\alpha_1) + f_1),$$

where $g_1 \geq \cdots \geq g_r$ is the decreasing reordering of $k_r + \ell_1, \dots, k_1 + \ell_r,$

(2) and $f_1 = 0.$

- The majorization condition amounts in fact to r conditions. The last of such conditions is the Index Sum Theorem, i.e., the unique condition appearing in the result for prescribing the complete eigenstructure.
- If $r = \min\{m, n\}$, we have to add two trivial conditions to (1) and (2):
 - (3) $\ell_1 = \cdots = \ell_r = 0$ if $r = n$
(coming from $\text{Row}(P) = \mathbb{F}(s)^n$ in this case),
 - (4) $k_1 = \cdots = k_r = 0$ if $r = m$
(coming from $\text{Col}(P) = \mathbb{F}(s)^m$ in this case).
- The proof of the necessity is valid over arbitrary fields. The proof of the sufficiency requires algebraically closed fields in an essential way and we have examples over \mathbb{R} for which the theorem does not hold.

- The majorization condition amounts in fact to r conditions. The last of such conditions is the Index Sum Theorem, i.e., the unique condition appearing in the result for prescribing the complete eigenstructure.
- If $r = \min\{m, n\}$, we have to add two trivial conditions to (1) and (2):
 - (3) $\ell_1 = \cdots = \ell_r = 0$ if $r = n$
(coming from $\text{Row}(P) = \mathbb{F}(s)^n$ in this case),
 - (4) $k_1 = \cdots = k_r = 0$ if $r = m$
(coming from $\text{Col}(P) = \mathbb{F}(s)^m$ in this case).
- The proof of the necessity is valid over arbitrary fields. The proof of the sufficiency requires algebraically closed fields in an essential way and we have examples over \mathbb{R} for which the theorem does not hold.

- The majorization condition amounts in fact to r conditions. The last of such conditions is the Index Sum Theorem, i.e., the unique condition appearing in the result for prescribing the complete eigenstructure.
- If $r = \min\{m, n\}$, we have to add two trivial conditions to (1) and (2):
 - (3) $\ell_1 = \cdots = \ell_r = 0$ if $r = n$
(coming from $\text{Row}(P) = \mathbb{F}(s)^n$ in this case),
 - (4) $k_1 = \cdots = k_r = 0$ if $r = m$
(coming from $\text{Col}(P) = \mathbb{F}(s)^m$ in this case).
- The proof of the necessity is valid over arbitrary fields. The proof of the sufficiency requires algebraically closed fields in an essential way and we have examples over \mathbb{R} for which the theorem does not hold.

Theorem (Baragaña, D, Marcaida, Roca, in preparation 2024)

There exists a rational matrix $R(s) \in \mathbb{F}(s)^{m \times n}$ with normal rank $r < \min\{m, n\}$, with

- (i) invariant rational functions $\frac{\epsilon_1(s)}{\psi_1(s)}, \dots, \frac{\epsilon_r(s)}{\psi_r(s)}$,
- (ii) invariant orders at ∞ $q_1 \leq \dots \leq q_r$,
- (iii) minimal indices of $\text{Row}(P)$ $\ell_1 \geq \dots \geq \ell_r$,
- (iv) minimal indices of $\text{Col}(P)$ $k_1 \geq \dots \geq k_r$,

if and only if

$$(-g_r, \dots, -g_1) \prec (\deg(\epsilon_r) - \deg(\psi_r) + q_r, \dots, \deg(\epsilon_1) - \deg(\psi_1) + q_1),$$

where $g_1 \geq \dots \geq g_r$ is the decreasing reordering of $k_r + \ell_1, \dots, k_1 + \ell_r$.

Prescribed minimal indices of Row/Col AND right/left/Nulls: Polynomial

Theorem (Baragaña, D, Marcaida, Roca, in preparation 2024)

There exists a polynomial matrix $P(s) \in \mathbb{F}[s]^{m \times n}$ with degree d and normal rank $r < \min\{m, n\}$, with

- (i) invariant factors $\alpha_1(s) \mid \cdots \mid \alpha_r(s),$
- (ii) partial multiplicities at ∞ $f_1 \leq \cdots \leq f_r,$
- (iii) right minimal indices $d_1 \geq \cdots \geq d_{n-r},$
- (iv) left minimal indices $v_1 \geq \cdots \geq v_{m-r},$
- (v) minimal indices of $\text{Row}(P)$ $\ell_1 \geq \cdots \geq \ell_r,$
- (vi) minimal indices of $\text{Col}(P)$ $k_1 \geq \cdots \geq k_r,$

if and only if

(1) $(d - g_r, \dots, d - g_1) \prec (\deg(\alpha_r) + f_r, \dots, \deg(\alpha_1) + f_1),$
where $g_1 \geq \cdots \geq g_r$ is the decreasing reordering of $k_r + \ell_1, \dots, k_1 + \ell_r,$

(2) $f_1 = 0,$ and (3) $\sum_{i=1}^{m-r} v_i = \sum_{i=1}^r k_i$ and $\sum_{i=1}^{n-r} d_i = \sum_{i=1}^r \ell_i.$

Prescribed minimal indices of Row/Col AND right/left/Nulls: Polynomial

Theorem (Baragaña, D, Marcaida, Roca, in preparation 2024)

There exists a polynomial matrix $P(s) \in \mathbb{F}[s]^{m \times n}$ with degree d and normal rank $r < \min\{m, n\}$, with

- (i) invariant factors $\alpha_1(s) \mid \cdots \mid \alpha_r(s),$
- (ii) partial multiplicities at ∞ $f_1 \leq \cdots \leq f_r,$
- (iii) right minimal indices $d_1 \geq \cdots \geq d_{n-r},$
- (iv) left minimal indices $v_1 \geq \cdots \geq v_{m-r},$
- (v) minimal indices of $\text{Row}(P)$ $\ell_1 \geq \cdots \geq \ell_r,$
- (vi) minimal indices of $\text{Col}(P)$ $k_1 \geq \cdots \geq k_r,$

if and only if

(1) $(d - g_r, \dots, d - g_1) \prec (\deg(\alpha_r) + f_r, \dots, \deg(\alpha_1) + f_1),$
where $g_1 \geq \cdots \geq g_r$ is the decreasing reordering of $k_r + \ell_1, \dots, k_1 + \ell_r,$

(2) $f_1 = 0,$ and (3) $\sum_{i=1}^{m-r} v_i = \sum_{i=1}^r k_i \quad \text{and} \quad \sum_{i=1}^{n-r} d_i = \sum_{i=1}^r \ell_i.$

Prescribed minimal indices of Row/Col AND right/left/Nulls: Rational

Theorem (Baragaña, D, Marcaida, Roca, in preparation 2024)

There exists a rational matrix $R(s) \in \mathbb{F}(s)^{m \times n}$ with normal rank

$r < \min\{m, n\}$, with

(i) invariant rational functions $\frac{\epsilon_1(s)}{\psi_1(s)}, \dots, \frac{\epsilon_r(s)}{\psi_r(s)}$,

(ii) invariant orders at ∞ $q_1 \leq \dots \leq q_r$,

(iii) right minimal indices $d_1 \geq \dots \geq d_{n-r}$,

(iv) left minimal indices $v_1 \geq \dots \geq v_{m-r}$,

(v) minimal indices of $\text{Row}(R)$ $\ell_1 \geq \dots \geq \ell_r$,

(vi) minimal indices of $\text{Col}(R)$ $k_1 \geq \dots \geq k_r$,

if and only if

(1) $(-g_r, \dots, -g_1) \prec (\deg(\epsilon_r) - \deg(\psi_r) + q_r, \dots, \deg(\epsilon_1) - \deg(\psi_1) + q_1)$,
where $g_1 \geq \dots \geq g_r$ is the decreasing reordering of $k_r + \ell_1, \dots, k_1 + \ell_r$,

(2) and $\sum_{i=1}^{m-r} v_i = \sum_{i=1}^r k_i$ and $\sum_{i=1}^{n-r} d_i = \sum_{i=1}^r \ell_i$.

Theorem (Baragaña, D, Marcaida, Roca, in preparation 2024)

There exists a rational matrix $R(s) \in \mathbb{F}(s)^{m \times n}$ with normal rank

$r < \min\{m, n\}$, with

- (i) invariant rational functions $\frac{\epsilon_1(s)}{\psi_1(s)}, \dots, \frac{\epsilon_r(s)}{\psi_r(s)},$
- (ii) invariant orders at ∞ $q_1 \leq \dots \leq q_r,$
- (iii) right minimal indices $d_1 \geq \dots \geq d_{n-r},$
- (iv) left minimal indices $v_1 \geq \dots \geq v_{m-r},$
- (v) minimal indices of $\text{Row}(R)$ $\ell_1 \geq \dots \geq \ell_r,$
- (vi) minimal indices of $\text{Col}(R)$ $k_1 \geq \dots \geq k_r,$

if and only if

(1) $(-g_r, \dots, -g_1) \prec (\deg(\epsilon_r) - \deg(\psi_r) + q_r, \dots, \deg(\epsilon_1) - \deg(\psi_1) + q_1),$
 where $g_1 \geq \dots \geq g_r$ is the decreasing reordering of $k_r + \ell_1, \dots, k_1 + \ell_r,$

(2) and $\sum_{i=1}^{m-r} v_i = \sum_{i=1}^r k_i \quad \text{and} \quad \sum_{i=1}^{n-r} d_i = \sum_{i=1}^r \ell_i.$

- With respect to the results in the last three slides:
 - If $r = \min\{m, n\}$, we have to add two trivial conditions:
 - $\ell_1 = \cdots = \ell_r = 0$ if $r = n$
(coming from $\text{Row}(P) = \mathbb{F}(s)^n$ in this case),
 - $k_1 = \cdots = k_r = 0$ if $r = m$
(coming from $\text{Col}(P) = \mathbb{F}(s)^m$ in this case).
 - The proof of the necessity is valid over arbitrary fields. The proof of the sufficiency requires algebraically closed fields.
 - With respect to the results that prescribe the minimal indices of the row and column spaces **instead of** the minimal indices of the left and right null spaces, the same necessary and sufficient conditions hold if **minimal bases of the row and column spaces are prescribed** and not just their minimal indices.

- With respect to the results in the last three slides:
 - If $r = \min\{m, n\}$, we have to add two trivial conditions:
 - $\ell_1 = \dots = \ell_r = 0$ if $r = n$
(coming from $\text{Row}(P) = \mathbb{F}(s)^n$ in this case),
 - $k_1 = \dots = k_r = 0$ if $r = m$
(coming from $\text{Col}(P) = \mathbb{F}(s)^m$ in this case).
 - The proof of the necessity is valid over arbitrary fields. The proof of the sufficiency requires algebraically closed fields.
 - With respect to the results that prescribe the minimal indices of the row and column spaces **instead of** the minimal indices of the left and right null spaces, the same necessary and sufficient conditions hold if **minimal bases of the row and column spaces are prescribed** and not just their minimal indices.

- With respect to the results in the last three slides:
 - If $r = \min\{m, n\}$, we have to add two trivial conditions:
 - $\ell_1 = \dots = \ell_r = 0$ if $r = n$
(coming from $\text{Row}(P) = \mathbb{F}(s)^n$ in this case),
 - $k_1 = \dots = k_r = 0$ if $r = m$
(coming from $\text{Col}(P) = \mathbb{F}(s)^m$ in this case).
 - The proof of the necessity is valid over arbitrary fields. The proof of the sufficiency requires algebraically closed fields.
- With respect to the results that prescribe the minimal indices of the row and column spaces instead of the minimal indices of the left and right null spaces, the same necessary and sufficient conditions hold if **minimal bases of the row and column spaces are prescribed** and not just their minimal indices.

- With respect to the results in the last three slides:
 - If $r = \min\{m, n\}$, we have to add two trivial conditions:
 - $\ell_1 = \dots = \ell_r = 0$ if $r = n$
(coming from $\mathcal{R}ow(P) = \mathbb{F}(s)^n$ in this case),
 - $k_1 = \dots = k_r = 0$ if $r = m$
(coming from $\mathcal{C}ol(P) = \mathbb{F}(s)^m$ in this case).
 - The proof of the necessity is valid over arbitrary fields. The proof of the sufficiency requires algebraically closed fields.
 - With respect to the results that prescribe the minimal indices of the row and column spaces **instead of** the minimal indices of the left and right null spaces, the same necessary and sufficient conditions hold if **minimal bases of the row and column spaces are prescribed** and not just their minimal indices.

- 1 Preliminaries: Which are the data to be prescribed?
- 2 Goals of the talk
- 3 The Index Sum Theorems
- 4 Prescribed complete eigenstructures
- 5 Prescribed data with minimal indices of row and column spaces
- 6 Conclusions

- We have provided necessary and sufficient conditions for the existence of polynomial and rational matrices when their **classical complete eigenstructures** are prescribed.
- We have provided necessary and sufficient conditions for the existence of polynomial and rational matrices when **instead of or in addition to** their **classical complete eigenstructures** the minimal indices of their **row and column spaces** are prescribed.
- The obtained necessary and sufficient conditions are very simple and only require to check some equalities or inequalities of integer numbers related to the prescribed data, the prescribed degree and rank.
- Extending these results to structured polynomial and rational matrices is essentially a completely open area where just very few particular results have been published so far.

- We have provided necessary and sufficient conditions for the existence of polynomial and rational matrices when their **classical complete eigenstructures** are prescribed.
- We have provided necessary and sufficient conditions for the existence of polynomial and rational matrices when **instead of or in addition to** their **classical complete eigenstructures** the minimal indices of their **row and column spaces** are prescribed.
- The obtained necessary and sufficient conditions are very simple and only require to check some equalities or inequalities of integer numbers related to the prescribed data, the prescribed degree and rank.
- Extending these results to structured polynomial and rational matrices is essentially a completely open area where just very few particular results have been published so far.

- We have provided necessary and sufficient conditions for the existence of polynomial and rational matrices when their **classical complete eigenstructures** are prescribed.
- We have provided necessary and sufficient conditions for the existence of polynomial and rational matrices when **instead of or in addition to** their **classical complete eigenstructures** the minimal indices of their **row and column spaces** are prescribed.
- The obtained necessary and sufficient conditions are very simple and only require to check some equalities or inequalities of integer numbers related to the prescribed data, the prescribed degree and rank.
- Extending these results to structured polynomial and rational matrices is essentially a completely open area where just very few particular results have been published so far.

- We have provided necessary and sufficient conditions for the existence of polynomial and rational matrices when their **classical complete eigenstructures** are prescribed.
- We have provided necessary and sufficient conditions for the existence of polynomial and rational matrices when **instead of or in addition to** their **classical complete eigenstructures** **the minimal indices of their row and column spaces** are prescribed.
- The obtained necessary and sufficient conditions are very simple and only require to check some equalities or inequalities of integer numbers related to the prescribed data, the prescribed degree and rank.
- Extending these results to structured polynomial and rational matrices is essentially a completely open area where just very few particular results have been published so far.