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Rosenbrock’s Theorem on Polynomial System Matrices

Theorem (Rosenbrock, 1970)

Let A(s) ∈ F[s]n×n, B(s) ∈ F[s]n×m, C(s) ∈ F[s]p×n and D(s) ∈ F[s]p×m with
detA(s) ≠ 0. Let

P(s) = [
A(s) B(s)
C(s) D(s)] ∈ F[s]

(n+p)×(n+m), G(s) = D(s) −C(s)A(s)−1B(s) ∈ F(s)p×m.

Assume that P(s) is minimal. If the Smith-McMillan form of G(s) is

SG(s) = Diag(
ε1(s)
ψ1(s)

, . . . ,
εr(s)
ψr(s)

) ⊕ 0(p−r)×(m−r) ∈ F(s)p×m,

and g is the largest index in {1, . . . , r} such that ψg(s) ≠ 1, then the Smith
forms of P and A are, respectively,

SP(s) = In ⊕Diag (ε1(s), . . . , εr(s)) ⊕ 0(p−r)×(m−r) ∈ F[s](n+p)×(n+m),
and

SA = In−g ⊕Diag (ψg(s), . . . , ψ1(s)) ∈ F[s]n×n.
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Comments, motivations, goals, ...

This theorem is fundamental for numerical algorithms that compute the
zeros and poles of rational matrices via linear polynomial system
matrices P(s). For instance, via (generalized) state-space
representations.

However, the proof in Rosenbrock’s book is indirect since relies on
results about the equivalence of polynomial system matrices.

This also happens in other standard references, as Kailath’s book
(perhaps, because this theorem is not very relevant for people working in
Linear Systems theory?).

Personal comments: this fact always disturbed me and I chatted
informally about it with my coauthors.

In 1974, Coppel proved a more general version of this theorem for
system matrices in any Principal Ideal Domain (PID) and transfer
functions in its field of fractions via an elegant purely algebraic approach.
Though more direct than previous proofs, still indirect since it was not
the main goal of the author.

We searched for more direct and general approaches.
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Outline

1 Elementary divisor domains and Rosenbrock’s Theorem over EDDs

2 Beyond Rosenbrock’s Theorem
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Elementary divisor ring and Smith form

Definition (elementary divisor ring)

A commutative ring R with identity is an elementary divisor ring if for any
a,b, c ∈R, there exist x, y, z,w ∈R such that

gcd(a,b, c) = (zx)a + (zy)b + (wy) c.

Theorem (Kaplansky, 1949)
R is an elementary divisor ring

if and only if

for every A ∈Rp×m, there exist U ∈Rp×p, S ∈Rp×m, V ∈Rm×m such that

1 A = USV,

2 U,V are unimodular (invertible over R),

3 S = Diag(α1, α2, . . . , αr) ⊕ 0(p−r)×(m−r) is diagonal with α1 ∣ α2 ∣ ⋯ ∣ αr.

In words: R is an elementary divisor ring if and only if every matrix A ∈Rp×m

has a Smith form.
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Elementary divisor domain and Smith-McMillan form

Definition (elementary divisor domain)

If R is an elementary divisor ring and an integral domain (i.e., there are no
nonzero zero divisors), it is called an elementary divisor domain (EDD).

Then, the smallest field F containing R is called the field of fractions of R.

Corollary (EDD if and only if Smith-McMillan form)

R is an elementary divisor domain with field of fractions F

if and only if

for every A ∈ Fp×m, there exist U ∈Rp×p, S ∈ Fp×m, V ∈Rm×m such that

1 A = USV,

2 U,V are unimodular (invertible over R),

3 S = Diag (
ε1

ψ1
, . . . ,

εr

ψr
) ⊕ 0(p−r)×(m−r) is diagonal with εi, ψi ∈R coprime,

ε1 ∣ ε2 ∣ ⋯ ∣ εr and ψr ∣ ψr−1 ∣ ⋯ ∣ ψ1.
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Examples of elementary divisor domains

Any Principal Ideal Domain (PID), for instance,

Z,
F[x], with F any field;

Entire functions or, more generally, the ring of complex-valued functions
that are holomorphic on an open connected subset Ω ⊆ C;

Algebraic integers (roots of monic polynomials with integer coefficients).
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Coprimeness: Necessary and sufficient conditions

Theorem
Let R be an EDD, G1 ∈R

p×m and G2 ∈R
q×m, p + q ≥ m. The following are

equivalent:

i) G1 and G2 are right coprime in R, i.e., every common right divisor is
unimodular.

ii) The Smith form over R of [G1
G2
] is [ Im

0 ].

iii) There exists a unimodular matrix U ∈R(p+q)×(p+q) such that U [G1
G2
] = [ Im

0 ].

iv) There exist matrices C ∈Rp×(p+q−m), D ∈Rq×(p+q−m) such that [G1 C
G2 D ] is

unimodular.

v) There exist matrices X ∈Rm×p, Y ∈Rm×q such that XG1 + YG2 = Im.

The polynomial matrices G1(s) ∈ C[s]p×m,G2(s) ∈ C[s]q×m are right coprime if
and only if

rank [
G1(z0)
G2(z0)

] = m, ∀z0 ∈ C.
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Minimality (or irreducibility)

Definition
Let R be an EDD, A ∈Rn×n, B ∈Rn×m, C ∈Rp×n and D ∈Rp×m with detA ≠ 0.
The matrix

P = [
A B
C D] ∈R

(n+p)×(n+m)

is minimal (or irreducible) if

A and B are left coprime (i.e., their transposes are right coprime) and

A and C are right coprime.

Definition
We say that

P = [
A B
C D] ∈R

(n+p)×(n+m)

is a system matrix with transfer matrix G = D −CA−1B ∈ Fp×m, where F is the
field of fractions of R.
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Rosenbrock’s Theorem over Elementary Divisor Domains (EDDs)

Theorem (D, Noferini, Zaballa, LAA 2025)

Let R be an EDD and F its field of fractions. Let A ∈Rn×n, B ∈Rn×m, C ∈Rp×n

and D ∈Rp×m with detA ≠ 0. Let

P = [
A B
C D] ∈R

(n+p)×(n+m), G = D −CA−1B ∈ Fp×m, r = rankG.

Assume that P is minimal. If the Smith-McMillan form of G is

SG ≐ Diag (
ε1

ψ1
, . . . ,

εr

ψr
) ⊕ 0(p−r)×(m−r) ∈ Fp×m,

and g is the largest index in {1, . . . , r} such that ψg ∉ U(R), then the Smith
forms of P and A are, respectively,

SP ≐ In ⊕Diag (ε1, . . . , εr) ⊕ 0(p−r)×(m−r) ∈R
(n+p)×(n+m),

and
SA ≐ In−g ⊕Diag (ψg, . . . , ψ1) ∈R

n×n.
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Remarks on previous theorem

It involves the weakest possible conceivable assumptions on the
underlying ring and field, since EDDs (an their fields of fractions) are the
most general rings (fields) where the involved Smith-McMillan and Smith
forms both exist and, so, where a Rosenbrock’s like theorem makes
sense.

The proof is shorter and more direct than the proofs we have found in
the literature (including the original by Rosenbrock and that by Coppel).
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Outline

1 Elementary divisor domains and Rosenbrock’s Theorem over EDDs

2 Beyond Rosenbrock’s Theorem
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Rosenbrock’s Theorem over Elementary Divisor Domains (EDDs)

For the rest of the talk: R is an EDD and F its field of fractions.

Theorem (Rosenbrock’s Theorem over EDDs)

Let A ∈Rn×n, B ∈Rn×m, C ∈Rp×n and D ∈Rp×m with detA ≠ 0. Let
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A B
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Next goal

What happens when the system matrix is NOT minimal, i.e., when A
and B are not left coprime or A and C are not right coprime?

Are there still any relations between the Smith-McMillan form of G and
the Smith forms of A and P?

Motivation:

In general, it is not always easy to check if the coprimeness
conditions hold.
Some recent works about the numerical solution of Nonlinear
Eigenvalue Problems have used linear polynomial system matrices
without guarateeing the coprimeness conditions.
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Key auxiliary result: from non-minimal to minimal system matrices

Theorem (D, Noferini, Zaballa, LAA 2025)

Let A ∈Rn×n, B ∈Rn×m, C ∈Rp×n and D ∈Rp×m with detA ≠ 0. If A and B are not
left coprime or A and C are not right coprime, then there exist matrices
A0 ∈R

n×n, with detA0 ≠ 0, B0 ∈R
n×m, C0 ∈R

p×n, E ∈Rn×n and F ∈Rn×n such that

[
A B
C D] = [

E 0
0 Ip

] [
A0 B0
C0 D ] [

F 0
0 Im

]

and

i) A0 and B0 are left coprime and A0 and C0 are right coprime;

ii) detE ≠ 0, detF ≠ 0, and at least one of these determinants is not a unit of
R;

iii) D −CA−1B = D −C0A−1
0 B0, i.e., Schur complement does not change!!

Essential idea
Extract the “largest” possible nonunimodular common left and right divisors
E and F.
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Theorem (D, Noferini, Zaballa, LAA 2025)

Let A ∈Rn×n, B ∈Rn×m, C ∈Rp×n and D ∈Rp×m with detA ≠ 0. If A and B are not
left coprime or A and C are not right coprime, then there exist matrices
A0 ∈R

n×n, with detA0 ≠ 0, B0 ∈R
n×m, C0 ∈R

p×n, E ∈Rn×n and F ∈Rn×n such that

[
A B
C D] = [

E 0
0 Ip

] [
A0 B0
C0 D ] [

F 0
0 Im

]

and

i) A0 and B0 are left coprime and A0 and C0 are right coprime;

ii) detE ≠ 0, detF ≠ 0, and at least one of these determinants is not a unit of
R;

iii) D −CA−1B = D −C0A−1
0 B0, i.e., Schur complement does not change!!

Essential idea
Extract the “largest” possible nonunimodular common left and right divisors
E and F.

F. M. Dopico (U. Carlos III, Madrid) Rosenbrock’s Theorem on EDD and beyond July 14-18, 2025 20 / 28



This factorization can be combined with

1 The fact that Rosenbrock’s Theorem holds for [ A0 B0
C0 D ].

2 Proposition. Let A1 ∈R
m×n, A2 ∈R

n×p and let A = A1A2. Let α(1)1 ∣ ⋯ ∣ α
(1)
r1 ,

α
(2)
1 ∣ ⋯ ∣ α

(2)
r2 and α1 ∣ ⋯ ∣ αr be the invariant factors of A1, A2 and A,

respectively. Then α(j)k ∣ αk for j = 1,2 and k = 1, . . . , r.

In words: Invariant factors of matrix factors divide the invariant factors of
the product.

3 The classical expression of the minors of the Schur complement in
terms of the minors of the whole matrix and detA.

for proving ...
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Main Theorem for non-minimal system matrices (I)

Theorem (D, Noferini, Zaballa, LAA 2025)

Let A ∈Rn×n, B ∈Rn×m, C ∈Rp×n and D ∈Rp×m with detA ≠ 0,

P = [
A B
C D] ∈R

(n+p)×(n+m), and G = D −CA−1B ∈ Fp×m,

and assume that A and B are not left coprime or that A and C are not
right coprime. Let

SG ≐ Diag (
ε1

ψ1
, . . . ,

εr

ψr
) ⊕ 0(p−r)×(m−r) ∈ Fp×m,

SA ≐ Diag (ψ̃n , . . . , ψ̃1) ∈R
n×n,

SP ≐ Diag (ε̃1, . . . , ε̃n+r) ⊕ 0(p−r)×(m−r) ∈R
(n+p)×(n+m)

be the Smith-McMillan form of G and the Smith forms of A and P, respectively.
Let g be the largest index in {1, . . . , r} such that ψg ∉ U(R). Then

i) n ≥ g and ψi ∣ ψ̃i, for i = 1, . . . ,g;

ii)
ψ̃n⋯ψ̃2 ψ̃1

ψg⋯ψ2 ψ1
∉ U(R);
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Main Theorem for non-minimal system matrices (II)

Theorem (continuation)

SG ≐ Diag (
ε1

ψ1
, . . . ,

εr

ψr
) ⊕ 0(p−r)×(m−r) ∈ Fp×m,

SA ≐ Diag (ψ̃n , . . . , ψ̃1) ∈R
n×n,

SP ≐ Diag (ε̃1, . . . , ε̃n+r) ⊕ 0(p−r)×(m−r) ∈R
(n+p)×(n+m)

iii) εi ∣ ε̃n+i for i = 1, . . . , r;

iv)
ε̃1ε̃2⋯ε̃n+r

ε1ε2⋯εr
∣
ψ̃n⋯ψ̃2 ψ̃1

ψg⋯ψ2 ψ1
;

v) if G and P are square and nonsingular, then

ε̃1ε̃2⋯ε̃n+r

ε1ε2⋯εr
≐
ψ̃n⋯ψ̃2 ψ̃1

ψg⋯ψ2 ψ1
∉ U(R).

Remark

In general,
ψ̃n⋯ψ̃2 ψ̃1

ψg⋯ψ2 ψ1
can be any element in the ring!!!
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Improving the “numerator” part over Principal Ideal Domains (PIDs)

One of the reasons why it is not easy to work on general EDDs is
because they are not, in general, Unique Factorization Domains (UFD),

i.e., we cannot assume that their elements have a unique factorization
into prime elements.

In particular, the invariant factors of the Smith forms of matrices over
EDDs cannot be uniquely factorized into prime elements and
“elementary divisors” cannot be defined.

Thus, for matrices in general EDDs, we loose one of the fundamental
concepts/tools of matrix polynomials: the elementary divisors.

Moreover, not every UFD is an EDD,

but if R is a PID, then it is simultaneously an EDD and a UFD.

PIDs include the ring of integers and rings of polynomials in one variable
with coefficients in a field.
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Reminder: Elementary Divisors of Matrices over a PID R

Let A ∈Rp×m with Smith form

SA ≐ Diag (α1, . . . , αr) ⊕ 0(p−r)×(m−r) ∈R
p×m.

We can write

α1 = β
e11
1 βe12

2 ⋯β
e1ℓ
ℓ ,

α2 = β
e21
1 βe22

2 ⋯β
e2ℓ
ℓ ,

...
...

αr = β
er1
1 βer2

2 ⋯β
erℓ
ℓ ,

where β1, . . . , βℓ are prime elements of R and eij are nonnegative
integers that satisfy 0 ≤ e1j ≤ e2j ≤ ⋯ ≤ erj, j = 1, . . . , ℓ.

The factors βeij
j with eij > 0 are called the elementary divisors of A.

The sequence of partial multiplicities of A at any prime π ∈R is the
sequence of the positive integers ti such that αi = π

ti γi with γi ∈R, and
gcd(π, γi) ≐ 1 for i = 1, . . . , r.

This sequence is empty when π ∤ αi, i = 1, . . . , r.
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About the numerators over PIDs

Theorem (D, Noferini, Zaballa, LAA 2025)

Let R be a PID and F its field of fractions. Let A ∈Rn×n, B ∈Rn×m, C ∈Rp×n and
D ∈Rp×m with detA ≠ 0,

P = [
A B
C D] ∈R

(n+p)×(n+m), and G = D −CA−1B ∈ Fp×m.

Let
SG ≐ Diag (

ε1

ψ1
, . . . ,

εr

ψr
) ⊕ 0(p−r)×(m−r) ∈ Fp×m

be the Smith-McMillan form of G and g be the largest index in {1, . . . , r} such
that ψg ∉ U(R). If π ∈R is prime and

gcd(π ,
detA

ψg⋯ψ2 ψ1
) ≐ 1,

then the sequence of the partial multiplicities of P at π is equal to the
sequence of the partial multiplicities of Diag (ε1, . . . , εr) at π.
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Remarks

This result holds under the more restrictive (but easier to verify)
condition gcd (π , detA) ≐ 1,

since this implies that gcd(π ,
detA

ψg⋯ψ2 ψ1
) ≐ 1.

Thus, if (1) we know the prime divisors of detA and (2) we are not
interested in the possible elementary divisors of the Smith-McMillan
numerators of G at that primes, then

using non-minimal system matrices is safe.

This was in fact the case in S. Güttel, R. Van Beeumen, K. Meerbergen,
W. Michiels, “NLEIGS: a class of fully rational Krylov methods for
nonlinear eigenvalue problems”, SIAM J. Sci. Comput., (2014).

F. M. Dopico (U. Carlos III, Madrid) Rosenbrock’s Theorem on EDD and beyond July 14-18, 2025 27 / 28



Remarks

This result holds under the more restrictive (but easier to verify)
condition gcd (π , detA) ≐ 1,

since this implies that gcd(π ,
detA

ψg⋯ψ2 ψ1
) ≐ 1.

Thus, if (1) we know the prime divisors of detA and (2) we are not
interested in the possible elementary divisors of the Smith-McMillan
numerators of G at that primes, then

using non-minimal system matrices is safe.

This was in fact the case in S. Güttel, R. Van Beeumen, K. Meerbergen,
W. Michiels, “NLEIGS: a class of fully rational Krylov methods for
nonlinear eigenvalue problems”, SIAM J. Sci. Comput., (2014).

F. M. Dopico (U. Carlos III, Madrid) Rosenbrock’s Theorem on EDD and beyond July 14-18, 2025 27 / 28



Remarks

This result holds under the more restrictive (but easier to verify)
condition gcd (π , detA) ≐ 1,

since this implies that gcd(π ,
detA

ψg⋯ψ2 ψ1
) ≐ 1.

Thus, if (1) we know the prime divisors of detA and (2) we are not
interested in the possible elementary divisors of the Smith-McMillan
numerators of G at that primes, then

using non-minimal system matrices is safe.

This was in fact the case in S. Güttel, R. Van Beeumen, K. Meerbergen,
W. Michiels, “NLEIGS: a class of fully rational Krylov methods for
nonlinear eigenvalue problems”, SIAM J. Sci. Comput., (2014).

F. M. Dopico (U. Carlos III, Madrid) Rosenbrock’s Theorem on EDD and beyond July 14-18, 2025 27 / 28



Remarks

This result holds under the more restrictive (but easier to verify)
condition gcd (π , detA) ≐ 1,

since this implies that gcd(π ,
detA

ψg⋯ψ2 ψ1
) ≐ 1.

Thus, if (1) we know the prime divisors of detA and (2) we are not
interested in the possible elementary divisors of the Smith-McMillan
numerators of G at that primes, then

using non-minimal system matrices is safe.

This was in fact the case in S. Güttel, R. Van Beeumen, K. Meerbergen,
W. Michiels, “NLEIGS: a class of fully rational Krylov methods for
nonlinear eigenvalue problems”, SIAM J. Sci. Comput., (2014).

F. M. Dopico (U. Carlos III, Madrid) Rosenbrock’s Theorem on EDD and beyond July 14-18, 2025 27 / 28



Moving beyond Rosenbrock’s Theorem in another direction

Let R be an EDD, F its field of fractions and

P = [
A B
C D] ∈ F

(n+p)×(n+m), G = D −CA−1B ∈ Fp×m.

We have also investigated the relations between the Smith-McMillan
form of G and the Smith-McMillan forms of A and P.

We have obtained results in the same spirit of Rosenbrock’s Theorem,
though they require some additional hypotheses, in addition to the
coprimeness, and are more cumbersome.

They may have applications for developing a unified approach to the
study/computation of the structure at infinity of rational matrices.
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form of G and the Smith-McMillan forms of A and P.

We have obtained results in the same spirit of Rosenbrock’s Theorem,
though they require some additional hypotheses, in addition to the
coprimeness, and are more cumbersome.

They may have applications for developing a unified approach to the
study/computation of the structure at infinity of rational matrices.
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