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Maŕıa del Carmen Quintana Ponce

Tesis depositada en cumplimiento parcial de los requisitos para el grado de Doctor
en
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consejos, no solo en el ámbito de la investigación. Es un placer trabajar a tu lado.

Gracias también a mi codirectora de tesis, Silvia Marcaida, que aún en la dis-
tancia siempre ha estado dispuesta a ayudarme. Gracias por haber mantenido un
contacto continuado conmigo, por tu dedicación, apoyo y los recibimientos durante
mis visitas a la UPV.

A Paul Van Dooren, que aunque no sea uno de mis directores de tesis lo considero
como tal. Gracias por tu inmenso talento profesional y darme la oportunidad de
colaborar contigo.
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gineering, Université catholique de Louvain (Bélgica), bajo
la supervisión del profesor Paul Van Dooren. La segunda
estancia de investigación se realizó del 15 de septiembre de
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Abstract

This PhD thesis belongs to the area of Numerical Linear Algebra. Specifically, to
the numerical solution of the Rational Eigenvalue Problem (REP). This is a type
of eigenvalue problem associated with rational matrices, which are matrices whose
entries are rational functions. REPs appear directly from applications or as approx-
imations to arbitrary Nonlinear Eigenvalue Problems (NLEPs). Rational matrices
also appear in linear systems and control theory, among other applications. Nowa-
days, a competitive method for solving REPs is via linearization. This is due to the
fact that there exist backward stable and efficient algorithms to solve the linearized
problem, which allows to recover the information of the original rational problem.
In particular, linearizations transform the REP into a generalized eigenvalue pro-
blem in such a way that the pole and zero information of the corresponding rational
matrix is preserved. To recover the pole and zero information of rational matrices, it
is fundamental the notion of polynomial system matrix, introduced by Rosenbrock
in 1970, and the fact that rational matrices can always be seen as transfer functions
of polynomial system matrices.

This thesis addresses different topics regarding the problem of linearizing REPs.
On the one hand, one of the main objectives has been to develop a theory of li-
nearizations of rational matrices to study the properties of the linearizations that
have appeared so far in the literature in a general framework. For this purpose,
a definition of local linearization of rational matrix is introduced, by developing as
starting point the extension of Rosenbrock’s minimal polynomial system matrices to
a local scenario. This new theory of local linearizations captures and explains rigor-
ously the properties of all the different linearizations that have been used from the
1970’s for computing zeros, poles and eigenvalues of rational matrices. In particu-
lar, this theory has been applied to a number of pencils that have appeared in some
influential papers on solving numerically NLEPs through rational approximation.

On the other hand, the work has focused on the construction of linearizations
of rational matrices taking into account different aspects. In some cases, we focus
on preserving particular structures of the corresponding rational matrix in the li-
nearization. The structures considered are symmetric (Hermitian), skew-symmetric
(skew-Hermitian), among others. In other cases, we focus on the direct construc-
tion of the linearizations from the original representation of the rational matrix.
The representations considered are rational matrices expressed as the sum of their
polynomial and strictly proper parts, rational matrices written as general trans-
fer function matrices, and rational matrices expressed by their Laurent expansion
around the point at infinity. In addition, we describe the recovery rules of the
information of the original rational matrix from the information of the new lineari-
zations, including in some cases not just the zero and pole information but also the
information about the minimal indices.



vii

Finally, in this dissertation we tackle one of the most important open problems
related to linearizations of rational matrices. That is the analysis of the backward
stability for solving REPs by running a backward stable algorithm on a linearization.
On this subject, a global backward error analysis has been developed by considering
the linearizations in the family of “block Kronecker linearizations”. An analysis of
this type had not been developed before in the literature.
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Chapter 1

Introduction, motivation and
summary of main results

The main objects of study in this PhD thesis are rational matrices. A rational matrix
R(λ) is a matrix whose entries are quotients of polynomials in the scalar variable
λ, i.e., rational functions. Rational matrices have received a lot of attention since
the 1950s, as a consequence of their fundamental role in linear systems and control
theory [67, 68]. Classical references on rational matrices and their applications to
these areas are [55, 78].

Rational matrices can have poles and zeros and have rational right and left null
spaces, which can be trivial, i.e., equal to {0}. Via the notion of the Smith-McMillan
form, one can associate partial multiplicities to the poles and zeros, and via the
notion of minimal polynomial bases for rational vector spaces, one can associate the
so called right and left minimal indices to the right and left null spaces, which exist
only when the rational matrix is singular, i.e., rectangular or square with identically
zero determinant. All these quantities are among the most relevant structural data
of a rational matrix [55, 68].

Many classic problems in linear systems and control theory can be posed in terms
of rational matrices [55, 78, 90] and are related to the computation of their zeros and
poles [84]. For that, it is fundamental the key concept introduced by Rosenbrock
[78] in 1970 of polynomial system matrices of rational matrices. This notion allows
us, among other things, to include simultaneously all the information about the
zeros and the poles of a rational matrix into a polynomial matrix. More precisely,
polynomial system matrices P (λ) are block partitioned polynomial matrices of the
form

P (λ) :=

[
A(λ) B(λ)
−C(λ) D(λ)

]
,

where A(λ) is assumed to be regular. Rosenbrock showed that the finite pole and
zero structure of its transfer function matrix

R(λ) := D(λ) + C(λ)A(λ)−1B(λ)

1
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can be retrieved from the polynomial matrices A(λ) and P (λ), respectively, provided
P (λ) is minimal, meaning that the polynomial matrices[

A(λ) B(λ)
]

and

[
A(λ)
−C(λ)

]
,

have, respectively, full row and column rank for all finite λ.
Currently, the computation of the zeros of rational matrices is also playing a

fundamental role in the very active area of Nonlinear Eigenvalue Problems (NLEPs)
[46], either because they appear directly in rational eigenvalue problems (REPs)
modeling real-life problems [69] or because other NLEPs are approximated by REPs
[46, 47, 60, 61, 35, 80]. Given a rational matrix R(λ), the REP consists of finding
scalars λ0 such that λ0 is not a pole of R(λ), i.e., R(λ0) has finite entries, and that
there exist nonzero constant vectors x and y satisfying

R(λ0)x = 0 and yTR(λ0) = 0,

under the assumption that R(λ) is regular, i.e., R(λ) is square and its determinant is
not identically equal to zero. The scalar λ0 is said to be an eigenvalue of R(λ) and the
vectors x and yT are called, respectively, right and left eigenvectors associated with
λ0. A non-regular rational matrix R(λ) is also called singular. In general, regardless
of whether R(λ) is regular or singular, a scalar λ0 is said to be an eigenvalue of R(λ)
if λ0 is not a pole of R(λ) and

rankR(λ0) < nrankR(λ),

where nrankR(λ) denotes the normal rank of R(λ), i.e., the rank of R(λ) over the
field of rational functions in λ. Then, the problem of finding the eigenvalues of a
rational matrix can also be seen as the problem of finding the zeros of R(λ) that
are not poles. If λ0 is a pole of R(λ) and there exists a polynomial vector v(λ) such
that v(λ0) 6= 0 and that limλ→λ0 R(λ)v(λ) = 0 then λ0 is said to be an eigenpole of
R(λ) [2]. A couple of examples of REPs and associated rational matrices are:

• The loaded elastic string problem in [13], whose corresponding rational matrix
is of the form:

R(λ) = A− λB +
λ

λ− σ
E,

whereA,B ∈ Rn×n are symmetric tridiagonal matrices, E has only one nonzero
entry in (n, n) position and n is large.

• The damped vibration of a viscoelastic structure problem in [69], whose co-
rresponding rational matrix is of the form:

R(λ) = λ2M +K −
k∑
i=1

1

1 + biλ
Gi,

where M,K ∈ Rn×n are positive definite and n is large.
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1.1 Linearizations of rational matrices

In the 1970s the first numerical algorithms for computing the structural data of
rational matrices were developed, see [84] and the references therein. The most
reliable algorithms were based on constructing a matrix pencil, i.e., a matrix poly-
nomial of degree 1, containing the information about the structural data of the
considered rational matrix [84, 92]. These pencils are among the first examples of
linearizations of rational matrices and are, in fact, particular instances of minimal
polynomial system matrices. Then, backward stable algorithms developed also in
the 1970s, for computing the eigenvalues and/or other structural data of general
pencils [71, 83], were applied to these matrix pencils. Nowadays, given a matrix
pencil L(λ) linearizing a rational matrix, one can apply to L(λ) the backward stable
eigenvalue algorithms developed in [71, 83] for problems of moderate size, or Krylov
methods adapted to the structure of L(λ) in the large-scale setting [24, 47].

As we explained in the previous paragraph, the approach of constructing a linear
polynomial matrix containing information about the structural data of rational ma-
trices was first introduced in the 1970s. However, a formal definition of linearization
of rational matrices was not given at that time. The term linearization of ratio-
nal matrix was also used in the reference [79] and in works on NLEPs [47, 60, 35]
without referring to a formal definition of linearization. A first formal definition of
linearization of a rational matrix was proposed in [2]. Then, a different definition
was introduced in [6], together with the first formal definition of strong lineariza-
tion, i.e., a pencil that allows to recover both the finite and infinite pole and zero
structure of R(λ). However, the pencils considered for linearizing NLEPs do not
satisfy the definitions of linearizations given in [2, 6]. This was our motivation to
develop a more general theory of linearizations of rational matrices in Chapter 4.

In addition to formal definitions, some works on linearizations of rational matri-
ces have introduced families of strong linearizations that are constructed from the
fact that any rational matrix R(λ) can be written as

R(λ) = D(λ) + C(Inλ− A)−1B (1.1)

where D(λ) is a polynomial matrix, called the polynomial part of R(λ), and C(Inλ−
A)−1B is a minimal state-space realization [48] of the strictly proper part of R(λ)
(see (2.1)). Thanks to this property, strong linearizations of rational matrices are
constructed from strong linearizations of the polynomial part D(λ) combined with
minimal state-space realizations of the strictly proper part. In addition, the study of
the recovery properties from these families of linearizations has received considerable
attention. References in these lines include [2, 3, 4, 6, 8, 17, 18, 19, 27].

Among the new classes of strong linearizations, we mention the family of “strong
block minimal bases linearizations” of rational matrices introduced in [6, Theorem
5.11], as a wide family of strong linearizations constructed by considering “strong
block minimal bases pencils” associated to their polynomial parts, see [26]. They
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include as particular cases the Fiedler-like linearizations (modulo permutations) [8,
Section 8] and are valid for general rectangular rational matrices. Chapter 9 is
devoted to analyse the backward stability when running a backward stable algorithm
for computing the eigenvalues of a particular type of the strong block minimal bases
linearization of rational matrices developed in [6], which are called “block Kronecker
linearizations”. For that, we generalize in a nontrivial way the analysis of backward
errors of the “block Kronecker linearizations” of polynomial matrices developed in
[26] in combination with the theory of strong linearizations for rational matrices in
[6].

The question whether or not other strong linearizations of rational matrices can
be constructed based on other kinds of strong linearizations of the polynomial parts
arises naturally. For answering this question, we construct in Chapter 3 strong li-
nearizations of a rational matrix by using strong linearizations of its polynomial part
D(λ) that belong to other important family of strong linearizations of polynomial
matrices, i.e., the so-called vector spaces of linearizations, originally introduced in
[63], further studied in [21, 72], and extended in [36]. In particular, we consider
strong linearizations of D(λ) that belong to the ansatz spaces M1(D) or M2(D),
developed by Faßbender and Saltenberger in [36], where polynomial matrices are
expressed in terms of polynomial bases other than the monomial basis. Another
motivation of the results in Chapter 3 is that, in order to compute the eigenvalues
of polynomial matrices from linearizations, the work [57] shows that, for polynomial
matrices of large degree, the use of the monomial basis to express the matrix leads to
numerical instabilities due to the ill-conditioning of the eigenvalues in certain situa-
tions. According to the algorithms in [24, 79, 81], it is expected that this instability
appears also while computing eigenvalues of REPs when the polynomial part of the
rational matrix has large degree and is expressed in terms of the monomial basis.
For that reason, it is of interest to consider rational matrices with polynomial parts
expressed in other bases as the Chebyshev basis. As a consequence of the results in
Chapter 3, we can conclude that the combination of the results in Chapter 3 and
those in [6] allows us to construct very easily infinitely many strong linearizations
of rational matrices via the following three-step strategy: (1) express the rational
matrix as the sum of its polynomial and strictly proper parts; (2) construct any
of the strong linearizations of the polynomial part known so far; and (3) combine
adequately that strong linearization with a minimal state-space realization of the
strictly proper part.

Despite the intense activity described in the previous paragraph, there are pen-
cils that have been used in influential references as [47, 60] for solving numerically
REPs that approximate NLEPs which do not satisfy the definitions of linearization
of rational matrices given in [2, 6]. The reason is that these definitions focus on
pencils that allow to recover the complete pole and zero structure of rational ma-
trices, while in [47, 60] only the eigenvalue information in a certain subset of the
complex plane is necessary. This was our motivation to the development in Chap-
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ter 4 of a new theory of linearizations of rational matrices in a local sense. These
linearizations are pencils that preserve the structure of zeros and poles of the corres-
ponding rational matrix in a particular subset of the underlying field, in the whole
underlying field and/or at infinity. Apart from a new definition, a specific family
of local linearizations of rational matrices is also introduced in Chapter 4, that are
called block full rank linearizations, as a template that covers many of the pencils,
available in the literature, for linearizing rational matrices. In Chapter 5 we study
the properties of the linearizations for rational approximations of NLEPs in [47, 60]
by using the theory in Chapter 4.

As we explained, there exist different methods for constructing linearizations of
rational matrices when the corresponding rational matrix is expressed as in (1.1).
Furthermore, if the rational matrix is not in the form (1.1), there exist procedures
for obtaining such a representation [55, 78, 90]. However, these procedures are
not simple, and may introduce errors that were not present in the original problem.
Motivated by this fact, we construct in Chapter 6 linearizations for rational matrices
from more general representations. In particular, we will show how to construct
linearizations of rational matrices that are written in the general form

R(λ) = D(λ) + C(λ)A(λ)−1B(λ), (1.2)

where A(λ), B(λ), C(λ) and D(λ) are polynomial matrices, possibly non linear
and possibly expressed in different bases. Representations of the form (1.2) arise
naturally, for example, when solving REPs of the form

R(λ)x =

(
P (λ) +

m∑
i=1

ni(λ)

di(λ)
(Aiλ−Bi)

)
x = 0,

where P (λ) is a polynomial matrix, ni(λ)
di(λ)

are scalar rational functions, and Ai and
Bi are constant matrices.

1.1.1 Strongly minimal linearizations: preserving structures

In Chapter 7 we consider a particular type of the strong linearizations for ratio-
nal matrices defined in Chapter 4, which we called strongly minimal linearizations.
Such strongly minimal linearizations of a rational matrix R(λ) are linear polynomial
system matrices of the form

L(λ) :=

[
λA1 − A0 λB1 −B0

−λC1 + C0 λD1 −D0

]
,

where R(λ) is the transfer function matrix of L(λ) and such that the pencils[
λA1 − A0 λB1 −B0

]
and

[
λA1 − A0

−λC1 + C0

]
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have no finite or infinite eigenvalues. We will see that the strong minimality con-
ditions imply the strong irreducibility conditions in [91], and the former are easier
to test. In addition, we will also show that when the strong minimality conditions
are not satisfied, we can reduce the system matrix to one where they are satisfied
without modifying the corresponding transfer function matrix R(λ).

One important property of strongly minimal linearizations is that they can pre-
serve many different structures of the original rational matrix without imposing any
restriction on such a matrix, as we explain in Chapter 8. This result is in stark
contrast with previous results existing in the literature on linearizations that pre-
serve structures, which impose conditions on the rational matrix as a consequence
of using other definitions of linearizations. This is one of the most important results
in this thesis, and for proving it, we will use some ideas developed in [27] (Chapter
3), where we also construct structured linearizations for symmetric and Hermitian
rational matrices. In contrast, in Chapter 8 we use the notion of strongly minimal
linearization instead of the notion of strong linearization for rational matrices in [6].

It is known that structured polynomial and rational matrices have symmetries in
their spectra [40, 51, 59, 64], and these spectral symmetries reflect specific physical
properties, as they originate usually from the physical symmetries of the underlying
applications [66, 64]. Such special structures occur in numerous applications in en-
gineering, mechanics, control, and linear systems theory. Some of the most common
algebraic structures that appear in applications are the (skew-)symmetric [51], and
alternating structures [64]. Symmetric (or Hermitian) matrix polynomials arise in
the classical problem of vibration analysis [41], and alternating matrix polynomials
find applications, for instance, in the study of corner singularities in anisotropic
elastic materials [70], in the study of gyroscopic systems [59], in the continuous-time
linear-quadratic optimal control problem and in the spectral factorization problem
[85, 40].

Because of the numerous applications where structured polynomial and rational
matrices occur, there have been several attempts to construct linearizations for them
that display the same structure [1, 19, 27, 37, 40, 51, 58]. But these earlier attempts
impose certain conditions on the corresponding polynomial or rational matrix for
the construction of the linearization to apply, such as regularity, strict properness
or invertibility of certain matrix coefficients. In Chapter 8 we give a construction
of structured linearizations for structured polynomial and rational matrices with-
out imposing any conditions, by using the notion of strongly minimal linearization.
Moreover, the proof used for this construction is different from these earlier papers,
and we claim it to be simpler as well.

We give more details on the structure of the thesis in the following section.
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1.2 Structure and organization of the thesis

This dissertation is organized as follows:
Chapter 2 presents some preliminaries and basic notions on rational matrices

that will be used throughout the dissertation. In particular, we introduce the defi-
nitions of the structural data of rational matrices and the key concept of polynomial
system matrix of a transfer function matrix introduced by Rosenbrock [78], as well
as some important properties related to it.

Chapter 3 is devoted to the construction of strong linearizations of rational
matrices by using the definition of strong linearization in [6] and writing the co-
rresponding rational matrix as the sum of its polynomial and strictly proper parts.
In particular, in Sections 3.2 and 3.3, we construct strong linearizations of rational
matrices with polynomial parts expressed in terms of a basis that satisfies a three
term recurrence relation. In addition, in Section 3.8, we briefly discuss how to cons-
truct strong linearizations when the polynomial part is expressed in other bases. We
emphasize that the construction of these new strong linearizations is a consequence
of the theory of strong linearizations developed in [6] together with Lemma 3.1.2.
More precisely, given a strong linearization of a rational matrix, Lemma 3.1.2 allows
to obtain infinitely many strong linearizations of the rational matrix by using strict
equivalence with a certain structure. The rest of this chapter is organized as follows.
In Section 3.4, we show how to recover the eigenvectors of the rational matrix from
those of its strong linearizations constructed in Sections 3.2 and 3.3. Moreover,
given a symmetric rational matrix, in Section 3.6 we construct strong linearizations
that preserve its symmetric structure by using symmetric realizations of the strictly
proper part, which are introduced in Section 3.5, and strong linearizations in the
double ansatz space DM(D) [36] of the polynomial part. Finally, in Section 3.7, we
present analogous results for Hermitian rational matrices.

Chapter 4 presents a rigorous theory of local linearizations of rational matrices.
For that, we first extend the concept of Rosenbrock’s minimal polynomial system
matrices to a local sense. Local minimal polynomial system matrices are defined
and studied in Section 4.1. Section 4.2 presents the main definitions and proper-
ties of local linearizations of rational matrices. Sections 4.3 and 4.4 introduce the
very general families of block full rank pencils and linearizations, as templates that
cover many of the pencils available in the literature for linearizing rational matrices.
Then, in Chapter 5, the theory of local linearizations is applied to a number of
pencils that have appeared in the influential papers [47, 60] on solving numerically
NLEPs by combining rational approximations and linearizations of the resulting ra-
tional matrices. It will be emphasized throughout the chapter that the theory of
local linearizations allows us to view these pencils, and to explain their properties,
from rather different perspectives. In particular, the pencils introduced in [47] are
analysed and studied in Section 5.1, and those in [60] in Section 5.2.

In Chapter 6, by using the theory of local linearizations in Chapter 4, we
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construct a new family of linearizations for rational matrices from general repre-
sentations. These linearizations are given in Sections 6.1 and 6.2. In Section 6.3,
we present an example that highlights the difference between our approach and the
previous approaches to the problem of linearizing rational matrices. In Section 6.4
we study how to recover minimal bases, minimal indices and eigenvectors of ratio-
nal matrices from those of their linearizations constructed in Sections 6.1 and 6.2.
Finally, we apply the new linearizations to solve scalar rational equations in Section
6.5.

Chapter 7 recalls the notion of strong minimality of polynomial system matrices
introduced in Chapter 4 and also the definition of strongly irreducible polynomial
system matrix in [91]. These notions are given in Section 7.2 where, in addition, we
establish the relation between them for the case of linear polynomial system matrices.
In Subsection 7.2.2, we study the relation of strongly minimal linearizations with
other classes of linearizations for polynomial and rational matrices in the literature.
We then give, in Section 7.3, an algorithm to construct a strongly minimal linear
system matrix from an arbitrary one, and we discuss the computational aspects in
Section 7.4. Finally, we show some numerical experiments in Section 7.5.

Chapter 8 is devoted to the construction of strongly minimal linearizations for
arbitrary and structured rational matrices. For that, in Section 8.1, we first show
how to construct strongly minimal linearizations of arbitrary polynomial matrices
and, in Section 8.2, we extend this construction to structured strongly minimal li-
nearizations of structured polynomial matrices. Then, in Sections 8.3 and 8.4, we
develop the same results for strictly proper rational matrices. That is, we build
strongly minimal linearizations for arbitrary and structured strictly proper rational
matrices, respectively. In Section 8.5, we combine the results in the previous sec-
tions of the chapter to construct strongly minimal linearizations for arbitrary and
structured rational matrices. Finally, in Section 8.6, we comment some algorithmic
aspects.

Chapter 9 studies the backward stability of running a backward stable algo-
rithm to compute the eigenvalues on a pencil S(λ) that is a strong linearization of
a rational matrix of block Kronecker type. We describe in Section 9.2 the basic
systems of matrix equations we will use, and, in Section 9.3, some bounds for the
singular values of certain matrices related to these systems of matrix equations. In
Section 9.4 we explain how to restore the structure of block Kronecker lineariza-
tions of rational matrices after they suffer sufficiently small perturbations. Then,
in Section 9.5, we give sufficient conditions on the pencil S(λ) and on the corres-
ponding rational matrix that guarantee structural backward stability for (regular or
singular) REPs solved via block Kronecker linearizations. In Section 9.6 we state
the results for rational matrices having a linear polynomial part, since those in pre-
vious sections are developed for rational matrices with polynomial parts of degree
greater than 1. In Section 9.7 we derive a scaling technique that allows to guarantee
structural backward stability, taking into account the conditions in Section 9.5. We
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conclude the chapter, in Section 9.8, by presenting a number of numerical results
illustrating our theoretical bounds.

Finally, Chapter 10 summarizes the main conclusions of this dissertation (see
Section 10.1). In addition, we give a list of papers (published or in progress) where
the original contributions of this thesis are contained (Section 10.2) and a list of
conferences where many of the results have been presented (Section 10.3). Moreover,
in Section 10.4, some open problems related to the results of this dissertation are
proposed.

1.3 Notation

Throughout this dissertation, F denotes an arbitrary field. The algebraic closure of
F is denoted by F. In some chapters, F will be considered to be an algebraically
closed field, that is, F = F.

The ring of univariate polynomials in the variable λ with coefficients in F is
denoted by F[λ], whose elements are of the form

p(λ) := anλ
n + an−1λ

n−1 + · · ·+ a1λ+ a0 with ai ∈ F for i = 0, . . . , n.

If F is algebraically closed then every non-constant polynomial in F[λ] has a root in
F. If an 6= 0 then p(λ) is said to have degree n and is denoted by deg(p(λ)) = n.
The field of rational functions over F, denoted by F(λ), is the quotient field of the
polynomial ring F[λ]. Namely,

F(λ) =

{
p(λ)

q(λ)
: p(λ), q(λ) ∈ F[λ], q(λ) 6= 0

}
,

with the equivalence relation
p1(λ)

q1(λ)
=
p2(λ)

q2(λ)
if p1(λ)q2(λ) = q1(λ)p2(λ).

The sets of p × m matrices with elements in F(λ), F[λ] and F are denoted by
F(λ)p×m, F[λ]p×m and Fp×m, respectively. The elements of F[λ]p×m are called poly-
nomial matrices. The degree of a polynomial matrix P (λ) is the maximum degree
of its entries and is denoted by deg(P (λ)) or degP (λ). If deg(P (λ)) is equal to 1
or 0, then P (λ) is said to be a pencil. The elements of F(λ)p×m are called rational
matrices. The normal rank of a polynomial or rational matrix R(λ) is the size of its
largest non identically zero minor and is denoted by nrankR(λ).

Given a constant matrix A ∈ Fp×m, the rank of A is the size of its largest non
zero minor and is denoted by rankA. The transpose matrix of A is denoted by
AT . If F is the field of complex numbers C, A∗ denotes the conjugate transpose of
A. The Kronecker product of two constant matrices A and B is denoted by A⊗ B
(see [54, Chapter 4]). Diagonal matrices, with diagonal entries d1, . . . , dm, are often
denoted by diag(d1, . . . , dm).
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Chapter 2

Preliminaries on rational matrices

In this chapter, we introduce preliminaries and basic notions on rational matrices.
Some results presented here are original contributions of the author. In particular,
such results are Proposition 2.1.5, Lemma 2.4.5, Propositions 2.4.7 and 2.4.8 and
Lemma 2.4.10.

We consider an arbitrary field F, e.g., the field of real numbers R or of complex
numbers C. Recall that rational matrices are matrices whose entries are rational
functions, and a rational function r(λ) is a ratio such that both numerator n(λ) and
denominator d(λ) are polynomials. Namely,

r(λ) =
n(λ)

d(λ)
∈ F(λ).

Regarding the degrees of the numerator and the denominator, the rational function
r(λ) is said to be proper if deg(n(λ)) ≤ deg(d(λ)), and strictly proper if deg(n(λ)) <
deg(d(λ)). We denote by Fpr(λ) the ring of proper rational functions. The units of
Fpr(λ) are called biproper rational functions, i.e., rational functions having the same
degree of numerator and denominator. Fpr(λ)p×m denotes the set of p×m matrices
with entries in Fpr(λ), which are called proper matrices. A biproper matrix is a
square proper matrix whose determinant is a biproper rational function.

By the division algorithm for polynomials, any rational function r(λ) can be
uniquely written as r(λ) = p(λ) + rsp(λ), where p(λ) is a polynomial and rsp(λ) a
strictly proper rational function. Therefore, any rational matrix R(λ) ∈ F(λ)p×m

can be uniquely written as

R(λ) = D(λ) +Rsp(λ) (2.1)

where D(λ) ∈ F[λ]p×m is a polynomial matrix and Rsp(λ) ∈ Fpr(λ)p×m is a strictly
proper rational matrix, i.e., the entries of Rsp(λ) are strictly proper rational func-
tions. Then, D(λ) is called the polynomial part of R(λ) and Rsp(λ) is called the
strictly proper part of R(λ).

11
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A rational matrix R(λ) ∈ F(λ)p×m is said to be regular or nonsingular if R(λ)
is square (i.e., p = m) and detR(λ) 6≡ 0. Otherwise, R(λ) is said to be singular.
Square polynomial matrices with nonzero constant determinant are said to be uni-
modular, i.e., matrices U(λ) in F[λ]m×m such that detU(λ) is a nonzero constant.
Equivalently, a polynomial matrix U(λ) is unimodular if and only if the inverse of
U(λ) is also polynomial. A diagonal form for rational matrices R(λ) is the so-called
Smith-McMillan form, introduced by McMillan in 1952 [68], which uses unimodu-
lar equivalences. That is, transformations of the form U1(λ)R(λ)U2(λ), where both
U1(λ) and U2(λ) are unimodular matrices.

Definition 2.0.1 ((Finite or global) Smith–McMillan form). For any rational ma-
trix R(λ) ∈ F(λ)p×m there exist unimodular matrices U1(λ) ∈ F[λ]p×p and U2(λ) ∈
F[λ]m×m such that

U1(λ)R(λ)U2(λ) =

 diag

(
ε1(λ)

ψ1(λ)
, . . . ,

εr(λ)

ψr(λ)

)
0

0 0(p−r)×(m−r)

 (2.2)

where r = nrankR(λ) and, for i = 1, . . . , r,
εi(λ)

ψi(λ)
are nonzero irreducible rational

functions with εi(λ) and ψi(λ) monic polynomials (i.e., with leading coefficient equal
to 1) and ε1(λ) | · · · | εr(λ) while ψr(λ) | · · · | ψ1(λ), where | stands for divisibility.
The diagonal matrix on the right hand side in (2.2) is called the (finite or global)
Smith–McMillan form of R(λ).

Other more recent references for the Smith-McMillan form of a rational matrix

are [55, 78, 90]. The rational functions
ε1(λ)

ψ1(λ)
, . . . ,

εr(λ)

ψr(λ)
in (2.2) are called the

(finite) invariant rational functions of R(λ) and the finite poles and zeros of R(λ)
are the roots in F of the denominators and numerators of the invariant rational
functions, respectively. We give more details about zeros and poles in the following
section. Notice that the Smith–McMillan form of a rational matrix is invariant
under unimodular equivalence. If R(λ) is polynomial then ψ1(λ) = · · · = ψr(λ) = 1,
ε1(λ), . . . , εr(λ) are called the invariant polynomials of R(λ), and the diagonal matrix
in (2.2) is called the Smith normal form of R(λ).

2.1 Zeros and poles: Local Smith–McMillan form

As we explained, the finite poles and zeros of a rational matrix are the roots in F
of the polynomials that appear on the denominators and numerators, respectively,
in its (global) Smith-McMillan form. In this section, we introduce a local defini-
tion of the Smith-McMillan form of rational matrices, and more notions related to
their poles and zeros. For that, we first introduce some definitions and equivalence
transformations on rational matrices.
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Definition 2.1.1. Let R(λ) ∈ F(λ)p×m. Let λ0 ∈ F, and Σ ⊆ F be nonempty.

(i) R(λ) is defined at λ0 if R(λ0) ∈ Fp×m.

(ii) R(λ) is defined in Σ if R(λ) is defined at each λ0 ∈ Σ.

(iii) R(λ) is defined at ∞ if R(1/λ) is defined at 0.

Definition 2.1.2. Let R(λ) ∈ F(λ)m×m. Let λ0 ∈ F, and Σ ⊆ F be nonempty.

(i) R(λ) is invertible at λ0 if it is defined at λ0 and detR(λ0) 6= 0.

(ii) R(λ) is invertible in Σ if it is invertible at each λ0 ∈ Σ.

(iii) R(λ) is invertible at ∞ if R(1/λ) is invertible at 0.

Notice that a rational matrix R(λ) is defined at a point λ0 if and only if λ0 is
not a pole of R(λ). In addition, a rational matrix is unimodular if and only if it is
invertible in F, and is biproper if and only if it is invertible at infinity. See [55] and
[90] for more information on these and other concepts related to rational matrices.

In regard to the previous definitions, we introduce some equivalence relations
defined in the set of rational matrices [9, 10, 42].

Definition 2.1.3 (Equivalences). Let Σ ⊆ F be nonempty. Two rational matrices
R1(λ), R2(λ) ∈ F(λ)p×m are said to be equivalent in Σ if there exist rational matrices
G1(λ) ∈ F(λ)p×p and G2(λ) ∈ F(λ)m×m both invertible in Σ such that

G1(λ)R1(λ)G2(λ) = R2(λ).

This is denoted by
R1(λ) ∼Σ R2(λ).

When Σ = {λ0}, we have local equivalence at λ0 and is denoted by R1(λ) ∼λ0 R2(λ).
If G1(λ) and G2(λ) are biproper then R1(λ) and R2(λ) are said to be equivalent at
∞, which is denoted by R1(λ) ∼∞ R2(λ).

If, in Definition 2.1.3, the rational matrices G1(λ) and G2(λ) are both unimod-
ular, then the standard definition of unimodular equivalence is recovered. In this
case, R1(λ) and R2(λ) are said to be unimodularly equivalent.

We can now present the notion of the local Smith-McMillan form (see [10, 88]).
Since poles and zeros of a rational matrix belong to the algebraic closure F, we
consider F instead of F in order to define the local Smith-McMillan form.

Definition 2.1.4 (Local Smith–McMillan form). Let λ0 ∈ F and let R(λ) ∈ F(λ)p×m

be a rational matrix, with r = nrankR(λ). R(λ) admits a representation of the form:

R(λ) ∼λ0
[

diag ((λ− λ0)ν1 , . . . , (λ− λ0)νr) 0
0 0(p−r)×(m−r)

]
(2.3)

for some integers ν1, . . . , νr with ν1 ≤ . . . ≤ νr. The diagonal matrix on the right
hand side in (2.3) is called the local Smith–McMillan form of R(λ) at λ0.
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The integers ν1, . . . , νr are uniquely determined by R(λ) and λ0, and are called
the invariant orders or structural indices at λ0 of R(λ). In order to define zeros and
poles, together with partial multiplicities, we need to distinguish between positive
and negative invariant orders [55, 90]:

(a) If νi > 0, for some i = 1, . . . , r, then λ0 is said to be a zero of R(λ) with partial
multiplicity νi; and the factor (λ− λ0)νi is called a zero elementary divisor of
R(λ) at λ0.

(b) If νi < 0, for some i = 1, . . . , r, then λ0 is said to be a pole of R(λ) with partial
multiplicity −νi; and the factor (λ− λ0)−νi is called a pole elementary divisor
of R(λ) at λ0.

The zero and pole elementary divisors of R(λ) in a nonempty subset Σ ⊆ F are the
zero and pole elementary divisors of R(λ) for all λ0 ∈ Σ, respectively. If R(λ) is a
polynomial matrix then the nonzero integers νi are all positive and are called the
partial multiplicities of R(λ) at λ0, and the factors (λ− λ0)νi with νi 6= 0 are called
elementary divisors of R(λ) at λ0.

The invariant orders at infinity q1 ≤ · · · ≤ qr of a rational matrix R(λ) are
defined as the invariant orders at λ0 = 0 of R(1/λ), and the Smith–McMillan form
of R(λ) at ∞ is of the form

R(λ) ∼∞
[

diag
(

1
λq1
, . . . , 1

λqr

)
0

0 0(p−r)×(m−r)

]
. (2.4)

For qi < 0, −qi are the partial multiplicities of ∞ as pole while, for qi > 0, qi are
the partial multiplicities of ∞ as zero (see [55]).

By using the local Smith–McMillan form, the next result in [28] shows that the
equivalence of rational matrices in nonempty sets is a local property.

Proposition 2.1.5. Let Σ ⊆ F be nonempty. Two rational matrices of the same
size are equivalent in Σ if and only if they are equivalent at each λ0 ∈ Σ.

Proof. If two rational matrices are equivalent in Σ then, by Definition 2.1.3, it is
straightforward that they are equivalent at each λ0 ∈ Σ. For the converse, suppose
that G(λ) ∼λ0 H(λ) for all λ0 ∈ Σ. Then, G(λ) and H(λ) have the same local Smith–
McMillan forms at each λ0 ∈ Σ. Let us consider MG(λ) and MH(λ) as the global
Smith–McMillan forms ofG(λ) andH(λ), respectively. Thus, there exist unimodular
matrices UG

i (λ), UH
i (λ), for i = 1, 2, such that G(λ) = UG

1 (λ)MG(λ)UG
2 (λ), H(λ) =

UH
1 (λ)MH(λ)UH

2 (λ), and we can write

MG(λ) = diag
(
f1(λ)g1(λ), . . . , fr(λ)gr(λ), 0(p−r)×(m−r)

)
, and

MH(λ) = diag
(
f1(λ)h1(λ), . . . , fr(λ)hr(λ), 0(p−r)×(m−r)

)
,

where fi(λ) are rational functions which are either equal to one or have poles
or zeros in Σ, while gi(λ) and hi(λ) are rational functions that do not have any
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poles or zeros in Σ. Let us define R(λ) := diag

(
h1(λ)

g1(λ)
, . . . ,

hr(λ)

gr(λ)
, Im−r

)
. Hence,

MH(λ) = MG(λ)R(λ). Therefore, H(λ) = UH
1 (λ)UG

1 (λ)−1G(λ)UG
2 (λ)−1R(λ)UH

2 (λ),
and G(λ) ∼Σ H(λ) since the matrices UH

1 (λ)UG
1 (λ)−1 and UG

2 (λ)−1R(λ)UH
2 (λ) are

invertible in Σ. �

2.2 The rational eigenvalue problem

A finite eigenvalue of a rational matrix R(λ) ∈ F(λ)p×m is any λ0 ∈ F such that

rankR(λ0) < nrankR(λ), with R(λ0) ∈ Fp×m.

That is, λ0 is a finite zero of R(λ) but not a pole. The Rational Eigenvalue Problem
(REP) consists of finding the eigenvalues of R(λ). If R(λ) ∈ F(λ)m×m is regular,
which is the most common case in applications of REPs, the REP is equivalent to
the problem of finding scalars λ0 ∈ F such that there exist nonzero constant vectors

x ∈ Fm×1
and y ∈ Fm×1

satisfying

R(λ0)x = 0 and yTR(λ0) = 0,

respectively. The vectors x are called right eigenvectors associated with λ0, and
the vectors y left eigenvectors. Given λ0 ∈ F and R(λ) ∈ F(λ)p×m, we define the
following vector spaces over F:

Nr(R(λ0)) = {x ∈ Fm×1
: R(λ0)x = 0}, and

N`(R(λ0)) = {yT ∈ F1×p
: yTR(λ0) = 0},

which are called, respectively, the right and left nullspaces over F of R(λ0). If λ0 is
an eigenvalue of R(λ), then Nr(R(λ0)) and N`(R(λ0)) are non trivial and contain,
respectively, the right and left eigenvectors of R(λ) associated with λ0.

Rational matrices may also have infinite eigenvalues. In order to define them,
we need the notion of reversal.

Definition 2.2.1 (Reversal of a rational matrix). Let R(λ) ∈ F(λ)p×m be a rational
matrix expressed in the form (2.1). We define the reversal of R(λ) as the rational
matrix

revR(λ) = λdR

(
1

λ

)
where d = deg(D(λ)) if R(λ) is not strictly proper, and d = 0 otherwise.

This definition of reversal extends the definition of reversal for polynomial ma-
trices (see [22, Definition 2.12] or [63, Definition 2.2]). Following the usual definition
in polynomial matrices [63, Definition 2.3], we say that R(λ) has an eigenvalue at
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infinity if revR(λ) has an eigenvalue at λ = 0. If R(λ) has an eigenvalue at infinity,
we say that z is a right (respectively left) eigenvector associated with infinity if z is
a right (respectively left) eigenvector associated with 0 of revR(λ).

Remark 2.2.2. Recall that, for finite points, eigenvalues are defined as those zeros
that are not poles. However, if we define eigenvalues at infinity in this way any
non-proper R(λ) would not have eigenvalues at infinity. This is due to the fact that
if R(λ) is not proper, i.e., deg(D(λ)) ≥ 1, R(λ) has always a pole at ∞ (see [10]).
In particular, this would happen if R(λ) is a polynomial matrix. Therefore, as in
the polynomial case in [44], we consider revR(λ) in order to define eigenvalues at
infinity.

Remark 2.2.3. The standard literature on polynomial matrices [39, 44] uses only
the term eigenvalues instead of zeros and poles and the eigenvalue structure at
infinity is defined through the notion of the reversal. We discuss the relation between
finite and infinite zeros and poles and eigenvalues of polynomial matrices in this
remark. Note first that a polynomial matrix P (λ) does not have finite poles, i.e.,
all the invariant orders νi in (2.3) are nonnegative for any finite λ0. Then, the finite
eigenvalues of P (λ) and their partial multiplicities [44] are exactly the same as the
finite zeros of P (λ) and their partial multiplicities. However, a polynomial matrix
P (λ) of degree d and normal rank r is said to have an eigenvalue at ∞ with partial
multiplicities tq ≤ · · · ≤ tr if the reversal revP (λ) := λdP (1/λ) has an eigenvalue
at 0 with partial multiplicities tq ≤ · · · ≤ tr. In this situation the invariant orders
of P (λ) at ∞ (i.e., the invariant orders of P (1/λ) at 0) are

(q1, q2, . . . , qr) = (0, . . . , 0︸ ︷︷ ︸
q−1

, tq, . . . , tr)− (d, d, . . . , d). (2.5)

Thus, the pole-zero and eigenvalue structures at infinity are different but easily
related through (2.5).

2.3 Minimal bases and minimal indices

In this section, we review the notions of minimal bases and minimal indices of
rational subspaces [38] and rational matrices.

It is known that every rational vector subspace V ⊆ F(λ)n over the field F(λ) has
bases consisting of polynomial vectors. We refer to such bases as polynomial bases.
Among them some are minimal in the following sense introduced by Forney [38]: a
minimal basis of V is a polynomial basis of V consisting of polynomial vectors whose
sum of degrees is minimal among all polynomial bases of V . Minimal bases are not
unique, but the ordered list of degrees of the polynomial vectors in any minimal
basis of V is always the same. Hence, these degrees are uniquely determined by V
and are called the minimal indices of V .
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Let now R(λ) ∈ F(λ)p×m be a rational matrix. We consider the rational vector
subspaces:

Nr(R) = {x(λ) ∈ F(λ)m×1 : R(λ)x(λ) = 0}, and
N`(R) = {y(λ)T ∈ F(λ)1×p : y(λ)TR(λ) = 0},

which are called the right and left null-spaces over F(λ) of R(λ), respectively. If
R(λ) is singular at least one of these null-spaces is non-trivial. If Nr(R) (resp.
N`(R)) is non trivial, it has minimal bases and minimal indices, which are called
the right (resp. left) minimal bases and right (resp. left) minimal indices of R(λ).
By the rank-nullity theorem,

dimN`(R) = p− nrankR(λ), and dimNr(R) = m− nrankR(λ).

Therefore, if r = nrankR(λ), then R(λ) has p − r left minimal indices and m − r
right minimal indices.

Minimal bases appearing in this dissertation are arranged as the columns or
rows of polynomial matrices. With a slight abuse of notation, we say that a p×m
polynomial matrix with p > m (resp. p < m) is a minimal basis if its columns
(resp. rows) form a minimal basis of the rational subspace they span. The following
definitions are useful for characterizing minimal bases.

Definition 2.3.1. The ith column (resp. row) degree of a matrix polynomial B(λ)
is the degree of the ith column (resp. row) of B(λ).

Definition 2.3.2. Let B(λ) ∈ F[λ]p×m be a polynomial matrix with column (resp.
row) degrees d1, d2, . . . , dm (resp. d1, d2, . . . , dp). The highest column (resp. row)
degree coefficient matrix of B(λ), denoted by Bhcd (resp. Bhrd), is the p×m constant
matrix whose jth column (resp. row) is the coefficient of λdj in the jth column (resp.
row) of B(λ). The polynomial matrix B(λ) is called column (resp. row) reduced if
Bhcd (resp. Bhrd) has full colum (resp. row) rank.

Theorem 2.3.3 states one of the most useful characterizations of minimal bases
(see [38, Main Theorem] or [26, Theorem 2.2]).

Theorem 2.3.3. The columns (resp. rows) of a polynomial matrix B(λ) ∈ F[λ]p×m

with p > m (resp. p < m) are a minimal basis of the subspace they span if and only
if B(λ) is column (resp. row) reduced and B(λ0) has full column (resp. row) rank
for all λ0 ∈ F.

Associated with minimal bases, the notion of dual minimal basis [26, Definition
2.5] is also considered.

Definition 2.3.4. Let K(λ) ∈ F[λ]p×m be a minimal basis with p < m. Ano-
ther minimal basis N(λ) ∈ F[λ]q×m is said to be dual to K(λ) if p + q = m and
K(λ)N(λ)T = 0. Then N(λ) is said to be a dual minimal basis of K(λ).



18 CHAPTER 2. RATIONAL MATRICES

2.4 Polynomial system matrices

Polynomial system matrices are a classical tool for studying rational matrices. They
were introduced by Rosenbrock and are analyzed in detail in [78]. Among them,
minimal polynomial system matrices have been used in many problems dealing with
rational matrices because they allow to extract all the information about finite poles
and zeros.

Definition 2.4.1 (Polynomial system matrix and transfer function). Any rational
matrix R(λ) ∈ F(λ)p×m can be written as

R(λ) = D(λ) + C(λ)A(λ)−1B(λ) (2.6)

for some polynomial matrices A(λ) ∈ F[λ]n×n, B(λ) ∈ F[λ]n×m, C(λ) ∈ F[λ]p×n and
D(λ) ∈ F[λ]p×m with A(λ) regular if n > 0 . Then, a polynomial matrix of the form

P (λ) =

[
A(λ) B(λ)
−C(λ) D(λ)

]
(2.7)

is called a polynomial system matrix of R(λ). That is, R(λ) is the Schur complement
of A(λ) in P (λ) and is called the transfer function matrix of P (λ).

If n = 0 in (2.6), we assume that the matrices A(λ), B(λ) and C(λ) are empty,
and R(λ) = D(λ) is a polynomial matrix. But polynomial matrices can also be
represented as in (2.6) with n > 0. For instance, this can be obtained if A(λ)
is unimodular. In general, representations of the form (2.6) always exist for any
rational matrix R(λ) and are not unique. They are called realizations of R(λ). We
refer to A(λ) as the state matrix of P (λ) and the integer deg(detA(λ)) is called
the order of P (λ). Moreover, P (λ) is said to have least order, or to be minimal,
if its order is the smallest integer for which polynomial matrices A(λ), B(λ), C(λ)
and D(λ) satisfying (2.6) exist. Another equivalent definition for minimality is the
following [78].

Definition 2.4.2 (Minimal polynomial system matrix). The polynomial system ma-
trix P (λ) in (2.7), with n > 0, is said to have least order, or to be minimal or
irreducible, if the matrices [

A(λ)
C(λ)

]
and

[
A(λ) B(λ)

]
(2.8)

have no eigenvalues in F. In such a case, the realization in (2.6) is also said to be
minimal.

The least order is uniquely determined by R(λ) and is denoted by ν(R(λ)). It
is also called the least order of R(λ) ([78, Chapter 3, Section 5.1] or [90, Section
1.10]). From [78, Chapter 3, Theorem 4.1], it can be deduced that ν(R(λ)) is the
degree of the polynomial that results by making the product of the denominators in
the (finite) Smith–McMillan form of R(λ).
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Remark 2.4.3. Notice that the definition of polynomial system matrix P (λ) in (2.7)
includes a specific partition. However, the state matrix A(λ) might be a submatrix
of P (λ) different from the (1, 1)-block. Throughout this dissertation, polynomial
matrices are partitioned in different ways giving rise to different polynomial system
matrices of (possibly) different transfer functions. In such cases, we often use ex-
pressions as “P (λ) is a polynomial system matrix with state matrix A(λ)” in order
to avoid ambiguities. In the case n = 0, we use the expression “P (λ) is a polynomial
system matrix with empty state matrix”.

The main property of a polynomial system matrix P (λ) being minimal, or of least
order, is that the finite pole and zero information of its transfer function matrix is
contained in P (λ) [78].

Theorem 2.4.4. Let

P (λ) =

[
A(λ) B(λ)
−C(λ) D(λ)

]
∈ F[λ](n+p)×(n+m)

be a minimal polynomial system matrix, with state matrix A(λ), whose transfer
function matrix is R(λ). Then the finite elementary divisors of A(λ) are the finite
pole elementary divisors of R(λ), and the finite elementary divisors of P (λ) are the
finite zero elementary divisors of R(λ).

A polynomial system matrix P (λ) of R(λ) is said to be a polynomial system
matrix in state-space form if A(λ) = λIn − A, B(λ) = B and C(λ) = C for some
constant matrices A ∈ Fn×n, B ∈ Fn×m and C ∈ Fp×n. It is known that any strictly
proper rational matrix admits state-space realizations (see [78] or [55]). Thus, if
we consider R(λ) as in (2.1), this means that for some positive integer n there
exist constant matrices A ∈ Fn×n, B ∈ Fn×m and C ∈ Fp×n such that Rsp(λ) =
C(λIn − A)−1B and [

λIn − A B
−C D(λ)

]
is a polynomial system matrix of R(λ). Therefore R(λ) = D(λ)+C(λIn−A)−1B. In
addition, the state-space realization may always be taken of least order, or minimal
(i.e., such that the polynomial system matrix in state-space form is of least order).

Notice that any polynomial system matrix P (λ) can be written as the following
block LDU factorization:

P (λ) =

[
In 0

−C(λ)A(λ)−1 Ip

] [
A(λ) 0

0 R(λ)

] [
In A(λ)−1B(λ)
0 Im

]
.

Then the relation between the normal ranks of P (λ) and its transfer function matrix
R(λ) is

nrankP (λ) = n+ nrankR(λ). (2.9)



20 CHAPTER 2. RATIONAL MATRICES

Using the factorization above and the rank property in (2.9), the following
Lemma 2.4.5 included in [75] establishes a linear map between the right (resp.
left) nullspace of a rational matrix R(λ) and the right (resp. left) nullspace of a
polynomial system matrix of R(λ).

Lemma 2.4.5. Let P (λ) be a polynomial system matrix as in (2.7), and let R(λ) ∈
F(λ)p×m be its transfer function matrix. Then, the following statements hold:

(a) The linear map

Tr : Nr(R) −→ Nr(P )

x(λ) 7−→
[
−A(λ)−1B(λ)

Im

]
x(λ)

is a bijection between the right nullspaces of R(λ) and P (λ).

(b) The linear map

T` : N`(R) −→ N`(P )

y(λ)T 7−→ y(λ)T
[
C(λ)A(λ)−1 Ip

]
is a bijection between the left nullspaces of R(λ) and P (λ).

Proof. We only prove part (a) since part (b) can be proved in a similar way. First,
we observe that the map Tr is linear. Second, we notice that for any vector x(λ),
we have [

A(λ) B(λ)
−C(λ) D(λ)

] [
−A(λ)−1B(λ)x(λ)

x(λ)

]
=

[
0

R(λ)x(λ)

]
,

which shows that Tr maps vectors in the right nullspace of R(λ) to vectors in the
right nullspace of P (λ). Finally, by (2.9) and the rank-nullity theorem, we have

dim Nr(P ) = dim Nr(R). (2.10)

Since the right nullspaces of P (λ) and R(λ) have the same dimension and the linear
map Tr is clearly injective, we conclude that the map Tr is bijective. �

Remark 2.4.6. Since the maps in Lemma 2.4.5 are bijections, they preserve linear
independence. Hence, one can recover a basis of the right (resp. left) nullspace of
R(λ) from a basis of the right (resp. left) nullspace of P (λ), and conversely. For
instance, from part (a) in Lemma 2.4.5, we obtain that if {xi(λ)}ti=1 is a basis of

Nr(R), then
{[
−A(λ)−1B(λ)xi(λ)

xi(λ)

]}t
i=1

is a basis of Nr(P ). Conversely, if
{[

yi(λ)
xi(λ)

]}t
i=1

is a basis of Nr(P ) then {xi(λ)}ti=1 is a basis of Nr(R).

To recover minimal bases and minimal indices of rational matrices from poly-
nomial system matrices P (λ) one has to assume extra conditions on P (λ). For
results about recovery of minimal bases and minimal indices of rational matrices
from polynomial system matrices we refer to [8, 91, 92].
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2.4.1 Eigenvectors of polynomial system and transfer func-
tion matrices

We know from [7, Proposition 3.1] how to recover right eigenvectors of a polynomial
system matrix P (λ) from those of its transfer function R(λ), and conversely. In
Proposition 2.4.7 we state a extended version of [7, Proposition 3.1], that includes
a result about bases of the right null-spaces of P (λ) and R(λ) evaluated at the
eigenvalue of interest, that was introduced in [27, Proposition 5.1]. We state without
proof the analogous result for left eigenvectors and null-spaces in Proposition 2.4.8,
introduced in [27, Proposition 5.2].

For the sake of brevity, the following nomenclature is adopted: “(λ0, x0) is a
solution of the REP R(λ)x = 0” means that λ0 is a finite eigenvalue of R(λ) and
x0 is a right eigenvector corresponding to λ0, and “(λ0, x0) is a solution of the
REP xTR(λ) = 0” means that λ0 is a finite eigenvalue of R(λ) and x0 is a left
eigenvector corresponding to λ0. Although it is not common in the literature, if
R(λ) ∈ F(λ)p×m is singular, we call right and left eigenvectors of R(λ) associated
with an eigenvalue λ0 to any nonzero vectors x and y satisfying R(λ0)x = 0 and
yTR(λ0) = 0, respectively.

In what follows, we assume that eigenvectors of the form

[
y
x

]
are partitioned

conformable to the corresponding polynomial system matrix.

Proposition 2.4.7. Let R(λ) ∈ F(λ)p×m be a rational matrix and

P (λ) =

[
A(λ) B(λ)
−C(λ) D(λ)

]
∈ F[λ](n+p)×(n+m)

be any polynomial system matrix with R(λ) as transfer function matrix.

a) If

(
λ0,

[
y0

x0

])
is a solution of the PEP P (λ)z = 0 such that detA(λ0) 6= 0,

then (λ0, x0) is a solution of the REP R(λ)x = 0.

b) Moreover, if

{[
y1

x1

]
, . . . ,

[
yt
xt

]}
is a basis of Nr(P (λ0)), with detA(λ0) 6= 0,

then {x1, . . . , xt} is a basis of Nr(R(λ0)).

c) Conversely, if (λ0, x0) is a solution of the REP R(λ)x = 0 such that detA(λ0) 6=
0 and y0 is defined as the unique solution of A(λ0)y0 + B(λ0)x0 = 0, then(
λ0,

[
y0

x0

])
is a solution of the PEP P (λ)z = 0.

d) Moreover, if {x1, . . . , xt} is a basis of Nr(R(λ0)), with detA(λ0) 6= 0, and, for
i = 1, . . . , t, yi is defined as the unique solution of A(λ0)yi+B(λ0)xi = 0, then{[

y1

x1

]
, . . . ,

[
yt
xt

]}
is a basis of Nr(P (λ0)).
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Proof. The statements a) and c) are the results in [7, Proposition 3.1] stated here for
a rectangular matrix R(λ). The proofs are exactly the same as in [7] and, therefore,
are omitted. To prove b) and d) we write[

A(λ0) B(λ0)
−C(λ0) D(λ0)

]
=

[
In 0

−C(λ0)A(λ0)−1 Ip

] [
A(λ0) 0

0 R(λ0)

] [
In A(λ0)−1B(λ0)
0 Im

]
.

Since detA(λ0) 6= 0, rankP (λ0) = n+ rankR(λ0). Therefore

dim Nr(P (λ0)) = dim Nr(R(λ0)). (2.11)

Then b) and d) are obtained by using a) and c), respectively, taking (2.11) and
the linear independence of the considered sets into account, and observing that

P (λ0)

[
y0

x0

]
= 0 if and only if y0 = −A(λ0)−1B(λ0)x0 and R(λ0)x0 = 0. �

Proposition 2.4.8 is an analogous result to Proposition 2.4.7 for left eigenvectors
and left null-spaces, and it can be proved in a similar way. It was introduced in [27,
Proposition 5.2].

Proposition 2.4.8. Let R(λ) ∈ F(λ)p×m be a rational matrix and

P (λ) =

[
A(λ) B(λ)
−C(λ) D(λ)

]
∈ F[λ](n+p)×(n+m)

be any polynomial system matrix with R(λ) as transfer function matrix.

a) If

(
λ0,

[
y0

x0

])
is a solution of the PEP zTP (λ) = 0 such that detA(λ0) 6= 0,

then (λ0, x0) is a solution of the REP xTR(λ) = 0.

b) Moreover, if

{[
y1

x1

]
, . . . ,

[
yq
xq

]}
is a basis of N`(P (λ0)), with detA(λ0) 6= 0,

then {x1, . . . , xq} is a basis of N`(R(λ0)).

c) Conversely, if (λ0, x0) is a solution of the REP xTR(λ) = 0 such that detA(λ0) 6=
0, and y0 is defined as the unique solution of yT0 A(λ0) − xT0C(λ0) = 0, then(
λ0,

[
y0

x0

])
is a solution of the PEP zTP (λ) = 0.

d) Moreover, if {x1, . . . , xq} is a basis of N`(R(λ0)), with detA(λ0) 6= 0, and, for
i = 1, . . . , q, yi is defined as the unique solution of yTi A(λ0) − xTi C(λ0) = 0,

then

{[
y1

x1

]
, . . . ,

[
yq
xq

]}
is a basis of N`(P (λ0)).
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Remark 2.4.9. If R(λ) is singular, then for any λ0 ∈ F that is not a pole of
R(λ), including those λ0 that are not eigenvalues of R(λ), Nr(R(λ0)) 6= {0} or
N`(R(λ0)) 6= {0}. The reader can check easily that Propositions 2.4.7 and 2.4.8
remain valid for any λ0 ∈ F that is not a pole of R(λ) in the case R(λ) is singular.

As corollary, we obtain the following Lemma 2.4.10 that establishes bijections
relating the right and left null spaces of a polynomial system matrix and those of its
transfer function matrix, evaluated at a finite λ0. This result is analogous to that
in Lemma 2.4.5 and was introduced in [29].

Lemma 2.4.10. Let P (λ) be a polynomial system matrix as in (2.7), and let R(λ) ∈
F(λ)p×m be its transfer function matrix. Let λ0 ∈ F such that detA(λ0) 6= 0. Then,
the following statements hold:

(a) The linear map

Fr : Nr(R(λ0)) −→ Nr(P (λ0))

x 7−→
[
−A(λ0)−1B(λ0)

Im

]
x

is a bijection between the right nullspaces over F of R(λ0) and P (λ0).

(b) The linear map

F` : N`(R(λ0)) −→ N`(P (λ0))

yT 7−→ yT
[
C(λ0)A(λ0)−1 Ip

]
is a bijection between the left nullspaces over F of R(λ0) and P (λ0).

2.5 Definitions of strong linearizations of polyno-

mial and rational matrices in the literature

The standard method of dealing with the rational (and polynomial) eigenvalue pro-
blem consists of linearizing. That is, reformulating the corresponding rational matrix
into a linear polynomial matrix in such a way that the eigenstructure can be exactly
recovered, i.e., the zero structure, the polar structure, and the left and right null
space structure.

2.5.1 Strong linearizations of polynomial matrices

In this subsection, we recall the classical definitions of linearization and strong li-
nearization of polynomial matrices [42, 44].
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Let P (λ) ∈ F[λ]p×m be a polynomial matrix. A linear polynomial matrix L(λ) =
Bλ+A ∈ F[λ](p+s)×(m+s) is a linearization of P (λ) in the sense of Gohberg, Lancaster
and Rodman [44], or in the GLR-sense for short, if there exist unimodular matrices
U1(λ) ∈ F[λ](p+s)×(p+s) and U2(λ) ∈ F[λ](m+s)×(m+s) such that

U1(λ)L(λ)U2(λ) =

[
P (λ) 0

0 Is

]
,

where Is denotes the identity matrix of size any integer s ≥ 0. The key property
of a GLR-linearization is that it has the same finite eigenvalues with the same
partial multiplicities as P (λ). Furthermore, a linearization L(λ) is said to be a
strong linearization in the GLR-sense if revL(λ) = Aλ + B is a linearization of
the polynomial matrix revg P (λ) = λgP (1/λ), where g is an integer greater than or
equal to the degree of P (λ), i.e., g ≥ deg(P (λ)), and is called grade of P (λ) (see, for
instance, [22]). Then, not only finite but infinite eigenvalues can be recovered from
strong linearizations in the GLR-sense, together with their partial multiplicities.
However, the minimal indices of a (strong) linearization L(λ) in the GLR-sense
may be completely unrelated to those of P (λ) [22, Section 4], except for the fact
that the number of left (resp. right) minimal indices of L(λ) and P (λ) are equal.
Nevertheless, the strong linearizations in the GLR-sense that are used in practice
have minimal indices that are simply related to those of the polynomial matrix
through addition of a constant shift (see [26] and the references therein).

In [26] a wide family of (strong) linearizations for polynomial matrices is con-
structed, which are called (strong) block minimal bases pencils [26, Definition 3.1]
and that uses the notion of minimal basis (recall Section 2.3). We introduce the
family of (strong) block minimal bases pencils in the following definition, as it will
be useful throughout this dissertation.

Definition 2.5.1. ((Strong) block minimal bases pencil) A block minimal bases pen-
cil is a linear polynomial matrix over F with the following structure

L(λ) =

[
M(λ) K2(λ)T

K1(λ) 0

]
, (2.12)

where K1(λ) and K2(λ) are both minimal bases. Moreover, given a polynomial ma-
trix P (λ), it is said that L(λ) is associated with P (λ) if

N2(λ)M(λ)N1(λ)T = P (λ),

where N1(λ) and N2(λ) are minimal bases dual to K1(λ) and K2(λ), respectively.
In addition, if K1(λ) (resp. K2(λ)) is a minimal basis with all its row degrees equal
to 1 and with the row degrees of a minimal basis N1(λ) (resp. N2(λ)) dual to K1(λ)
(resp. K2(λ)) all equal, then L(λ) is called a strong block minimal bases pencil.
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Theorem 2.5.2. [26] A block minimal bases pencil L(λ) as in (2.12) associated with
a polynomial matrix P (λ) is a linearization of P (λ). Moreover, if the block minimal
bases pencil L(λ) is strong, then L(λ) is a strong linearization of P (λ) considered
as a polynomial matrix of grade degN1(λ) + degN2(λ) + 1.

2.5.2 Strong linearizations of rational matrices

Next we present the definition of strong linearization for a rational matrix given
in [6]. This definition contains the notion of first invariant order at infinity q1 of
a rational matrix R(λ). For any non strictly proper rational matrix this number
is − deg(D(λ)) where D(λ) is the polynomial part of R(λ) in the expression (2.1);
otherwise, q1 > 0. More information can be found in [10, 6, 90].

Definition 2.5.3. Let R(λ) ∈ F(λ)p×m. Let q1 be its first invariant order at infinity
and g = min(0, q1). Let n = ν(R(λ)). A strong linearization of R(λ) is a linear
polynomial matrix

L(λ) =

[
A1λ+ A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
∈ F[λ](n+q)×(n+r) (2.13)

such that the following conditions hold:

(a) if n > 0 then det(A1λ+ A0) 6= 0, and

(b) if R̂(λ) = (D1λ + D0) + (C1λ + C0)(A1λ + A0)−1(B1λ + B0), q̂1 is its first
invariant order at infinity and ĝ = min(0, q̂1) then:

(i) there exist nonnegative integers s1, s2, with s1 − s2 = q − p = r −m, and
unimodular matrices U1(λ) ∈ F[λ](p+s1)×(p+s1) and U2(λ) ∈ F[λ](m+s1)×(m+s1)

such that

U1(λ) diag(R(λ), Is1)U2(λ) = diag(R̂(λ), Is2), and

(ii) there exist biproper matrices B1(λ) ∈ Fpr(λ)(p+s1)×(p+s1) and B2(λ) ∈
Fpr(λ)(m+s1)×(m+s1) such that

B1(λ) diag(λgR(λ), Is1)B2(λ) = diag(λĝR̂(λ), Is2).

If, instead of n = ν(R(λ)), in Definition 2.5.3 L(λ) is considered to be a minimal
polynomial system matrix and only condition (i) in part (b) holds, then L(λ) is
just called linearization of R(λ) in [6]. In addition, it is known [6] that if condition
(i) in Definition 2.5.3 holds, then condition (ii) is equivalent to the existence of
unimodular matrices W1(λ) and W2(λ) such that

W1(λ) diag

(
1

λg
R

(
1

λ

)
, Is1

)
W2(λ) = diag

(
1

λĝ
R̂

(
1

λ

)
, Is2

)
. (2.14)
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In Definition 2.5.3 it can always be taken s1 = 0 or s2 = 0, according to p ≥ q and
m ≥ r or q ≥ p and r ≥ m. We now consider s1 ≥ 0 and s2 = 0. Notice that
with this choice and with the notion of reversal given in Definition 2.2.1, (2.14) is
equivalent to

W1(λ) diag (revR(λ), Is1)W2(λ) = rev R̂(λ). (2.15)

Remark 2.5.4. Notice that Definition 2.5.3 extends the notion of strong lineariza-
tion of polynomial matrices in the usual GLR-sense [63, Definition 2.5]. In parti-
cular, if R(λ) is a polynomial matrix, then n = ν(R(λ)) = 0. Therefore, a strong

linearization L(λ) of R(λ) is of the form L(λ) = D1λ + D0, with R̂(λ) = L(λ),
g = q1 = − deg(R(λ)) and ĝ = q̂1 = − deg(L(λ)).

By considering rational matrices expressed as in (2.1) and strong block minimal
bases pencils associated to their polynomial parts, in [6, Theorem 5.11] is given
a method to construct strong linearizations for rational matrices in the sense of
Definition 2.5.3, which are called strong block minimal bases linearizations.

Theorem 2.5.5. [6] Let R(λ) ∈ F(λ)p×m be a rational matrix, let R(λ) = D(λ) +
Rsp(λ) be its unique decomposition into its polynomial part D(λ) ∈ F[λ]p×m and
its strictly proper part Rsp(λ) ∈ F(λ)p×m, and let Rsp(λ) = C(λIn − A)−1B be a
minimal state-space realization of Rsp(λ), where n = ν(R(λ)) = ν(Rsp(λ)). Assume
that deg(D(λ)) ≥ 2 and let

L(λ) =

[
M(λ) K2(λ)T

K1(λ) 0

]
be a strong block minimal bases pencil associated to D(λ). Let N1(λ) and N2(λ) be
minimal bases dual to K1(λ) and K2(λ), respectively, such that N2(λ)M(λ)N1(λ)T =

D(λ) and deg(N1(λ)) + deg(N2(λ)) + 1 = deg(D(λ)). Let K̂1 and K̂2 be constant
matrices such that the matrices

Ui(λ) =

[
Ki(λ)

K̂i

]
and Ui(λ)−1 =

[
N̂i(λ)T Ni(λ)T

]
,

are unimodular for i = 1, 2. Then, for any nonsingular constant matrices X, Y ∈
Fn×n, the linear polynomial matrix

L(λ) :=

 X(λIn − A)Y XBK̂1 0

− K̂T
2 CY M(λ) K2(λ)T

0 K1(λ) 0

 ,
is a strong linearization of R(λ).
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We will introduce a definition of local linearization of rational matrices in Chap-
ter 4 that includes the above definitions of linearizations and strong linearizations
of polynomial and rational matrices. In particular, we introduce in Chapter 4 linea-
rizations satisfying minimality conditions that preserve pole and zero structures in
a particular target set and/or at infinity. Then, in Chapter 4 a linearization will be
said to be strong if the minimality conditions are satisfied in the whole underlying
field and also at infinity. However, we will make a different and more flexible treat-
ment of the conditions for a pencil to be a linearization in the strong sense, which
allows us to construct linearizations for polynomial and rational matrices that can
not be constructed with the existing definitions of strong linearizations in the litera-
ture. Examples of such linearizations are the linearizations introduced in Chapter 6,
for arbitrary rational matrices from general representations, and the linearizations
for polynomial and rational matrices preserving structures in Chapter 8.
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Chapter 3

Strong linearizations of rational
matrices with polynomial part
expressed in an orthogonal basis

All the results in this chapter were introduced in [27], where a new family of strong
linearizations of rational matrices is constructed according to Definition 2.5.3. For
that, the corresponding rational matrix is considered as the sum of its polynomial
part and its strictly proper part, and the polynomial part is expressed in a basis that
satisfies a three term recurrence relation. Then, we combine the theory developed
in [7] and the linearizations of polynomial matrices introduced in [36]. We also show
how to recover eigenvectors of a rational matrix from those of its linearizations in
this family. In addition, we present strong linearizations that preserve the structure
of symmetric or Hermitian rational matrices. We complete the chapter by discussing
how to extend the results in this chapter when the polynomial part is expressed in
other bases. After the publication of [27], the recovery of minimal bases and minimal
indices of the linearizations developed here were studied by other authors in [8].

A conclusion of the results presented in this chapter is that the combination of
them with those in [7], allows us to use essentially all the strong linearizations of
polynomial matrices developed in the literature to construct strong linearizations of
any rational matrix in the sense of Definition 2.5.3, by expressing such a matrix in
terms of its polynomial and strictly proper parts.

3.1 Some preliminaries

In the definition of strong linearization in [7] (recall Definition 2.5.3), it may seem
that the least order ν(R(λ)) has to be previously known in order to verify that
a linear polynomial matrix as in (2.13) is a strong linearization of the rational
matrix R(λ). However, there are conditions to ensure that the size of A1λ + A0 is

29
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n = ν(R(λ)). We state them in Proposition 3.1.1.

Proposition 3.1.1. Let R(λ) ∈ F(λ)p×m and let

L(λ) =

[
A1λ+ A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
∈ F[λ](n+q)×(n+r)

be a linear polynomial matrix with n > 0 and det(A1λ+A0) 6= 0. Assume that there
exist nonnegative integers s1, s2, with s1 − s2 = q − p = r − m, and unimodular
matrices U1(λ) ∈ F[λ](p+s1)×(p+s1) and U2(λ) ∈ F[λ](m+s1)×(m+s1) such that

U1(λ) diag(R(λ), Is1)U2(λ) = diag(R̂(λ), Is2), (3.1)

where R̂(λ) = (D1λ+D0) + (C1λ+C0)(A1λ+A0)−1(B1λ+B0). Then n = ν(R(λ))
if and only if the following conditions hold:

a) A1 is invertible, and

b) rank

[
A1µ+ A0

C1µ+ C0

]
= rank

[
A1µ+ A0 B1µ+B0

]
= n for all µ ∈ F.

Proof. Condition b) is equivalent to L(λ) being a minimal polynomial system matrix,
since det(A1λ + A0) 6= 0, see [78, Chapters 2 and 3]. By condition (3.1) and [6,

Lemma 2.1], we have that ν(R(λ)) = ν(R̂(λ)). Assume that n = ν(R(λ)). Thus,

ν(R̂(λ)) = n, and deg(det(A1λ + A0)) ≥ ν(R̂(λ)) = n. However, deg(det(A1λ +

A0)) ≤ n. Therefore, deg(det(A1λ + A0)) = n and deg(det(A1λ + A0)) = ν(R̂(λ)),
which imply conditions a) and b), respectively. We assume now that conditions a)
and b) hold. On the one hand, A1 being invertible implies that deg(det(A1λ+A0)) =
n. On the other hand, L(λ) being a minimal polynomial system matrix means that

deg(det(A1λ+ A0)) = ν(R̂(λ)). Therefore, n = ν(R̂(λ)) = ν(R(λ)). �

Key Lemma Lemma 3.1.2 follows from Definition 2.5.3. It shows an easy way
to obtain strong linearizations for a rational matrix R(λ) from a particular strong
linearization L(λ) by multiplying L(λ) by some appropriate matrices. This simple
result is fundamental in this work, and we conjecture that it will be fundamental
for constructing other families of strong linearizations of rational matrices.

Lemma 3.1.2. Let R(λ) ∈ F(λ)p×m be a rational matrix, and let

L1(λ) =

[
A1λ+ A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
∈ F[λ](n+(p+s))×(n+(m+s))

be a strong linearization of R(λ). Consider Q1, Q3 ∈ Fn×n, Q2 ∈ F(p+s)×(p+s), Q4 ∈
F(m+s)×(m+s) nonsingular matrices, W ∈ F(p+s)×n, and Z ∈ Fn×(m+s). Then the
linear polynomial matrix

L2(λ) =

[
Q1 0
W Q2

]
L1(λ)

[
Q3 Z
0 Q4

]
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is a strong linearization of R(λ).

Proof. Let us write

L2(λ) =

[
A2λ+ Ã0 B2λ+ B̃0

−(C2λ+ C̃0) D2λ+ D̃0

]
.

We have det(A2λ + Ã0) 6= 0 if n > 0, since A2λ + Ã0 = Q1(A1λ + A0)Q3. Let

us consider the transfer functions R̂1(λ), R̂2(λ) of L1(λ), L2(λ), respectively. They

satisfy R̂2(λ) = Q2R̂1(λ)Q4. Let q1 be the first invariant order at infinity of R(λ) and
g = min(0, q1). For i = 1, 2, let ĝi = min(0, q̂i), where q̂i is the first invariant order at

infinity of R̂i(λ). Since L1(λ) is a strong linearization of R(λ), there exist unimodular

matrices U1(λ) and U2(λ) such that U1(λ) diag(R(λ), Is)U2(λ) = R̂1(λ), and biproper

matrices B1(λ) and B2(λ) such that B1(λ) diag(λgR(λ), Is)B2(λ) = λĝ1R̂1(λ). By

using the equality R̂2(λ) = Q2R̂1(λ)Q4, we have that ĝ1 = ĝ2, and by the same
equality, we get

Q2U1(λ) diag(R(λ), Is)U2(λ)Q4 = R̂2(λ),

and
Q2B1(λ) diag(λgR(λ), Is)B2(λ)Q4 = λĝ2R̂2(λ).

Then we obtain that conditions (a) and (b) in Definition 2.5.3 hold for L2(λ). �

By using Lemma 3.1.2, strong linearizations of a rational matrix R(λ) expressed
in the form (2.1) can be constructed from combining minimal state-space realizations
of the strictly proper part Rsp(λ) and strong linearizations of its polynomial part
D(λ). In particular, strong block minimal bases pencils associated to D(λ) [26] can
be used to construct a strong linearization for R(λ), by using Theorem 2.5.5. Then
one can use Lemma 3.1.2 to construct other strong linearizations for R(λ) taking into
account that strong block minimal bases linearizations of polynomial matrices unify
many of the strong linearizations for polynomial matrices existing in the literature,
in the sense that most of them are strictly equivalent to strong block minimal bases
linearizations [26].

Remark 3.1.3. A first application of the key Lemma 3.1.2 is to construct strong
linearizations of a rational matrix R(λ) from any Fiedler-like strong linearization
LF (λ) of its polynomial part D(λ). For this purpose, note that [15, Theorems 3.8,
3.15, 3.16] guarantee that there exist permutation matrices Π1 and Π2 and a strong
block minimal bases pencil L(λ) associated to D(λ) such that LF (λ) = Π1L(λ)Π2.
In addition, Theorem 2.5.5 explains how to construct a strong linearization L(λ)
of R(λ) from L(λ). Thus, according to Lemma 3.1.2, diag(In,Π1)L(λ) diag(In,Π2)
is a strong linearization of R(λ) based on LF (λ). This idea is used in [8], where it
is proved that the families of Fiedler-like linearizations of rational matrices intro-
duced in [2, 4, 17, 19] are, modulo permutations, particular instances of strong block
minimal bases linearizations.
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3.2 M1-strong linearizations

In this section and in Section 3.3, we present strong linearizations of square rational
matrices R(λ) with polynomial part D(λ) expressed in an orthogonal basis. More
precisely, we consider strong linearizations of D(λ) that belong to the ansatz spaces
M1(D) or M2(D), developed by H. Faßbender and P. Saltenberger in [36], and based
on them, we construct strong linearizations of R(λ) by using Lemma 3.1.2 and the
strong linearizations presented in [6, Section 5.2].

We consider an arbitrary field F throughout this chapter, although the results
in [36] are stated only for the real field R. Nevertheless, the results of [36] that are
used in this chapter are also valid for any field F. We consider a polynomial basis
{φj(λ)}∞j=0 of F[λ], viewed as an F-vector space, with φj(λ) a polynomial of degree
j, that satisfies the following three-term recurrence relation:

αjφj+1(λ) = (λ− βj)φj(λ)− γjφj−1(λ) j ≥ 0 (3.2)

where αj, βj, γj ∈ F, αj 6= 0, φ−1(λ) = 0, and φ0(λ) = 1. Let P (λ) ∈ F[λ]m×m be a
polynomial matrix of degree k written in terms of this basis as follows

P (λ) = Pkφk(λ) + Pk−1φk−1(λ) + · · ·+ P1φ1(λ) + P0φ0(λ). (3.3)

We define Φk(λ) = [φk−1(λ) · · ·φ1(λ) φ0(λ)]T and VP = {v⊗P (λ) : v ∈ Fk}, and
we consider the set of pencils

M1(P ) = {L(λ) = λX + Y : X, Y ∈ Fkm×km, L(λ)(Φk(λ)⊗ Im) ∈ VP}.

A pencil L(λ) ∈M1(P ), which verifies L(λ)(Φk(λ)⊗ Im) = v⊗P (λ) for some vector
v ∈ Fk, is said to have right ansatz vector v. A particular pencil in M1(P ) introduced
in [36, page 63] is

F P
Φ (λ) =

[
mP

Φ(λ)
MΦ(λ)⊗ Im

]
∈ F[λ]km×km, (3.4)

where

mP
Φ(λ) =

[
(λ− βk−1)

αk−1

Pk + Pk−1 Pk−2 −
γk−1

αk−1

Pk Pk−3 · · · P1 P0

]
,

and

MΦ(λ) =


−αk−2 (λ− βk−2) −γk−2

−αk−3 (λ− βk−3) −γk−3

. . .
. . .

. . .

−α1 (λ− β1) −γ1

−α0 (λ− β0)

 .
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Since mP
Φ(λ)(Φk(λ) ⊗ Im) = P (λ) and (MΦ(λ) ⊗ Im)(Φk(λ) ⊗ Im) = 0, we get that

F P
Φ (λ)(Φk(λ)⊗Im) = e1⊗P (λ), where e1 is the first canonical vector of Fk. Therefore,
F P

Φ (λ) ∈ M1(P ) with right ansatz vector e1 ∈ Fk. This particular example is very
important because, by using it, we can obtain all the elements in M1(P ). This follows
from the next theorem.

Theorem 3.2.1. [36, Theorem 1] Let P (λ) ∈ F[λ]m×m be a polynomial matrix
with degree k ≥ 2. Then L(λ) ∈ M1(P ) with right ansatz vector v ∈ Fk if and only
if

L(λ) = [v ⊗ Im H]F P
Φ (λ)

for some matrix H ∈ Fkm×(k−1)m.

Remark 3.2.2. For the monomial basis {φj(λ) = λj}∞j=0 the space M1(P ) is denoted
L1(P ) (see [63]). In this case αj = 1 and βj = γj = 0 for all j ≥ 0 in (3.2) and the
matrix F P

Φ (λ) is the first companion form of P (λ). �

It is known that F P
Φ (λ) is a strong linearization of P (λ) (see [5, Theorem 2]

for regular polynomial matrices P (λ), and [21, Section 7] for singular), but we can
obtain this property as an immediate corollary of the next result.

Lemma 3.2.3. F P
Φ (λ) is a strong block minimal bases pencil with only one block

column associated to P (λ) with sharp degree. Moreover, Φk(λ)T ⊗ Im is a minimal
basis dual to the minimal basis MΦ(λ)⊗ Im.

Proof. Let us denote M(λ) = mP
Φ(λ) and K(λ) = MΦ(λ)⊗ Im. We consider

F P
Φ (λ) =

[
M(λ)
K(λ)

]
.

Note that MΦ(λ0) has full row rank for all λ0 ∈ F because αi 6= 0 for all i ≥ 0. Also
note that MΦ(λ) is row reduced because its highest row degree coefficient matrix

[MΦ]hr =


0 1 0

0 1 0
. . .

. . .
. . .

0 1 0
0 1


has full row rank. We conclude that MΦ(λ) is a minimal basis, and therefore,
K(λ) = MΦ(λ) ⊗ Im is also a minimal basis [26, Corollary 2.4]. Let us denote
N(λ) = Φk(λ)T ⊗ Im. Note that Φk(λ)T is a minimal basis because φ0(λ) = 1, so
Φk(λ0) has rank 1 for all λ0 ∈ F, and

[ΦT
k ]hr =

[
1

α0α1···αk−2
0 · · · 0

]
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has also rank 1. Therefore, N(λ) = Φk(λ)T ⊗ Im is also a minimal basis. Since

K(λ)N(λ)T = (MΦ(λ)⊗ Im)(Φk(λ)⊗ Im) = 0 and

[
K(λ)
N(λ)

]
is a square matrix, we

have that K(λ) and N(λ) are dual minimal bases. In addition, it is obvious that all
the row degrees of K(λ) are equal to 1 and all the row degrees of Φk(λ)T ⊗ Im are
equal to k − 1. Hence, F P

Φ (λ) is a strong block minimal bases pencil associated to
the polynomial matrix M(λ)N(λ)T = mP

Φ(λ)(Φk(λ)⊗ Im) = P (λ) and deg(P (λ)) =
1 + deg(N(λ)), which means that F P

Φ (λ) has sharp degree. �

Since every strong block minimal bases pencil is a strong linearization (see [26,
Theorem 3.3]), the following corollary is straightforward.

Corollary 3.2.4. F P
Φ (λ) is a strong linearization for P (λ).

The proof of the next result is trivial because if L(λ) = [v ⊗ Im H]F P
Φ (λ) with

[v ⊗ Im H] nonsingular then L(λ) is strictly equivalent to F P
Φ (λ).

Corollary 3.2.5. [36, Corollary 2.1] Let L(λ) = [v ⊗ Im H]F P
Φ (λ) ∈ M1(P ).

If [v ⊗ Im H] is nonsingular then L(λ) is a strong linearization for P (λ).

Remark 3.2.6. Although F P
Φ (λ) is a strong block minimal bases pencil associated

to P (λ) this structure is not preserved in general when we multiply on the left by
a nonsingular matrix [v ⊗ Im H]. For example, consider the polynomial matrix
P (λ) = Iλ3 + 2Iλ2 + Iλ + S ∈ R[λ]2×2 expressed in the monomial basis, where

S =

[
1 0
0 0

]
and I stands for I2. In this case, the matrix F P

Φ (λ) is F P
Φ (λ) = λI + 2I I S

−I λI 0
0 −I λI

 . Let v = [1 1 0]T and H =

 0 0
I 0
0 I

 and let L(λ) =

[v ⊗ I H]F P
Φ (λ) =

 λI + 2I I S
λI + I λI + I S

0 −I λI

 . Notice that if L(λ) were a strong

block minimal bases pencil associated to P (λ), one of these two different situations
would happen in (2.12):

1. M(λ) = [λI + 2I I S] , K1(λ) =

[
λI + I λI + I S

0 −I λI

]
and K2(λ) empty.

2. M(λ) =

 λI + 2I
λI + I

0

 , K2(λ)T =

 I S
λI + I S
−I λI

 and K1(λ) empty.

In the first case, the matrix K1(λ) does not have full row rank for λ = −1. In the
second case, the matrix K2(λ) does not have full row rank for λ = 0. Therefore,
L(λ) is not a strong block minimal bases pencil associated to P (λ). �
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From the fact that F P
Φ (λ) is a strong block minimal bases pencil, we can ob-

tain strong linearizations for rational matrices by applying Theorem 5.11 in [6] (see
Theorem 2.5.5). For this purpose, we prove first the following lemma.

Lemma 3.2.7. The matrix

U(λ) =

[
MΦ(λ)⊗ Im
eTk ⊗ Im

]
=

[
MΦ(λ)
eTk

]
⊗ Im

is unimodular, and its inverse has the form U(λ)−1 = [Φ̂k(λ) Φk(λ) ⊗ Im] with

Φ̂k(λ) ∈ F[λ]km×(k−1)m.

Proof. Let us consider the matrix

Ũ(λ) =

[
MΦ(λ)
eTk

]
=



−αk−2 (λ− βk−2) −γk−2

−αk−3 (λ− βk−3) −γk−3

. . .
. . .

. . .

−α1 (λ− β1) −γ1

−α0 (λ− β0)
0 · · · 0 1


.

Since Ũ(λ) is upper triangular, its determinant is (−αk−2) · · · (−α0), i.e., a constant
different from zero. Therefore, Ũ(λ) is unimodular. Finally, note that Ũ(λ)Φk(λ) =
ek ∈ Fk. Thus Φk(λ) is the last column of Ũ(λ)−1. �

Theorem 3.2.8. Let R(λ) ∈ F(λ)m×m be a rational matrix, let R(λ) = D(λ) +
Rsp(λ) be its unique decomposition into its polynomial part D(λ) ∈ F[λ]m×m and its
strictly proper part Rsp(λ) ∈ F(λ)m×m, and let Rsp(λ) = C(λIn−A)−1B be a minimal
state-space realization of Rsp(λ). Assume that deg(D(λ)) ≥ 2. Write D(λ) in terms
of the polynomial basis {φj(λ)}∞j=0 satisfying the three-term recurrence relation (3.2),
as

D(λ) = Dkφk(λ) +Dk−1φk−1(λ) + · · ·+D1φ1(λ) +D0φ0(λ) (3.5)

with Dk 6= 0, and let FD
Φ (λ) be the matrix pencil defined as in (3.4). Then, for any

nonsingular matrices X, Y ∈ Fn×n the linear polynomial matrix

L(λ) =

 X(λIn − A)Y 0n×(k−1)m XB
−CY

0(k−1)m×n
FD

Φ (λ)


is a strong linearization of R(λ).

Proof. Lemmas 3.2.3 and 3.2.7 allow us to apply [6, Theorem 5.11], with K1(λ) =

MΦ(λ)⊗ Im, K̂1 = eTk ⊗ Im, K2(λ)T empty and K̂T
2 = Im. �
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Then, from combining Lemma 3.1.2 and Theorem 3.2.8 we obtain strong linea-
rizations of a rational matrix from strong linearizations in M1(D) of its polynomial
part.

Theorem 3.2.9. Under the same assumptions as in Theorem 3.2.8, let v ∈ Fk,
H ∈ Fkm×(k−1)m with [v⊗ Im H] nonsingular and let L(λ) = [v⊗ Im H]FD

Φ (λ) ∈
M1(D). Then, the linear polynomial matrix

L(λ) =

[
X(λIn − A)Y 0n×(k−1)m XB

− (v ⊗ Im)CY L(λ)

]

is a strong linearization of R(λ).

Proof. Set K = [v⊗Im H]. If K is nonsingular then, by Lemma 3.1.2 and Theorem
3.2.8,

L(λ) =

[
In 0
0 K

] X(λIn − A)Y 0n×(k−1)m XB
−CY

0(k−1)m×n
FD

Φ (λ)


=

[
X(λIn − A)Y 0n×(k−1)m XB

− (v ⊗ Im)CY L(λ)

]
.

is a strong linearization of R(λ). �

The strong linearizations of square rational matrices constructed in Theorem
3.2.9 will be called M1-strong linearizations.

3.3 M2-strong linearizations

In this section we obtain strong linearizations of a square rational matrix from the
transposed version of M1(P ), where P (λ) is the polynomial matrix in (3.3). Since
the proofs of the results are similar to those in Section 3.2, they are omitted for
brevity. We define WP = {wT ⊗ P (λ) : w ∈ Fk}, and we consider the set of pencils

M2(P ) = {L(λ) = λX + Y : X, Y ∈ Fkm×km, (Φk(λ)T ⊗ Im)L(λ) ∈ WP}.

A pencil L(λ) ∈ M2(P ), which verifies (Φk(λ)T ⊗ Im)L(λ) = wT ⊗ P (λ) for some
vector w ∈ Fk, is said to have left ansatz vector w. Pencils in M2(P ) are characterized
in [36, Theorem 2]. We need the definition of the block-transpose of a km×lm pencil

L(λ). If we express L(λ) as L(λ) =
k∑
i=1

l∑
j=1

eie
T
j ⊗ Lij(λ) for certain m×m pencils
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Lij(λ), where ei denotes the ith canonical vector in Fk, and ej the jth canonical

vector in Fl, L(λ)B =
k∑
i=1

l∑
j=1

eje
T
i ⊗Lij(λ) is called the block-transpose of L(λ) (see

[53]). Notice that F P
Φ (λ)B = [mP

Φ(λ)
B

MΦ(λ)T ⊗ Im].

Theorem 3.3.1. [36, Theorem 2] Let P (λ) ∈ F[λ]m×m be a polynomial matrix
with degree k ≥ 2. Then L(λ) ∈M2(P ) with left ansatz vector w ∈ Fk if and only if

L(λ) = F P
Φ (λ)B

[
wT ⊗ Im
HB

]
for some matrix H ∈ Fkm×(k−1)m partitioned into k × (k − 1) blocks each of size
m×m.

The vector space M2(P ) reduces to the well-known space L2(P ) when {φk(λ)}∞k=0

is the monomial basis, see [63]. Lemma 3.3.2 is for M2(P ) the counterpart of Lemma
3.2.3 for M1(P ) and can be used to proceed with M2(P ) analogously as we did with
M1(P ).

Lemma 3.3.2. F P
Φ (λ)B is a strong block minimal bases pencil with only one block

row associated to P (λ) with sharp degree.

In particular, Lemma 3.3.2 allows us to apply [6, Theorem 5.11] to the strong li-
nearization FD

Φ (λ)B of the polynomial part of a square rational matrix, with K2(λ) =

MΦ(λ)⊗Im, K̂2 = eTk ⊗Im, K1(λ) empty and K̂1 = Im. Thus, we get the following re-
sults to obtain strong linearizations of a square rational matrix R(λ) = D(λ)+Rsp(λ)
expressed as in (2.1) from strong linearizations in M2(D).

Theorem 3.3.3. Under the same assumptions as in Theorem 3.2.8, the linear poly-
nomial matrix

L(λ) =

 X(λIn − A)Y XB 0n×(k−1)m

0(k−1)m×n
−CY FD

Φ (λ)B


is a strong linearization of R(λ).

Theorem 3.3.4. Under the same assumptions as in Theorem 3.2.8, let w ∈ Fk, H ∈

Fkm×(k−1)m with

[
wT ⊗ Im
HB

]
nonsingular and let L(λ) = FD

Φ (λ)B
[
wT ⊗ Im
HB

]
∈

M2(D). Then the linear polynomial matrix

L(λ) =

 X(λIn − A)Y XB(wT ⊗ Im)
0(k−1)m×n
−CY L(λ)


is a strong linearization of R(λ).
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Proof. We apply Lemma 3.1.2 by multiplying on the right the matrix L(λ) in The-

orem 3.3.3 by the matrix

[
In 0
0 K

]
with K =

[
wT ⊗ Im
HB

]
nonsingular. �

The strong linearizations of rational matrices constructed in Theorem 3.3.4 will
be called M2-strong linearizations.

3.4 Recovering eigenvectors from M1- and M2-strong

linearizations of rational matrices

In this section we will recover right and left eigenvectors of a rational matrix. These
eigenvectors will be obtained without essentially computational cost from the right
and left eigenvectors of the strong linearizations that we have constructed in Theo-
rems 3.2.9 and 3.3.4.

3.4.1 Eigenvectors from M1-strong linearizations

We consider in this subsection the linearizations that we have constructed in Theo-
rem 3.2.9, which we called M1-strong linearizations. We will recover the eigenvectors
of a rational matrix R(λ) from those of its M1-strong linearizations, and conversely.
Lemma 3.4.1 will be used for this purpose.

Lemma 3.4.1. Let R(λ) ∈ F(λ)m×m be a rational matrix with polynomial part of
degree k ≥ 2, let

L(λ) =

[
X(λIn − A)Y 0n×(k−1)m XB

− (v ⊗ Im)CY L(λ)

]

be an M1-strong linearization of R(λ), and let R̂(λ) be the transfer function of L(λ).
Then

R̂(λ)(Φk(λ)⊗ Im) = v ⊗R(λ). (3.6)

Proof. We consider the transfer function of the matrix L(λ),

R̂(λ) = L(λ) +
[
0km×(k−1)m (v ⊗ Im)C(λIn − A)−1B

]
.

LetD(λ) be the polynomial part ofR(λ). Since L(λ) belongs to M1(D), L(λ)(Φk(λ)⊗
Im) = v ⊗D(λ) = (v ⊗ Im)D(λ). Therefore, we obtain

R̂(λ)(Φk(λ)⊗ Im) = (L(λ) +
[
0km×(k−1)m (v ⊗ Im)C(λIn − A)−1B

]
)(Φk(λ)⊗ Im)

= (v ⊗ Im)D(λ) + (v ⊗ Im)C(λIn − A)−1B

= (v ⊗ Im)R(λ).

�
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Remark 3.4.2. Since L(λ) is a strong linearization of the rational matrix R(λ)
we have, by Definition 2.5.3, that there are unimodular matrices U(λ), V (λ) ∈
F[λ]km×km such that

U(λ)R̂(λ)V (λ) = diag(R(λ), I(k−1)m). (3.7)

Thus, if we consider a finite eigenvalue λ0 of R(λ) then it is also an eigenvalue of

the transfer function R̂(λ) and

dim Nr(R(λ0)) = dim Nr(R̂(λ0)). (3.8)

By [6, Theorem 3.10], det(λ0In − A) 6= 0. Thus, by Proposition 2.4.7,

dim Nr(R̂(λ0)) = dim Nr(L(λ0)). (3.9)

By (3.7) and Proposition 2.4.8, we have the same equalities for the dimensions of
the left null-spaces, i.e.,

dim N`(R(λ0)) = dim N`(R̂(λ0)) and dim N`(R̂(λ0)) = dim N`(L(λ0)). (3.10)

Moreover, notice that since R(λ) is square, dimNr(R(λ0)) = dimN`(R(λ0)). �

A consequence of Lemma 3.4.1 is that we can recover very easily right eigenvec-
tors of a rational matrix R(λ) from the eigenvectors of the transfer function R̂(λ)
of any M1-strong linearization of R(λ). We state that in Theorem 3.4.3, and we
emphasize that this result is in the spirit of the one presented in [36, Proposition
3.1] for polynomial matrices P (λ) and their strong linearizations in M1(P ).

Theorem 3.4.3. Let R(λ) ∈ F(λ)m×m be a rational matrix with polynomial part of

degree k ≥ 2, and let R̂(λ) be the transfer function of an M1-strong linearization

L(λ) =

[
X(λIn − A)Y 0n×(k−1)m XB

− (v ⊗ Im)CY L(λ)

]

of R(λ). Let λ0 be a finite eigenvalue of R(λ). Then, u ∈ Nr(R(λ0)) if and only if

Φk(λ0)⊗ u ∈ Nr(R̂(λ0)). Moreover, {u1, . . . , ut} is a basis of Nr(R(λ0)) if and only

if {Φk(λ0)⊗ u1, . . . ,Φk(λ0)⊗ ut} is a basis of Nr(R̂(λ0)).

Proof. By Lemma 3.4.1, R̂(λ0)(Φk(λ0) ⊗ Im) = v ⊗ R(λ0). Thus, it is easy to see

that u ∈ Nr(R(λ0)) if and only if Φk(λ0)⊗ u ∈ Nr(R̂(λ0)). Consider {u1, . . . , ut} a

basis of Nr(R(λ0)). Therefore, as dim Nr(R(λ0)) = dim Nr(R̂(λ0)), an immediate
linear independence argument proves that {Φk(λ0)⊗ u1, . . . ,Φk(λ0)⊗ ut} is a basis

of Nr(R̂(λ0)), and conversely. �
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In addition, by using Proposition 2.4.7, we can recover the right eigenvectors of
the transfer function R̂(λ) from the right eigenvectors of the linearization L(λ), and

conversely. In particular, if

(
λ0,

[
y0

x0

])
is a solution of the polynomial eigenvalue

problem L(λ)z = 0 such that det(λ0In − A) 6= 0, then (λ0, x0) is a solution of the

rational eigenvalue problem R̂(λ)x = 0.

In what follows, if we have a vector

[
y
x

]
, with y ∈ Fn×1

and x ∈ Fkm×1
, we will

consider the vector x partitioned as x =
[
x(1) x(2) · · · x(k)

]T
with x(j) ∈ Fm×1

for j = 1, . . . , k. Recall also in Theorem 3.4.4 that, as we have explained in Remark
3.4.2, if λ0 ∈ F is a finite eigenvalue of R(λ) then det(λ0In −A) 6= 0. However, if λ0

is an eigenvalue of L(λ), then, according to [6, Theorem 3.10], λ0 might be a zero
of R(λ) that is simultaneously a pole and, therefore, det(λ0In − A) = 0, and λ0 is
not an eigenvalue of R(λ). This is the reason why the condition det(λ0In − A) 6= 0
is assumed in parts a) and b) of Theorem 3.4.4.

Theorem 3.4.4. (Recovery of right eigenvectors from M1-strong lineari-
zations) Let R(λ) ∈ F(λ)m×m be a rational matrix with polynomial part of degree
k ≥ 2, and let

L(λ) =

[
X(λIn − A)Y 0n×(k−1)m XB

− (v ⊗ Im)CY L(λ)

]
be an M1-strong linearization of R(λ).

a) If

(
λ0,

[
y0

x0

])
is a solution of the LEP L(λ)z = 0 such that det(λ0In−A) 6= 0,

then (λ0, x
(k)
0 ) is a solution of the REP R(λ)x = 0.

b) Moreover, if

{[
y1

x1

]
, . . . ,

[
yt
xt

]}
is a basis of Nr(L(λ0)), with det(λ0In−A) 6= 0,

then {x(k)
1 , . . . , x

(k)
t } is a basis of Nr(R(λ0)).

c) Conversely, if (λ0, u0) is a solution of the REP R(λ)x = 0, x0 = Φk(λ0)⊗ u0

and y0 is defined as the unique solution of (λ0In − A)Y y0 + Bu0 = 0, then(
λ0,

[
y0

x0

])
is a solution of the LEP L(λ)z = 0.

d) Moreover, if {u1, . . . , ut} is a basis of Nr(R(λ0)) and, for i = 1, . . . , t, xi =
Φk(λ0)⊗ui and yi is defined as the unique solution of (λ0In−A)Y yi+Bui = 0,

then

{[
y1

x1

]
, . . . ,

[
yt
xt

]}
is a basis of Nr(L(λ0)).

Proof. By Proposition 2.4.7, if

(
λ0,

[
y0

x0

])
is a solution of the LEP L(λ)z = 0 such

that det(λ0In − A) 6= 0, then (λ0, x0) is a solution of the REP R̂(λ)x = 0, where
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R̂(λ) is the transfer function matrix of L(λ). By Theorem 3.4.3, x0 has the form

x0 = Φk(λ0) ⊗ u for some u ∈ Nr(R(λ0)). Since φ0(λ) = 1 we have that u = x
(k)
0 ,

which proves a). The converse c) is proved analogously. The implications b) and d)
are consequences of (3.8), (3.9), basic arguments of linear independence, and the fact

that L(λ0)

[
y0

x0

]
= 0 if and only if (λ0In−A)Y y0 +XBx

(k)
0 = 0 and R̂(λ0)x0 = 0. �

Next, we pay attention to the recovery of left eigenvectors.

Theorem 3.4.5. (Recovery of left eigenvectors from M1-strong lineariza-
tions)
Let R(λ) ∈ F(λ)m×m be a rational matrix with polynomial part of degree k ≥ 2, let

L(λ) =

[
X(λIn − A)Y 0n×(k−1)m XB

− (v ⊗ Im)CY L(λ)

]

be an M1-strong linearization of R(λ), and let R̂(λ) be the transfer function of L(λ).

a) If

(
λ0,

[
y0

x0

])
is a solution of the LEP zTL(λ) = 0 such that det(λ0In−A) 6= 0,

then (λ0, (v
T ⊗ Im)x0) is a solution of the REP xTR(λ) = 0.

b) Moreover, if

{[
y1

x1

]
, . . . ,

[
yt
xt

]}
is a basis of N`(L(λ0)), with det(λ0In−A) 6= 0,

then {(vT ⊗ Im)x1, . . . , (v
T ⊗ Im)xt} is a basis of N`(R(λ0)).

c) Conversely, if (λ0, u0) is a solution of the REP xTR(λ) = 0, then there exists

x0 ∈ N`(R̂(λ0)) such that u0 = (vT ⊗ Im)x0 and if y0 is defined as the unique

solution of yT0 X(λ0In − A) − uT0C = 0, then

(
λ0,

[
y0

x0

])
is a solution of the

LEP zTL(λ) = 0.

d) Moreover, if {u1, . . . , ut} is a basis of N`(R(λ0)) then, for i = 1, . . . , t, there

exists xi ∈ N`(R̂(λ0)) such that ui = (vT ⊗ Im)xi and if yi is defined as the

unique solution of yTi X(λ0In − A) − uTi C = 0, then

{[
y1

x1

]
, . . . ,

[
yt
xt

]}
is a

basis of N`(L(λ0)).

Proof. We consider the transfer function of L(λ), R̂(λ) = L(λ) + [0km×(k−1)m (v⊗

Im)C(λIn − A)−1B]. If

(
λ0,

[
y0

x0

])
is a solution of the LEP zTL(λ) = 0 such that

det(λ0In − A) 6= 0, by using Proposition 2.4.8 a) applied to L(λ), we get

xT0 R̂(λ0) = xT0L(λ0) + [01×(k−1)m xT0 (v ⊗ Im)C(λ0In − A)−1B] = 0, (3.11)
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where x0 6= 0 since (λ0, x0) is a solution of the REP xT R̂(λ) = 0 1. In ad-

dition, by Lemma 3.4.1, xT0 R̂(λ0)(Φk(λ0) ⊗ Im) = xT0 (v ⊗ Im)R(λ0). Therefore
xT0 (v ⊗ Im)R(λ0) = 0. To see that (vT ⊗ Im)x0 is a left eigenvector of R(λ0), we
only need to prove that xT0 (v⊗ Im) 6= 0. Let us suppose that xT0 (v⊗ Im) = 0, and let
us get a contradiction. In this case xT0 (v ⊗ Im)C(λ0In − A)−1B = 0 and, therefore,
xT0L(λ0) = xT0 [v ⊗ Im H]FD

Φ (λ0) = 0 by (3.11). We call wT = xT0 [v ⊗ Im H]

and we consider w partitioned as w = (wi)
k
i=1 with wi ∈ Fm×1

. We have that wT1 =
xT0 (v⊗Im) = 0. Therefore [0 wT2 · · · wTk ]FD

Φ (λ0) = 0. This implies−αk−2w
T
2 = 0

and thus w2 = 0, since αk−2 6= 0. Therefore [0 0 wT3 · · · wTk ]FD
Φ (λ0) = 0 and

w3 = 0. Proceeding in this way it is easy to prove that wi = 0 for i = 2, · · · , k. Thus
xT0 [v ⊗ Im H] = 0 which is a contradiction because [v ⊗ Im H] is assumed to be
regular and x0 6= 0. This proves a).

The implication b) is proved as follows. From a), the vectors (vT⊗Im)x1, . . . , (v
T⊗

Im)xt belong to N`(R(λ0)). Therefore, as a consequence of (3.10), if we prove that
{(vT ⊗ Im)x1, . . . , (v

T ⊗ Im)xt} is linearly independent, then b) is proved. For this
purpose, let α1, . . . , αt ∈ F be arbitrary scalars such that at least one is differ-

ent from zero. Thus 0 6=
[
α1y1 + · · ·+ αtyt
α1x1 + · · ·+ αtxt

]
∈ N`(L(λ0)), and, from part a),

x = (vT ⊗ Im)(α1x1 + · · ·+ αtxt) 6= 0 and x ∈ N`(R(λ0)).
For proving c), we prove first that there exists a basis of N`(R(λ0)) of the form

{(vT ⊗ Im)x1, . . . , (v
T ⊗ Im)xt}, where {x1, . . . , xt} is a basis of N`(R̂(λ0)). To this

purpose, let

{[
y1

x1

]
, . . . ,

[
yt
xt

]}
be a basis of N`(L(λ0)). Then, Proposition 2.4.8 b)

applied to L(λ) implies that {x1, . . . , xt} is a basis of N`(R̂(λ0)) and Theorem 3.4.5
b) that {(vT ⊗ Im)x1, . . . , (v

T ⊗ Im)xt} is a basis of N`(R(λ0)). Then, if (λ0, u0) is

a solution of the REP xTR(λ) = 0, u0 can be written as u0 = (vT ⊗ Im)
t∑
i=1

aixi

with ai ∈ F, and we define x0 =
t∑
i=1

aixi ∈ N`(R̂(λ0)). Finally, Proposition 2.4.8 c)

applied to the solution (λ0, x0) of the REP xT R̂(λ) = 0 and to L(λ), and the fact
that det(λ0In − A) 6= 0 imply that if y0 is the unique solution of yT0 X(λ0In − A)−

xT0 (v⊗Im)C = 0, which is equivalent to yT0 X(λ0In−A)−uT0C = 0, then

(
λ0,

[
y0

x0

])
is a solution of the LEP zTL(λ) = 0.

Finally, the proof of d) proceeds as follows. From part c), we obtain that the vec-

tors x1, . . . , xt satisfying ui = (vT ⊗ Im)xi exist, and that the vectors

[
y1

x1

]
, . . . ,

[
yt
xt

]
1With the notation of Proposition 2.4.8, it is easy to see that [yT0 xT0 ]P (λ0) = 0 if and only

if yT0 A(λ0) − xT0 C(λ0) = 0 and xT0 R(λ0) = 0. Thus, x0 = 0 and detA(λ0) 6= 0 imply y0 = 0.
Therefore, any left eigenvector of P (λ) corresponding to the finite eigenvalue λ0 must have x0 6= 0.
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belong to N`(L(λ0)). Therefore, taking (3.10) into account, it only remains to prove

that

[
y1

x1

]
, . . . ,

[
yt
xt

]
are linearly independent. This is easily proved by contradiction:

If

{[
y1

x1

]
, . . . ,

[
yt
xt

]}
is linearly dependent, then {x1, . . . , xt} is linearly dependent,

and {u1, . . . , ut} is linearly dependent, which is a contradiction since {u1, . . . , ut} is
a basis. �

Remark 3.4.6. Analogously to Remark 2.4.9, if R(λ) ∈ F(λ)m×m is singular, then
the results on null-spaces proved so far in Section 3.4.1 are valid for any λ0 ∈ F that
satisfies det(λ0In − A) 6= 0.

Finally, we study the recovery of the eigenvectors corresponding to the infinite
eigenvalue from M1-strong linearizations.

Theorem 3.4.7. (Recovery of eigenvectors associated to infinity from M1-
strong linearizations) Let R(λ) ∈ F(λ)m×m be a rational matrix with polynomial
part of degree k ≥ 2, let

L(λ) =

[
X(λIn − A)Y 0n×(k−1)m XB

− (v ⊗ Im)CY L(λ)

]
be an M1-strong linearization of R(λ), and let Dk be the leading matrix coefficient
of the polynomial part of R(λ) as in (3.5). Then the following statements hold:

a) Nr(revR(0)) = Nr(Dk) and x0 ∈ Nr(Dk) if and only if

[
0

e1 ⊗ x0

]
∈ Nr(revL(0)).

Moreover, {x1, . . . , xq} is a basis of Nr(revR(0)) if and only if

{[
0

e1 ⊗ x1

]
, . . . ,[

0
e1 ⊗ xq

]}
is a basis of Nr(revL(0)).

b) N`(revR(0)) = N`(Dk) and

[
0
x0

]
∈ N`(revL(0)) if and only if (vT ⊗ Im)x0 ∈

N`(Dk). Moreover,

{[
0
x1

]
, . . . ,

[
0
xq

]}
is a basis of N`(revL(0)) if and only

if
{

(vT ⊗ Im)x1, . . . , (v
T ⊗ Im)xq

}
is a basis of N`(revR(0)).

Proof. Notice that from (3.4),

FD
Φ (λ) = λ

[
α−1
k−1Dk 0

0 I(k−1)m

]
+ FD

Φ (0).

We consider

L(λ) = [v ⊗ Im H]FD
Φ (λ) = [α−1

k−1(v ⊗Dk) H]λ+ L(0) =: L1λ+ L0
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and let R̂(λ) be the transfer function matrix of L(λ). We have that revL(0) =[
XY 0

0 L1

]
and rev R̂(0) = revL(0) = L1.Moreover, revR(0) = α−1

0 α−1
1 · · ·α−1

k−1Dk,

that is, the coefficient of λk inD(λ). Therefore,Nr(revR(0)) = Nr(Dk),N`(revR(0)) =
N`(Dk) and ∞ is an eigenvalue of R(λ) if and only if Dk is singular. In addition,

every right (respectively left) eigenvector w of revL(0) has the form w =

[
0
x0

]
for

some x0 ∈ Nr(L1) (respectively x0 ∈ N`(L1)). By Lemma 3.4.1, we have

λR̂

(
1

λ

)(
λk−1Φk

(
1

λ

)
⊗ Im

)
= v ⊗ λkR

(
1

λ

)
.

Therefore,
rev R̂(0)(rev Φk(0)⊗ Im) = (v ⊗ Im) revR(0).

Since rev Φk(0) = α−1
0 α−1

1 · · ·α−1
k−2e1, we obtain

α−1
0 α−1

1 · · ·α−1
k−2 rev R̂(0)(e1 ⊗ Im) = (v ⊗ Im) revR(0).

In addition, by (2.15), there exist unimodular matrices W1(λ) and W2(λ) such that

W1(0) diag
(
revR(0), I(k−1)m

)
W2(0) = rev R̂(0),

which implies that dimNr(revR(0)) = dimNr(rev R̂(0)) and dimN`(revR(0)) =

dimN`(rev R̂(0)). Finally a) and b) follow from the results above by using similar
arguments to the ones we used in the recovery of eigenvectors associated to finite
eigenvalues. �

3.4.2 Eigenvectors from M2-strong linearizations

If we proceed analogously as we did with M1-strong linearizations, and we use
Lemma 3.4.8, then we get Theorems 3.4.9, 3.4.10 and 3.4.12 to recover right and
left eigenvectors of a rational matrix from those of its M2-strong linearizations. The
proofs are essentially the same as those in Section 3.4.1 by interchanging the roles
of left and right eigenvectors, and they are omitted for brevity.

Lemma 3.4.8. Let R(λ) ∈ F(λ)m×m be a rational matrix with polynomial part of
degree k ≥ 2, let

L(λ) =

 X(λIn − A)Y XB(wT ⊗ Im)
0(k−1)m×n
−CY L(λ)


be an M2-strong linearization of R(λ), and let R̂(λ) be the transfer function of L(λ).
Then

(Φk(λ)T ⊗ Im)R̂(λ) = wT ⊗R(λ). (3.12)
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Theorem 3.4.9. (Recovery of right eigenvectors from M2-strong lineari-
zations) Let R(λ) ∈ F(λ)m×m be a rational matrix with polynomial part of degree
k ≥ 2, let

L(λ) =

 X(λIn − A)Y XB(wT ⊗ Im)
0(k−1)m×n
−CY L(λ)


be an M2-strong linearization of R(λ), and let R̂(λ) be the transfer function of L(λ).

a) If

(
λ0,

[
y0

x0

])
is a solution of the LEP L(λ)z = 0 such that det(λ0In−A) 6= 0

then, (λ0, (w
T ⊗ Im)x0) is a solution of the REP R(λ)x = 0.

b) Moreover, if

{[
y1

x1

]
, . . . ,

[
yt
xt

]}
is a basis of Nr(L(λ0)), with det(λ0In−A) 6= 0,

then {(wT ⊗ Im)x1, . . . , (w
T ⊗ Im)xt} is a basis of Nr(R(λ0)).

c) Conversely, if (λ0, u0) is a solution of the REP R(λ)x = 0, then there exists

x0 ∈ Nr(R̂(λ0)) such that u0 = (wT ⊗ Im)x0 and if y0 is defined as the unique

solution of (λ0In − A)Y y0 + Bu0 = 0, then

(
λ0,

[
y0

x0

])
is a solution of the

LEP L(λ)z = 0.

d) Moreover, if {u1, . . . , ut} is a basis of Nr(R(λ0)) then, for i = 1, . . . , t, there

exists xi ∈ Nr(R̂(λ0)) such that ui = (wT ⊗ Im)xi and if yi is defined as the

unique solution of (λ0In−A)Y yi +Bui = 0, then

{[
y1

x1

]
, . . . ,

[
yt
xt

]}
is a basis

of Nr(L(λ0)).

Theorem 3.4.10. (Recovery of left eigenvectors from M2-strong lineari-
zations) Let R(λ) ∈ F(λ)m×m be a rational matrix with polynomial part of degree
k ≥ 2, and let

L(λ) =

 X(λIn − A)Y XB(wT ⊗ Im)
0(k−1)m×n
−CY L(λ)


be an M2-strong linearization of R(λ).

a) If

(
λ0,

[
y0

x0

])
is a solution of the LEP zTL(λ) = 0 such that det(λ0In−A) 6= 0,

then (λ0, x
(k)
0 ) is a solution of the REP xTR(λ) = 0.

b) Moreover, if

{[
y1

x1

]
, . . . ,

[
yt
xt

]}
is a basis of N`(L(λ0)), with det(λ0In−A) 6= 0,

then {x(k)
1 , . . . , x

(k)
t } is a basis of N`(R(λ0)).
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c) Conversely, if (λ0, u0) is a solution of the REP xTR(λ) = 0, x0 = Φk(λ0)⊗ u0

and y0 is defined as the unique solution of yT0 X(λ0In − A) − uT0C = 0, then(
λ0,

[
y0

x0

])
is a solution of the LEP zTL(λ) = 0.

d) Moreover, if {u1, . . . , ut} is a basis of N`(R(λ0)) and, for i = 1, . . . , t, xi =
Φk(λ0)⊗ui and yi is defined as the unique solution of yTi X(λ0In−A)−uTi C = 0,

then

{[
y1

x1

]
, . . . ,

[
yt
xt

]}
is a basis of N`(L(λ0)).

Remark 3.4.11. Analogously to Remarks 2.4.9 and 3.4.6, if R(λ) ∈ F(λ)m×m is
singular, then the results on null-spaces in Theorems 3.4.9 and 3.4.10 hold for any
λ0 ∈ F such that det(λ0In − A) 6= 0. �

Theorem 3.4.12. (Recovery of eigenvectors associated to infinity from
M2-strong linearizations) Let R(λ) ∈ F(λ)m×m be a rational matrix with poly-
nomial part of degree k ≥ 2, let

L(λ) =

 X(λIn − A)Y XB(wT ⊗ Im)
0(k−1)m×n
−CY L(λ)


be an M2-strong linearization of R(λ), and let Dk be the leading matrix coefficient
of the polynomial part of R(λ) as in (3.5). Then the following statements hold:

a) Nr(revR(0)) = Nr(Dk) and

[
0
x0

]
∈ Nr(revL(0)) if and only if (wT ⊗ Im)x0 ∈

Nr(Dk). Moreover,

{[
0
x1

]
, . . . ,

[
0
xq

]}
is a basis of Nr(revL(0)) if and only

if
{

(wT ⊗ Im)x1, . . . , (w
T ⊗ Im)xq

}
is a basis of Nr(revR(0)).

b) N`(revR(0)) = N`(Dk) and x0 ∈ N`(Dk) if and only if

[
0

e1 ⊗ x0

]
∈ N`(revL(0)).

Moreover, {x1, . . . , xq} is a basis of N`(revR(0)) if and only if

{[
0

e1 ⊗ x1

]
, . . . ,[

0
e1 ⊗ xq

]}
is a basis of N`(revL(0)).

3.5 Symmetric realizations of symmetric rational

matrices

In this section and in the next one our aim is to obtain a strong linearization of a
symmetric rational matrix R(λ) ∈ F(λ)m×m, i.e., R(λ)T = R(λ), that preserves its
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symmetric structure. We write R(λ) as

R(λ) = D(λ) +Rsp(λ) (3.13)

with D(λ) its polynomial part and Rsp(λ) its strictly proper part. Since (3.13) is a
unique decomposition we obtain the following result just by taking transposes.

Proposition 3.5.1. Let R(λ) ∈ F(λ)m×m be a symmetric rational matrix. Then
the matrices D(λ) and Rsp(λ) in (3.13) are also symmetric.

Proposition 3.5.5 is the main result in this section and shows that any symmetric
strictly proper rational matrix admits a state-space realization that reveals transpa-
rently the symmetry. In order to state concisely Proposition 3.5.5, we will use the
following definition.

Definition 3.5.2. Let Rsp(λ) ∈ F(λ)m×m be a symmetric strictly proper rational
matrix and let n = ν(Rsp(λ)) be the least order of Rsp(λ). A symmetric minimal
state-space realization of Rsp(λ) is an expression of the form

Rsp(λ) = W (S1λ− S2)−1W T

where S1, S2 ∈ Fn×n are symmetric matrices with S1 nonsingular and W ∈ Fm×n.

We remark that the realization described in Definition 3.5.2 is equivalent to [11,
Definition 4.44] for a minimal state-space realization. However, in Definition 3.5.2
we express strictly proper matrices in a form more convenient for the goals of this
chapter. In particular, we will see in Section 3.6 that by combining a symmetric
minimal state-space realization of the matrixRsp(λ) in (3.13) and a symmetric strong
block minimal bases pencil associated to D(λ), we can construct symmetric strong
linearizations of R(λ). The next technical lemma is used in the proof of Proposition
3.5.5.

Lemma 3.5.3. Let Rsp(λ) ∈ F(λ)m×m be a symmetric strictly proper rational matrix
and let Rsp(λ) = C(λIn − A)−1B be a minimal state-space realization of Rsp(λ).
Then there exists a unique nonsingular and symmetric matrix S ∈ Fn×n such that
AT = S−1AS and CT = S−1B.

Proof. As Rsp(λ) is symmetric, Rsp(λ) = BT (λIn−AT )−1CT is also a minimal state-
space realization of Rsp(λ) since both have the same minimal order n. Therefore, by
[48, Proposition 3.3.2], the realizations (A,B,C) and (AT , CT , BT ) are similar and
there exists a unique nonsingular matrix S ∈ Fn×n such that

AT = S−1AS, CT = S−1B, BT = CS. (3.14)

The fact that (A,B,C) is a minimal realization of Rsp(λ) is equivalent to that
(A,B) and (A,C) are controllable and observable, respectively (see [78, Chapter
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3]). That means that the controllability matrix of (A,B) and the observability
matrix of (A,C), i.e.,

C(A,B) = [B AB A2B · · · An−1B] and O(A,C) =


C
CA
CA2

...
CAn−1

 ,

have both rank n. From the equalities in (3.14) it is easy to see that S−1C(A,B) =
O(A,C)T , and S−TC(A,B) = O(A,C)T . As C(A,B) has full row rank, we deduce
that S = ST . �

Remark 3.5.4. Notice that the system similarity matrix S between the realizations
in Lemma 3.5.3 is given by S = O(A,C)+C(A,B)T = C(A,B)(O(A,C)T )† where
+ denotes any left inverse and † denotes any right inverse. Notice also that these
left and right inverses exist because (A,B,C) is a minimal realization of Rsp(λ) and
that they can be taken to be the Moore–Penrose inverses. Thus S can be efficiently
computed when F = R,C. �

Proposition 3.5.5. Any symmetric strictly proper rational matrix has a symmetric
minimal state-space realization.

Proof. As said in Section 2.4, any strictly proper rational matrix Rsp(λ) admits
a minimal state-space realization, that is, Rsp(λ) = C(λIn − A)−1B [78]. By
Lemma 3.5.3, there exists a unique nonsingular and symmetric matrix S such that
AT = S−1AS and CT = S−1B. Thus, Rsp(λ) = C(λIn − A)−1SCT = C(λS−1 −
S−1A)−1CT , and S−1A is symmetric, as (S−1A)T = ATS−1 = S−1A. �

Remark 3.5.6. We can construct a symmetric minimal state-space realization of
a symmetric strictly proper rational matrix Rsp(λ) ∈ F(λ)m×m without previously
considering a non-symmetric minimal state-space realization of Rsp(λ), in contrast
to what we have done in the proof of Proposition 3.5.5. For this purpose we require
F not to be a field of characteristic 2. Let Rsp(λ) = G1λ

−1 + G2λ
−2 + · · · be the

Laurent series of Rsp(λ), which converges for |λ| large enough. Let n = ν(Rsp(λ))
be the least order of Rsp(λ). We consider the block Hankel matrix

Hn =


G1 G2 · · · Gn

G2 G3 · · · Gn+1

...
...

. . .
...

Gn Gn+1 · · · G2n−1

 (3.15)

and follow in a symmetric way the three steps of the algorithm in [48, Section 3.4] to
get a symmetric minimal state-space realization from the Hankel matrix. Notice that
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the Hankel matrix is symmetric since Rsp(λ) is symmetric, which implies Gi = GT
i

for all i ≥ 1, and rankHn = n by [48, Proposition 3.3.2]. Therefore we can write

Hn = X

[
K 0
0 0

]
XT = X

[
K
0

]
[In 0]XT

with X nonsingular and K ∈ Fn×n diagonal (see [62, Theorem 34.1]). Let us denote

Γ = X

[
K
0

]
and Λ = [In 0]XT .

We have that Hn = ΓΛ. We write X =
[
X1 X2

]
, where X1 = [Xi1]ni=1 with

Xi1 ∈ Fm×n for i = 1, . . . , n. Thus

Γ =

 X11K
...

Xn1K

 and Λ = [XT
11 · · · XT

n1].

We define

R =


G2 G3 · · · Gn+1

G3 G4 · · · Gn+2

...
...

. . .
...

Gn+1 Gn+2 · · · G2n


and we set C = X11K, B = XT

11 and A = Γ+RΛ+, with Γ+ = [K−1 0]X−1 and

Λ+ = X−T
[
In
0

]
. Thus A = [K−1 0]X−1RX−T

[
In
0

]
and, by [48, Theorem

3.4.1], (A,B,C) is a minimal realization for Rsp(λ). Therefore

Rsp(λ) = X11K

(
λIn − [K−1 0]X−1RX−T

[
In
0

])−1

XT
11

= X11

(
λK−1 − [K−1 0]X−1RX−T

[
K−1

0

])−1

XT
11.

Finally we set W = X11, S1 = K−1 and S2 = [K−1 0]X−1RX−T
[
K−1

0

]
, and we

obtain a symmetric minimal state-space realization of Rsp(λ).
In the particular case Rsp(λ) ∈ R(λ)m×m, which is of significant importance in

applications, the Hankel matrix Hn is real and symmetric. Therefore, we can write

Hn = P

[
K 0
0 0

]
P T

with P orthogonal, i.e., P−1 = P T , and K a diagonal matrix that has the eigenvalues
different from zero of Hn at the diagonal elements. In this case, let P =

[
P1 P2

]
,
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where P1 = [Pi1]ni=1 with Pi1 ∈ Fm×n for i = 1, . . . , n. Then we obtain Rsp(λ) =
P11(λK−1−K−1P T

1 RP1K
−1)−1P T

11. That is, Rsp(λ) has a symmetric minimal state-
space realization Rsp(λ) = W (λS1 − S2)−1W T where W = P11, S1 = K−1 and
S2 = K−1P T

1 RP1K
−1. �

From Proposition 3.5.5 and Remark 3.5.6 we know how to write the strictly
proper part Rsp(λ) of a symmetric rational matrix R(λ) as a symmetric minimal
state-space realization with or without having in advance a particular non-symmetric
minimal state-space realization of Rsp(λ). Moreover, it is worth to emphasize that
in many applications of symmetric REPs, this can be done very easily from the data
of the model without any computational cost (see [6, Section 5.3] or [79, Section 4]).

3.6 Symmetric strong linearizations for symmet-

ric rational matrices

In this section symmetric strong linearizations for symmetric rational matrices will
be constructed. We start with Example 3.6.1 in which we construct a symmetric
strong linearization of a symmetric rational matrix when the polynomial part has
odd degree. We will use Proposition 3.5.5 and a particular symmetric strong block
minimal bases pencil associated to its polynomial part with sharp degree. After
that, we present symmetric strong linearizations for symmetric rational matrices in
which the polynomial part may have even or odd degree but the leading coefficient
must be nonsingular. In order to get these results, we need to study symmetric
strong linearizations in the polynomial case.

Example 3.6.1. Let R(λ) = D(λ) + Rsp(λ) ∈ F(λ)m×m be a symmetric rational
matrix. Consider the polynomial part D(λ) written in terms of the monomial basis
D(λ) = Dkλ

k + Dk−1λ
k−1 + · · · + D0 ∈ F[λ]m×m, with k > 1 and Dk 6= 0, and the

matrices

Lp(λ) =


−1 λ

−1 λ
. . .

. . .

−1 λ

 ∈ F[λ]p×(p+1), (3.16)

and
Λp(λ)T =

[
λp · · · λ 1

]
∈ F[λ]1×(p+1). (3.17)

A block Kronecker linearization of D(λ) is a pencil

L(λ) =

[
M(λ) Lη(λ)T ⊗ Im

Lε(λ)⊗ Im 0

] }
(η+1)m

} εm

︸ ︷︷ ︸
(ε+1)m

︸ ︷︷ ︸
ηm

(3.18)
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such that D(λ) = (Λη(λ)T ⊗ Im)M(λ) (Λε(λ)⊗ Im) (see [26, Definition 4.1]). Recall
that block Kronecker linearizations are particular cases of strong block minimal
bases pencils [26]. If the polynomial part D(λ) has odd degree k = 2q + 1 we can
consider the symmetric block Kronecker linearization in which

M(λ) =


D2q+1λ+D2q

D2q−1λ+D2q−2

. . .

D1λ+D0


and ε = η = q. Proposition 3.5.5 allows us to write Rsp(λ) = W (λS1 − S2)−1W T

with S1 and S2 symmetric and S1 nonsingular. Applying [6, Theorem 5.11] with
Y = −S1X

T for any nonsingular matrix X ∈ Fn×n, C = WS−1
1 , A = S2S

−1
1 ,

B = W T , and K̂1 = K̂2 = eTq+1 ⊗ Im, we obtain that the linear polynomial matrix

L(λ) =


X(S2 − λS1)XT 0 XW T 0

0
WXT M(λ) Lq(λ)T ⊗ Im

0 Lq(λ)⊗ Im 0


is a symmetric strong linearization of R(λ).

Remark 3.6.2. The approach in Example 3.6.1 can be extended to other symmetric
strong block minimal bases pencils of the symmetric polynomial part D(λ) of R(λ) =
R(λ)T to construct other symmetric strong linearizations of R(λ), as long as D(λ)
has odd-degree. See, for instance, the pencils considered in [30]. However, the
linearization in Example 3.6.1 is particularly simple and, in view of the results in
[14], we expect that it will have favourable numerical properties. �

Let P (λ) ∈ F[λ]m×m be a polynomial matrix of degree k. A km × km pencil
L(λ) is called block-symmetric if L(λ) = L(λ)B, where L(λ) is viewed as a block
partitioned pencil with k×k blocks each of them of size m×m. Notice that a pencil
L(λ) satisfies L(λ)(Φk(λ) ⊗ Im) = v ⊗ P (λ) for some vector v ∈ Fk if and only if
L(λ)B satisfies (Φk(λ)T ⊗ Im)L(λ)B = vT ⊗ P (λ). Thus, if L(λ) ∈ M1(P ) is block-
symmetric, then L(λ) ∈M1(P ) ∩M2(P ). This intersection space was introduced in
[36], it is called double generalized ansatz space, and it is denoted by

DM(P ) = M1(P ) ∩M2(P ).

If {φj(λ)}∞j=0 is the monomial basis, the space DM(P ) is denoted DL(P ) and
was introduced originally in [63]. In [36, Corollary 6] it is shown that if a pencil
L(λ) belongs to DM(P ) then its right and left ansatz vectors are the same, which
is called simply ansatz vector, and that

DM(P ) = {L(λ) ∈M1(P ) : L(λ) = L(λ)B}.
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In fact, if P (λ) ∈ F[λ]m×m is a symmetric polynomial matrix we obtain that any
pencil in DM(P ) must be symmetric. This result is not in [36], and we state it in
Theorem 3.6.5. For its proof, we use Lemmas 3.6.3 and 3.6.4.

Lemma 3.6.3. Let P (λ) ∈ F[λ]m×m be a polynomial matrix of degree k ≥ 2 and let
L(λ) ∈ DM(P ) with ansatz vector 0 ∈ Fk. Then L(λ) = 0.

Proof. Notice that from (3.4),

F P
Φ (λ) = λ

[
α−1
k−1Pk 0

0 I(k−1)m

]
+ F P

Φ (0), (3.19)

where P (λ) is expressed as in (3.3). From [36, Corollary 6], L(λ) must have the
form

L(λ) = [0km×m H]F P
Φ (λ) = [0 H]λ+[0 H]F P

Φ (0) =

[
0
HB

]
λ+F P

Φ (0)B
[

0
HB

]
.

As L(λ) is block symmetric, H must have the form H =

[
0
W

]
where W is a

(k− 1)m× (k− 1)m block symmetric matrix. Let W = [Wij]
k−1
i,j=1 with Wij ∈ Fm×m.

Then

[0km×m H]F P
Φ (0) =


0 0 · · · 0

−αk−2W11 ∗ · · · ∗
−αk−2W21 ∗ · · · ∗

...
−αk−2W(k−1)1 ∗ · · · ∗

 .
Notice that [0km×m H]F P

Φ (0) is also block symmetric because of the block symme-
try of L(λ). Then, we obtain that Wi1 = W1i = 0 with i = 1, . . . , k − 1. Next, we
proceed by induction. Let j ∈ {2, . . . , k − 1} and suppose that Wit = Wti = 0 for
all i = 1, . . . , k − 1 and t = 1, . . . , j − 1. Then,

[0km×m H]F P
Φ (0) =



(j−1)

0 · · · 0 0 0 · · · 0
...

...
...

...
...

(j) 0 · · · 0 0 0 · · · 0
0 · · · 0 −αk−(j+1)Wjj ∗ · · · ∗
0 · · · 0 −αk−(j+1)W(j+1)j ∗ · · · ∗
...

...
...

...
...

0 · · · 0 −αk−(j+1)W(k−1)j ∗ · · · ∗


.

Therefore, Wij = Wji = 0 with i = 1, . . . , k − 1. By induction, H = 0 and L(λ) =
0. �



3.6. SYMMETRIC STRONG LINEARIZATIONS 53

Theorem 3.4 in [53] states that for each v ∈ Fk there is a uniquely determined
pencil in DL(P ) with ansatz vector v. We show this result extended to the space
DM(P ) in the following lemma.

Lemma 3.6.4. Let P (λ) ∈ F[λ]m×m be a polynomial matrix of degree k ≥ 2. For
each v ∈ Fk there is only one pencil in DM(P ) with ansatz vector v.

Proof. We consider the linear map DM(P ) −→ Fk that associates to any pencil
L(λ) in DM(P ) its ansatz vector v ∈ Fk. By Lemma 3.6.3 this map is injective and
by [36, Corollary 7] dim(DM(P )) = k. Therefore, the map is bijective. �

Let P (λ) ∈ F[λ]m×m be a symmetric polynomial matrix, and let us define the
set

S(P ) = {L(λ) ∈M1(P ) : L(λ) = L(λ)T}.

The elements in S(P ) are in DM(P ) because if L(λ) = [v ⊗ Im H]F P
Φ (λ) ∈ S(P )

then L(λ)T = F P
Φ (λ)B

[
vT ⊗ Im
HT

]
∈ M2(P ), since in the case P (λ) is symmetric

F P
Φ (λ)T = F P

Φ (λ)B, and L(λ) = L(λ)T . Moreover, Theorem 3.6.5 shows that S(P )
and DM(P ) are equal.

Theorem 3.6.5. Let P (λ) ∈ F[λ]m×m be a symmetric polynomial matrix of degree
k ≥ 2. Then

DM(P ) = S(P ).

Proof. We have already seen that S(P ) ⊆ DM(P ). To see the other inclusion we only
have to use Lemma 3.6.4 and [36, Corollary 6], and notice that if L(λ) ∈ DM(P )
with P (λ) symmetric then

L(λ) = [v ⊗ Im H]F P
Φ (λ) = F P

Φ (λ)B
[
vT ⊗ Im
HB

]
,

and

L(λ)T = [v ⊗ Im (HB)T ]F P
Φ (λ) = F P

Φ (λ)B
[
vT ⊗ Im
HT

]
,

which implies that L(λ)T ∈ DM(P ) and that L(λ) and L(λ)T have the same ansatz
vector. So, by Lemma 3.6.4, L(λ) = L(λ)T and L(λ) ∈ S(P ). �

Therefore, if P (λ) is a symmetric polynomial matrix all the pencils in DM(P )
are also symmetric. In order to find linearizations in DM(P ) we have to consider
only regular polynomials P (λ) because by [36, Theorem 7] if P (λ) is a singular
polynomial matrix then none of the pencils in DM(P ) is a linearization for P (λ).

In Theorem 3.6.9, we construct symmetric strong linearizations for a symmetric
rational matrix from a particular symmetric strong linearization of its polynomial
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part D(λ) when the leading coefficient Dk of D(λ) is nonsingular. This particular
strong linearization is the pencil in DM(D) with ansatz vector ek, i.e., the last vector
in the canonical basis of Fk. Some properties of this pencil are studied in Lemma
3.6.6 and Corollary 3.6.7.

Lemma 3.6.6. Let D(λ) ∈ F[λ]m×m be a polynomial matrix with degree k ≥ 2 and
let L(λ) = [ek ⊗ Im H]FD

Φ (λ) ∈ DM(D). Then [ek ⊗ Im H] is nonsingular if and
only if the leading matrix coefficient Dk of D(λ) is nonsingular.

Proof. Let L(λ) = [ek ⊗ Im H]FD
Φ (λ) ∈ DM(D). We write, by using (3.19) and

[36, Corollary 6],

L(λ) = [ek ⊗ Im H]FD
Φ (λ) = [ek ⊗ α−1

k−1Dk H]λ+ [ek ⊗ Im H]FD
Φ (0)

=

[
eTk ⊗ α−1

k−1Dk

HB

]
λ+ FD

Φ (0)B
[
eTk ⊗ Im
HB

]
.

Then H =

[
0m×(k−2)m α−1

k−1Dk

H
′

]
for some (k − 1)m× (k − 1)m block symmetric

matrix H
′
. Let H

′
= [H

′
ij]
k−1
i,j=1 with H

′
ij ∈ Fm×m. If we calculate the first block row

and block column of the product [ek ⊗ Im H]FD
Φ (0) we obtain

0 0 · · · 0 − α0

αk−1
Dk − β0

αk−1
Dk

−αk−2H
′
11 ∗ · · · ∗ ∗ ∗

−αk−2H
′
21 ∗ · · · ∗ ∗ ∗

...
−αk−2H

′

(k−2)1 ∗ · · · ∗ ∗ ∗
− βk−1

αk−1
Dk +Dk−1 − αk−2H

′

(k−1)1 ∗ · · · ∗ ∗ ∗


.

Since [ek ⊗ Im H]FD
Φ (0) is block symmetric we obtain

H
′

1i = H
′

i1 = 0 for i = 1, . . . , k − 3 (3.20)

and
−αk−2H

′

(k−2)1 = − α0

αk−1

Dk.

Thus,

H
′

(k−2)1 = H
′

1(k−2) =
α0

αk−1αk−2

Dk. (3.21)

Using (3.20) and (3.21) and calculating the second block row and block column of
the product [ek ⊗ Im H]FD

Φ (0) as before, we obtain

H
′

2i = H
′

i2 = 0 for i = 1, . . . , k − 4
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and
−αk−3H

′

(k−3)2 = −α1H
′

1(k−2).

Thus,

H
′

(k−3)2 = H
′

2(k−3) =
α0α1

αk−1αk−2αk−3

Dk.

In general, an induction argument proves that

H
′

(k−j)i = H
′

i(k−j) =
α0α1 · · ·αi−1

αk−1αk−2 · · ·αk−j
Dk for j − i = 1,

and the matrix [ek ⊗ Im H] has the following block anti-triangular form



0 0 · · · 0 0 0 α−1
k−1Dk

0 0 · · · 0 0
α0

αk−1αk−2
Dk ∗

0 0 · · · 0
α0α1

αk−1αk−2αk−3
Dk ∗ ∗

... . .
.

0 0
α0α1

αk−1αk−2αk−3
Dk ∗ ∗ ∗ ∗

0
α0

αk−1αk−2
Dk ∗ ∗ ∗ ∗ ∗

Im ∗ ∗ ∗ ∗ ∗ ∗


.

Therefore [ek ⊗ Im H] is nonsingular if and only if Dk is nonsingular. �

Corollary 3.6.7. Let D(λ) ∈ F[λ]m×m be a polynomial matrix with degree k ≥ 2
and leading matrix coefficient Dk, and let L(λ) = [ek ⊗ Im H]FD

Φ (λ) ∈ DM(D).
Then the following statements hold:

1. L(λ) is a strong linearization of D(λ) if Dk is nonsingular.

2. If D(λ) is regular, L(λ) is a strong linearization of D(λ) if and only if Dk is
nonsingular.

Proof. Item 1. follows from Lemma 3.6.6 and Corollary 3.2.5. Item 2. follows from
Lemma 3.6.6 and [36, Theorem 3]. �

Computing the pencil in DM(P ) with ansatz vector ek, or with any other ansatz
vector v, may be difficult. In general, one can follow the procedure in [36, Section 7]
or use the MATLAB code in [72, Subsection 7.1]. However, if the recurrence relation
(3.2) is simple and k is low, then the computation can be performed easily by hand,
as we illustrate in Example 3.6.8.
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Example 3.6.8. For a second degree polynomial matrixD(λ) = D2φ2(λ)+D1φ1(λ)+
D0φ0(λ) expressed in terms of a polynomial basis satisfying (3.2), the pencil L(λ) ∈
DM(D) with ansatz vector e2 is

L(λ) =

[
−α0

α1
D2

λ−β0
α1

D2

λ−β0
α1

D2

(
β0−β1
α0α1

(λ− β0)− γ1
α1

)
D2 + λ−β0

α0
D1 +D0

]
.

This can be obtained, for instance, by computing the matrix H
′

as in the proof
of Lemma 3.6.6. For example, Chebyshev polynomials of the first kind {φj(λ)}∞j=0

satisfy the following three-term recurrence relation:

1

2
φj+1(λ) = λφj(λ)− 1

2
φj−1(λ) j ≥ 1 (3.22)

where φ−1(λ) = 0, φ0(λ) = 1 and φ1(λ) = λ. Therefore, α0 = 1, αj = γj = 1
2

for
j ≥ 1, βj = 0 j ≥ 0 and

L(λ) =

[
−2D2 2λD2

2λD2 λD1 +D0 −D2

]
.

Chebyshev polynomials of the second kind satisfy the same recurrence relation with
φ1(λ) = 2λ. Thus, αj = γj = 1

2
, βj = 0 for j ≥ 0 and

L(λ) =

[
−D2 2λD2

2λD2 2λD1 +D0 −D2

]
.

For a cubic polynomial matrix D(λ) = D3φ3(λ) + D2φ2(λ) + D1φ1(λ) + D0φ0(λ)
expressed in terms of Chebyshev polynomials of the first kind, the pencil L(λ) ∈
DM(D) with ansatz vector e3 is

L(λ) =

 0 −2D3 2λD3

−2D3 4λD3 − 2D2 2λD2 − 2D3

2λD3 2λD2 − 2D3 λ(D1 +D3) +D0 −D2

 .
If D(λ) is expressed in terms of Chebyshev polynomials of the second kind we obtain

L(λ) =

 0 −D3 2λD3

−D3 2λD3 −D2 2λD2 −D3

2λD3 2λD2 −D3 2λD1 +D0 −D2

 .
By using Theorems 3.2.9 or 3.3.4, Theorem 3.6.5, Lemma 3.6.6 and Proposition

3.5.5, we obtain in Theorem 3.6.9 symmetric strong linearizations of a symmetric
rational matrix when the leading coefficient of its polynomial part is nonsingular as
we announced.
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Theorem 3.6.9. Let R(λ) ∈ F(λ)m×m be a symmetric rational matrix and let
R(λ) = D(λ) + Rsp(λ) be its unique decomposition into its polynomial part D(λ) ∈
F[λ]m×m and its strictly proper part Rsp(λ) ∈ F(λ)m×m. Assume that deg(D(λ)) =
k ≥ 2 and let n = ν(R(λ)). Consider a symmetric minimal state-space realization of
Rsp(λ), i.e., Rsp(λ) = W (λS1−S2)−1W T as in Definition 3.5.2, and L(λ) ∈ DM(D)
with ansatz vector ek. If the leading matrix coefficient Dk of D(λ) is nonsingular
then, for any nonsigular matrix Z ∈ Fn×n, the linear polynomial matrix

L(λ) =

 Z(S2 − λS1)ZT 0n×(k−1)m ZW T

0(k−1)m×n
WZT L(λ)

 (3.23)

is a symmetric strong linearization of R(λ).

Proof. Let L(λ) = [ek⊗Im H]FD
Φ (λ) be the pencil in DM(D) with ansatz vector ek.

Since Dk is nonsingular, the matrix [ek⊗Im H] is also nonsingular by using Lemma
3.6.6. Notice that if Rsp(λ) = W (λS1 − S2)−1W T is a symmetric minimal state-
space realization of Rsp(λ) then Rsp(λ) = W (λIn − S−1

1 S2)−1S−1
1 W T is a minimal

state-space realization. It only remains to consider Theorem 3.2.9 with X = ZS1

and Y = −ZT . Equivalently, we can consider Theorem 3.3.4 with X = ZS1 and
Y = −ZT . �

Example 3.6.10. Let R(λ) ∈ F(λ)m×m be a symmetric rational matrix and write
R(λ) = D(λ)+Rsp(λ) as the sum of its polynomial part and its strictly proper part.
Suppose that

D(λ) = Dkλ
k +Dk−1λ

k−1 + · · ·+D1λ+D0,

with k ≥ 2 and Dk nonsingular, and write Rsp(λ) = W (λS1 − S2)−1W T as a sym-
metric minimal state-space realization. For the monomial basis we obtain by [53,
Theorem 3.5] that the pencil L(λ) ∈ DL(D) with ansatz vector ek is

L(λ) = λ



Dk

. .
.
Dk−1

. .
.
. .
. ...

. .
.

. .
.

D2

Dk Dk−1 · · · D2 D1


−


Dk

. .
.
Dk−1

. .
.

. .
. ...

Dk Dk−1 · · · D2

−D0

 .

Then, by Theorem 3.6.9 with Z = In, the linear polynomial matrix

L(λ) =

 S2 − λS1 0n×(k−1)m W T

0(k−1)m×n
W

L(λ)


is a symmetric strong linearization of R(λ).
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We can obtain infinitely many symmetric strong linearizations by using Theorem
3.6.9 and Lemma 3.1.2.

Corollary 3.6.11. Under the same assumptions as in Theorem 3.6.9, consider the
symmetric strong linearization L(λ) in (3.23). Let Q ∈ Fn×n, P ∈ Fkm×km be
nonsingular matrices and R ∈ Fkm×n. Then

L̂(λ) =

[
Q 0
R P

]
L(λ)

[
QT RT

0 P T

]
is a symmetric strong linearization of R(λ).

3.7 Hermitian strong linearizations for Hermitian

rational matrices

In this section we extend the results in Sections 3.5 and 3.6 from symmetric to
Hermitian rational matrices. Since most of the arguments are similar to those in
the symmetric case, we limit ourselves to state the main results, and most of the
proofs are omitted. We consider the ring of polynomials C[λ] and a polynomial basis
{φj(λ)}∞j=0 that satisfies the three-term recurrence relation:

αjφj+1(λ) = (λ− βj)φj(λ)− γjφj−1(λ) j ≥ 0

as in (3.2), with αj, βj, γj ∈ R, αj 6= 0, φ−1(λ) = 0, and φ0(λ) = 1. Let P (λ) ∈
C[λ]m×m be a polynomial matrix of degree k written in terms of this basis, i.e.,

P (λ) =
k∑
i=0

Piφi(λ) with Pi ∈ Cm×m. Suppose that P (λ) is Hermitian, i.e., P (λ)∗ =

P (λ) or, equivalently, P ∗(λ) = P (λ), where P ∗(λ) is defined as P ∗(λ) =
k∑
i=0

P ∗i φi(λ)

with P ∗i the conjugate transpose of Pi ∈ Cm×m. We also consider the set of pencils

H(P ) = {λX + Y ∈M1(P ) : X∗ = X, Y ∗ = Y }.

That is, H(P ) is the set of pencils in M1(P ) that are Hermitian. Theorem 3.7.1
shows that the elements of H(P ) are in DM(P ), and that, in fact, they are the
pencils in DM(P ) with real ansatz vector. The proof of Theorem 3.7.1 is ommitted
for brevity since it is similar to the proof of [53, Theorem 6.1], which is Theorem
3.7.1 in the particular case φj(λ) = λj for j ≥ 0.

Theorem 3.7.1. Let P (λ) ∈ C[λ]m×m be a Hermitian polynomial matrix. Then
H(P ) is the subset of all pencils in DM(P ) with real ansatz vector.
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Let R(λ) ∈ C(λ)m×m be a Hermitian rational matrix, i.e., a rational matrix
satisfying R(λ)∗ = R(λ). Consider R(λ) = D(λ) + Rsp(λ) as in (2.1). Then D(λ)
and Rsp(λ) are also Hermitian. For Hermitian strictly proper rational matrices we
introduce the notion of Hermitian minimal state-space realizations, in the spirit of
Definition 3.5.2.

Definition 3.7.2. Let Rsp(λ) ∈ C(λ)m×m be a Hermitian strictly proper rational
matrix and let n = ν(Rsp(λ)). A Hermitian minimal state-space realization of Rsp(λ)
is an expression of the form

Rsp(λ) = W (λH1 −H2)−1W ∗

where H1, H2 ∈ Cn×n are Hermitian matrices, with H1 nonsingular, and W ∈ Cm×n.

Following arguments similar to those in Lemma 3.5.3 and Proposition 3.5.5, it
is easy to see that the strictly proper part of a Hermitian rational matrix has a
Hermitian minimal state-space realization.

Proposition 3.7.3. Any Hermitian strictly proper rational matrix has a Hermitian
minimal state-space realization.

Proof. In order to obtain a Hermitian minimal state-space realization of Rsp(λ), we
can consider a minimal state-space realization Rsp(λ) = C(λIn − A)−1B. We prove
analogously to Lemma 3.5.3 that there exists a unique nonsingular and Hermitian
matrix H ∈ Cn×n such that A∗ = H−1AH and C∗ = H−1B. Therefore, Rsp(λ) =
C(λH−1−H−1A)−1C∗ is a Hermitian minimal state-space realization of Rsp(λ). �

Remark 3.7.4. Another constructive way to prove Proposition 3.7.3 is to consider
the Hankel matrix Hn of Rsp(λ) defined in (3.15), that is also Hermitian, and write

Hn = U

[
K 0
0 0

]
U∗

with U unitary, i.e., U−1 = U∗, and K a diagonal matrix that has the eigenvalues
different from zero of Hn at the diagonal elements. Then proceed as in the last para-
graph of Remark 3.5.6 to get a Hermitian minimal state-space realization. Notice
that K is Hermitian because the eigenvalues of Hn are real. �

By using Proposition 3.7.3 and Theorem 3.7.1, we obtain in Theorem 3.7.5 Her-
mitian strong linearizations of a Hermitian rational matrix when the leading coeffi-
cient of its polynomial part is nonsingular, analogously as we did in Theorem 3.6.9
for the symmetric case.

Theorem 3.7.5. Let R(λ) ∈ C(λ)m×m be a Hermitian rational matrix and let
R(λ) = D(λ) + Rsp(λ) be its unique decomposition into its polynomial part D(λ) ∈
C[λ]m×m and its strictly proper part Rsp(λ) ∈ C(λ)m×m. Assume that deg(D(λ)) =
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k ≥ 2 and let n = ν(R(λ)). Consider a Hermitian minimal state-space realization of
Rsp(λ), i.e., Rsp(λ) = W (λH1−H2)−1W ∗ as in Definition 3.7.2, and L(λ) ∈ DM(D)
with ansatz vector ek. If the leading matrix coefficient Dk of D(λ) is nonsingular
then, for any nonsigular matrix Z ∈ Cn×n, the linear polynomial matrix

L(λ) =

 Z(H2 − λH1)Z∗ 0n×(k−1)m ZW ∗

0(k−1)m×n
WZ∗

L(λ)

 (3.24)

is a Hermitian strong linearization of R(λ).

As in Corollary 3.6.11, we can obtain infinitely many Hermitian strong lineari-
zations by using Theorem 3.7.5 and Lemma 3.1.2.

Corollary 3.7.6. Under the same assumptions as in Theorem 3.7.5, consider the
Hermitian strong linearization L(λ) in (3.24). Let Q ∈ Cn×n, P ∈ Ckm×km be
nonsingular matrices and R ∈ Ckm×n. Then

L̂(λ) =

[
Q 0
R P

]
L(λ)

[
Q∗ R∗

0 P ∗

]
is a Hermitian strong linearization of R(λ).

3.8 Strong linearizations of rational matrices with

polynomial part expressed in other polyno-

mial bases

Polynomial bases {φj(λ)}∞j=0 satisfying a three-term recurrence relation as in (3.2)
are by far the most useful in applications. However, from a theoretical point of view,
a natural question is whether or not the results in this chapter can be extended to
other polynomial bases. The goal of this section is to show that this can be done
by using exactly the same tools that we have used in previous sections, that is, [6,
Theorem 5.11], our key Lemma 3.1.2, and the results in [36]. Since the arguments
in this section are very similar to the ones previously used, we will simply sketch
the main ideas.

Let D(λ) be the polynomial part of a rational matrix R(λ) ∈ F(λ)m×m, with
deg(D(λ)) = k ≥ 2. Let us consider, motivated by (3.4) and its properties, a poly-
nomial basis {ψj(λ)}∞j=0 of F[λ], with ψj(λ) a polynomial of degree j, that satisfies
a linear relation:

MΨ(λ)Ψk(λ) = 0, (3.25)
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where MΨ(λ) ∈ F[λ](k−1)×k is a minimal basis with all its row degrees equal to 1,
and Ψk(λ) = [ψk−1(λ) · · · ψ1(λ) ψ0(λ)]T with Ψk(λ0) 6= 0 for all λ0 ∈ F. Then there
exists a vector w ∈ Fk such that

U(λ) =

[
MΨ(λ)⊗ Im
wT ⊗ Im

]
(3.26)

is unimodular, and its inverse has the form U(λ)−1 = [Ψ̂k(λ) Ψk(λ) ⊗ Im] with

Ψ̂k(λ) ∈ F[λ]km×(k−1)m (see [6, Lemma 5.5]). Let

FD
Ψ (λ) =

[
mD

Ψ(λ)
MΨ(λ)⊗ Im

]
∈ F[λ]km×km (3.27)

be a pencil such that mD
Ψ(λ)(Ψk(λ)⊗Im) = D(λ). Then, FD

Ψ (λ) is a strong block min-
imal bases pencil associated to D(λ) with sharp degree which verifies FD

Ψ (λ)(Ψk(λ)⊗
Im) = e1 ⊗ D(λ). Thus, we can apply [6, Theorem 5.11] and Lemma 3.1.2 in or-
der to construct strong linearizations of R(λ) from pencils of the form L(λ) =
[v ⊗ Im H]FD

Ψ (λ) with v ∈ Fk and [v ⊗ Im H] nonsingular. Notice that pencils
L(λ) of this form verify the ansatz relation L(λ)(Ψk(λ)⊗ Im) = v ⊗D(λ). In sum-
mary, with those arguments, we obtain the following result that is the generalization
of Theorem 3.2.9 for polynomial bases as in (5.19).

Theorem 3.8.1. Let R(λ) ∈ F(λ)m×m be a rational matrix written as in (2.1), and
let Rsp(λ) = C(λIn − A)−1B be a minimal state-space realization of Rsp(λ). As-
sume that deg(D(λ)) ≥ 2 and write D(λ) in terms of a polynomial basis {ψj(λ)}∞j=0

satisfying (5.19), as

D(λ) = Dkψk(λ) +Dk−1ψk−1(λ) + · · ·+D1ψ1(λ) +D0ψ0(λ) (3.28)

with Dk 6= 0. Let L(λ) = [v ⊗ Im H]FD
Ψ (λ) with [v ⊗ Im H] nonsingular and

FD
Ψ (λ) as in (3.27). Let w ∈ Fk be the vector in (3.26). Then, for any nonsingular

matrices X, Y ∈ Fn×n the linear polynomial matrix

L(λ) =

[
X(λIn − A)Y XB(wT ⊗ Im)

−(v ⊗ Im)CY L(λ)

]

is a strong linearization of R(λ).

In a similar manner, the results in Sections 3.3 and 3.4 can be extended to square
rational matrices with polynomial parts expressed in terms of polynomial bases as
in (5.19).

In Example 3.8.2 we consider degree-graded polynomial bases presented in [36,
Section 9], and we construct strong linearizations of square rational matrices by
expressing the polynomial parts in terms of these bases and using Theorem 3.8.1.
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Example 3.8.2. Let {ψj(λ)}∞j=0 be a degree-graded polynomial basis of F[λ] that
satisfies the following recurrence relation:

ψj(λ) = (λ− αj)ψj−1(λ) +

j−2∑
i=0

βijψi(λ) j ≥ 1

where αj ∈ F for j ≥ 1, βij ∈ F for j ≥ 2, 0 ≤ i ≤ j − 2 and ψ0(λ) = 1.
Let R(λ) = D(λ) + C(λIn − A)−1B be an m × m rational matrix written as in
Theorem 3.8.1. We express the polynomial part D(λ) in terms of the polynomial
basis {ψj(λ)}∞j=0, as in (3.28). Let us denote Ψk(λ) = [ψk−1(λ) · · · ψ1(λ) ψ0(λ)]T

and consider the following pencil GD
Ψ(λ) introduced in [36, Section 9]:

GD
Ψ(λ) =

[
mD

Ψ(λ)
MΨ(λ)⊗ Im

]
∈ F[λ]km×km,

where

mD
Ψ(λ) =

[
(λ− αk)Dk +Dk−1 βk−2

k Dk +Dk−2 · · · β1
kDk +D1 β0

kDk +D0

]
,

and

MΨ(λ) =


−1 (λ− αk−1) βk−3

k−1 βk−4
k−1 · · · β2

k−1 β1
k−1 β0

k−1

−1 (λ− αk−2) βk−4
k−2 · · · β2

k−2 β1
k−2 β0

k−2

. . .
. . .

. . .
...

...
...

−1 (λ− α2) β0
2

−1 (λ− α1)

 .

The matrix GD
Ψ(λ) verifies that GD

Ψ(λ)(Ψk(λ)⊗Im) = e1⊗D(λ). Moreover, GD
Ψ(λ) is

a strong block minimal bases pencil associated to D(λ) with sharp degree. It can be
proved, as in [36, Theorem 1], that any pencil L(λ) that verifies L(λ)(Ψk(λ)⊗Im) =
v ⊗ D(λ) for some vector v ∈ Fk can be written as L(λ) = [v ⊗ Im H]GD

Ψ(λ)
for some matrix H ∈ Fkm×(k−1)m. If we consider a pencil L(λ) of this form with
[v⊗ Im H] nonsingular we can obtain strong linearizations for R(λ). In particular,
we have that conditions in Theorem 3.8.1 hold, and we can apply it with w = ek.
Then, we have that for any nonsingular matrices X, Y ∈ Fn×n the linear polynomial
matrix

L(λ) =

[
X(λIn − A)Y 0n×(k−1)m XB

−(v ⊗ Im)CY L(λ)

]
is a strong linearization of R(λ).



Chapter 4

Local linearizations of rational
matrices

In this chapter, we present a definition of local linearizations of rational matrices and
study their properties. This new theory of local linearizations captures and explains
rigorously the properties of all the different pencils that have been constructed from
the 1970’s in the literature for computing zeros, poles and eigenvalues of rational
matrices. The results in this chapter appear in [28] and [29].

Local linearizations are pencils associated to a rational matrix that preserve its
structure of zeros and poles in subsets of any algebraically closed field F, in the
whole F and also at infinity. In practice, one is often interested in studying the
pole and zero structure of rational matrices not in the whole space F∪{∞} but in a
particular region (see [46, 47, 60, 35]). For instance, this happens when a REP arises
from approximating a NLEP, since the approximation is usually reliable only in a
target region. As a consequence, the eigenvalues (those zeros that are not poles) of
the approximating REP need to be computed only in that region. In this scenario,
one can use local linearizations of the corresponding rational matrix which contain
the information about the poles and zeros in the target region, but possibly not in
the whole space F∪{∞}. In general, the pencils in [46, 47, 60, 35] do not satisfy the
definitions of linearizations and strong linearizations of rational matrices introduced
in [6]. Thereby local linearizations provide extra flexibility in solving NLEPs. We
assume throughout this chapter that F is an algebraically closed field.

4.1 Polynomial system matrices minimal in a set

and at infinity

In this section, we extend the concept of minimal polynomial system matrices from
the classical scenario to a local notion. Some of the definitions in this section can
also be found in [16] expressed in an abstract algebraic language.

63
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4.1.1 Polynomial system matrices minimal in a set

Consider a polynomial system matrix

P (λ) =

[
A(λ) B(λ)
−C(λ) D(λ)

]
(4.1)

with transfer function matrix R(λ) = D(λ)+C(λ)A(λ)−1B(λ). The next Definition
4.1.1 extends to subsets of F the classical definition of minimal, or with least order,
polynomial system matrices introduced by Rosenbrock in [78].

Definition 4.1.1 (Polynomial system matrix minimal in a subset of F). Let Σ ⊆ F
be nonempty. The polynomial system matrix P (λ) in (4.1), with n > 0, is said to
be minimal in Σ if, for each λ0 ∈ Σ, the following condition holds:

rank

[
A(λ0)
C(λ0)

]
= rank

[
A(λ0) B(λ0)

]
= n. (4.2)

Rosenbrock’s definition coincides with Definition 4.1.1 when Σ = F.

Remark 4.1.2. Notice that nrank

[
A(λ)
C(λ)

]
= nrank

[
A(λ) B(λ)

]
= n since A(λ) is

regular. Thus, the rank condition (4.2) holds if and only if λ0 is neither an eigenvalue

of

[
A(λ)
C(λ)

]
nor of

[
A(λ) B(λ)

]
.

Remark 4.1.3. For convenience, if n = 0 in (4.1), we adopt the agreement that
P (λ) is minimal at every point λ0 ∈ F.

In the next example, we illustrate Definition 4.1.1 with a rational matrix and
a polynomial system matrix taken from the reference [35] dealing with numerical
algorithms for solving NLEPs via rational approximation. We advance that we will
use Example 4.1.4 several times for illustrating different concepts. In this respect,
we emphasize that [35] does not mention polynomial system matrices at all.

Example 4.1.4. Let R(λ) be a rational matrix of the form

R(λ) = −B0 + λA0 +
B1

λ− σ1

+ · · ·+ Bs

λ− σs
∈ C(λ)p×p, (4.3)

with A0, B0, . . . , Bs ∈ Cp×p, σ1, . . . , σs ∈ C, and σi 6= σj if i 6= j. Let us consider the
linear polynomial matrix

P (λ) =


(λ− σ1)I I

. . .
...

(λ− σs)I I
−B1 · · · −Bs λA0 −B0

 .
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These matrices are introduced in [35] to tackle a NLEP T (λ)v = 0, in a certain
region Ω ⊆ C, where the matrix T (λ) is of the form T (λ) = −B0 +λA0 + f1(λ)A1 +
· · ·+ fq(λ)Aq, with A0, A1, . . . , Aq ∈ Cp×p and fi : Ω ⊆ C −→ C, i = 1, . . . , q, being
scalar functions nonlinear in the variable λ and holomorphic in Ω. For solving a
NLEP of this form, the nonlinear matrix T (λ) is approximated in Ω by a rational
matrix R(λ) as in (4.3), and P (λ) is considered to linearize R(λ). It is easy to
see that P (λ) is, in fact, a linear polynomial system matrix of R(λ), by setting
the matrix diag((λ − σ1)I, . . . , (λ − σs)I) as state matrix A(λ) in (4.1). Moreover,
without any assumption, P (λ) is minimal in Σ := C \ {σ1, . . . , σs}. In particular,
and according to [35], Ω is a subset of Σ. Therefore, P (λ) is minimal in the target
set Ω. For completeness, notice that a polynomial system matrix as P (λ) is minimal
in C if and only if all the matrices B1, . . . , Bs are nonsingular.

The next result provides the pole and zero elementary divisors of a rational
matrix R(λ) in a subset Σ from any polynomial system matrix of R(λ) minimal in Σ.
This result is the counterpart of [78, Chapter 3, Theorem 4.1] for polynomial system
matrices minimal in a particular subset instead of polynomial system matrices of
least order.

Theorem 4.1.5. Let Σ ⊆ F be nonempty. Let R(λ) ∈ F(λ)p×m and let

P (λ) =

[
A(λ) B(λ)
−C(λ) D(λ)

]
∈ F[λ](n+p)×(n+m)

be a polynomial system matrix minimal in Σ whose transfer function matrix is R(λ).
Then the elementary divisors of A(λ) in Σ are the pole elementary divisors of R(λ)
in Σ, and the elementary divisors of P (λ) in Σ are the zero elementary divisors of
R(λ) in Σ.

Proof. We give the proof for a finite point λ0 ∈ Σ. Then, the result can be extended
to Σ in a natural way. Let us consider the Smith normal form of

[
A(λ) B(λ)

]
.

Namely, U(λ)
[
A(λ) B(λ)

]
V (λ) =

[
S(λ) 0

]
with U(λ) and V (λ) unimodular ma-

trices. Observe that S(λ) ∈ F[λ]n×n is regular since nrank
[
A(λ) B(λ)

]
= n. We

set H1(λ) := S(λ)−1U(λ). Since P (λ) is minimal at λ0, S(λ) has no zeros at λ0.
Therefore, H1(λ) is invertible at λ0. Moreover,

[
H1(λ)A(λ) H1(λ)B(λ)

]
is a poly-

nomial matrix, as it is equal to
[
In 0

]
V (λ)−1, has full row normal rank, and has

no zeros in F. Now, let us consider the Smith normal form of the polynomial ma-

trix

[
H1(λ)A(λ)
−C(λ)

]
. Namely, Ũ(λ)

[
H1(λ)A(λ)
−C(λ)

]
Ṽ (λ) =

[
S̃(λ)

0

]
with Ũ(λ) and Ṽ (λ)

unimodular matrices. Observe that S̃(λ) ∈ F[λ]n×n is regular since H1(λ) is reg-

ular and nrank

[
A(λ)
C(λ)

]
= n. We set H2(λ) := Ṽ (λ)S̃(λ)−1. Moreover, the matrix[

H1(λ)A(λ)H2(λ)
−C(λ)H2(λ)

]
is also polynomial, as it is equal to Ũ(λ)−1

[
In
0

]
, has full column
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normal rank, and has no zeros in F. Since P (λ) is minimal at λ0 and H1(λ) is in-

vertible at λ0, S̃(λ) has no zeros at λ0. Therefore, H2(λ) is invertible at λ0. Let us
define now the polynomial system matrix

P̃ (λ) :=

[
H1(λ) 0

0 Ip

] [
A(λ) B(λ)
−C(λ) D(λ)

] [
H2(λ) 0

0 Im

]
=

[
H1(λ)A(λ)H2(λ) H1(λ)B(λ)
−C(λ)H2(λ) D(λ)

]
.

We claim that P̃ (λ) is a minimal polynomial system matrix in F or in the classical
sense of [78]. For that, it remains to prove that the matrix

Z(λ) :=
[
H1(λ)A(λ)H2(λ) H1(λ)B(λ)

]
has full row rank for all λ ∈ F. Let us suppose that there exists λ1 ∈ F such that

rankZ(λ1) < n. We know that rank
[
H1(λ1)A(λ1)Ṽ (λ1) H1(λ1)B(λ1)

]
= n since

the Smith normal form of
[
H1(λ)A(λ) H1(λ)B(λ)

]
is equal to

[
In 0

]
and Ṽ (λ) is

unimodular. On the other hand, we have that

rank
[
H1(λ1)A(λ1)Ṽ (λ1) H1(λ1)B(λ1)

]
= rank

(
Z(λ1)

[
S̃(λ1) 0

0 Im

])

and rank

(
Z(λ1)

[
S̃(λ1) 0

0 Im

])
≤ rankZ(λ1) < n, which is a contradiction. There-

fore, P̃ (λ) is a minimal polynomial system matrix. Its transfer function matrix is
R(λ). Then, by [78, Chapter 3, Theorem 4.1], we know that the zero elementary

divisors of R(λ) are the elementary divisors of P̃ (λ), and that the pole elementary
divisors of R(λ) are the elementary divisors of H1(λ)A(λ)H2(λ). Finally, the result

follows by taking into account that P (λ) ∼λ0 P̃ (λ) and A(λ) ∼λ0 H1(λ)A(λ)H2(λ),
since H1(λ) and H2(λ) are both invertible at λ0. �

Example 4.1.6. If Theorem 4.1.5 is applied in Example 4.1.4, we obtain that
(without any hypothesis) the eigenvalues of P (λ) in Σ coincide exactly with the
zeros of R(λ) in Σ, with exactly the same multiplicities (geometric, algebraic and
partial). In addition, all the zeros of R(λ) in Σ are, in fact, eigenvalues of R(λ)
because the only potential poles of R(λ) are σ1, . . . , σs. This result is stronger
than Lemma 3.1 and Corollary 3.2 in [35] from two perspectives: [35] deals with
determinants and, so, only gives information on algebraic multiplicities, and the
requirements in [35] impose the additional hypothesis that A0 is nonsingular. Note
that, under the assumption that all the matrices B1, . . . , Bs are nonsingular, P (λ)
and A(λ) allow us to obtain the complete information on finite zeros and poles
(including all the multiplicities) of R(λ) in C.
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4.1.2 Polynomial system matrices minimal at infinity

Theorem 4.1.5 characterizes polynomial system matrices that contain the informa-
tion of the invariant orders at finite points of their transfer functions. The extension
of these results for including the information at infinity is an old problem that has
been considered in classical papers as, for instance, in [91, 92]. However, a satisfac-
tory solution has been found, so far, only for polynomial system matrices with state
matrix A(λ) being a linear polynomial matrix and the other blocks B(λ), C(λ),
D(λ) being constant matrices. In other cases, recovering the information at infinity
requires to embed the polynomial system matrix into a larger matrix. In this sec-
tion, we propose a new approach for obtaining a counterpart of Theorem 4.1.5 at
infinity.

First, we introduce the notion of g-reversal of a rational matrix in Definition
4.1.7, where g is any integer.

Definition 4.1.7 (g-reversal of a rational matrix). Let R(λ) be a rational matrix,
and let g be an integer. We define the g-reversal of R(λ) as the rational matrix

revg R(λ) := λgR

(
1

λ

)
.

Consider now R(λ) expressed as the sum of its polynomial and strictly proper
parts. Namely,

R(λ) = D(λ) +Rsp(λ)

where D(λ) is a polynomial matrix and Rsp(λ) is a strictly proper rational matrix.
If g = deg(D(λ)), whenever R(λ) is not strictly proper, or g = 0, if R(λ) is strictly
proper, then the g-reversal is called the reversal of R(λ) and is denoted by just
revR(λ) (recall Definition 2.2.1).

Definition 4.1.7 extends the definition of g-reversal for polynomial matrices (see,
for instance, [22, Definition 2.12]). However, in the definition of g-reversal of a
polynomial matrix considered previously in the literature, g is always taken larger
than or equal to the degree of the polynomial matrix, while in Definition 4.1.7 we
only ask for g to be an integer.

Given a polynomial system matrix P (λ) as in (4.1) of degree d, we have that

revP (λ) =

[
revdA(λ) revdB(λ)
− revdC(λ) revdD(λ)

]
is also a polynomial matrix. Moreover, revdA(λ) is regular since A(λ) is regular.
Therefore, revP (λ) is also a polynomial system matrix. By using the notion of
reversal, we introduce the concept of minimality at infinity of a polynomial system
matrix.

Definition 4.1.8 (Polynomial system matrix minimal at infinity). The polynomial
system matrix P (λ) in (4.1) is minimal at ∞ if revP (λ) is minimal at 0.
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Example 4.1.9. The polynomial system matrix in Example 4.1.4 is minimal at ∞
since revP (λ) is, obviously, minimal at 0.

Remark 4.1.10. A polynomial system matrix P (λ) as in (4.1), with deg(P (λ)) = d
and n > 0, is minimal at ∞ if and only if

rank

[
revdA(0)
revdC(0)

]
= rank

[
revdA(0) revdB(0)

]
= n.

More precisely, let Ad, Bd and Cd be the matrix coefficients of λd in A(λ), B(λ) and
C(λ), respectively. Then P (λ) is minimal at ∞ if and only if

rank

[
Ad
Cd

]
= rank

[
Ad Bd

]
= n.

Notice that if d = 0 then P (λ) is a constant polynomial system matrix, and A0 must
be invertible. Therefore, in this case, the rank condition above is automatically
satisfied, and P (λ) is minimal at ∞.

Theorem 4.1.11 is essentially the counterpart of Theorem 4.1.5 at infinity. We
state it in terms of reversals and their elementary divisors at 0 as we only have
defined elementary divisors for finite points. The implications of Theorem 4.1.11 on
the structure at infinity are made explicit in Theorem 4.1.13.

Theorem 4.1.11. Let R(λ) ∈ F(λ)p×m and let

P (λ) =

[
A(λ) B(λ)
−C(λ) D(λ)

]
∈ F[λ](n+p)×(n+m)

be a polynomial system matrix of degree d minimal at ∞ whose transfer function
matrix is R(λ). Then the elementary divisors of revdA(λ) at 0 are the pole elemen-
tary divisors of revdR(λ) at 0, and the elementary divisors of revP (λ) at 0 are the
zero elementary divisors of revdR(λ) at 0.

Proof. It can be easily proved that the transfer function matrix of revP (λ) is
revdR(λ). The theorem then follows by applying Theorem 4.1.5, since revP (λ)
is minimal at 0. �

Once we have obtained the elementary divisors of the d-reversal of a rational
matrix at 0, from one of its polynomial system matrices of degree d minimal at ∞,
we can then obtain its invariant orders at infinity as we state in Theorem 4.1.13.
For proving that, we use Lemma 4.1.12.

Lemma 4.1.12. Let R(λ) ∈ F(λ)p×m with nrankR(λ) = r, and let g be an integer.
Let e1, . . . , er be the invariant orders of revg R(λ) at 0, and let q1, . . . , qr be the
invariant orders at infinity of R(λ). Then

ei = qi + g i = 1, . . . , r. (4.4)
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Proof. From the local Smith–McMillan form at infinity of R(λ), there exist biproper
rational matrices B1(λ) and B2(λ) such that

R(λ) = B1(λ) diag
(
(1/λ)q1 , . . . , (1/λ)qr , 0(p−r)×(m−r)

)
B2(λ).

Let us perform the transformation λ 7−→ 1/λ on the variable of the equation above.
Thus,

R(1/λ) = B1(1/λ) diag
(
λq1 , . . . , λqr , 0(p−r)×(m−r)

)
B2(1/λ).

By [10, Lemma 6.9], B1(1/λ) and B2(1/λ) are invertible at 0. We now multiply the
previous equation by λg, and we get that qi + g for i = 1, . . . , r are the invariant
orders of revg R(λ) at 0. �

Theorem 4.1.13. Let R(λ) ∈ F(λ)p×m with nrankR(λ) = r and let

P (λ) =

[
A(λ) B(λ)
−C(λ) D(λ)

]
∈ F[λ](n+p)×(n+m)

be a polynomial system matrix of degree d minimal at ∞ whose transfer function
matrix is R(λ). Let e1 ≤ · · · ≤ es be the partial multiplicities of revdA(λ) at 0 and
let ẽ1 ≤ · · · ≤ ẽu be the partial multiplicities of revP (λ) at 0. Then the invariant
orders at infinity q1 ≤ · · · ≤ qr of R(λ) are

(q1, q2, . . . , qr) = (−es,−es−1, . . . ,−e1, 0, . . . , 0︸ ︷︷ ︸
r−s−u

, ẽ1, ẽ2, . . . , ẽu)− (d, d, . . . , d).

Proof. By Theorem 4.1.11, we know that ei and ẽj with i = 1, . . . , s and j = 1, . . . , u
are the pole and zero partial multiplicities of revdR(λ) at 0, respectively. Thus, the
invariant orders of revdR(λ) at 0 are

−es ≤ −es−1 ≤ · · · ≤ −e1 < 0 = · · · = 0︸ ︷︷ ︸
r−s−u

< ẽ1 ≤ · · · ≤ ẽu.

Then the use of Lemma 4.1.12 completes the proof. �

Example 4.1.14. By combining Theorem 4.1.13 and Example 4.1.9, we see that
P (λ) contains the complete information about the invariant orders at ∞ of R(λ)
(without imposing any hypothesis). Note that, in this case, d = 1 and that the
1-reversal of the state matrix, i.e., rev1A(λ) = diag((1−λσ1)I, . . . , (1−λσs)I), has
no partial multiplicities at 0. This result on the relationship between the infinite
structure of R(λ) and the reversal of P (λ) is not mentioned in [35].

For polynomial system matrices that are minimal at infinity and, also, at every
finite point, we state Definition 4.1.15 about strong minimality. This definition was
introduced in [32, Definition 3.3]. However, in [32] the definition is given in terms of
eigenvalues instead of minimality at every point, but both definitions are equivalent.
We introduce the definition in [32] in Chapter 7.



70 CHAPTER 4. LOCAL LINEARIZATIONS OF RATIONAL MATRICES

Definition 4.1.15 (Strongly minimal polynomial system matrix). The polynomial
system matrix P (λ) in (4.1) is strongly minimal if it is minimal at each point of
F ∪ {∞}.

We emphasize that, as a consequence of Theorems 4.1.5 and 4.1.13, strongly
minimal polynomial system matrices contain all the information about the invariant
orders of their transfer function matrices, both at finite points and at infinity.

4.2 Local linearizations of rational matrices

In this section, we give separately the definitions of linearizations of rational matrices
in subsets of F and at infinity. These linearizations will be useful in order to study
the pole and zero structure of rational matrices in different sets containing infinity
or not. In particular, and as an application of these definitions, we will study in
Chapter 5 the structure of the linearizations that appear in [47] and [60].

4.2.1 Linearizations in a set

In this subsection we introduce the definition of linearization of a rational matrix in
a set not containing infinity and study some of its properties.

Definition 4.2.1 (Linearization in a subset of F). Let R(λ) ∈ F(λ)p×m and let
Σ ⊆ F be nonempty. Let

L(λ) =

[
A1λ+ A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
∈ F[λ](n+q)×(n+r) (4.5)

be a linear polynomial system matrix with state matrix A1λ+ A0 and let

R̂(λ) = (D1λ+D0) + (C1λ+ C0)(A1λ+ A0)−1(B1λ+B0) ∈ F(λ)q×r

be its transfer function matrix. L(λ) is a linearization of R(λ) in Σ if the following
conditions hold:

(a) L(λ) is minimal in Σ, and

(b) there exist nonnegative integers s1, s2 satisfying s1 − s2 = q− p = r−m, such
that

diag(R(λ), Is1) ∼Σ diag(R̂(λ), Is2). (4.6)

Linearizations of rational matrices are polynomial system matrices and their
definition includes a specific partition. Thus, a fixed linear polynomial matrix may
be partitioned in different ways giving rise to different linearizations of the same or of
different rational matrices, or in different subsets. To deal with different partitions,
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we will use expressions as “L(λ) is a linearization of R(λ) in Σ with state matrix
A1λ + A0” when it is necessary for avoiding any ambiguity. The expression “L(λ)
is a linearization of R(λ) in Σ with empty state matrix” will cover the case n = 0 in
(4.5), which does not give us pole information since the pole information is contained
in the state matrix (see Remark 4.2.7).

Remark 4.2.2. We remark the following extreme cases since they are important in
applications and make Definition 4.2.1 very general:

1. R̂(λ) = R(λ). That is, the transfer function matrix of L(λ) is the desired
rational matrix R(λ). Then we just have to check condition (a). It follows
that any linear polynomial system matrix L(λ) is a linearization of its transfer
function matrix in the sets where L(λ) is minimal.

2. n = 0. Then it is not necessary to take into account condition (a) (it is auto-
matically satisfied by the agreement in Remark 4.1.3) and, therefore, we just

have to check condition (b) with R̂(λ) = D1λ+D0 = L(λ). That is,

diag(R(λ), Is1) ∼Σ diag(L(λ), Is2).

Notice that if we want a linearization of R(λ) in Σ = F we cannot consider
the case n = 0 unless R(λ) is polynomial.

In condition (4.6), one can always take s1 = 0 or s2 = 0, according to p ≥ q and
m ≥ r or q ≥ p and r ≥ m, respectively. This is a consequence of the local Smith–
McMillan forms of diag(R(λ), Is1) and diag(R̂(λ), Is2) being equivalent to each other
in Σ. In the rest of the results of this subsection, we will consider s := s1 ≥ 0 and
s2 = 0, since it corresponds to the most interesting situation in applications.

Remark 4.2.3. If we have a linearization of R(λ) in a set Σ then, for each point
µ ∈ Σ, there exist rational matrices Hµ

1 (λ) and Hµ
2 (λ) invertible at µ such that

Hµ
1 (λ) diag(R(λ), Is)H

µ
2 (λ) = R̂(λ). In principle, for different values of µ ∈ Σ, the

rational matrices Hµ
1 (λ) (respectively, Hµ

2 (λ)) may be different from each other, that
is, Hµ

1 (λ) (resp., Hµ
2 (λ)) depends on µ. However, Proposition 2.1.5 implies that the

existence of Hµ
1 (λ) and Hµ

2 (λ) for each µ ∈ Σ is equivalent to the existence of two
rational matrices H1(λ) and H2(λ) both invertible in Σ (and independent of µ) such

that H1(λ) diag(R(λ), Is)H2(λ) = R̂(λ).

Remark 4.2.4. When Σ = F, in Definition 4.2.1, condition (4.6) is satisfied with
unimodular equivalence. Therefore, a linearization in F, or at every point of F, is a
linearization in the sense of [7, Definition 3.2] and vice versa.

The next result gives the relation between the Smith–McMillan forms at a finite
point of the rational matrices R(λ) and diag(R(λ), Is), with s > 0. It is motivated
by (4.6).
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Lemma 4.2.5. Let R(λ) ∈ F(λ)p×m and let diag ((λ − λ0)ν1 , . . . , (λ − λ0)νk , (λ −
λ0)νk+1 , . . . , (λ−λ0)νr , 0(p−r)×(m−r)) be the Smith–McMillan form at λ0 ∈ F of R(λ),
with νi ≤ 0 for i = 1, . . . , k and νi > 0 for i = k + 1, . . . , r. Then the Smith–
McMillan form at λ0 of diag(R(λ), Is) is diag ((λ − λ0)ν1 , . . . , (λ − λ0)νk , Is, (λ −
λ0)νk+1 , . . . , (λ− λ0)νr , 0(p−r)×(m−r)).

Proof. LetM(λ) := diag
(
(λ− λ0)ν1 , . . . , (λ− λ0)νr , 0(p−r)×(m−r)

)
be the local Smith–

McMillan form of R(λ) at λ0. Then, R(λ) = R1(λ)M(λ)R2(λ) for some rational
matrices R1(λ) and R2(λ) invertible at λ0. Moreover,

diag(R(λ), Is) = diag (R1(λ), Is) diag (M(λ), Is) diag (R2(λ), Is) .

Therefore, since the matrices diag (R1(λ), Is) and diag (R2(λ), Is) are invertible at
λ0, the local Smith–McMillan form of diag(R(λ), Is) at λ0 is diag (M(λ), Is) up to
a permutation. �

Theorem 4.2.6 states the spectral information that one can obtain from local
linearizations in the spirit of [7, Theorem 3.10].

Theorem 4.2.6 (Spectral characterization of linearizations in a subset of F). Let
R(λ) ∈ F(λ)p×m, Σ ⊆ F nonempty and let

L(λ) =

[
A1λ+ A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
∈ F[λ](n+(p+s))×(n+(m+s))

be a linear polynomial system matrix, with state matrix A1λ + A0, minimal in Σ.
Then L(λ) is a linearization of R(λ) in Σ if and only if the following conditions
hold:

(a) nrankL(λ) = nrankR(λ) + n+ s,

(b) the pole elementary divisors of R(λ) in Σ are the elementary divisors of A1λ+
A0 in Σ, and the zero elementary divisors of R(λ) in Σ are the elementary
divisors of L(λ) in Σ.

Proof. We give the proof for a point λ0 ∈ Σ. Then, the result can be extended to Σ in
a natural way. Let R̂(λ) be the transfer function matrix of L(λ). First, assume that

L(λ) is a linearization of R(λ) at λ0. By (2.9), nrank R̂(λ) = nrankL(λ)−n. And, by

Lemma 4.2.5, nrank R̂(λ) = nrankR(λ)+s. Then, nrankL(λ) = nrankR(λ)+n+s.

By Lemma 4.2.5, we also have that R(λ) and R̂(λ) have the same pole and zero
elementary divisors at λ0. Then (b) follows from Theorem 4.1.5, since the pole ele-

mentary divisors of R̂(λ) at λ0 are the elementary divisors of A1λ + A0 at λ0, and

the zero elementary divisors of R̂(λ) at λ0 are the elementary divisors of L(λ) at λ0.
For the converse, suppose that diag ((λ−λ0)ν1 , . . . , (λ−λ0)νk , (λ−λ0)νk+1 , . . . , (λ−
λ0)νr , 0(p−r)×(m−r)) is the Smith–McMillan form at λ0 of R(λ), with νi ≤ 0 for



4.2. LOCAL LINEARIZATIONS OF RATIONAL MATRICES 73

i = 1, . . . , k and νi > 0 for i = k + 1, . . . , r. From (b) and Theorem 4.1.5, the pole

and zero elementary divisors of R(λ) and R̂(λ) are the same. Moreover, by (2.9) and

(a), nrank R̂(λ) = nrankR(λ)+s. Therefore, the Smith–McMillan form at λ0 of R̂(λ)
must be diag

(
(λ− λ0)ν1 , . . . , (λ− λ0)νk , Is, (λ− λ0)νk+1 , . . . , (λ− λ0)νr , 0(p−r)×(m−r)

)
.

This is also the Smith–McMillan form at λ0 of diag(R(λ), Is), as stated in the pre-

vious lemma. Thus, diag(R(λ), Is) ∼λ0 R̂(λ). �

Remark 4.2.7. Notice that if n = 0 in Theorem 4.2.6 then we can not obtain pole
information in Σ from the linearization L(λ) since the state matrix is empty.

Example 4.2.8. Consider Example 4.1.4. By combining the discussion in that ex-
ample with Remark 4.2.2(case 1), we immediately obtain that P (λ) is a linearization
of R(λ) in Σ. With a bit more effort, it is also easy to obtain the following stronger
result: P (λ) is a linearization of R(λ) in C\Π where Π := {σi : Bi is singular for 1 ≤
i ≤ s}.

4.2.2 Linearizations at infinity and in sets containing infi-
nity

Our definition of linearization of a rational matrix at infinity is based on the notion
of g-reversal of a rational matrix introduced in Definition 4.1.7.

Definition 4.2.9 (Linearization at infinity of grade g). Let R(λ) ∈ F(λ)p×m. Let

L(λ) =

[
A1λ+ A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
∈ F[λ](n+q)×(n+r) (4.7)

be a linear polynomial system matrix with state matrix A1λ+ A0 and let

R̂(λ) = (D1λ+D0) + (C1λ+ C0)(A1λ+ A0)−1(B1λ+B0) ∈ F(λ)q×r

be its transfer function matrix. Let g be an integer. L(λ) is a linearization of R(λ)
at ∞ of grade g if the following conditions hold:

(a) revL(λ) is minimal at 0, and

(b) there exist nonnegative integers s1, s2, with s1− s2 = q− p = r−m, such that

diag(revg R(λ), Is1) ∼0 diag(rev` R̂(λ), Is2), (4.8)

where ` = deg(L(λ)).

Observe that Definition 4.2.9 allows, for completeness, the possibility of ` =
deg(L(λ)) being equal to 0. We admit that this case has a very limited interest

in applications, since it corresponds to L(λ) and rev` R̂(λ) = R̂(λ) being constant
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matrices. However, it includes linearizations at ∞ of rational matrices R(λ) such
that, for some integer g, revg R(λ) has all its invariant orders at 0 equal to zero.
Moreover, notice that, in any case, revL(λ) is also a linear polynomial system matrix
since rev`(A1λ + A0) is nonsingular. We then have the following characterization
of linearizations at infinity, which follows from Definition 4.2.1 and the fact that
rev` R̂(λ) with ` = deg(L(λ)) is the transfer function matrix of revL(λ).

Proposition 4.2.10. A linear polynomial system matrix L(λ) as in (4.7) is a li-
nearization of a rational matrix R(λ) at ∞ of grade g if and only if revL(λ) is a
linearization of revg R(λ) at 0.

Conditions (a) and (b) in Definition 4.2.9 can be stated in a different way as we
show in Remarks 4.2.11 and 4.2.13, respectively.

Remark 4.2.11. As a particular case of what is discussed in Remark 4.1.10, con-
dition (a) in Definition 4.2.9 is equivalent to

rank

[
A1

C1

]
= rank

[
A1 B1

]
= n, (4.9)

if L(λ) is nonconstant, i.e., if ` = 1. If L(λ) is constant, i.e., ` = 0, condition (a)
is automatically satisfied since L(λ) is a polynomial system matrix and, therefore,
A0 is invertible. We emphasize that when a nonconstant linear polynomial system
matrix L(λ) as in (4.7) satisfies condition (4.9) then L(λ) is a linearization of its

transfer function matrix R̂(λ) at ∞ of grade 1. If L(λ) is constant then L(λ) is a

linearization of R̂(λ) at ∞ of grade 0.

Example 4.2.12. Consider the matrices in Example 4.1.4. By Remark 4.2.11, the
linear polynomial system matrix P (λ) is a linearization of R(λ) at ∞ of grade 1.

Remark 4.2.13. By performing the transformation λ 7→ 1/λ, condition (b) in

Definition 4.2.9 is equivalent to diag((1/λ)gR(λ), Is1) ∼∞ diag((1/λ)`R̂(λ), Is2).

We state in Theorem 4.2.14 a characterization of linearizations at∞ analogous to
the one in Theorem 4.2.6 for linearizations at finite points. In this characterization,
we consider the most usual situation s1 := s ≥ 0 and s2 = 0, assuming q ≥ p and
r ≥ m. Its proof is omitted since it follows immediately from Theorem 4.2.6 and
Proposition 4.2.10.

Theorem 4.2.14 (Spectral characterization of linearizations at infinity). Let R(λ) ∈
F(λ)p×m and let

L(λ) =

[
A1λ+ A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
∈ F[λ](n+(p+s))×(n+(m+s))

be a linear polynomial system matrix, with state matrix A1λ+A0, such that revL(λ)
is minimal at 0. Let ` = deg(L(λ)). Then L(λ) is a linearization of R(λ) at ∞ of
grade g if and only if the following conditions hold:



4.2. LOCAL LINEARIZATIONS OF RATIONAL MATRICES 75

(a) nrankL(λ) = nrankR(λ) + n+ s,

(b) the pole elementary divisors of revg R(λ) at 0 are the elementary divisors of
rev`(A1λ+A0) at 0, and the zero elementary divisors of revg R(λ) at 0 are the
elementary divisors of revL(λ) at 0.

Next, we study in Proposition 4.2.15 how to recover the invariant orders at
infinity of rational matrices from linearizations at infinity of grade g. Its proof is
analogous to the one for Theorem 4.1.13. It follows from combining Theorem 4.2.14
and Lemma 4.1.12.

Proposition 4.2.15. Let R(λ) ∈ F(λ)p×m with nrankR(λ) = r, and let

L(λ) =

[
A1λ+ A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
∈ F[λ](n+(p+s))×(n+(m+s))

be a linearization at infinity of grade g of R(λ) with ` = deg(L(λ)). Let e1 ≤ · · · ≤ et
be the partial multiplicities of rev`(A1λ+A0) at 0, and let ẽ1 ≤ · · · ≤ ẽu be the partial
multiplicities of revL(λ) at 0. Then the invariant orders at infinity q1 ≤ q2 ≤ · · · ≤
qr of R(λ) are

(q1, q2, . . . , qr) = (−et,−et−1, . . . ,−e1, 0, . . . , 0︸ ︷︷ ︸
r−t−u

, ẽ1, ẽ2, . . . , ẽu)− (g, g, . . . , g).

A linear polynomial system matrix that satisfies Definition 4.2.1 in F and De-
finition 4.2.9, for a certain grade g, allows us to recover the complete information
about the poles and zeros of the corresponding rational matrix, finite and at infinity.
This is due to Theorem 4.2.6 and Proposition 4.2.15. This important case leads us
to introduce the following definition.

Definition 4.2.16 (g-strong linearization). Let R(λ) ∈ F(λ)p×m and let g be an
integer. A linear polynomial system matrix L(λ) is said to be a strong linearization
of grade g, or a g-strong linearization, of R(λ) if L(λ) is a linearization of R(λ) in
F and also at ∞ of grade g.

Example 4.2.17. Consider again the matrices in Example 4.1.4. Then the linear
polynomial system matrix P (λ) is a 1-strong linearization of R(λ) if and only if all
the matrices B1, . . . , Bs are nonsingular.

In Example 4.2.18 we consider a linear polynomial system matrix L(λ) that is
a linearization of a rational matrix R(λ) in F ∪ {∞}. However, it is not a strong
linearization in the sense of [7, Definition 3.4]. In particular, the grade of L(λ)
as linearization at ∞ is not equal to the degree of the polynomial part of R(λ).
Actually, the grade is less than the degree of the polynomial part.
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Example 4.2.18. Let us consider the rational matrix

R(λ) =

 λ2 + λ− 1

λ
−1

λ
−1 −λ2 + λ− 2

 .
It can be easily proved that

L(λ) =


λ 0 1 1
0 1 0 λ

1 0 λ+ 1 0

λ λ 0 λ− 1

 :=

[
A1λ+ A0 B1λ+B0

− (C1λ+ C0) D1λ+D0

]

is a linear polynomial system matrix of R(λ), with state matrix A1λ+A0. Moreover,
note that L(λ) is minimal for all λ0 ∈ F. Therefore, by Remark 4.2.2(case 1), L(λ)
is a linearization of R(λ) in F. By Remark 4.2.11, L(λ) is also a linearization of R(λ)
at ∞ of grade 1 since

rank

[
A1

C1

]
= rank

[
A1 B1

]
= 2.

Thus, L(λ) is a 1-strong linearization of R(λ), according to Definition 4.2.16. Ho-
wever, L(λ) is not a strong linearization according to [7, Definition 3.4] since A1 is
singular. Nevertheless, we can recover easily the invariant orders at ∞ from L(λ)
by applying Proposition 4.2.15 with g = 1. For this purpose, note that revL(λ)
does not have elementary divisors at 0, since revL(λ) is invertible at 0. Moreover,
the only elementary divisor at 0 of A1 + A0λ is λ. Therefore, the invariant orders
at infinity of R(λ) are −2 and −1 by Proposition 4.2.15. The invariant orders of
R(λ) at any finite point can be recovered from L(λ) by using Theorem 4.2.6. It is
worthwhile to emphasize that the grade of L(λ) as linearization at ∞ of R(λ) is
different from the degree of the polynomial part of R(λ).

4.3 Block full rank pencils

In this section, we introduce a wide family of pencils that are linearizations with
empty state matrix of rational matrices. Thus, they give us information about zeros
locally, i.e., in subsets of F and/or at ∞ under some conditions. These pencils
will be called block full rank pencils, since they generalize the block minimal bases
pencils introduced in [26, Definition 3.1]. The definition of block full rank pencils
is motivated by the fact that most of the linearizations for rational approximations
of NLEPs that have been constructed so far are pencils of this type. The structure
of block full rank pencils is extended in Section 4.4 to introduce a wide family of
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pencils that give us information not only about zeros but also about poles of rational
matrices locally. They will be called block full rank linearizations.

The key results in this section are Theorems 4.3.5 and 4.3.7, which will be applied
in the following section to establish rigorously and very easily properties of the
linearizations used in [47] and [60]. Note that, according to Theorem 4.2.6, the
results in this section are not useful for studying, or computing, the finite poles
of rational matrices because the considered linearizations have empty state matrix.
This may be a drawback in certain situations, but we emphasize again that it is
not in the development of algorithms for solving large-scale NLEPs via rational
approximations [46, 47, 60, 35]. This is due to the fact that, in those cases, the
poles of the rational matrix are chosen for constructing the approximation and/or
are located outside the corresponding target set.

Definition 4.3.1. (Block full rank pencil) A block full rank pencil is a linear poly-
nomial matrix over F with the following structure

L(λ) =

[
M(λ) K2(λ)T

K1(λ) 0

]
(4.10)

where K1(λ) and K2(λ) are pencils with full row normal rank.

Definition 4.3.1 includes the cases when K1(λ) or K2(λ) are empty matrices.

That is, when L(λ) =
[
M(λ) K2(λ)T

]
, L(λ) =

[
M(λ)
K1(λ)

]
or L(λ) = M(λ).

We introduce some auxiliary concepts and results before establishing the most
important properties of block full rank pencils in Theorems 4.4.1 and 4.3.7. We will
say that a rational matrix R(λ) ∈ F(λ)p×m has full row rank in Σ ⊆ F if, for all
λ0 ∈ Σ, R(λ0) ∈ Fp×m, i.e., R(λ) is defined at λ0, and rankR(λ0) = p. Observe that
this implies that R(λ) has no poles in Σ. The following lemma connects rational
matrices with full row rank in a set Σ with minimal bases, and establishes other
properties that will be used later.

Lemma 4.3.2. Let R(λ) ∈ F(λ)p×m be a rational matrix with full row normal rank
and let T (λ) ∈ F[λ]p×m be a minimal basis of the row space of R(λ). Then the
following statements hold:

(a) There exists a unique regular rational matrix S(λ) ∈ F(λ)p×p such that R(λ) =
S(λ)T (λ).

(b) R(λ) has full row rank in Σ ⊆ F if and only if S(λ) in (a) is invertible in Σ.

(c) R(λ) is a polynomial matrix if and only if S(λ) in (a) is a polynomial matrix.

(d) If R(λ) is a matrix pencil, then S(λ) in (a) and T (λ) are both matrix pencils.
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Proof. Part (a). Each row of S(λ) is uniquely defined because its entries are the
unique rational coefficients that allow us to express the corresponding row of R(λ)
as a unique linear combination of the rows of T (λ). Moreover, S(λ) must be reg-
ular since, otherwise, there would exist a nonzero vector y(λ) ∈ F(λ)p×1 such that
y(λ)TS(λ) = 0. So, y(λ)TR(λ) = 0, which contradicts that rankR(λ) = p.

Part (b). It is obvious that if S(λ) is invertible in Σ, then R(λ) has full row rank
in Σ, because T (λ) is defined in Σ, as T (λ) is a polynomial matrix, and T (λ) has full
row rank in Σ, since T (λ) is a minimal basis. The proof of the converse implication
starts by proving that if R(λ) has full row rank in Σ, then S(λ) is defined in Σ. To see
this, note that the Smith form of T (λ) is [Ip 0], because T (λ) is a minimal basis and,
therefore, does not have finite zeros. Thus, there exist unimodular matrices U(λ)
and V (λ) such that T (λ) = U(λ) [Ip 0]V (λ), and R(λ)V (λ)−1 = [S(λ)U(λ) 0].
This shows that C(λ) := S(λ)U(λ) is defined in Σ, because R(λ) and V (λ)−1 are
both defined in Σ (R(λ) by hypothesis and V (λ)−1 because is unimodular and so a
polynomial matrix). Therefore, S(λ) = C(λ)U(λ)−1 is defined in Σ. This implies
that we can write R(λ0) = S(λ0)T (λ0) for each λ0 ∈ Σ, which in turns implies that
S(λ0) is invertible because R(λ0) has full row rank.

Part (c). It follows directly from [38, Main Theorem, part 4].
Part (d). From [38, Main Theorem, part 4], we have that

deg(rowi (R(λ))) = max
1≤j≤p

(deg(sij(λ)) + deg(rowj (T (λ)))) ≤ 1, for 1 ≤ i ≤ p,

(4.11)
where rowi (R(λ)) denotes the ith row of R(λ) and the maximum is taken over
the nonzero entries sij(λ) of S(λ). Since all the rows of T (λ) are different from
zero, (4.11) implies that deg(sij(λ)) ≤ 1 for each nonzero entry of S(λ). Moreover,
each column of S(λ) has at least one nonzero entry, because S(λ) is regular, which,
combined with (4.11), implies that deg(rowj (T (λ))) ≤ 1, for each j = 1, . . . , p. �

The last concepts we need before stating and proving the main Theorem 4.3.5
are those of rational basis and dual rational bases.

Definition 4.3.3 (Rational basis). A rational matrix R(λ) ∈ F(λ)p×m (with p < m)
is said to be a rational basis if it is a basis of the rational subspace spanned by its
rows, i.e., if it has full row normal rank.

Definition 4.3.4 (Dual rational bases). Two rational bases R(λ) ∈ F(λ)p×m and
H(λ) ∈ F(λ)q×m are said to be dual if p+ q = m and R(λ)H(λ)T = 0.

Theorem 4.3.5. Let Ω ⊆ F be nonempty. Consider a block full rank pencil

L(λ) =

[
M(λ) K2(λ)T

K1(λ) 0

]
,
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as in (4.10), and let N1(λ) and N2(λ) be any rational bases dual to K1(λ) and K2(λ),
respectively. If Ki(λ) and Ni(λ) have full row rank in Ω, for i = 1, 2, then L(λ) is
a linearization of the rational matrix

R(λ) = N2(λ)M(λ)N1(λ)T

in Ω with empty state matrix.

Proof. In order to simplify the notation, throughout this proof we do not spec-
ify the sizes of different identity matrices and all of them are denoted by I. Let
K̃1(λ), K̃2(λ), Ñ1(λ) and Ñ2(λ) be minimal bases of the row spaces of K1(λ), K2(λ),
N1(λ) and N2(λ), respectively. Then, Lemma 4.3.2 implies that there exist regular
rational matrices S1(λ), S2(λ), W1(λ) and W2(λ) such that

Ki(λ) = Si(λ)K̃i(λ), and Si(λ) is invertible in Ω, for i = 1, 2.

Ni(λ) = Wi(λ)Ñi(λ), and Wi(λ) is invertible in Ω, for i = 1, 2.

Moreover, K̃1(λ), K̃2(λ), S1(λ) and S2(λ) are all matrix pencils. Then, L(λ) can be
factorized as follows,

L(λ) =

[
I 0
0 S1(λ)

][
M(λ) K̃2(λ)T

K̃1(λ) 0

][
I 0
0 S2(λ)T

]
, (4.12)

where the first and third factors are invertible in Ω. Note that the factor in the
middle is a block minimal bases pencil (see [26, Definition 3.1]) associated with

the polynomial matrix Ñ2(λ)M(λ)Ñ1(λ)T , since the regularity of Si(λ) and Wi(λ)

implies that K̃i(λ) and Ñi(λ) are dual minimal bases for i = 1, 2. Then, there exist
unimodular matrices U(λ) and V (λ) such that[

M(λ) K̃2(λ)T

K̃1(λ) 0

]
= U(λ)

[
Ñ2(λ)M(λ)Ñ1(λ)T 0

0 I

]
V (λ)

= U(λ)

[
W2(λ)−1 0

0 I

] [
R(λ) 0

0 I

] [
W1(λ)−T 0

0 I

]
V (λ),

(4.13)

where U(λ) diag(W2(λ)−1, I) and diag(W1(λ)−T , I)V (λ) are invertible in Ω. From
combining (4.12) and (4.13), we obtain that L(λ) ∼Ω diag(R(λ), I). �

Remark 4.3.6. Under the conditions of Theorem 4.3.5, we will say for brevity that
“L(λ) is a block full rank pencil associated with R(λ) in Ω”. We emphasize that
this “association” is not one-to-one because there are infinitely many rational bases
Ni(λ) dual to Ki(λ). If K1(λ) (resp. K2(λ)) is an empty matrix, we can take any
rational matrix N1(λ) ∈ F(λ)s1×s1 (resp. N2(λ) ∈ F(λ)s2×s2) invertible in Ω, where
s1 (resp. s2) is the number of colums (resp. rows) of M(λ). The standard choices
are N1(λ) = Is1 and N2(λ) = Is2 .
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In the scenario of Theorem 4.3.5, Theorem 4.2.6 guarantees that the elementary
divisors of L(λ) in Ω coincide exactly with the zero elementary divisors of R(λ) in
Ω. Moreover, it is clear from the expression R(λ) = N2(λ)M(λ)N1(λ)T that R(λ)
does not have poles in Ω, since the matrices Ni(λ) must be defined in Ω but they
are not defined at the poles of R(λ). Thus, R(λ) has only eigenvalues in Ω, and all
the information about them, i.e., geometric, algebraic and partial multiplicities, is
contained in L(λ).

Next, we present sufficient conditions for a block full rank pencil to be a lineariza-
tion of R(λ) = N2(λ)M(λ)N1(λ)T at∞ of a certain grade g. In order to avoid cases
with limited interest in applications, in Theorem 4.3.7 we assume deg(L(λ)) = 1.

Theorem 4.3.7. Consider a block full rank pencil

L(λ) =

[
M(λ) K2(λ)T

K1(λ) 0

]
,

as in (4.10), with deg(L(λ)) = 1, and let N1(λ) and N2(λ) be rational bases dual to
K1(λ) and K2(λ), respectively. If, for i = 1, 2, rev1Ki(λ) has full row rank at 0,
and there exists an integer number ti such that revti Ni(λ) has full row rank at 0,
then L(λ) is a linearization of the rational matrix

R(λ) = N2(λ)M(λ)N1(λ)T

at ∞ of grade 1 + t1 + t2 with empty state matrix.

Proof. Note that revL(λ) =

[
rev1M(λ) rev1K2(λ)T

rev1K1(λ) 0

]
is a block full rank pencil.

Moreover, for i = 1, 2, revti Ni(λ) has full row normal rank, and Ki(λ)Ni(λ)T = 0
implies (rev1Ki(λ)) (revti Ni(λ))T = 0. Therefore, revti Ni(λ) is a rational basis dual
to rev1Ki(λ). Then, Theorem 4.3.5 applied to revL(λ) proves that revL(λ) is a
linearization at 0 of (revt2 N2(λ)) (rev1M(λ)) (revt1 N1(λ)T ) = rev1+t1+t2 R(λ), with
empty state matrix, which combined with Proposition 4.2.10 proves the result. �

As a consequence of Theorems 4.3.5 and 4.3.7, we obtain Corollary 4.3.8. It
generalizes the structure of most of the linearizations of rational approximations of
NLEPs that appear in the literature in a constructive way. Moreover, it is very useful
in order to characterize easily some pencils as linearizations of rational matrices when
only the information about the zeros in subsets not containing poles is of interest.

Corollary 4.3.8. Let

R(λ) = (A0 − λB0)R0(λ) + (A1 − λB1)R1(λ) + · · ·+ (AN − λBN)RN(λ)

be a p×m rational matrix written in terms of some matrix pencils Ai−λBi ∈ F[λ]p×ni

and rational matrices Ri(λ) ∈ F(λ)ni×m. Define

M(λ) := [(A0 − λB0) (A1 − λB1) · · · (AN − λBN)] and



4.3. BLOCK FULL RANK PENCILS 81

N1(λ) :=
[
R0(λ)T R1(λ)T · · · RN(λ)T

]
,

and assume that N1(λ) has full row normal rank. Let L(λ) =

[
M(λ)
K1(λ)

]
be a block

full rank pencil of degree 1 with only one block column and such that K1(λ) and N1(λ)
are dual rational bases. Let Ω ⊆ F be nonempty. Then the following statements hold:

(a) If K1(λ) and N1(λ) have full row rank in Ω then L(λ) is a linearization of
R(λ) in Ω with empty state matrix.

(b) If rev1K1(λ) has full row rank at 0, and there exists an integer t such that
revtN1(λ) has full row rank at 0, then L(λ) is a linearization of R(λ) at ∞ of
grade 1 + t with empty state matrix.

Remark 4.3.9. We emphasize that in some relevant applications the rational ma-
trices Ri(λ) of Corollary 4.3.8 are just of the form Ri(λ) = ri(λ)Im, where ri(λ) are
scalar rational functions, and/or most of the pencils Ai−λBi are constant matrices
or a linear scalar function times a constant matrix. Moreover, in some other appli-
cations a low rank structure is present in R(λ), that is, some of the terms in R(λ)
have a rank much smaller than min{p,m}, and the corresponding rational matrices
are written in the form Ri(λ) = ri(λ)Ri, where Ri ∈ Fni×m is a constant matrix
with ni � m.

In the next example, we revisit the pencil introduced in Example 4.1.4 from the
perspective of the block full rank pencils. This example illustrates how the theory
of block full rank pencils may simplify the analysis of the properties of important
linearizations of rational matrices when one is not interested in the information
about the poles.

Example 4.3.10. Consider Example 4.1.4. We partition P (λ) as follows:

P (λ) =


(λ− σ1)I I

. . .
...

(λ− σs)I I
−B1 · · · −Bs λA0 −B0

 =:

[
K1(λ)
M(λ)

]
.

Observe that, in the above partition, we are considering a permuted version of the
structure of the pencil L(λ) in Corollary 4.3.8. Note now that K1(λ) has full row
rank in C, and

N1(λ) :=
[

1
σ1−λI . . . 1

σs−λI I
]

is a rational basis dual to K1(λ) with full row rank in Σ := C \ {σ1, . . . , σs}. Then,
by Corollary 4.3.8(a), P (λ) is a linearization of R(λ) in Σ with empty state matrix.
Moreover, note that rev1K1(λ) and rev0N1(λ) =

[
λ

λσ1−1
I . . . λ

λσs−1
I I

]
both

have full row rank at 0. Thus, by Corollary 4.3.8(b), P (λ) is a linearization of R(λ)
at ∞ of grade 1 with empty state matrix.
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4.4 Block full rank linearizations of rational ma-

trices

Block full rank pencils in the above section are local linearizations of rational ma-
trices that contain information about their zeros. In this section, we introduce in
Theorems 4.4.1 and 4.4.10 a wide family of pencils that give us information about
both zeros and poles of rational matrices locally, at finite points and/or at infinity.
They will be called block full rank linearizations, where we use a name similar to that
of block full rank pencils for emphasizing the connection between both concepts.

4.4.1 Block full rank linearizations at finite points

In Theorem 4.4.1, we generalize Theorem 4.3.5 (or [28, Theorem 5.3]) in order to
obtain local linearizations that give us not only information about the zeros but also
about the poles of the corresponding rational matrix.

Theorem 4.4.1. Consider a nonconstant linear polynomial system matrix

L(λ) =

 A(λ) B(λ) 0

− C(λ) M(λ) K2(λ)T

0 K1(λ) 0

 ∈ F[λ](n+q)×(n+r) (4.14)

with n > 0 and state matrix A(λ). Let L(λ) :=

[
M(λ) K2(λ)T

K1(λ) 0

]
be a block full

rank pencil, and let N1(λ) and N2(λ) be any rational bases dual to K1(λ) and K2(λ),
respectively. Let Ω be a nonempty subset of F such that Ki(λ) and Ni(λ) have full
row rank in Ω for i = 1, 2. If

rank

[
A(λ0)

−N2(λ0)C(λ0)

]
= rank

[
A(λ0) B(λ0)N1(λ0)T

]
= n (4.15)

for all λ0 ∈ Ω then L(λ) is a linearization of the rational matrix

R(λ) = N2(λ)[M(λ) + C(λ)A(λ)−1B(λ)]N1(λ)T (4.16)

in Ω with state matrix A(λ).

A pencil of the form (4.14) satisfying the hypotheses in Theorem 4.4.1 is called
a block full rank linearization. In particular, L(λ) is said to be a block full rank
linearization of R(λ) in Ω with state matrix A(λ).

Remark 4.4.2. The extreme case of n = 0 in the linear polynomial system matrix
(4.14) was studied in Theorem 4.3.5 ([28, Theorem 5.3]). It states that the block
full rank pencil L(λ) in Theorem 4.4.1 is a linearization of the rational matrix

G(λ) = N2(λ)M(λ)N1(λ)T
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in Ω with empty state matrix. In this case, L(λ) is said to be a block full rank
linearization of G(λ) in Ω with empty state matrix.

Proof of Theorem 4.4.1. In order to simplify the notation, throughout this proof we
do not specify the sizes of different identity matrices and all of them are denoted by
I. Let K̃1(λ), K̃2(λ), Ñ1(λ) and Ñ2(λ) be minimal bases of the row spaces of K1(λ),
K2(λ), N1(λ) and N2(λ), respectively. Then, by Lemma 4.3.2, there exist rational
matrices S1(λ), S2(λ), W1(λ) and W2(λ) such that

Ki(λ) = Si(λ)K̃i(λ), and Si(λ) is invertible in Ω, for i = 1, 2,

Ni(λ) = Wi(λ)Ñi(λ), and Wi(λ) is invertible in Ω, for i = 1, 2.

Moreover, K̃1(λ), K̃2(λ), S1(λ) and S2(λ) are all matrix pencils. We consider the
linear polynomial system matrix

L̃(λ) :=

 A(λ) B(λ) 0

− C(λ) M(λ) K̃2(λ)T

0 K̃1(λ) 0

 , (4.17)

which is equivalent in Ω to L(λ), since

[
I 0
0 S1(λ)

]
L̃(λ)

[
I 0
0 S2(λ)T

]
= L(λ).

For i = 1, 2, there exist unimodular matrices

Ui(λ) =

[
K̃i(λ)

K̂i(λ)

]
, and Ui(λ)−1 =

[
N̂i(λ)T Ñi(λ)T

]
as in [26, Theorem 2.10]. Consider now the unimodular matrices

V1(λ) :=

I 0 0 0

0 N̂1(λ)T Ñ1(λ)T 0
0 0 0 I



I 0 0 0
0 0 I 0
0 I 0 0
0 −X(λ) 0 I

 , and

V2(λ) :=


I 0 0 0
0 0 I −Y (λ)
0 0 0 I
0 I 0 −Z(λ)



I 0 0

0 N̂2(λ) 0

0 Ñ2(λ) 0
0 0 I

 ,
where

Z(λ) := N̂2(λ)M(λ)N̂1(λ)T , X(λ) := N̂2(λ)M(λ)Ñ1(λ)T , Y (λ) := Ñ2(λ)M(λ)N̂1(λ)T .

We obtain that

V2(λ)L̃(λ)V1(λ) =


A(λ) B(λ)Ñ1(λ)T B(λ)N̂1(λ)T 0

− Ñ2(λ)C(λ) Ñ2(λ)M(λ)Ñ1(λ)T 0 0

0 0 I 0

−N̂2(λ)C(λ) 0 0 I

 ,
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which is, in addition, unimodularly equivalent to
A(λ) B(λ)Ñ1(λ)T 0

− Ñ2(λ)C(λ) Ñ2(λ)M(λ)Ñ1(λ)T 0

0 0 I

 := P (λ).

By condition (4.15), the polynomial matrix

H(λ) :=

[
A(λ) B(λ)Ñ1(λ)T

− Ñ2(λ)C(λ) Ñ2(λ)M(λ)Ñ1(λ)T

]

is minimal in Ω, and its transfer function matrix is

R̃(λ) = Ñ2(λ)[M(λ) + C(λ)A(λ)−1B(λ)]Ñ1(λ)T .

Moreover, W2(λ)R̃(λ)W1(λ)T = R(λ), and, thus, R̃(λ) and R(λ) are equivalent in
Ω. Therefore, the zero elementary divisors of H(λ) in Ω are the zero elementary
divisors of R(λ) in Ω, and the zero elementary divisors of A(λ) in Ω are the pole

elementary divisors of R(λ) in Ω. In addition, P (λ) =

[
H(λ) 0

0 I

]
is unimodularly

equivalent to L̃(λ), which is equivalent in Ω to L(λ). Therefore, the zero elementary
divisors of L(λ) in Ω are the zero elementary divisors of R(λ) in Ω. By Theorem
4.2.6, L(λ) is a linearization in Ω of R(λ), since it is immediate to check that the
rank condition in Theorem 4.2.6(a) is satisfied. �

Remark 4.4.3. The linear polynomial system matrix in (4.14) generalizes the struc-
ture of the strong block minimal bases linearizations of rational matrices presented
in [7, Theorem 5.11] (recall Theorem 2.5.5) from three perspectives: general pen-
cils B(λ) and C(λ) are allowed, while those in [7] have a very particular structure;
A(λ) can be any regular pencil, while in [7] its coefficient in λ must be invertible;

and

[
M(λ) K2(λ)T

K1(λ) 0

]
is an arbitrary block full rank pencil (4.10), while in [7]

strong block minimal bases pencils (2.12) are considered. We give more details in
Subsection 4.4.3.

Remark 4.4.4. Notice that L(λ) being minimal in Ω is a necessary condition, but
not sufficient, in order the rank condition (4.15) to be satisfied.

Under the conditions of Theorem 4.4.1, Theorem 4.2.6 guarantees that the ele-
mentary divisors of L(λ) in Ω are the zero elementary divisors of R(λ) in Ω, and
that the elementary divisors of A(λ) in Ω are the pole elementary divisors of R(λ)
in Ω.
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We would like to emphasize the fact that Theorem 4.4.1 gives very simple con-
ditions to determine if a pencil is a linearization (in a target set) and, in addition,
to determine the rational matrices associated with it by considering rational bases
dual to K1(λ) and K2(λ). Notice that this “association” is not one-to-one because
there are infinitely many rational bases N1(λ) and N2(λ) dual to K1(λ) and K2(λ).
Thus, Theorem 4.4.1 is important, for instance, if a linearization gets perturbed
and one wants to know which rational matrix is associated with the new perturbed
pencil. Then, if the perturbation is small enough that the rank conditions in Theo-
rem 4.4.1 are still satisfied and after restoring the zero blocks of the block full rank
linearization, we will get a perturbed block full rank linearization and one can then
reconstruct the new rational matrix associated with it.

Remark 4.4.5. If in Theorem 4.4.1, K1(λ) (resp. K2(λ)) is an empty matrix, we
can take the dual rational basis N1(λ) (resp. N2(λ)) as any rational matrix invertible
in Ω of size the number of colums (resp. rows) of M(λ).

Example 4.4.6. Let us see a simple example that illustrates Remark 4.4.5. For
instance, for constructing a linearization of the rational matrix

R(λ) =
λ− 2

λ+ 2

[
−λ+ 3

λ2 − 1

1

λ(λ− 1)

]
in the set Ω := F− {−1, 0, 1},

we can considerK1(λ) andK2(λ) as empty matrices and dual rational basesN1(λ)T :=

diag
(

1
λ2−1

, 1
(λ−1)λ

)
and N2(λ) := 1, both invertible in Ω. Then, by Theorem 4.4.1,

the following linear polynomial system matrix

L(λ) :=

[
λ+ 2 −λ+ 3 1
−λ+ 2 0 0

]
:=

[
A(λ) B(λ)
−C(λ) M(λ)

]
is a linearization of R(λ) in Ω with state matrix λ+ 2, since

rank

[
λ+ 2
−λ+ 2

]
= rank

[
λ+ 2

−λ+ 3

λ2 − 1

1

λ(λ− 1)

]
= 1

for all λ ∈ Ω. Therefore, we can recover from L(λ) the pole and zero structure of
R(λ) in Ω. More precisely, −2 is the only zero of the state matrix in Ω and, thus, is
the only pole of R(λ) in Ω. Moreover, 2 is the unique zero of L(λ) in Ω and, thus,
is the unique zero of R(λ) in Ω.

Remark 4.4.7. We notice that, although the state matrix A(λ) appears in the (1,1)
block in (4.14), in practice, it can be any regular submatrix of L(λ). In particular,
in some applications [47, 60] we have found pencils with the structure of block full
rank linearizations of the form

L(λ) =

 M(λ) K2(λ)T −C(λ)
K1(λ) 0 0

B(λ) 0 A(λ)

 ∈ F[λ](q+n)×(r+n). (4.18)
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4.4.2 Block full rank linearizations at infinity

We now study the counterpart of Theorem 4.4.1 at infinity. First, we define the
notion of degree of a rational matrix. For the scalar case, we define the degree of a

rational function r(λ) =
n(λ)

d(λ)
as

deg(r(λ)) := deg(n(λ))− deg(d(λ)). (4.19)

Then, for rational matrices we consider the following definition (see, for instance,
[90, p.10]).

Definition 4.4.8. Let R(λ) = [rij(λ)] ∈ F(λ)p×m be a rational matrix with entries

rij(λ) =
nij(λ)

dij(λ)
. The degree of R(λ) is then defined as

deg(R(λ)) := max
i=1,...,p
j=1,...,m

{deg(rij(λ))}.

Notice that this notion of degree of a rational matrix generalizes the notion of
degree of a polynomial matrix. In what follows, we call the degrees of each row of
R(λ), the row degrees of R(λ).

Lemma 4.4.9. Let R(λ) be a rational matrix. Then there exists an integer t such
that all the rows of revtR(λ) are defined at 0 and are all different from zero at 0 if
and only if all the row degrees of R(λ) are equal to t.

Proof. First, we consider a rational function r(λ) =
a(λ)

b(λ)
such that the numerator

a(λ) has degree n, and that the denominator b(λ) has degree m. We assume that
there exists an integer t for which revt r(0) is defined and is different from 0. We
can write

revt r(λ) = λt+m−n
revn a(λ)

revm b(λ)
:= λt+m−nh(λ), (4.20)

where 0 is not a pole nor a zero of h(λ) since revn a(0) 6= 0 and revm b(0) 6= 0. That
is, h(λ) is defined and is different from 0 at 0. Therefore, t + m − n = 0, so that
revt r(λ) is also defined and is different from 0 at 0. Then, t = n−m = deg(r(λ)).
Now, we assume that we have a rational row vector v(λ) = [r1(λ) · · · rs(λ)] such
that, for some integer t, revt v(0) is defined and is different from 0. Then, it must be
t = max

i=1,...,s
{deg(ri(λ))}. That is, t = deg(v(λ)). Finally, consider a rational matrix

R(λ) = [v1(λ)T · · · vq(λ)T ]T where vi(λ) are rational row vectors. Assume that
there exists an integer t such that all the rows of revtR(λ) are defined at 0 and are
different from zero at 0. Then, for each row vi(λ), it must hold that t = deg(vi(λ)).

The converse is trivial taking into account equation (4.20) for each entry of
R(λ). �
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Theorem 4.4.10. Consider a nonconstant linear polynomial system matrix

L(λ) =

 A(λ) B(λ) 0

− C(λ) M(λ) K2(λ)T

0 K1(λ) 0

 ∈ F[λ](n+q)×(n+r) (4.21)

with n > 0 and state matrix A(λ). Let L(λ) :=

[
M(λ) K2(λ)T

K1(λ) 0

]
be a block full

rank pencil and let N1(λ) (resp. N2(λ)) be any rational basis dual to K1(λ) (resp.
K2(λ)) with its row degrees all equal to an integer t1 (resp. t2). If rev1Ki(λ) and
revti Ni(λ) have full row rank at zero for i = 1, 2 and

rank

[
rev1A(0)

− revt2 N2(0) rev1C(0)

]
= rank

[
rev1A(0) rev1B(0) revt1 N1(0)T

]
= n

(4.22)
then L(λ) is a linearization of the rational matrix

R(λ) = N2(λ)[M(λ) + C(λ)A(λ)−1B(λ)]N1(λ)T

at ∞ of grade 1 + t1 + t2 with state matrix A(λ).

A pencil of the form (4.21) satisfying the hypotheses in Theorem 4.4.10 is called
block full rank linearization at infinity. In particular, L(λ) is said to be a block full
rank linearization of R(λ) at ∞ of grade 1 + t1 + t2 with state matrix A(λ). In
general, a block full rank linearization is said to be strong if it is a linearization in
F ∪ {∞}.

Remark 4.4.11. The extreme case of n = 0 in the linear polynomial system matrix
(4.21) was studied in Theorem 4.3.7 ([28, Theorem 5.5]). It states that the block
full rank pencil L(λ) in Theorem 4.4.10 is a linearization of the rational matrix

G(λ) = N2(λ)M(λ)N1(λ)T

at ∞ of grade 1 + t1 + t2 with empty state matrix. In this case, L(λ) is said to
be a block full rank linearization of G(λ) at ∞ of grade 1 + t1 + t2 with empty
state matrix. We notice that, by Lemma 4.4.9, the integers t1 and t2 appearing in
Theorem 4.3.7 are the row degrees of the dual bases N1(λ) and N2(λ), respectively.

Proof of Theorem 4.4.10. The result follows by applying Theorem 4.4.1 to rev1 L(λ)
at 0. Let g := 1 + t1 + t2, then rev1 L(λ) is a linearization at 0 of

revt2 N2(λ)[rev1M(λ) + rev1C(λ)(rev1A(λ))−1 rev1B(λ)] revt1 N1(λ)T = revg R(λ).

�
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Example 4.4.12. We now consider the rational matrix

R(λ) :=
2∑

k=0

Ak
λk

(λ− ε)2
+ In

1

λ
∈ F(λ)n×n and the set Ω := F− {ε},

for some ε ∈ F. Then we define the following linear polynomial system matrix

L(λ) :=


−λIn 0 (λ− ε)In 0

0 A2 0 −In
(λ− ε)In 0 λA1 + A0 λIn

0 −In λIn 0

 =:

 A(λ) B(λ) 0
−C(λ) M(λ) K2(λ)T

0 K1(λ) 0

 ,
with state matrix A(λ) = λIn. We consider the dual rational bases N1(λ) :=

N2(λ) :=

[
λIn
λ− ε

In
λ− ε

]
, which have row degrees t1 = t2 = 0. Then R(λ) can be

written as R(λ) = N2(λ)[M(λ) + C(λ)A(λ)−1B(λ)]N1(λ)T . Notice that revti Ni(λ)
and rev1Ki(λ) have both full row rank at 0, for i = 1, 2, and that condition (4.22)
is satisfied since rev1A(0) = In. Thus, by Theorem 4.4.10, L(λ) is a linearization of
R(λ) at∞ of grade 1 + t1 + t2 = 1 with state matrix A(λ). In addition, by Theorem
4.4.1, L(λ) is a linearization of R(λ) in Ω, since Ni(λ) and Ki(λ) have both full row
rank in Ω, for i = 1, 2, and condition (4.15) is satisfied in Ω. Observe that, if R(λ)
has symmetric coefficients, L(λ) preserves the symmetry.

Remark 4.4.13. If we want a linearization as in (4.21) to be a linearization at all
finite and infinite points we need, besides minimality conditions, the matrices K1(λ)
and K2(λ) being minimal bases with all their row degrees equal to 1. Notice that if
a pencil K(λ) has full row rank in F and, in addition, rev1K(λ) has full row rank
at 0 then K(λ) is a minimal basis. Conversely, if K(λ) is a minimal basis with all
its row degrees equal to one then K(λ) has full row rank in F and rev1K(λ) has full
row rank at 0.

4.4.3 Strong block minimal bases linearizations as block full
rank linearizations

By using strong block minimal bases pencils, in [7, Theorem 5.11] (see Theorem
2.5.5) (strong) linearizations are constructed that contain the complete spectral
information of rational matrices, finite and infinite, as well as the information about
their minimal bases and indices [8], when the corresponding rational matrix R(λ) is
expressed in the form R(λ) = D(λ)+C(λIn−A)−1B, where D(λ) is the polynomial
part of R(λ) with deg(D(λ)) > 1, and C(λIn − A)−1B is a minimal state-space
realization of the strictly proper part of R(λ). We will see that such linearizations
satisfy Theorem 4.4.1, with Ω = F, and Theorem 4.4.10.
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For the construction, in [7] L(λ) :=

[
M(λ) K2(λ)T

K1(λ) 0

]
is considered to be a

strong block minimal bases pencil as in (2.12) associated with D(λ) with sharp de-
gree, that is, deg(D(λ)) = deg(N2(λ)) + deg(N1(λ)) + 1, where N1(λ) (respectively
N2(λ)) is a minimal basis dual to K1(λ) (respectively K2(λ)). Then, constant ma-

trices K̂1 ∈ Fm×(m+m̂) and K̂2 ∈ Fp×(p+p̂) and matrices N̂1(λ)T ∈ F[λ](m+m̂)×m̂ and

N̂2(λ)T ∈ F[λ](p+p̂)×p̂ exist such that, for i = 1, 2,

Ui(λ) =

[
Ki(λ)

K̂i

]
and Ui(λ)−1 =

[
N̂i(λ)T Ni(λ)T

]
are unimodular. Finally, the following linear polynomial matrix is constructed

L(λ) =

 X(λIn − A)Y XBK̂1 0

− K̂T
2 CY M(λ) K2(λ)T

0 K1(λ) 0

 , (4.23)

where X, Y ∈ Fn×n are any nonsingular constant matrices. With these assumptions,
L(λ) is a strong linearization of R(λ) [7, Theorem 5.11].

This result follows as a corollary of Theorems 4.4.1 and 4.4.10 as well. First,
since K̂iNi(λ)T = I, notice that R(λ) can be written as in (4.16):

N2(λ)[M(λ) + K̂T
2 CY Y

−1(λIn−A)−1X−1XBK̂1]N1(λ)T = D(λ) +C(λIn−A)−1B,

and, in addition, conditions (4.15), with Ω = F, and (4.22) are satisfied. More
precisely, we have that

rank

[
X(λIn − A)Y

−N2(λ)K̂T
2 CY

]
= rank

[
X(λIn − A)Y
−CY

]
= n, and

rank
[
X(λIn − A)Y XBK̂1N1(λ)T

]
= rank

[
X(λIn − A)Y XB

]
= n

for all λ ∈ F, since X and Y are nonsingular, and the realization C(λIn − A)−1B
is minimal. Therefore, condition (4.15) is satisfied and, thus, L(λ) is a linearization
of R(λ) in F by Theorem 4.4.1. Moreover, we have that condition (4.22) is satisfied
since rev1(λIn − A) evaluated at 0 is just In. Then, by Theorem 4.4.10, L(λ) is a
linearization of R(λ) at infinity of grade deg(N2(λ)) + deg(N1(λ)) + 1 = deg(D(λ)).

4.4.4 Recovery of eigenvectors

In this section, we show how to recover right and left eigenvectors of a regular
rational matrix R(λ), associated with the eigenvalues in a set Ω, from those of a
block full rank linearization of R(λ) in Ω. For that, in Theorem 4.4.15 we study the
relation between their right and left nullspaces. We will use the following Lemma
4.4.14.



90 CHAPTER 4. LOCAL LINEARIZATIONS OF RATIONAL MATRICES

Lemma 4.4.14. Let K(λ) be a rational basis and let N(λ) be any rational basis
dual to K(λ). Let Ω be a nonempty subset of F such that K(λ) and N(λ) have full
row rank in Ω. Then there exist rational matrices of the form

V (λ) =

[
K(λ)
K̄(λ)

]
and V (λ)−1 =

[
N̄(λ)T N(λ)T

]
(4.24)

that are invertible in Ω.

Proof. By Lemma 4.3.2, there exist rational matrices S(λ) andW (λ), both invertible

in Ω, such that K(λ) = S(λ)K̃(λ) and N(λ) = W (λ)Ñ(λ), where K̃(λ) and Ñ(λ)
are minimal bases of the row spaces of K(λ) and N(λ), respectively. Then, by [26,
Theorem 2.10], there exist unimodular matrices of the form

U(λ) =

[
K̃(λ)

K̂(λ)

]
and U(λ)−1 =

[
N̂(λ)T Ñ(λ)T

]
.

Then we consider the rational matrix

V (λ) :=

[
S(λ) 0

0 W (λ)−T

]
U(λ) =

[
K(λ)
K̄(λ)

]
,

with K̄(λ) := W (λ)−T K̂(λ). We have that V (λ) is invertible in Ω since S(λ) and
W (λ) are invertible in Ω and U(λ) is unimodular. Finally, we note that V (λ)−1 =

U(λ)−1

[
S(λ)−1 0

0 W (λ)T

]
=
[
N̂(λ)TS(λ)−1 Ñ(λ)TW (λ)T

]
=
[
N̄(λ)T N(λ)T

]
,

with N̄(λ)T := N̂(λ)TS(λ)−1. �

Let us now consider the rational bases K1(λ) and K2(λ) of the block full rank
linearization in Theorem 4.4.1 and their dual rational bases N1(λ) and N2(λ). It
then follows that, since they have full row rank in a nonempty set Ω, there exist
rational matrices of the form

Vi(λ) =

[
Ki(λ)
K̄i(λ)

]
and Vi(λ)−1 =

[
N̄i(λ)T Ni(λ)T

]
(4.25)

that are invertible in Ω, for i = 1, 2, by Lemma 4.4.14. We use these matrices in the
following Theorem 4.4.15.

Theorem 4.4.15. Let

L(λ) =

 A(λ) B(λ) 0

− C(λ) M(λ) K2(λ)T

0 K1(λ) 0

 ∈ F[λ](n+q)×(n+r)
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be a block full rank linearization in a nonempty set Ω of the rational matrix

R(λ) = N2(λ)[M(λ) + C(λ)A(λ)−1B(λ)]N1(λ)T ,

as in Theorem 4.4.1. Consider the rational matrices N̄1(λ) and N̄2(λ) in (4.25) and
denote S(λ) := M(λ) + C(λ)A(λ)−1B(λ). Let λ0 ∈ Ω such that detA(λ0) 6= 0.
Then, the following statements hold:

(a) The linear map

Er : Nr(R(λ0)) −→ Nr(L(λ0))

x 7−→

−A(λ0)−1B(λ0)N1(λ0)T

N1(λ0)T

−N̄2(λ0)TS(λ0)N1(λ0)T

x
is a bijection between the right nullspaces over F of R(λ0) and L(λ0).

(b) The linear map

E` : N`(R(λ0)) −→ N`(L(λ0))

yT 7−→ yT
[
N2(λ0)C(λ0)A(λ0)−1 N2(λ0) −N2(λ0)S(λ0)N̄1(λ0)T

]
is a bijection between the left nullspaces over F of R(λ0) and L(λ0).

Proof. We only prove (a) since (b) is analogous. We will see that Er is a composition
of maps, Er = Gr ◦Hr, where Gr and Hr are linear bijections. For that, we consider
the transfer function of L(λ). That is, the rational matrix

R̂(λ) =

[
S(λ) K2(λ)T

K1(λ) 0

]
∈ F(λ)q×r. (4.26)

By Lemma 2.4.10, the linear map

Gr : Nr(R̂(λ0)) −→ Nr(L(λ0))

x̂ 7−→
[
−A(λ0)−1

[
B(λ0) 0

]
Ir

]
x̂

is a bijection between the right nullspaces of R̂(λ0) and L(λ0), since R̂(λ) is the
transfer function of L(λ) and detA(λ0) 6= 0. Now, we consider the linear map

Hr : Nr(R(λ0)) −→ Nr(R̂(λ0))

x 7−→
[

N1(λ0)T

−N̄2(λ0)TS(λ0)N1(λ0)T

]
x.
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To see that Hr is well defined, let us consider the rational matrix V2(λ)−1 =[
N̄2(λ)T N2(λ)T

]
in (4.25). Then, we have that

[
V2(λ)−T 0

0 I

] [
S(λ) K2(λ)T

K1(λ) 0

] [
N1(λ)T

−N̄2(λ)TS(λ)N1(λ)T

]
=

 0
R(λ)

0

 . (4.27)

By (4.27), Hr is well defined since the matrix

[
V2(λ)−T 0

0 I

]
is invertible in Ω, by

Lemma 4.4.14. In addition, since L(λ) is a linearization of R(λ) in Ω, we have that

R̂(λ) and diag(R(λ), Is) are equivalent in Ω for some s > 0 (see Definition 4.2.1).

Therefore, dimNr(R(λ0)) = dimNr(R̂(λ0)). Thus, to see that Hr is a bijection we

only have to prove thatHr is injective. Assume that

[
N1(λ0)T

−N̄2(λ0)TS(λ0)N1(λ0)T

]
x = 0

for some x ∈ Nr(R(λ0)). In particular, N1(λ0)Tx = 0. Since N1(λ0)T has full column
rank, x = 0. Therefore, Hr is a bijection. Finally, note that Er = Gr ◦Hr. �

Remark 4.4.16. We recall that, since the linear maps Er and E` are bijections, one
can recover a basis of the right (resp. left) nullspace of R(λ0) from a basis of the right
(resp. left) nullspace of L(λ0), and conversely. For instance, if {xi}ti=1 is a basis of

Nr(R(λ0)) then


−A(λ0)−1B(λ0)N1(λ0)T

N1(λ0)T

−N̄2(λ0)TS(λ0)N1(λ0)T

xi

t

i=1

is a basis of Nr(L(λ0)). And,

given a basis {yi}ti=1 of Nr(L(λ0)), we can recover a basis of Nr(R(λ0)) taking into

account that the elements will be of the form yi =

−A(λ0)−1B(λ0)N1(λ0)T

N1(λ0)T

−N̄2(λ0)TS(λ0)N1(λ0)T

xi
for some basis {xi}ti=1 of Nr(R(λ0)). Then, to recover {xi}ti=1 we can use that
K̄1(λ0)N1(λ0)Txi = xi. However, in practice, it can usually be recovered from the
structure of N1(λ0)Txi, without computing K̄1(λ0).



Chapter 5

Application of the local
linearization theory to
linearizations of rational
approximations of nonlinear
eigenvalue problems

In this chapter we study in depth the pencils introduced in the influential references
[47] and [60] for linearizing rational matrices obtained from approximating NonLin-
ear Eigenvalue Problems (NLEPs). In particular, the reference [47] presents one of
the first systematic approaches for solving large scale NLEPs. The results in this
chapter are valid and are stated in any algebraically closed field F. Note, however,
that references [47] and [60] consider only the complex field C and that this restric-
tion is important in the approximation phase of the NLEP. We start by defining
a NLEP [46]. Given a non-empty open set Ω ⊆ F and an analytic matrix-valued
function

F : Ω → Fn×n
λ 7→ F (λ),

the NLEP consists of computing scalars λ0 ∈ Ω (eigenvalues) and nonzero vectors
v ∈ Fn (eigenvectors) such that

F (λ0)v = 0,

under the regularity assumption det(F (λ)) 6≡ 0. Since a direct solution of NLEPs is
usually not possible, they are often solved numerically via rational approximation
and by solving the corresponding REP with linearizations adapted to the structure
of the obtained rational matrix. The results in this chapter appear in [28] and [29].
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5.1 NLEIGS pencils

For brevity of exposition, and also for recognizing the key contribution of [47], we
will call NLEIGS pencils to the pencils introduced in [47]. The main goal of this
section is to replace the vague usage of the word “linearization” in [47] by a number
of rigorous results on NLEIGS pencils which, combined with the results in Sections
4.2 and 4.3, establish the precise properties enjoyed with respect to eigenvalues
(and poles) of the NLEIGS pencils. We remark that NLEIGS pencils were the
initial motivation for developing the theory of local linearizations, since they are not
linearizations of the corresponding rational matrix according to the definitions in
[2, 7]. The approach in [47] consists essentially of three steps:

(1) The matrix defining the NLEP is approximated by a rational matrix QN(λ)
via Hermite’s interpolation in a certain compact target set Σ ⊂ C where the
eigenvalues of interest are located.

(2) The obtained rational matrix is linearized by using a certain pencil LN(λ).

(3) A highly structured rational Krylov method is applied to the pencil to compute
the eigenvalues of QN(λ) in Σ.

Since we are interested in rational matrices and their linearizations, all the delicate
details about how the rational approximations QN(λ) are constructed are omitted.
Such details can be found in [47]. Moreover, although [47] deals with regular rational
matrices QN(λ), we will not impose such condition initially in our developments.

Reference [47] uses two families of rational matrices, and corresponding pencils,
depending on whether or not a certain low rank structure is present in the original
NLEP. We will refer to them as the NLEIGS basic problem and the NLEIGS low rank
structured problem, respectively. The NLEIGS pencils corresponding to each of these
two cases will be studied from two perspectives giving rise to the four subsections
included in this section. These two perspectives are considering NLEIGS pencils as
block full rank pencils and, thus, as linearizations with empty state matrices, and
considering them as polynomial system matrices with transfer function matrices
equivalent to QN(λ) everywhere except at a point ξN . Both perspectives allow us to
state in a rigorous sense that NLEIGS pencils are linearizations of QN(λ), but the
one based on block full rank pencils is much simpler, does not require any hypothesis
and covers fully the applications of interest in [47]. In contrast, the polynomial
system matrix perspective provides more information on QN(λ) but at the cost of
extra hypotheses which are not imposed in [47] and that require considerable effort
to check.

The families of rational matrices considered in [47] are defined in terms of the
following parameters: a list of nodes (σ0, σ1, . . . , σN−1) in F, a list of nonzero poles
(ξ1, ξ2, . . . , ξN) in F ∪ {∞}, and a list of nonzero scaling parameters (β0, β1, . . . , βN)
in F. It is important to bear in mind that [47] assumes that the poles are all distinct
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from the nodes. However, we do not assume such property, except in a few results
where it will be explicitly stated. With these parameters, the following sequence of
rational scalar functions is defined:

b0(λ) =
1

β0

, bi(λ) =
1

β0

i∏
k=1

λ− σk−1

βk(1− λ/ξk)
, i = 1, . . . , N. (5.1)

Let us now define the linear scalar functions

gi(λ) := βi (1− λ/ξi) , and hj(λ) := λ− σj, (5.2)

for i = 1, . . . , N , and j = 0, . . . , N − 1. Then, the rational functions bi(λ) satisfy the
simple recursion

gj+1(λ) bj+1(λ) = hj(λ) bj(λ), j = 0, 1, . . . , N − 1 ,

which will be useful in the sequel. Note that the rational functions bi(λ) could not
be proper, since for any infinite pole ξi = ∞ the corresponding factor 1 − λ/ξi is
just equal to 1, and, therefore, bi(λ) has a nonconstant polynomial part.

With all this information, we are in the position of introducing the first family
of rational matrices considered in [47], whose elements are defined as

QN(λ) = b0(λ)D0 + b1(λ)D1 + · · ·+ bN(λ)DN ∈ F(λ)m×m, (5.3)

where D0, . . . , DN ∈ Fm×m are constant matrices. In this section, all the parameters
that allow us to define the considered family of rational matrices are arbitrary.
However, in [47] these parameters are carefully chosen in such a way that QN(λ)
approximates satisfactorily the matrix defining the NLEP to be solved in a target
set Σ ⊂ F. In this scenario, it is important to stress that the poles (ξ1, . . . , ξN) are
always chosen outside Σ [47, p. A2852], which implies that all the zeros of QN(λ)
located in Σ are eigenvalues of QN(λ). Thus, the REP associated with QN(λ) is an
explicit example of a problem in which the poles are located outside the region of
interest and, then, it is not needed to compute them. Note, however, the following
subtlety: though it is clear that the finite poles of QN(λ) are included in the list
(ξ1, . . . , ξN), we can construct examples of matrices as in (5.3) for which some of
the finite numbers in (ξ1, . . . , ξN) are not poles due to some cancellations. Thus, all
the finite numbers in (ξ1, . . . , ξN) are not necessarily finite poles of QN(λ) and, even
more, the partial multiplicities of such poles are not immediately visible from (5.3).
Despite these comments, we will call the numbers (ξ1, . . . , ξN) poles, following the
usage in [47].
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5.1.0.1 The NLEIGS basic problem from the point of view of block full
rank pencils

In order to solve the REP QN(λ) y = 0, the authors of [47] solve the generalized
eigenvalue problem corresponding to the pencil

LN(λ) =

[
MN(λ)
KN(λ)

]
, (5.4)

where

MN(λ) :=

[
gN(λ)

βN
D0

gN(λ)

βN
D1 · · ·

gN(λ)

βN
DN−2

gN(λ)

βN
DN−1 +

hN−1(λ)

βN
DN

]
,

KN(λ) :=


−h0(λ) g1(λ)

−h1(λ) g2(λ)
. . .

. . .

−hN−2(λ) gN−1(λ)

⊗ Im.
In [47] the use of LN(λ) for solving the REP associated to QN(λ) is supported by
[47, Theorem 3.2], which states that LN(λ) is a strong linearization of the rational
matrix QN(λ) without specifying the exact meaning of “strong linearization” in this
rational context. Moreover, the proof of [47, Theorem 3.2] consists of a reference to
[5, Theorem 3.1], which is a paper dealing with strong linearizations of polynomial
matrices in the classical sense of [44]. However, as a consequence of the results in
Section 4.3, it is very easy to prove that LN(λ) is always a linearization of QN(λ)
in a set including the region of interest in [47], as well as at infinity. This is proved
in Theorem 5.1.1, where the nomenclature introduced in Remark 4.3.6 is used.

Theorem 5.1.1. Let QN(λ) be the rational matrix in (5.3) and LN(λ) be the pencil
in (5.4). Let PN and iN be, respectively, the set of finite poles and the number of
infinite poles in the list (ξ1, ξ2, . . . , ξN). Then, the following statements hold:

(a) LN(λ) partitioned as in (5.4) is a block full rank pencil with only one block
column associated with QN(λ) in F\PN and LN(λ) is a linearization of QN(λ)
in F \ PN with empty state matrix.

(b) LN(λ) is a linearization of QN(λ) at ∞ of grade iN with empty state matrix.

Proof. It is immediate to check that

NN(λ) :=
1

1− λ
ξN

[
b0(λ) b1(λ) · · · bN−1(λ)

]
⊗ Im (5.5)

is a rational basis dual to KN(λ). Note also that KN(λ) and NN(λ) have both full
row rank in F\PN . In addition, an easy direct computation proves MN(λ)NN(λ)T =
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QN(λ). Thus, part (a) follows from Theorem 4.4.1. Observe that (a) can also be
proved from Corollary 4.3.8, since the structures of QN(λ), LN(λ) and NN(λ) are
particular cases of those described in that corollary.

In order to prove part (b), note first that rev1KN(λ) has full row rank at 0.
We now consider the rational matrix reviN−1NN(λ) = λiN−1NN

(
1
λ

)
, which is of the

form λiN−1NN

(
1
λ

)
=
[
∗ · · · ∗ λ

λ−1/ξN
λiN−1bN−1

(
1
λ

)
Im
]
, where the entries ∗ are

defined at 0. Denote by iN−1 the number of infinite poles in the list (ξ1, ξ2, . . . , ξN−1).
Then, bN−1

(
1
λ

)
= 1

λiN−1
c(λ), for a certain rational function c(λ) with c(0) 6= 0.

Thus, we obtain that reviN−1NN(λ) has full row rank at 0, taking into account that
iN−1 = iN if ξN 6= ∞, and iN−1 = iN − 1 if ξN = ∞. Then, part (b) follows from
Theorem 4.3.7. �

Combining Theorems 5.1.1 and 4.2.6, we get that LN(λ) contains all the infor-
mation about the finite eigenvalues of QN(λ) in F \ PN , including all type of mul-
tiplicities (algebraic, geometric and partial). Moreover, Proposition 4.2.15 allows
us to recover the complete pole-zero structure of QN(λ) at ∞ from the eigenvalue
structure at 0 of revLN(λ), just by noting that, in this case, t = 0 in Proposition
4.2.15 since we are taking an empty state matrix. We stress that all these results
hold for any rational matrix QN(λ) either regular or singular. However, no informa-
tion is provided on the finite poles of QN(λ), and some of them could also be zeros.
As explained above, this is not an issue in [47], since PN is outside the target set Σ.
Nevertheless, at the cost of imposing extra hypotheses, we will solve this problem
in Section 5.1.0.2 for completeness and also because it is of interest for the theory
of REPs.

5.1.0.2 The NLEIGS basic problem from the point of view of polynomial
system matrices

As discussed previously, the approach presented in Section 5.1.0.1 to the NLEIGS
pencil LN(λ) in (5.4) considers LN(λ) as a linearization with empty state matrix
and, thus, it does not provide any information on the finite poles of QN(λ). In order
to get this information, we need to identify a convenient square regular submatrix
AN(λ) of LN(λ) that may be used as state matrix. The block structure of LN(λ)
makes it impossible to find such a matrix AN(λ) in a way that it includes the
information of all the potential poles (ξ1, . . . , ξN). This is related with the comment
included in [47, p. A2849] on the fact that ξN plays a special role and that it is
convenient to choose ξN = ∞. In what follows we will not assume that ξN = ∞,
though the obtained results are simpler and stronger under such assumption, but
we will focus on getting information on the finite poles in (ξ1, . . . , ξN−1). With this
spirit, we consider the following partition of LN(λ) in (5.4), where AN(λ) will play
the role of the state matrix,
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LN(λ) =:

 DN(λ) −CN(λ)

BN(λ) AN(λ)

 , where DN(λ) :=
(

1− λ
ξN

)
D0, (5.6)

and the rest of the blocks are easily described from the blocks in (5.4). With
this partition, the next technical lemma reveals the transfer function matrix of
LN(λ) and establishes necessary and sufficient conditions for LN(λ) to be minimal
in the whole field F. By definition, LN(λ) is minimal in F if

[
BN(λ0) AN(λ0)

]
∈

Fm(N−1)×mN and
[
−CN(λ0)T AN(λ0)T

]T ∈ FmN×m(N−1) have, respectively, full
row and column rank for all λ0 ∈ F. The conditions in Lemma 5.1.2(b) require to
evaluate the rational matrix RN(λ) of size m ×m, which for practical problems is
much smaller than m(N − 1)×mN .

Lemma 5.1.2. Let us consider the pencil LN(λ) in (5.4) as a polynomial system
matrix with state matrix AN(λ), where AN(λ) is defined through the partition (5.6),
and let QN(λ) be the rational matrix in (5.3). Then the following statements hold:

(a) The transfer function matrix of LN(λ) is β0

(
1− λ

ξN

)
QN(λ).

(b) Let us define the rational matrix RN(λ) := (QN(λ) − b0(λ)D0)/bN(λ), whose
explicit expression is

RN(λ) =
N−1∑
j=1

(
N∏

k=j+1

gk(λ)

hk−1(λ)

)
Dj + DN ∈ F(λ)m×m, (5.7)

let PN−1 be the set of finite poles in the list (ξ1, ξ2, . . . , ξN−1), and assume
ξi 6= σj, 1 ≤ i ≤ N , 0 ≤ j ≤ N − 1. Then, LN(λ) is minimal in F if and only
if the matrix RN(ξk) ∈ Fm×m is nonsingular for all ξk ∈ PN−1.

Proof. Let us consider LN(λ) partitioned as in (5.6) and as a polynomial system
matrix with state matrix AN(λ). The computation of the transfer function matrix

of LN(λ) is easy because BN(λ) =
[
−h0(λ)Im 0 · · · 0

]T
, which implies that

only the first block column of AN(λ)−1 is needed. It is immediate to check that
1

b1(λ)g1(λ)
[b1(λ) · · · bN−1(λ)]T ⊗ Im is that first block column. The rest of the

proof of part (a) is just an elementary algebraic manipulation. For part (b), observe
first that ξi 6= σj, 1 ≤ i ≤ N and 0 ≤ j ≤ N − 1, implies that

[
BN(λ0) AN(λ0)

]
has full row rank for any λ0 ∈ F. On the other hand, if we define

ZN(λ) :=

[
−CN(λ)
AN(λ)

]
, (5.8)

then ZN(λ0) has full column rank for every λ0 ∈ F \ PN−1, because AN(λ0) is
invertible in F \ PN−1. Therefore, combining the discussion above with Definition
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4.1.1, we obtain that LN(λ) is minimal in F if and only if ZN(ξk) has full column
rank for every ξk ∈ PN−1. The rest of the proof proceeds as follows: we will find a
rational matrix SN(λ) such that is equivalent to ZN(λ) in PN−1 and has a simple
structure that allows us to see that SN(ξk) (and, so, ZN(ξk)) has full column rank
for every ξk ∈ PN−1 if and only if RN(ξk) is invertible for every ξk ∈ PN−1, where
RN(λ) is the rational matrix in (5.7). For brevity, we use the notation gi := gi(λ)
and hi := hi(λ) for the scalar functions in (5.2). In addition, ZN(λ) in (5.8) is
partitioned as

ZN(λ) =:

[
Z11(λ) Z12(λ)
Z21(λ) Z22(λ)

]
, (5.9)

where

Z11(λ) =

[ gN
βN
D1

gN
βN
D2 · · · · · · gN

βN
DN−2

g1Im 0 · · · · · · 0

]
, Z12(λ) =

[
gN
βN
DN−1 + hN−1

βN
DN

0

]
,

Z21(λ) =


−h1 g2

−h2 g3

. . .
. . .

−hN−3 gN−2

−hN−2

⊗ Im, Z22(λ) =


0
...
...
0

gN−1Im

 .

Note that the matrix Z21(λ) is invertible in PN−1 and that the last block column of
Z21(λ)−1 is

Y22(λ) := −

[
1

h1

N−2∏
i=2

gi
hi
,

1

h2

N−2∏
i=3

gi
hi
, · · · , 1

hN−3

gN−2

hN−2

,
1

hN−2

]T
⊗ Im . (5.10)

Next, a sequence of equivalence transformations in PN−1 are applied to ZN(λ). Such
transformations are described by using the notation in (5.9) and (5.10), and the first
one is

YN(λ) :=

[
I2m 0
0 Z21(λ)−1

]
ZN(λ) =

[
Z11(λ) Z12(λ)
I(N−2)m gN−1Y22(λ)

]
.

The second transformation is designed to turn zero the second block row of Z11(λ)
as follows

WN(λ) := diag

(
Im,

[
Im −g1Im
0 Im

]
, I(N−3)m

)
YN(λ)

=

 gN
βN
D1 · · · gN

βN
DN−2

0 · · · 0

gN
βN
DN−1 + hN−1

βN
DN(∏N−2

i=1
gi
hi

)
gN−1Im

I(N−2)m gN−1Y22(λ)

 .
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The third transformation turns zero the block gN−1Y22(λ) of WN(λ) and performs a
convenient scalar multiplication in its first block row. Such transformation is

XN(λ) :=

[ βN
hN−1

Im 0

0 I(N−1)m

]
WN(λ)

[
I(N−2)m −gN−1Y22(λ)

0 Im

]

=

 gN
hN−1

D1 · · · gN
hN−1

DN−2

0 · · · 0

RN(λ)(∏N−2
i=1

gi
hi

)
gN−1Im

I(N−2)m 0

 ,
where RN(λ) is the rational matrix in (5.7). The last transformation makes zero
the first N − 2 blocks of size m×m in the first block row of XN(λ) and yields the
announced matrix SN(λ) equivalent to ZN(λ) in PN−1. More precisely,

SN(λ) :=

 Im 0
0 Im

− gN
hN−1

D1 · · · − gN
hN−1

DN−2

0 · · · 0
0 I(N−2)m

 XN(λ)

=

 0 · · · 0
0 · · · 0

RN(λ)(∏N−2
i=1

gi
hi

)
gN−1Im

I(N−2)m 0

 .
The block H(λ) :=

(∏N−2
i=1

gi
hi

)
gN−1Im of SN(λ) satisfies H(ξk) = 0 for all ξk ∈

PN−1. Therefore, SN(ξk) (and, so, ZN(ξk)) has full column rank for every ξk ∈ PN−1

if and only if RN(ξk) is invertible for all ξk ∈ PN−1, and the result is proved. �

The constant matrix AN(λ0) is invertible for any λ0 ∈ F\PN−1 and, so, LN(λ) is

minimal in F\PN−1. Combining this with the fact thatQN(λ) and β0

(
1− λ

ξN

)
QN(λ)

are equivalent in F if ξN = ∞ or in F \ {ξN} if ξN is finite, we immediately obtain
from Definition 4.2.1 that LN(λ) is a linearization of QN(λ) with state matrix AN(λ)
in F\PN , which is a result analogous to Theorem 5.1.1(a). This approach, of course,
does not give any information on the finite poles of QN(λ), because the finite eigen-
values of AN(λ) coincide with PN−1. Such information is obtained from the next
result, which is the main result of this section and is a corollary of Lemma 5.1.2.

Theorem 5.1.3. Let QN(λ) be the rational matrix in (5.3), LN(λ) be the pencil in
(5.4), AN(λ) be the submatrix of LN(λ) in (5.6), and RN(λ) be the rational matrix in
(5.7). Consider PN−1 the set of finite poles in the list (ξ1, ξ2, . . . , ξN−1), and assume
ξi 6= σj, 1 ≤ i ≤ N , 0 ≤ j ≤ N − 1. If RN(ξk) ∈ Fm×m is nonsingular for every
ξk ∈ PN−1, then LN(λ) is a linearization of QN(λ) with state matrix AN(λ) in F, if
ξN =∞, or in F \ {ξN}, if ξN is finite.

Proof. Under the hypotheses of Theorem 5.1.3, LN(λ) is minimal in F. Moreover,

its transfer function matrix, i.e., β0

(
1− λ

ξN

)
QN(λ) is equivalent to QN(λ) in F, if

ξN =∞, or in F \ {ξN}, if ξN is finite. �
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We emphasize that the hypotheses that the constant matrices RN(ξk) in Theorem
5.1.3 are nonsingular are not mentioned at all in [47], but, fortunately, are generic,
in the sense that they are satisfied by almost all regular rational matrices QN(λ)
expressed as in (5.3).

Remark 5.1.4. Under the conditions of Theorem 5.1.3, the pole elementary divisors
of QN(λ) in F, if ξN =∞, or in F \ {ξN}, if ξN is finite, are the elementary divisors
of AN(λ), as a consequence of Theorem 4.2.6. These elementary divisors can be

easily determined as follows: first express AN(λ) = ÂN(λ) ⊗ Im; second note that

if ŜN(λ) is the Smith form of ÂN(λ), then ŜN(λ)⊗ Im is the Smith form of AN(λ);
third, use the fact that ξi 6= σj, 1 ≤ i ≤ N , 0 ≤ j ≤ N − 1, to prove that the

greatest common divisor of all (N − 2) × (N − 2) minors of ÂN(λ) is equal to 1,
which implies, according to [39, Ch. VI], that there is only one invariant polynomial

of ŜN(λ) different from 1 and that is equal to p(λ) = c (1 − λ/ξ1) · · · (1 − λ/ξN−1),
where c ∈ F is a constant that makes p(λ) monic. Finally, we get that AN(λ) has
m invariant polynomials different from 1 all equal to p(λ). This allows us to obtain
easily the finite elementary divisors of AN(λ) and, thus, the finite pole elementary
divisors of QN(λ) (in F if ξN =∞, or in F \ {ξN} if ξN is finite). In particular, they
are of the form (λ−ξi)νi and, in order to obtain the partial multiplicities νi, we have
to take into account possible repetitions in (ξ1, . . . , ξN−1). Observe that the infinite
ξi for i = 1, . . . , N − 1 do not contribute at all to the finite pole elementary divisors
of QN(λ). Moreover, if ξN = ∞, then we can state the compact and simple result
that the m denominators of the global Smith–McMillan form of QN(λ) are all equal
to p(λ). However, with this choice of state matrix, there is no way of obtaining
information on the pole structure of ξN when it is finite. This is the reason why,
even if LN(λ) is minimal in F, LN(λ) is not a linearization of QN(λ) in F.

5.1.1 The NLEIGS low rank problem

The second family of rational matrices considered in [47] comes from approximating
NLEPs, A(λ)x = 0, such that the associated matrix A(λ) is the sum of a polynomial
matrix plus a matrix of the form

∑n
i=1Cifi(λ), where the constant matrices Ci have

much smaller rank than the size of A(λ) and fi(λ) are scalar nonlinear functions of
λ. This type of NLEPs arise in several applications [46] and are approximated in
[47, eq. (6.2)] by a family of rational matrices of the form

Q̃N(λ) =

p∑
i=0

bi(λ) D̃i +
N∑

i=p+1

bi(λ) L̃i Ũ
T ∈ F(λ)m×m, (5.11)

where b0(λ), . . . , bN(λ) are the scalar rational functions in (5.1), D̃0, . . . , D̃p ∈ Fm×m,

L̃p+1, . . . , L̃N ∈ Fm×r and Ũ ∈ Fm×r are constant matrices, and r � m. For the
functions in (5.2), let us consider the simpler notation hi := hi(λ) and gi := gi(λ).
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5.1.1.1 The NLEIGS low rank problem from the point of view of block
full rank pencils

In order to solve the REP Q̃N(λ)y = 0 efficiently by taking advantage of the low

rank structure of Q̃N(λ), the following pencil is introduced in [47, Sec. 6.4]:

L̃N(λ) =

[
M̃N(λ)

K̃N(λ)

]
, (5.12)

where

M̃N(λ) :=
[

gN
βN
D̃0

gN
βN
D̃1 · · · gN

βN
D̃p

gN
βN
L̃p+1 · · · gN

βN
L̃N−2

gN
βN
L̃N−1 + hN−1

βN
L̃N

]
,

K̃N(λ) :=



−h0Im g1Im
. . .

. . .

−hp−1Im gpIm
−hpŨT gp+1Ir

−hp+1Ir gp+2Ir
. . .

. . .

−hN−2Ir gN−1Ir


.

A result analogous to Theorem 5.1.1 can be proved for the pencil L̃N(λ) and the

matrix Q̃N(λ). This is accomplished in Theorem 5.1.5. We remark, nevertheless,
that the result concerning the linearizations at ∞ is weaker in Theorem 5.1.5 than
in Theorem 5.1.1. This is an unavoidable consequence of the used approach and the
low rank structure of Q̃N(λ).

Theorem 5.1.5. Let Q̃N(λ) be the rational matrix in (5.11) and L̃N(λ) be the pencil
in (5.12). Let PN and iN be, respectively, the set of finite poles and the number of
infinite poles in the list (ξ1, ξ2, . . . , ξN). Then, the following statements hold:

(a) L̃N(λ) partitioned as in (5.12) is a block full rank pencil with only one block

column associated with Q̃N(λ) in F\PN and L̃N(λ) is a linearization of Q̃N(λ)
in F \ PN with empty state matrix.

(b) If, in addition, the poles ξp+1, ξp+2, . . . , ξN−1 are all finite, then L̃N(λ) is a

linearization of Q̃N(λ) at ∞ of grade iN with empty state matrix.

Proof. The proof is similar to that of Theorem 5.1.1 with some differences coming
from the presence of the low rank term in Q̃N(λ). It is immediate to check that

ÑN(λ) =
1

1− λ
ξN

[
b0(λ)Im · · · bp(λ)Im bp+1(λ)Ũ · · · bN−1(λ)Ũ

]
(5.13)
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is a rational basis dual to K̃N(λ), that K̃N(λ) and ÑN(λ) have both full row rank

in F \ PN and that M̃N(λ)ÑN(λ)T = Q̃N(λ). Thus, part (a) follows from Theorem
4.4.1.

In order to prove part (b), note first that rev1 K̃N(λ) has full row rank at 0 as
a consequence of the fact that the poles ξp+1, ξp+2, . . . , ξN−1 are all finite. We now

consider the rational matrix reviN−1 ÑN(λ) = λiN−1ÑN

(
1
λ

)
, which is of the form

λiN−1ÑN

(
1

λ

)
=
[
∗ · · · ∗ λ

λ−1/ξN
λiN−1bp

(
1
λ

)
Im ∗ · · · ∗

]
,

where the entries ∗ are defined at 0. Denote by ip the number of infinite poles in the
list (ξ1, ξ2, . . . , ξp). Then, bp

(
1
λ

)
= 1

λip
c̃(λ) for a certain rational function c̃(λ) with

c̃(0) 6= 0. Taking into account that the poles ξp+1, ξp+2, . . . , ξN−1 are all finite, we

have that ip = iN if ξN 6=∞, and ip = iN − 1 if ξN =∞. Therefore, reviN−1 ÑN(λ)
has full row rank at 0 because c̃(0) 6= 0. Thus, part (b) follows from Theorem
4.3.7. �

A discussion similar to the one in the last paragraph of Section 5.1.0.1 can be
developed on the basis of Theorem 5.1.5. The details are omitted for brevity. The
open problem corresponding to the information of the finite poles will be solved in
Section 5.1.1.2.

5.1.1.2 The NLEIGS low rank problem from the point of view of poly-
nomial system matrices

The results in this section are the counterpart for Q̃N(λ) in (5.11) and L̃N(λ) in
(5.12) of those presented in Section 5.1.0.2 for QN(λ) and LN(λ). For this purpose,

we consider the following partition of L̃N(λ) in (5.12):

gN
βN
D̃0

gN
βN
D̃1 · · · gN

βN
D̃p

gN
βN
L̃p+1 · · · gN

βN
L̃N−2

gN
βN
L̃N−1 +

hN−1

βN
L̃N

− h0Im g1Im

. . .
. . .

−hpŨT gp+1Ir

−hp+1Ir gp+2Ir
. . .

. . .

−hN−2Ir gN−1Ir



=:


M̃(λ) −C̃N (λ)

K̃(λ) 0

B̃N (λ) ÃN (λ)

 ,
(5.14)
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where ÃN (λ) will play the role of the state matrix, and the rational basis

Ñ(λ) :=
1

1− λ
ξN

[
b0(λ) b1(λ) · · · bp(λ)

]
⊗ Im (5.15)

dual to K̃(λ). The next lemma is the counterpart of Lemma 5.1.2.

Lemma 5.1.6. Let us consider the pencil L̃N(λ) in (5.12) as a polynomial system

matrix with state matrix ÃN(λ), where ÃN(λ) is defined through the partition (5.14),

and let Q̃N(λ) be the rational matrix in (5.11). Then the following statements hold:

(a) L̃N(λ) is a block full rank linearization of Q̃N(λ) in the sets where simultane-

ously L̃N(λ) is minimal and Ñ(λ) has full row rank.

(b) Let us define the rational matrix

R̃N(λ) =
N−1∑
j=p+1

(
N∏

k=j+1

gk(λ)

hk−1(λ)

)
L̃j + L̃N ∈ F(λ)m×r, (5.16)

let P̃N−1 be the set of finite poles in the list (ξp+1, ξp+2, . . . , ξN−1). Assume

that rank Ũ = r and ξi 6= σj, 1 ≤ i ≤ N , 0 ≤ j ≤ N − 1. Then, L̃N(λ) is

minimal in F if and only if the matrix R̃N(ξk) ∈ Fm×r has full column rank

for all ξk ∈ P̃N−1.

Proof. For part (a), we only have to check that

[M̃(λ) + C̃N(λ)ÃN(λ)−1B̃N(λ)]Ñ(λ)T = Q̃N(λ).

For that, we take into account that the first block column of ÃN(λ)−1 is equal to
1

bp+1(λ)gp+1

[
bp+1(λ) · · · bN−1(λ)

]T⊗Ir. The proof of part (b) is analogous to that

of Lemma 5.1.2(b). �

As a corollary of Lemma 5.1.6, we state Theorem 5.1.7 which is the main result
in this section.

Theorem 5.1.7. Let Q̃N(λ) be the rational matrix in (5.11), L̃N(λ) be the pencil in

(5.12), ÃN(λ) be the submatrix of L̃N(λ) in (5.14), and R̃N(λ) be the rational matrix

in (5.16). Consider P̃N−1 the set of finite poles in the list (ξp+1, ξ2, . . . , ξN−1). If

ξ1 = · · · = ξp = ∞, rank Ũ = r, ξi 6= σj, 1 ≤ i ≤ N , 0 ≤ j ≤ N − 1, and

R̃N(ξk) ∈ Fm×r has full column rank for every ξk ∈ P̃N−1, then L̃N(λ) is a block

full rank linearization of Q̃N(λ) with state matrix ÃN(λ) in F, if ξN = ∞, or in
F \ {ξN}, if ξN is finite.
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Proof. First, notice that if ξ1 = · · · = ξp = ∞ then the dual rational basis Ñ(λ)
in (5.15) has full row rank in F, if ξN = ∞, or in F \ {ξN}, if ξN is finite. In

addition, the rank condition (4.15) is satisfied in F if L̃N(λ) is minimal in F and
ξ1 = · · · = ξp =∞. By Lemma 5.1.6 and Theorem 4.4.1 the results follows. �

Remark 5.1.8. Note that the hypothesis ξ1 = · · · = ξp =∞ implies that the “no-

low rank” term
∑p

i=0 bi(λ)D̃i of Q̃N(λ) is a polynomial matrix, as often happens in
NLEPs [47].

5.2 Linearizations for AAA rational approxima-

tions of NLEPs

In this section we study the precise properties of the linearizations for rational
approximations of NLEPs in [60]. We will see that they satisfy Theorem 4.4.1 in a
particular subset of F and in the whole field F under mild conditions.

An approach to obtain an automatic rational approximation for the NLEP in a
region Ω is given in [60]. The authors of [60] consider the n × n nonlinear matrix
F (λ) of the NLEP written in the form

F (λ) = Q(λ) +
s∑
i=1

(Ci − λDi)gi(λ) (5.17)

with Q(λ) a polynomial matrix, Ci and Di n × n constant matrices, and gi(λ)
nonlinear scalar functions. Then, a CORK linearization of Q(λ) of those introduced
in [81] is considered, and the functions gi(λ) are approximated by rational functions
employing the adaptive Antoulas–Anderson (AAA) algorithm [73], or its set-valued
generalization presented in [60]. We recall the definition of CORK linearization as
given in [60].

Definition 5.2.1. Let G(λ) be an n× n rational matrix written as

G(λ) =
k−1∑
i=0

(Ai − λBi)fi(λ), (5.18)

where fi(λ) are scalar rational functions with f0(λ) ≡ 1, and Ai, Bi are n × n
constant matrices. Define

f(λ) := [f0(λ) · · · fk−1(λ)]T ,

and assume that the rational functions fi(λ) satisfy a linear relation

(X − λY )f(λ) = 0, (5.19)
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where rank(X − λY ) = k − 1 for all λ ∈ F, and X − λY has size (k − 1)× k. Then
the matrix pencil

LG(λ) =

[
A0 − λB0 · · · Ak−1 − λBk−1

(X − λY )⊗ In

]

is called a CORK linearization of G(λ).

If the vector f(λ) is polynomial then G(λ) in (5.18) is a polynomial matrix
and LG(λ) is a linearization of G(λ) in F, in particular, LG(λ) is a block full rank
linearization of G(λ) in F with empty state matrix. However, if f(λ) is a rational
vector then LG(λ) is not, in general, a linearization in the sense of [7], that is, in F
but it is a linearization in a local sense [28]. More precisely, it is a block full rank
linearization in all the subsets where the rational vector f(λ) is defined, i.e., has no
poles. Such result is stated in the next theorem.

Theorem 5.2.2. Let Ω be a nonempty subset of F where the rational vector f(λ)
in (5.19) is defined. Then a CORK linearization LG(λ) of a rational matrix G(λ)
as in (5.18) is a block full rank linearizacion of G(λ) in Ω with empty state matrix.

Proof. Notice that, by taking M(λ) :=
[
A0 − λB0 · · · Ak−1 − λBk−1

]
, K1(λ) :=

(X−λY )⊗In, and K2(λ) empty, LG(λ) is a block full rank pencil. Moreover, f(λ)T

is a rational basis dual to X − λY. Then we apply Remark 4.4.2 with N1(λ) :=
f(λ)T ⊗ In and N2(λ) = In. �

Once CORK linearizations and some of their properties have been revised, we
recall the AAA approximation of scalar functions. A given nonlinear function g :
F −→ F is approximated in [60] on a set Σ ⊂ F by a rational function r(λ) in
barycentric form, that is,

r(λ) =
m∑
j=1

g(zj)wj
λ− zj

/ m∑
j=1

wj
λ− zj

, (5.20)

where z1, . . . , zm are distinct support points and w1, . . . , wm are nonzero weights,
that can be automatically chosen as explained in [73]. In this case, lim

λ→zj
r(λ) = g(zj).

It is shown in [60, Proposition 2.1] that r(λ) in (5.20) can be written as

[g(z1)w1 · · · g(zm)wm]


w1 w2 · · · wm−1 wm

λ− z1 z2 − λ

λ− z2

. . .

. . . zm−1 − λ
λ− zm−1 zm − λ



−1 
1
0
...
0

 .
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That is, r(λ) can be written as a generalized state-space realization. Then, the
pencil

P (λ) :=



w1 w2 · · · wm−1 wm −1
λ− z1 z2 − λ 0

λ− z2
. . .

...
. . . zm−1 − λ

...
λ− zm−1 zm − λ 0

g(z1)w1 g(z2)w2 · · · g(zm−1)wm−1 g(zm)wm 0


:=

[
E − λF −b
aT 0

]

(5.21)
is a linear polynomial system matrix of r(λ) (i.e., with transfer function r(λ)) by
considering E−λF as state matrix. In order to know what pole and zero information
of r(λ) we can obtain from this realization, we consider in Proposition 5.2.4 the
polynomial system matrix P (λ) and we study its minimality. First, we prove Lemma
5.2.3. In both Proposition 5.2.4 and Lemma 5.2.3, we consider r(λ) written as the
following quotient of polynomials

r(λ) :=
p(λ)

q(λ)
, (5.22)

where

p(λ) :=

(
m∏
j=1

(λ− zj)

)(
m∑
j=1

g(zj)wj
λ− zj

)
and q(λ) :=

(
m∏
j=1

(λ− zj)

)(
m∑
j=1

wj
λ− zj

)
.

Note that the representation of the rational function (5.22) might not be irreducible.
We will see that the irreducibility of (5.22) is the key property for the minimality
of P (λ).

Lemma 5.2.3. The pencil E − λF in (5.21) is a strong block minimal bases pencil
associated with the polynomial q(λ) in (5.22).

Proof. We set

E − λF =


w1 w2 · · · wm−1 wm

λ− z1 z2 − λ

λ− z2
. . .

. . . zm−1 − λ
λ− zm−1 zm − λ

 =:

[
M

K(λ)

]
. (5.23)

Since z1, . . . , zm are distinct, K(λ0) has full row rank for all λ0 ∈ F. In addition,
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K(λ) is row reduced because its highest row degree coefficient matrix

Khr =


1 −1 0

1 −1 0
. . .

. . .
. . .

1 −1 0
1 −1


has full row rank. We conclude that K(λ) is a minimal basis. Let us denote

N(λ) :=
m∏
j=1

(λ− zj)
[

1

λ− z1

· · · 1

λ− zm

]
. (5.24)

Then, it is not difficult to prove that N(λ) is also a minimal basis, taking again into

account that z1, . . . , zm are distinct. Moreover, since K(λ)N(λ)T = 0 and

[
K(λ)
N(λ)

]
is a square matrix, we have that K(λ) and N(λ) are dual minimal bases. In addition,
all the row degrees of K(λ) are equal to 1 and the row degree of N(λ) is equal to
m − 1. Hence, E − λF is a strong block minimal bases pencil associated with the
polynomial matrix MN(λ)T = q(λ). �

E−λF being a strong block minimal bases pencil associated with the polynomial
q(λ) implies that E − λF is a (strong) linearization of q(λ) and, in particular, that
the determinant of E−λF is equal to q(λ) up to a scalar multiple. This fact is used
to prove the following result.

Proposition 5.2.4. Consider the rational function r(λ) in (5.22) and its linear
polynomial system matrix P (λ) in (5.21). Then, P (λ) is not minimal at λ0 ∈ F if
and only if λ0 is a zero of both polynomials p(λ) and q(λ).

Proof. Consider P (λ) =

[
E − λF −b

aT 0

]
as in (5.21). By Lemma 5.2.3,

det(E − λF ) = αq(λ) with α 6= 0. (5.25)

In addition, since the Schur complement of E − λF in P (λ) is r(λ), we have that

det(P (λ)) = det(E − λF )r(λ) = αq(λ)
p(λ)

q(λ)
= αp(λ). (5.26)

Now, assume that λ0 is a zero of both polynomials p(λ) and q(λ). That is, we
can cancel out at least one factor of the form (λ − λ0) in both numerator and
denominator of r(λ). Then, the algebraic multiplicity of λ0 as a zero of r(λ) is
not the same as the algebraic multiplicity of λ0 as a zero of P (λ). Therefore,



5.2. LINEARIZATIONS OF AAA RATIONAL APPROXIMATIONS 109

P (λ) is not minimal at λ0. For the converse, assume that P (λ) is not minimal

at λ0. Then, rank

[
E − λ0F

aT

]
< m, since rank

[
E − λ0F −b

]
= m. Actually,

rank

[
E − λ0F

aT

]
= m− 1, as the sub-matrix

K(λ0) =


λ0 − z1 z2 − λ0

λ0 − z2
. . .

. . . zm−1 − λ0

λ0 − zm−1 zm − λ0


contains a non-zero minor of order m − 1 for all λ0 ∈ F, where K(λ) is the matrix
appearing in (5.23). Therefore, by using the notation Nr(·) for the right nullspace,

dimNr
([
E − λ0F

aT

])
= 1 and dimNr(K(λ0)) = 1. Then, Nr

([
E − λ0F

aT

])
=

Nr(K(λ0)), since Nr
([
E − λ0F

aT

])
⊆ Nr(K(λ0)) and both have the same dimen-

sion. Actually, Nr(K(λ0)) = Span{N(λ0)T}, where N(λ) is the polynomial matrix

in (5.24). Hence,

[
E − λ0F

aT

]
N(λ0)T = 0 and, therefore,

[
w1 w2 · · · wm

]
N(λ0)T =

0 and
[
g(z1)w1 g(z2)w2 · · · g(zm)wm

]
N(λ0)T = 0. That is, λ0 is a root of both

q(λ) and p(λ).
�

With these tools at hand, we go back to the original NLEP. Let F (λ) be the
nonlinear matrix function in (5.17). Then, each function gi(λ) is approximated in
[60] on a set Σ ⊂ F by a rational function ri(λ) as in (5.20), i.e.,

gi(λ) ≈ ri(λ) =

`i∑
j=1

gi(z
i
j)w

i
j

λ− zij

/ `i∑
j=1

wij
λ− zij

,

where `i is the number of support points zij and weights wij for each i = 1, . . . , s.
For that, one can use the AAA algorithm on each function gi(λ) separately [73], or
one can use the set-valued AAA algorithm in [60, Section 2.2], so that the rational
approximants ri(λ) are all constructed simultaneously and sharing the same support
points zij := zj and weights wij := wj. By using any of the two approaches above,
the following approximation of F (λ) on Σ is obtained:

F (λ) ≈ R(λ) := Q(λ) +
s∑
i=1

(Ci − λDi)ri(λ). (5.27)
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Next, the polynomial matrix Q(λ) is expressed in the form of (5.18), i.e., Q(λ) :=
k−1∑
i=0

(Ai − λBi)fi(λ), assuming the functions fi(λ) are polynomials, with f0(λ) = 1,

and each ri(λ) is written in generalized state-space form, that is,

R(λ) =
k−1∑
i=0

(Ai − λBi)fi(λ) +
s∑
i=1

(Ci − λDi)a
T
i (Ei − λFi)−1bi, (5.28)

with ai =
[
gi(z

i
1)wi1 · · · gi(z

i
`i

)wi`i
]T ∈ F`i , bi = [1 0 · · · 0]T ∈ F`i and `i× `i

matrices

Ei =


wi1 wi2 · · · wi`i−1 wi`i
−zi1 zi2

−zi2
. . .
. . . zi`i−1

−zi`i−1 zi`i

 and Fi =


0 0 · · · 0 0
−1 1

−1
. . .
. . . 1
−1 1

 .

The linearization constructed in [60] for R(λ) is the following.

Definition 5.2.5. [60, Definition 3.2](CORK linearization for AAA rational ap-
proximation) Let R(λ) be a rational matrix as in (5.28). Consider b := [bT1 · · · bTs ]T

and E−λF := diag(E1−λF1, . . . , Es−λFs). Then a CORK linearization for R(λ)
is

LR(λ) =

 A0 − λB0 · · · Ak−1 − λBk−1 aT1 ⊗ (C1 − λD1) · · · aTs ⊗ (Cs − λDs)

(X − λY )⊗ In 0

−b⊗ In 0 (E − λF )⊗ In


where

[
A0 − λB0 · · · Ak−1 − λBk−1

(X − λY )⊗ In

]
is any CORK linearization of Q(λ).

In particular, for the set-valued AAA approximation, all the matrices Ei−λFi in
(5.28) are the same for all i, as well as all the vectors bi. Then, in [60, Remark 3.3]
the following CORK linearization for AAA rational approximation is considered

LsvR (λ) =


A0 − λB0 · · · Ak−1 − λBk−1

s∑
i=1

aTi ⊗ (Ci − λDi)

(X − λY )⊗ In 0

−b1 ⊗ In 0 (E1 − λF1)⊗ In

 (5.29)

Notice that LsvR (λ) has size (kn+ `1n)× (kn+ `1n) whereas LR(λ) in Definition
5.2.5 has size (kn+

∑s
i=1 `in)× (kn+

∑s
i=1 `in).

By using Theorem 4.4.1, we study in Theorem 5.2.6 the structure of LR(λ) and
LsvR (λ) as linearizations of R(λ).
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Theorem 5.2.6. Let R(λ) be a rational matrix as in (5.28), and let LR(λ) (resp.,
LsvR (λ)) be the matrix pencil in Definition 5.2.5 (resp., in (5.29)). Let Ω ⊆ F be
nonempty. If LR(λ) (resp., LsvR (λ)), viewed as a polynomial system matrix with
state matrix (E − λF ) ⊗ In (resp., (E1 − λF1) ⊗ In), is minimal in Ω then LR(λ)
(resp., LsvR (λ)) is a block full rank linearization of R(λ) in Ω with state matrix
(E − λF )⊗ In (resp., (E1 − λF1)⊗ In).

Proof. Set M(λ) :=
[
A0 − λB0 · · · Ak−1 − λBk−1

]
, C(λ) := −[aT1 ⊗ (C1 −

λD1) · · · aTs ⊗ (Cs−λDs)], B := [−b⊗ In 0], A(λ) := (E−λF )⊗ In, K1(λ) :=
(X − λY ) ⊗ In, N1(λ) := (f(λ) ⊗ In)T , and K2(λ) empty. LR(λ) being minimal
in Ω implies that condition (4.15) is satisfied in Ω since BN1(λ)T = −b ⊗ In be-
cause f0(λ) = 1. Then, by Theorem 4.4.1, LR(λ) is a linearization of [M(λ) +
C(λ)A(λ)−1B](f(λ)⊗ In) = R(λ) in Ω with state matrix A(λ). �

Remark 5.2.7. Theorem 5.2.6 also holds if f(λ) is rational but, in such a case, we
need the extra hypothesis of f(λ) being defined in Ω.

According to Theorem 5.2.6, we need minimality on LR(λ) to be a linearization
of the rational matrix R(λ). In the following Theorem 5.2.8, we give sufficient mild
conditions for LR(λ) to be minimal in F in the case the rational approximants ri(λ)
do not share the same support points and weights. That is, when the functions gi(λ)
are approximated employing the adaptive Antoulas–Anderson (AAA) algorithm in
[73] separately. For the set-valued AAA approximation [60], i.e., the rational ap-
proximants ri(λ) sharing the same support points and weights, the authors in [60]
consider the pencil in (5.29), and we state minimality conditions for it in Theorem
5.2.9.

Theorem 5.2.8. Assume that, for i = 1, . . . , s, the rational functions ri(λ) in (5.27)
are represented as in (5.22) and that this representation is irreducible. Let LR(λ)
be the matrix pencil in Definition 5.2.5. If the pencils Ci − λDi and Ei − λFi are
regular for i = 1, . . . , s and the following conditions hold

(a) Ci − λDi and Ei − λFi have no finite eigenvalues in common for i = 1, . . . , s,
and

(b) Ei − λFi and Ej − λFj with i 6= j have no finite eigenvalues in common for
i, j = 1, . . . , s,

then LR(λ), viewed as a polynomial system matrix with state matrix (E−λF )⊗ In,
is minimal in F.

Proof. Assume first that s = 1. Then notice that LR(λ) is minimal in C if the pencil

S(λ) :=

[
0 aT1 ⊗ (C1 − λD1)

− b1 ⊗ In (E1 − λF1)⊗ In

]
,
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considered as a polynomial system matrix with state matrix (E1 − λF1) ⊗ In, is
minimal in F. Since r1(λ) is irreducible, we have, by Proposition 5.2.4, that the
submatrix

[
−b1 ⊗ In (E1 − λF1)⊗ In

]
has full row rank for all λ ∈ F. Then

we only have to prove that the submatrix H(λ) :=

[
aT1 ⊗ (C1 − λD1)

(E1 − λF1)⊗ In

]
has full

column rank for all λ ∈ F. By contradiction, assume that H(λ0) has no full column
rank for some λ0 ∈ F. Notice that, in such a case, λ0 must be an eigenvalue of
E1 − λF1 since, otherwise, H(λ0) would have full column rank. In addition, there
exists a nonzero vector x such that H(λ0)x = 0. Now we write

H(λ0)x =

[
C1 − λ0D1 0

0 I`1n

][
aT1 ⊗ In

(E1 − λ0F1)⊗ In

]
x = 0, (5.30)

and define the vector

[
y1

y2

]
:=

[
aT1 ⊗ In

(E1 − λ0F1)⊗ In

]
x, which is nonzero since x 6= 0

and the matrix

[
aT1 ⊗ In

(E1 − λ0F1)⊗ In

]
has full column rank by Proposition 5.2.4.

Moreover, by (5.30), we have that y2 = 0 and, thus, (C1− λ0D1)y1 = 0 with y1 6= 0.
Therefore, λ0 is an eigenvalue of C1 − λD1, which is a contradiction by condition
(a). Finally, if s > 1 we have to take into account condition (b) and the result
follows. �

For the set-valued AAA approximation, the minimality conditions on LsvR (λ) are
milder. We state them in the following result that is a corollary of Theorem 5.2.8.

Theorem 5.2.9. Assume that, for i = 1, . . . , s, the rational functions ri(λ) in (5.27)
are represented as in (5.22) and that this representation is irreducible. Let LsvR (λ)

be the matrix pencil in (5.29). If the pencils
s∑
i=1

aTi ⊗ (Ci − λDi) and E1 − λF1

are regular and have no finite eigenvalues in common then LsvR (λ), viewed as a
polynomial system matrix with state matrix (E1 − λF1)⊗ In, is minimal in F.

Remark 5.2.10. It is clear that if we consider the set Ω := {λ ∈ F : E −
λF is invertible}, then LR(λ) is minimal in Ω and, by Theorem 5.2.6, LR(λ) is
a block full rank linearization of R(λ) in Ω, with state matrix (E−λF )⊗ In. Howe-
ver, in such a case we do not obtain any information about the poles of R(λ) since
they do not belong to Ω. For this particular choice of the set Ω, the fact that LR(λ)
is a linearization of R(λ) in Ω can also be proved by considering LR(λ) as a block
full rank pencil of the form

LR(λ) :=

[
M(λ)
K1(λ)

]
,
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with

M(λ) :=
[

A0 − λB0 · · · Ak−1 − λBk−1 aT1 ⊗ (C1 − λD1) · · · aTs ⊗ (Cs − λDs)
]
,

and by applying Remark 4.4.2. For that, write R(λ) as

R(λ) =
k−1∑
i=0

(Ai − λBi)(fi(λ)⊗ In) +
s∑
i=1

[aTi ⊗ (Ci − λDi)](Ri(λ)⊗ In),

with Ri(λ) := (Ei − λFi)−1bi, and consider the dual rational basis of K1(λ)

N1(λ) := [f0(λ) · · · fk−1(λ) | R1(λ)T · · · Rs(λ)T ]⊗ In.

Then, LR(λ) is a linearization of R(λ) in Ω with empty state matrix. On the other
hand, if LR(λ) (considering the partition with state matrix (E − λF ) ⊗ In) were
minimal at those λ0 ∈ F such that E − λ0F is singular then LR(λ) would be a
linearization of R(λ) in F with state matrix (E − λF ) ⊗ In. That means that the
zeros of LR(λ) would be the zeros of R(λ), and the zeros of (E − λF ) ⊗ In would
be the poles of R(λ), together with their partial multiplicities. This happens, for
instance, under the conditions of Theorem 5.2.8.

Remark 5.2.11. In Remark 5.2.10, we consider LR(λ) from two different points of

view: as a block full rank pencil,

[
M(λ)
K1(λ)

]
, and as a polynomial system matrix

with state matrix (E − λF ) ⊗ In. In the former case, LR(λ) is not in general a
linearization at infinity of R(λ) since rev1K1(λ) does not have full row rank at 0.
In particular, Theorem 4.3.7 can not be applied and there is not always an integer
g such that rev1 LR(λ) is equivalent at 0 to diag(revg R(λ), Ik(n−1)+

∑s
i=1 `in

). It is
not difficult to construct examples where such a g does not exist. In the latter case,
LR(λ) is not a linearization at infinity since rev1 LR(λ) is not minimal at 0. Both
cases are due to the fact that the matrix rev1(E − λF ) does not have full row rank
at zero since F is singular.

5.2.1 Low-rank structure

Low-rank structures are exploited in [60] for constructing smaller linearizations that
allow more efficient computations. In particular, a trimmed linearization is con-
structed if the matrix coefficients Ci−λDi in (5.17) have low rank. For this purpose,
write

Ci − λDi = (C̃i − λD̃i)Z̃
∗
i , (5.31)

with C̃i, D̃i, Z̃i ∈ Fn×ki , and Z̃∗i Z̃i = Iki . In several applied problems this type of
structure appears with ki � n [47, 60]. By using the expression (5.31) for the matrix
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coefficients, the matrix R(λ) in (5.28) can be written as:

R(λ) =
k−1∑
i=0

(Ai − λBi)fi(λ) +
s∑
i=1

(C̃i − λD̃i)Z̃
∗
i a

T
i (Ei − λFi)−1bi

=
k−1∑
i=0

(Ai − λBi)(fi(λ)⊗ In) +
s∑
i=1

[aTi ⊗ (C̃i − λD̃i)]((Ei − λFi)−1bi ⊗ Iki)Z̃∗i .

(5.32)

Then, the trimmed linearization L̃R(λ) for R(λ) constructed in [60] is the following.

Definition 5.2.12. [60](Trimmed CORK linearization for AAA rational approxi-
mation) Let R(λ) be a rational matrix as in (5.32). Consider the matrices

Z :=
[
−Z̃1(b∗1 ⊗ Ik1) · · · −Z̃s(b∗s ⊗ Iks)

]
,

E := diag(E1 ⊗ Ik1 , . . . , Es ⊗ Iks), and

F := diag(F1 ⊗ Ik1 , . . . , Fs ⊗ Iks).

Then a trimmed CORK linearization for R(λ) is

L̃R(λ) =

 A0 − λB0 · · · Ak−1 − λBk−1 aT1 ⊗ (C̃1 − λD̃1) · · · aTs ⊗ (C̃s − λD̃s)

(X − λY )⊗ In 0

Z∗ 0 E − λF

 ,
where

[
A0 − λB0 · · · Ak−1 − λBk−1

(X − λY )⊗ In

]
is any CORK linearization of Q(λ).

Notice that the linearization LR(λ) in Definition 5.2.5 has size (kn+
∑s

i=1 `in)×
(kn +

∑s
i=1 `in) whereas the trimmed pencil L̃R(λ) in Definition 5.2.12 has size

(kn+
∑s

i=1 `iki)× (kn+
∑s

i=1 `iki) with ki � n in several applications.
Analogous to what we did in Theorem 5.2.6, we study in Theorem 5.2.13 the

structure of L̃R(λ) as linearization of R(λ). The proof is omitted since it is analogous
to that of Theorem 5.2.6.

Theorem 5.2.13. Let R(λ) be a rational matrix as in (5.32), and let L̃R(λ) be the

matrix pencil in Definition 5.2.12. Let Ω ⊆ F be nonempty. If L̃R(λ), viewed as a

polynomial system matrix with state matrix E − λF , is minimal in Ω then L̃R(λ) is
a block full rank linearization of R(λ) in Ω with state matrix E − λF .

Remark 5.2.14. As we discussed in Remark 5.2.11 for the matrix pencil LR(λ),

the trimmed CORK linearization L̃R(λ) is not in general a linearization at infinity
of R(λ) either. The reason is that, in this case, the matrix F is also singular and
rev1(E − λF ) has not full row rank at zero.



Chapter 6

Linearizations of arbitrary rational
transfer functions

In this chapter, we construct a family of linearizations of rational matrices in the
sense of the definitions introduced in Chapter 4. For that purpose, rational matrices
R(λ) are written as transfer function matrices from general realizations. That is, of
the form

R(λ) = D(λ) + C(λ)A(λ)−1B(λ), (6.1)

where D(λ), C(λ), B(λ) and A(λ) are arbitrary polynomial matrices of appropriate
sizes. For any rational matrix R(λ), a representation as in (6.1) always exists and
is not unique. The new linearizations are constructed from linearizations of the
polynomial matrices D(λ) and A(λ), where each of them can be represented in terms
of any polynomial basis. In particular, the notion of (strong) block minimal bases
pencil (recall Definition 2.5.1) will be our main tool for building the linearizations.
We will only consider the so-called degenerate (strong) block minimal bases pencils,
that is, (strong) block minimal bases pencils of the form

L(λ) =

[
M(λ)
K(λ)

]
, (6.2)

where K(λ) is a minimal basis. We know by Theorem 2.5.2 that the linear polyno-
mial matrix in (6.2) is a (strong) linearization of the polynomial matrix

P (λ) = M(λ)N(λ)T

considered as a polynomial of grade 1 + degN(λ), where N(λ) is a minimal basis
dual to K(λ) (recall Definition 2.3.4). If d := degN(λ)+1 and P (λ) is of size m×n,
then M(λ) and K(λ) in (6.2) are, respectively, m × dn and (d − 1)n × dn linear
polynomial matrices [26].

Unlike other lineariations for rational matrices, as those in [27] (Chapter 3) or in
[2, 7, 79], the construction of the linearizations in this chapter do not require neither

115
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to write the corresponding rational matrix R(λ) as the sum of its polynomial part
and its strictly proper part nor to express the strictly proper rational part in state-
space form. We finish the chapter by showing how to recover eigenvectors, when the
rational matrix R(λ) is regular, and minimal bases and minimal indices, when R(λ)
is singular, from those of their linearizations in this family. All the results in this
chapter appear in [75].

6.1 Linearizations in a set

Throughout this chapter, F denotes any algebraically closed field. Theorem 6.1.2 is
the main result in this section, where we construct (local) linearizations for rational
matrices that are represented with general realizations as in (6.1). To prove Theorem
6.1.2, we will use Lemma 6.1.1, whose simple proof is omitted.

Lemma 6.1.1. A polynomial matrix of the form
X(λ) A(λ) Y (λ) B(λ)
Is 0 0 0

Z(λ) −C(λ) W (λ) D(λ)
0 0 It 0


is unimodularly equivalent to diag

([
A(λ) B(λ)
−C(λ) D(λ)

]
, Is+t

)
.

Theorem 6.1.2. Let R(λ) ∈ F(λ)p×m be a rational matrix expressed in the form
R(λ) = D(λ) + C(λ)A(λ)−1B(λ), for some regular polynomial matrix A(λ) ∈
F[λ]n×n, and polynomial matrices B(λ) ∈ F[λ]n×m, C(λ) ∈ F[λ]p×n and D(λ) ∈
F[λ]p×m. Let

LA(λ) =

[
MA(λ)
KA(λ)

]
and LD(λ) =

[
MD(λ)
KD(λ)

]
(6.3)

be block minimal bases linearizations of A(λ) and D(λ), respectively. Let NA(λ) and
ND(λ) be minimal bases dual to KA(λ) and KD(λ), respectively. Consider linear
polynomial matrices MC(λ) and MB(λ) such that

MC(λ)NA(λ)T = C(λ) and MB(λ)ND(λ)T = B(λ), (6.4)

and the linear polynomial system matrix

L(λ) =


MA(λ) MB(λ)
KA(λ) 0

−MC(λ) MD(λ)

0 KD(λ)

 , (6.5)
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with state matrix LA(λ). If the matrices[
A(λ)
C(λ)

]
and

[
A(λ) B(λ)

]
(6.6)

have no eigenvalues in a nonempty set Ω ⊆ F, then L(λ) is a linearization of R(λ)
in Ω.

Remark 6.1.3. Before giving the proof of Theorem 6.1.2, we recall that there exist
unimodular polynomial matrices of the form

Ui(λ) =

[
Ki(λ)

K̂i(λ)

]
and Ui(λ)−1 =

[
N̂i(λ)T Ni(λ)T

]
, (6.7)

for i ∈ {A,D}; see [26, Theorem 2.10].

Proof. Throughout the proof, we use the notation ρA := degNA(λ) and ρD :=
degND(λ).

To prove that L(λ) is a linearization of R(λ) in Ω, we will use the spectral
characterization in Theorem 4.2.6 of linearizations in a set.

Let P (λ) :=
[
A(λ) B(λ)
−C(λ) D(λ)

]
be a polynomial system matrix of R(λ). Notice that

P (λ) is minimal in Ω by hypothesis. First, we have

pole elem. div. of R(λ) in Ω =elem. div. of A(λ) in Ω

=elem. div. of LA(λ) in Ω,

since P (λ) is minimal in Ω and LA(λ) is a linearization of A(λ). Hence, the pole
elementary divisors of R(λ) in Ω are equal to the elementary divisors of LA(λ) in Ω.

Second, we consider Remark 6.1.3 and notice that KA(λ)N̂A(λ)T = InρA and

KD(λ)N̂D(λ)T = ImρD , as this will be important in what follows. Then, multiplying
L(λ) on the right by the unimodular matrix U(λ) = diag(UA(λ)−1, UD(λ)−1), we get

L(λ)U(λ) =


XAA(λ) A(λ) XBD(λ) B(λ)
InρA 0 0 0

−XCA(λ) −C(λ) XDD(λ) D(λ)

0 0 ImρD 0

 , (6.8)

where
Xij(λ) := Mi(λ)N̂j(λ)T , (6.9)

with i ∈ {A,B,C,D}, and j := A if i ∈ {A,C} and j := D if i ∈ {B,D}. Since the
matrices in (6.6) have no eigenvalues in Ω, we have that L(λ)U(λ) is minimal in Ω
and, therefore, L(λ) is minimal in Ω. By Lemma 6.1.1, L(λ)U(λ) is unimodularly
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equivalent to diag(P (λ), InρA+mρD). Hence, L(λ) is a linearization of the polynomial
system matrix P (λ). As a consequence of this, we have

zero elem. div. of R(λ) in Ω =elem. div. of P (λ) in Ω

=elem. div. of L(λ) in Ω,

since P (λ) is minimal in Ω and L(λ) is a linearization of P (λ). Therefore, the zero
elementary divisors of R(λ) in Ω are equal to the elementary divisors of P (λ) in Ω.

Since L(λ) is of size (n+ p+ s)× (n+m+ s), where s = nρA +mρD, to finish
the proof, it suffices to notice that

nrankL(λ) = nrankP (λ) + nρA +mρD (by (6.8))

= nrankR(λ) + n+ nρA +mρD (by (2.9)).

By Theorem 4.2.6, we conclude that L(λ) is a linearization of R(λ) in Ω. �

Remark 6.1.4. Notice that, in Theorem 6.1.2, we assume that the polynomial ma-
trices A(λ) and C(λ) can be written in terms of the same dual minimal basis NA(λ).
That is, that there exist pencils MA(λ) and MC(λ) such that MA(λ)NA(λ)T = A(λ)
and MC(λ)NA(λ)T = C(λ), respectively. Such pencils always exist if we consider
A(λ) and C(λ) as polynomial matrices with the same grade g, for instance,

g = max{degA(λ), degC(λ)},

see, for example, [31, Lemma 5.2]. A similar remark applies to the matrix polyno-
mials B(λ) and D(λ). We can see an example in Example 6.1.5.

In Example 6.1.5, we show how to use Theorem 6.1.2 to construct linearizations
of a rational matrix of the form (6.1). For simplicity, we assume that the polynomial
matrices A(λ), B(λ), C(λ) and D(λ) are expressed in the monomial basis. But we
emphasize that the construction can be easily adapted to many other polynomial
bases (Chebyshev, Lagrange, Newton, etc); see Section 6.5 for an example in the
Chebyshev basis.

Example 6.1.5. Let us consider a rational matrix of the form

R(λ) =D(λ) + C(λ)A(λ)−1B(λ) =

D3λ
3 +D2λ

2 +D1λ+D0+

(C1λ+ C0)(A3λ
3 + A2λ

2 + A1λ+ A0)−1(B2λ
2 +B1λ+B0),

where A(λ) ∈ F[λ]n×n is regular, and B(λ) ∈ F[λ]n×m, C(λ) ∈ F[λ]p×n and D(λ) ∈
F[λ]p×m. We will use block Kronecker pencils [26, Section 4], which are particular
cases of block minimal bases pencils, to construct the linearizations LA(λ) and LD(λ)
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in Theorem 6.1.2. We recall that the construction of block Kronecker pencils involves
a pair of dual minimal bases of the form

K(λ) =


−Is Isλ 0 · · · 0

0 −Is Isλ
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 −Is Isλ

 and N(λ)T =


Isλ

d−1

...
Isλ
Is

 .
To construct the linearization LA(λ) and the linear polynomial matrix MC(λ),

we need to see both A(λ) and C(λ) as polynomial matrices of grade

max{degA(λ), degC(λ)} = max{3, 1} = 3.

Then, we can use, for example,

LA(λ) :=

A3λ+ A2 A1 A0

−In Inλ 0
0 −In Inλ

 and MC(λ) :=
[
0 C1 C0

]
,

with NA(λ) :=
[
Inλ

2 Inλ In
]
. Similarly, to construct the linearization LD(λ)

and the linear polynomial matrix MB(λ), we need to see both D(λ) and B(λ) as
polynomial matrices of grade

max{degD(λ), degB(λ)} = max{3, 2} = 3.

Then, we can use, for instance,

LD(λ) :=

D3λ+D2 D1 D0

−Im Imλ 0
0 −Im Imλ

 and MB(λ) :=
[
0 B2λ+B1 B0

]
,

with ND(λ) :=
[
Imλ

2 Imλ Im
]
. Then the linear polynomial system matrix L(λ)

in Theorem 6.1.2 is

L(λ) =


A3λ+ A2 A1 A0 0 B2λ+B1 B0

−In Inλ 0 0 0 0
0 −In Inλ 0 0 0
0 −C1 −C0 D3λ+D2 D1 D0

0 0 0 −Im Imλ 0
0 0 0 0 −Im Imλ

 .

Theorem 6.1.2 guarantees that L(λ) is a linearization of R(λ) wherever the polyno-

mial matrices

[
A(λ)
C(λ)

]
and

[
A(λ) B(λ)

]
do not have eigenvalues.
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6.2 Linearizations at infinity

Theorem 6.2.1 is the main result of this section. It shows that, under some mild
conditions, the local linearizations introduced in Section 6.1 are also linearizations
at infinity of the rational matrix R(λ).

Theorem 6.2.1. Let R(λ) ∈ F(λ)p×m be a rational matrix expressed in the form
R(λ) = D(λ) + C(λ)A(λ)−1B(λ), for some regular polynomial matrix A(λ) ∈
F[λ]n×n, and polynomial matrices B(λ) ∈ F[λ]n×m, C(λ) ∈ F[λ]p×n and D(λ) ∈
F[λ]p×m. Let

LA(λ) =

[
MA(λ)
KA(λ)

]
and LD(λ) =

[
MD(λ)
KD(λ)

]
be strong block minimal bases linearizations of A(λ) and D(λ), respectively. Let
NA(λ) and ND(λ) be minimal bases dual to KA(λ) and KD(λ), respectively, and
denote ρA := degNA(λ), ρD := degND(λ). Consider linear polynomial matrices
MC(λ) and MB(λ) such that

MC(λ)NA(λ)T = C(λ) and MB(λ)ND(λ)T = B(λ),

and the linear polynomial system matrix

L(λ) =


MA(λ) MB(λ)
KA(λ) 0

−MC(λ) MD(λ)

0 KD(λ)

 , (6.10)

with state matrix LA(λ). If the matrices[
revρA+1 A(λ)
revρA+1C(λ)

]
and

[
revρA+1A(λ) revρD+1 B(λ)

]
(6.11)

have no eigenvalues at 0, then L(λ) is a linearization of R(λ) at infinity of grade
ρD + 1.

Remark 6.2.2. Since LA(λ) and LD(λ) are strong block minimal bases pencils, we
recall that there exist unimodular polynomial matrices of the form

Ũi(λ) =

[
rev1Ki(λ)

K̃i(λ)

]
and Ũi(λ)−1 =

[
Ñi(λ)T revρi Ni(λ)T

]
, (6.12)

for i ∈ {A,D}; see [26, Theorem 2.10].
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Proof. To prove that L(λ) is a linearization at infinity of grade g of R(λ), we will
use the spectral characterization in Theorem 4.2.14 of linearizations at infinity.

Let g := ρD + 1. Let us consider the polynomial system matrix

P̃ (λ) :=

[
revρA+1A(λ) revρD+1B(λ)
− revρA+1 C(λ) revρD+1D(λ)

]
, (6.13)

with state matrix revρA+1 A(λ). We observe that the transfer function of the poly-
nomial system matrix (6.13) is

revρD+1 D(λ) + revρA+1C(λ) (revρA+1A(λ))−1 revρD+1 B(λ) = revg R(λ).

Hence, we have

pole elem. div. of revg R(λ) at 0 =elem. div. of revρA+1A(λ) at 0

=elem. div. of rev1 LA(λ) at 0,

since P̃ (λ) is minimal at 0 and LA(λ) is a strong linearization of A(λ). Thus, the
pole elementary divisors of revg R(λ) at 0 are equal to the elementary divisors of
rev1 LA(λ) at 0.

Consider the unimodular matrix Ũ(λ) = diag(ŨA(λ)−1, ŨD(λ)−1), where ŨA(λ)−1

and ŨD(λ)−1 are defined in (6.12). Multiplying rev1 L(λ) on the right by Ũ(λ), we
get

rev1 L(λ) Ũ(λ) =


∗ revρA+1A(λ) ∗ revρD+1B(λ)

InρA 0 0 0

∗ − revρA+1C(λ) ∗ revρD+1D(λ)

0 0 ImρD 0

 , (6.14)

where ∗ denotes polynomial matrices that are not important for the argument.
Since the matrices in (6.11) have no eigenvalues at 0, we have that rev1 L(λ) Ũ(λ)
is minimal at 0 and, therefore, rev1 L(λ) is minimal at 0. By Lemma 6.1.1, the ma-

trix polynomial rev1 L(λ) Ũ(λ) is unimodularly equivalent to diag(P̃ (λ), InρA+mρD).

Hence, rev1 L(λ) is a linearization of P̃ (λ) at 0. Thus, we have

zero elem. div. of revg R(λ) at 0 =elem. div. of P̃ (λ) at 0

=elem. div. of rev1 L(λ) at 0,

since P̃ (λ) is minimal at 0 and rev1 L(λ) is a linearization of P̃ (λ). Therefore, the
zero elementary divisors of revg R(λ) at 0 are equal to the elementary divisors of
rev1 L(λ) at 0.

To finish the proof, it suffices to notice that

nrank rev1 L(λ) = nrank P̃ (λ) + nρA +mρD (by (6.14))
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= nrank revg R(λ) + n+ nρA +mρD (by (2.9)).

Conclusively, by Theorem 4.2.14, the linear polynomial system matrix L(λ) is a
linearization of R(λ) at infinity of grade g = ρD + 1. �

We conclude this section by noting that the linearization L(λ) constructed in
Theorem 6.1.2 contains the spectral information of the rational matrix R(λ) in a
nonempty set Ω, whenever certain minimality conditions are satisfied. More pre-
cisely, if the matrix polynomials in (6.6) have no eigenvalues in Ω then the zeros
in Ω of R(λ) are the eigenvalues in Ω of L(λ), and the poles in Ω of R(λ) are the
eigenvalues in Ω of the block minimal bases pencil LA(λ). If Ω = F then we can
recover the complete information about finite poles and zeros of R(λ) from L(λ). If,
in addition, the matrix polynomials (6.11) have no eigenvalues at zero, then L(λ) is
a strong linearization of grade ρD + 1 and, hence, by Proposition 4.2.15, we can also
recover the complete zero and pole information of R(λ) at infinity.

6.3 An illustrative example

Let us consider an m×m rational matrix of the form

R(λ) = D(λ) + f1(λ)K1 + f2(λ)K2, (6.15)

where D(λ) is a polynomial matrix of degree 2, f1(λ) = (λ2+1)(λ+2)
λ2−λ−2

, f2(λ) = (λ2−1)λ2

λ+2
,

and K1 and K2 are constant matrices having ranks r1 and r2, respectively. For
i = 1, 2, we can write Ki = cib

T
i , for some ci and bi both of size m × ri. Then, a

realization of R(λ) as in (6.1) is

R(λ) = D(λ)+
[
c1(λ2 + 1) c2(λ2 − 1)

]︸ ︷︷ ︸
:=C(λ)

[
Ir1(λ

2 − λ− 2) 0
0 Ir2(λ+ 2)

]−1

︸ ︷︷ ︸
:=A(λ)−1

[
bT1 (λ+ 2)

bT2 λ
2

]
︸ ︷︷ ︸

:=B(λ)

.

Notice that the polynomial matrices A(λ), B(λ) and C(λ) have degree 2. Hence, we
can write A(λ) := A2λ

2+A1λ+A0, B(λ) := B2λ
2+B1λ+B0, C(λ) := C2λ

2+C1λ+C0

and D(λ) := D2λ
2 +D1λ+D0. Then, we set r := r1 + r2, and we define the linear

polynomial system matrix

L(λ) =


A2λ+ A1 A0 B2λ+B1 B0

−Ir Irλ 0 0

− C2λ− C1 −C0 D2λ+D1 D0

0 0 −Im Imλ

 .
It can be proved that condition (6.6) is satisfied for all λ0 ∈ F and that condition
(6.11) is also satisfied. Thus, by Theorems 6.1.2 and 6.2.1, L(λ) is a linearization of
R(λ) in F and also a linearization of R(λ) at infinity of grade 2.
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Notice that the rational functions f1(λ) and f2(λ) in (6.15) are not (strictly)
proper. Nevertheless, we have been able to construct a strong linearization in the
sense of [28] for R(λ) without decomposing R(λ) as the sum of its polynomial part
and its strictly proper rational part and without considering a minimal state space
realalization of the strictly proper part, in contrast to the methods appearing in [2, 7,
27, 79]. We emphasize that, in order to construct linearizations of rational matrices,
we must take into account that a realization as in (6.1) is not unique and that the
ideal goal is to consider a realization easy to build from the original expression of
the corresponding rational matrix without performing many computations.

6.4 Recovery of eigenvectors, minimal bases and

minimal indices

In this section, we show how to recover the elements in the right and left nullspaces
of a rational matrix R(λ) from those in the right and left nullspaces of a linearization
L(λ) as in Theorem 6.1.2, as well as minimal bases and minimal indices, assuming
R(λ) is singular. In addition, we show how to recover right and left eigenvectors in

the regular case. To do this, we consider the transfer function matrix R̂(λ) of L(λ)
and a polynomial system matrix P (λ) of R(λ), and we study the relation between
the elements in their right and left nullspaces.

6.4.1 One-sided factorizations

Theorem 6.4.1 is the only result in this subsection. It establishes a relation, in terms
of one-side factorizations, between a rational matrix R(λ) and the transfer function

matrix R̂(λ) of a linearization for R(λ) as in Theorem 6.1.2.

Theorem 6.4.1. Let R(λ) ∈ F(λ)p×m be a rational matrix expressed in the form
R(λ) = D(λ)+C(λ)A(λ)−1B(λ), for some regular polynomial matrix A(λ) ∈ F[λ]n×n

and polynomial matrices B(λ) ∈ F[λ]n×m, C(λ) ∈ F[λ]p×n and D(λ) ∈ F[λ]p×m.
Consider the linear polynomial matrix

L(λ) =


MA(λ) MB(λ)
KA(λ) 0

−MC(λ) MD(λ)

0 KD(λ)

 ,
as in Theorem 6.1.2, where

[
MA(λ)
KA(λ)

]
and

[
MD(λ)
KD(λ)

]
are block minimal bases

linearizations of A(λ) and D(λ), respectively, with NA(λ) and ND(λ) being minimal
bases dual to KA(λ) and KD(λ), respectively, and MC(λ) and MB(λ) being linear
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polynomial matrices such that MC(λ)NA(λ)T = C(λ) and MB(λ)ND(λ)T = B(λ),

respectively. Let R̂(λ) be the transfer function matrix of L(λ). Then, we have the
following one-sided factorizations

R̂(λ)ND(λ)T =

[
R(λ)

0

]
, (6.16)

and [
Ip −MR(λ)N̂D(λ)T

]
R̂(λ) = R(λ)K̂D(λ), (6.17)

where MR(λ) := MD(λ) +C(λ)A(λ)−1MB(λ), and K̂D(λ) and N̂D(λ) are defined in
(6.7).

Proof. Notice that the matrix pencil LA(λ) =
[
MA(λ)
KA(λ)

]
is regular since LA(λ) is

a linearization of A(λ) and the polynomial matrix A(λ) is regular. Then, from
LA(λ)NA(λ)T =

[
A(λ)

0

]
, we obtain[
MA(λ)
KA(λ)

]−1 [
In
0

]
= NA(λ)TA(λ)−1. (6.18)

Hence, the transfer function matrix of L(λ) is given by

R̂(λ) =

[
MD(λ)
KD(λ)

]
+

[
MC(λ)

0

] [
MA(λ)
KA(λ)

]−1 [
MB(λ)

0

]
=[

MD(λ) + C(λ)A(λ)−1MB(λ)
KD(λ)

]
, (6.19)

where we have used MC(λ)NA(λ)T = C(λ).
Multiplying (6.19) on the right by ND(λ)T yields

R̂(λ)ND(λ)T =

[
D(λ) + C(λ)A(λ)−1B(λ)

0

]
=

[
R(λ)

0

]
,

where we have used MD(λ)ND(λ)T = D(λ) and MB(λ)ND(λ)T = B(λ). This
establishes the right-sided factorization (6.16).

Multiplying (6.19) on the left by [ Ip −(MD(λ)+C(λ)A(λ)−1MB(λ))N̂D(λ)T ] gives[
Ip − (MD(λ) + C(λ)A(λ)−1MB(λ)) N̂D(λ)T

]
R̂(λ) =

(MD(λ) + C(λ)A(λ)−1MB(λ))(I(ρD+1)m − N̂D(λ)TKD(λ)) =

(MD(λ) + C(λ)A(λ)−1MB(λ))ND(λ)T K̂D(λ) = R(λ)K̂D(λ),

where ρD = degND(λ). This establishes the left-sided factorization (6.17). �
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6.4.2 Recovery of minimal bases and minimal indices

In this section, we assume that the rational matrix R(λ) is singular and show how
to recover the right and left minimal indices and minimal bases of R(λ) from those
of a linearization L(λ) of R(λ) as in Theorem 6.1.2.

We begin with Lemma 6.4.2, which establishes a bijection between the nullspaces
of R(λ) and the transfer function matrix of L(λ).

Lemma 6.4.2. Let R(λ) ∈ F(λ)p×m be a rational matrix expressed in the form
R(λ) = D(λ)+C(λ)A(λ)−1B(λ), for some regular polynomial matrix A(λ) ∈ F[λ]n×n

and polynomial matrices B(λ) ∈ F[λ]n×m, C(λ) ∈ F[λ]p×n and D(λ) ∈ F[λ]p×m.
Consider the linear polynomial matrix

L(λ) =


MA(λ) MB(λ)
KA(λ) 0

−MC(λ) MD(λ)

0 KD(λ)

 ,

as in Theorem 6.1.2, where

[
MA(λ)
KA(λ)

]
and

[
MD(λ)
KD(λ)

]
are block minimal bases

linearizations of A(λ) and D(λ), respectively, with NA(λ) and ND(λ) being minimal
bases dual to KA(λ) and KD(λ), respectively, and MC(λ) and MB(λ) being linear
polynomial matrices such that MC(λ)NA(λ)T = C(λ) and MB(λ)ND(λ)T = B(λ),

respectively. Let R̂(λ) be the transfer function matrix of L(λ). Then the following
statements hold:

(a) The linear map

Mr : Nr(R) −→ Nr(R̂)

x(λ) 7−→ x̂(λ) := ND(λ)Tx(λ)

is a bijection between the right nullspaces of R(λ) and R̂(λ).

(b) The linear map

M` : N`(R) −→ N`(R̂)

y(λ)T 7−→ ŷ(λ)T := y(λ)T
[
Ip −MR(λ)N̂D(λ)T

]
is a bijection between the left nullspaces of R(λ) and R̂(λ), where MR(λ) :=

MD(λ) + C(λ)A(λ)−1MB(λ) and N̂D(λ) is defined in (6.7).

Proof. We will prove part (a). Part (b) can be proved analogously.
That the map Mr is well-defined from the right nullspace of R(λ) to the right

nullspace R̂(λ) follows immediately from the right-sided factorization (6.16). Notice
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that Mr is, in addition, linear. Moreover, by Theorem 6.1.2, L(λ) is a linearization
of R(λ), at least, at some point λ0 ∈ F. Indeed, since A(λ) is regular, there exists
λ0 ∈ F such that A(λ0) is invertible. This implies that the realization D(λ) +

C(λ)A(λ)−1B(λ) is minimal at λ0. Hence, we have dimNr(R) = dimNr(R̂). Thus,
to show that Mr is a bijection, if suffices to show that it is injective. So, suppose
ŷ(λ) = ND(λ)Ty(λ) = 0. Since ND(λ) is a minimal basis, ND(λ)T has full column
rank. Hence, ND(λ)Ty(λ) = 0 implies y(λ) = 0. This establishes the injectivity of
the linear map Mr. �

Remark 6.4.3. Since the maps in Lemma 6.4.2 are bijections, they preserve linear
independence and allow us to recover bases of the right (resp. left) nullspace of R(λ)

from bases of the right (resp. left) nullspace of R̂(λ), and conversely.

By combining Lemmas 2.4.5 and 6.4.2, we obtain Theorem 6.4.4, which estab-
lishes a bijection between the nullspaces of R(λ) and L(λ).

Theorem 6.4.4. Let R(λ) ∈ F(λ)p×m be a rational matrix expressed in the form
R(λ) = D(λ)+C(λ)A(λ)−1B(λ), for some regular polynomial matrix A(λ) ∈ F[λ]n×n

and polynomial matrices B(λ) ∈ F[λ]n×m, C(λ) ∈ F[λ]p×n and D(λ) ∈ F[λ]p×m.
Consider the linear polynomial matrix

L(λ) =


MA(λ) MB(λ)
KA(λ) 0

−MC(λ) MD(λ)

0 KD(λ)

 ,

as in Theorem 6.1.2, where

[
MA(λ)
KA(λ)

]
and

[
MD(λ)
KD(λ)

]
are block minimal bases

linearizations of A(λ) and D(λ), respectively, with NA(λ) and ND(λ) being minimal
bases dual to KA(λ) and KD(λ), respectively, and MC(λ) and MB(λ) being linear
polynomial matrices such that MC(λ)NA(λ)T = C(λ) and MB(λ)ND(λ)T = B(λ),

respectively. Let R̂(λ) be the transfer function matrix of L(λ). Then the following
statements hold:

(a) The linear map

Fr : Nr(R) −→ Nr(L)

x(λ) 7−→ x̃(λ) :=

[
−NA(λ)TA(λ)−1B(λ)

ND(λ)T

]
x(λ)

is a bijection between the right nullspaces of R(λ) and L(λ).

(b) The linear map

F` : N`(R) −→ N`(L)
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y(λ)T 7−→ ỹ(λ)T := y(λ)T
[
MC(λ)LA(λ)−1 Ip −MR(λ)N̂D(λ)T

]
is a bijection between the left nullspaces of R(λ) and L(λ), where LA(λ) :=[
MA(λ)
KA(λ)

]
, MR(λ) := MD(λ) + C(λ)A(λ)−1MB(λ) and N̂D(λ) is defined in

(6.7).

Proof. We will prove part (a). Part (b) can be proved analogously.
Consider the linear bijections Tr and Mr in Lemma 2.4.5 and Lemma 6.4.2,

respectively. Then, Fr is the composition Fr = Tr ◦Mr. Indeed, we have

Fr : Nr(R) −→ Nr(R̂) −→ Nr(L)

x(λ) 7−→ ND(λ)Tx(λ) 7−→

 − [ MA(λ)
KA(λ)

]−1 [
MB(λ)

0

]
ND(λ)Tx(λ)

ND(λ)Tx(λ)

 =

[
−NA(λ)TA(λ)−1B(λ)x(λ)

ND(λ)Tx(λ)

]
,

where we have used (6.18) and MB(λ)ND(λ)T = B(λ).
�

Lemma 6.4.5 will allow us to prove that, under some minimality conditions, the
linear polynomial system matrix L(λ) and its transfer function R̂(λ) have the same
right and left minimal indices.

Lemma 6.4.5. Consider a linear polynomial system matrix

L(λ) =

[
A1λ+ A0 B1λ+B0

− (C1λ+ C0) D1λ+D0

]
∈ F[λ](n+q)×(n+r),

with state matrix A1λ + A0 ∈ F[λ]n×n and transfer function matrix T (λ). Then the
following statements hold:

(a) If u(λ) =

[
y(λ)
x(λ)

]
∈ Nr(L), then x(λ) ∈ Nr(T ). In addition, if u(λ) is a

polynomial vector and rank

[
A1

C1

]
= n, then deg u(λ) = deg x(λ).

(b) If v(λ)T =
[
ỹ(λ)T x̃(λ)T

]
∈ N`(L), then x̃(λ)T ∈ N`(T ). In addition, if v(λ)

is a polynomial vector and rank
[
A1 B1

]
= n, then deg v(λ) = deg x̃(λ).

Proof. The proof follows the same lines as the proof of [18, Theorem 6.8]. We only
prove part (a) since part (b) follows from a similar argument. From Lemma 2.4.5,
we obtain that if u(λ) ∈ Nr(L), then the vector u(λ) must be of the form

u(λ) =

[
y(λ)
x(λ)

]
=

[
−(A1λ+ A0)−1(B1λ+B0)x(λ)

x(λ)

]
,
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for some x(λ) ∈ Nr(T ), as we wanted to show.
For proving that deg u(λ) = deg x(λ), we will show that deg y(λ) ≤ deg x(λ) by

contradiction. Let us assume that ` := deg y(λ) > deg x(λ). Then, the vector u(λ)
must be of the form

u(λ) =

[
y`
0

]
λ` + lower degree terms, with y` 6= 0.

Since u(λ) ∈ Nr(L), we have

(A1λ+ A0)y(λ) + (B1λ+B0)x(λ) = 0,

(C1λ+ C0)y(λ)− (D1λ+D0)x(λ) = 0.

Considering the highest degree terms in the left hand side of the two equations
above, we obtain [

A1

C1

]
y` = 0.

Since the matrix
[
A1
C1

]
has full column rank by assumption, we get y` = 0, which

contradicts our original hypothesis. �

Remark 6.4.6. We emphasize that

rank

[
A1

C1

]
= rank

[
A1 B1

]
= n (6.20)

is the condition for a linear polynomial system matrix to be minimal at infinity in
the sense of [28], which is also a necessary condition for a linear polynomial system
matrix to be a linearization at infinity [28]. In Chapter 7 (or [32]) there is a procedure
to reduce any linear polynomial system matrix to one satisfying condition (6.20).

Remark 6.4.7. We notice that Lemma 6.4.5 extends [18, Theorem 6.1]. But, while
[18, Theorem 6.1] assumes the invertibility of A1, we use the more general condition
(6.20).

For completeness, in Lemma 6.4.8 we recall [92, Lemma 2] and different versions
of it that can be analogously proved.

Lemma 6.4.8. Let
[
X1 X2

] [Y1

Y2

]
= 0.

(a) Assume that

[
Y1

Y2

]
has full column rank.

(a1) If X1 has full column rank, then Y2 also has full column rank.

(a2) If X2 has full column rank, then Y1 also has full column rank.
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(b) Assume that
[
X1 X2

]
has full row rank.

(b1) If Y1 has full row rank, then X2 also has full row rank.

(b2) If Y2 has full row rank, then X1 also has full row rank.

We are finally ready to state and prove the main results of this section, Theo-
rems 6.4.9 and 6.4.11. These theorems show how to recover right and left minimal
bases and minimal indices of rational matrices from those of their linearizations in
Theorem 6.1.2.

Theorem 6.4.9 (Right minimal bases and minimal indices). Let R(λ) ∈ F(λ)p×m be
a rational matrix expressed in the form R(λ) = D(λ) + C(λ)A(λ)−1B(λ), for some
regular polynomial matrix A(λ) ∈ F[λ]n×n and polynomial matrices B(λ) ∈ F[λ]n×m,
C(λ) ∈ F[λ]p×n and D(λ) ∈ F[λ]p×m. Consider the linear polynomial matrix

L(λ) =


MA(λ) MB(λ)
KA(λ) 0

−MC(λ) MD(λ)

0 KD(λ)

 ∈ F[λ](n(1+ρA)+p+mρD)×(n(ρA+1)+m(ρD+1)),

as in Theorem 6.1.2, where

[
MA(λ)
KA(λ)

]
and

[
MD(λ)
KD(λ)

]
are strong block minimal

bases linearizations of A(λ) and D(λ), respectively, with NA(λ) and ND(λ) being
minimal bases dual to KA(λ) and KD(λ), respectively, and MC(λ) and MB(λ) being
linear polynomial matrices such that MC(λ)NA(λ)T = C(λ) and MB(λ)ND(λ)T =

B(λ), respectively. Define ρi := degNi(λ), for i ∈ {A,D}, and let R̂(λ) be the
transfer function matrix of L(λ). If

rank

[
A(λ0)
C(λ0)

]
= n for all λ0 ∈ F, and (6.21)

rank

[
revρA+1A(0)
revρA+1C(0)

]
= n, (6.22)

then the following statements hold:

(a) If
{[

yi(λ)
xi(λ)

]}s
i=1

is a right minimal basis of L(λ), where xi(λ) ∈ F[λ](ρD+1)m,

then {xi(λ)}si=1 is a right minimal basis of R̂(λ), and there exists a right min-
imal basis {ui(λ)}si=1 of R(λ) such that xi(λ) = ND(λ)Tui(λ), for i = 1, . . . , s.

(b) If ε1 ≤ · · · ≤ εs are the right minimal indices of L(λ), then ε1 ≤ · · · ≤ εs are

the right minimal indices of R̂(λ), and ε1 − ρD ≤ · · · ≤ εs − ρD are the right
minimal indices of R(λ).

Proof. See Appendix A. �
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Remark 6.4.10. We recall that the polynomial matrix K̂D(λ) in (6.7) is the
left polynomial matrix inverse of ND(λ)T . Hence, from the right minimal basis

{xi(λ)}si=1 of R̂(λ) in part (a) of Theorem 6.4.9, we can recover a right minimal

basis of the rational matrix R(λ) as {ui(λ)}si=1 = {K̂D(λ)xi(λ)}si=1.

Theorem 6.4.11 (Left minimal bases and minimal indices). Let R(λ) ∈ F(λ)p×m be
a rational matrix expressed in the form R(λ) = D(λ) + C(λ)A(λ)−1B(λ), for some
regular polynomial matrix A(λ) ∈ F[λ]n×n and polynomial matrices B(λ) ∈ F[λ]n×m,
C(λ) ∈ F[λ]p×n and D(λ) ∈ F[λ]p×m. Consider the linear polynomial matrix

L(λ) =


MA(λ) MB(λ)
KA(λ) 0

−MC(λ) MD(λ)

0 KD(λ)

 ∈ F[λ](n(1+ρA)+p+mρD)×(n(ρA+1)+m(ρD+1)),

as in Theorem 6.1.2, where

[
MA(λ)
KA(λ)

]
and

[
MD(λ)
KD(λ)

]
are strong block minimal

bases linearizations of A(λ) and D(λ), respectively, with NA(λ) and ND(λ) being
minimal bases dual to KA(λ) and KD(λ), respectively, and MC(λ) and MB(λ) being
linear polynomial matrices such that MC(λ)NA(λ)T = C(λ) and MB(λ)ND(λ)T =

B(λ), respectively. Define ρi := degNi(λ), for i ∈ {A,D}, and let R̂(λ) be the
transfer function matrix of L(λ). If

rank
[
A(λ0) B(λ0)

]
= n for all λ0 ∈ F, and (6.23)

rank
[
revρA+1A(0) revρD+1 B(0)

]
= n, (6.24)

then the following statements hold:

(a) If {zi(λ)T}ti=1 is a left minimal basis of L(λ), then zi(λ)T =
[
yi(λ)T xi(λ)T

]
,

for i = 1, . . . , s, for some left minimal basis {xi(λ)T}si=1 of R̂(λ), and xi(λ)T =[
ui(λ)T wi(λ)T

]
, for i = 1, . . . , s, for some left minimal basis {ui(λ)T}si=1 of

R(λ).

(b) If η1 ≤ · · · ≤ ηt are the left minimal indices of L(λ), then η1 ≤ · · · ≤ ηt are

the left minimal indices of R̂(λ) and R(λ).

Proof. See Appendix B. �

6.4.3 Recovery of eigenvectors

In this section, we assume that the rational matrix R(λ) is regular and show how to
recover right and left eigenvectors of R(λ) from those of a linearization L(λ) of R(λ)
as in Theorem 6.1.2. In Proposition 6.4.12 we state, without proof, analogous results
to those of Theorem 6.4.4 but for the right and left nullspaces of R(λ) evaluated at
a particular value λ0.
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Proposition 6.4.12. Let R(λ) ∈ F(λ)p×m be a rational matrix expressed in the form
R(λ) = D(λ)+C(λ)A(λ)−1B(λ), for some regular polynomial matrix A(λ) ∈ F[λ]n×n

and polynomial matrices B(λ) ∈ F[λ]n×m, C(λ) ∈ F[λ]p×n and D(λ) ∈ F[λ]p×m.
Consider the linear polynomial matrix

L(λ) =


MA(λ) MB(λ)
KA(λ) 0

−MC(λ) MD(λ)

0 KD(λ)

 ,

as in Theorem 6.1.2, where

[
MA(λ)
KA(λ)

]
and

[
MD(λ)
KD(λ)

]
are block minimal bases

linearizations of A(λ) and D(λ), respectively, with NA(λ) and ND(λ) being minimal
bases dual to KA(λ) and KD(λ), respectively, and MC(λ) and MB(λ) being linear
polynomial matrices such that MC(λ)NA(λ)T = C(λ) and MB(λ)ND(λ)T = B(λ),
respectively. Let λ0 ∈ F such that detA(λ0) 6= 0. Then the following statements
hold:

(a) The linear map

Fr : Nr(R(λ0)) −→ Nr(L(λ0))

x 7−→ x̃ :=

[
−NA(λ0)TA(λ0)−1B(λ0)

ND(λ0)T

]
x

is a bijection between the right nullspaces over F of R(λ0) and L(λ0).

(b) The linear map

F` : N`(R(λ0)) −→ N`(L(λ0))

yT 7−→ ỹT := yT
[
MC(λ0)LA(λ0)−1 Ip −MR(λ0)N̂D(λ0)T

]
is a bijection between the left nullspaces over F of R(λ0) and L(λ0), where

LA(λ) :=

[
MA(λ)
KA(λ)

]
, MR(λ) := MD(λ) + C(λ)A(λ)−1MB(λ) and N̂D(λ) is

defined in (6.7).

Remark 6.4.13. Let L(λ) be as in Proposition 6.4.12, let λ0 ∈ F be an eigenvalue
of L(λ) such that detA(λ0) 6= 0, and let x̃ and ỹT be, respectively, right and left
eigenvectors of L(λ) with eigenvalue λ0.

By Proposition 6.4.12, the vector ỹT must be of the form

ỹT = yT
[
MC(λ0)LA(λ0)−1 Ip −MR(λ0)N̂D(λ0)T

]
,
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for some left eigenvector yT of R(λ) with eigenvalue λ0. Hence, one can readily
recover a left eigenvector yT of R(λ) from the middle block of ỹT . Furthermore,
from Proposition 6.4.12, we get that x̃ must be of the form

x̃ =

[
−NA(λ0)TA(λ0)−1B(λ0)

ND(λ0)T

]
x,

for some right eigenvector x of R(λ) with eigenvalue λ0. Since the polynomial matrix

K̂D(λ) in (6.7) satisfies K̂D(λ)ND(λ)T = Im for all λ ∈ F, we have K̂D(λ0)ND(λ0)Tx =
x. Thus, one can also recover a right eigenvector of R(λ) from the right eigenvector
x̃ of L(λ).

6.5 Application to scalar rational equations

In this section, we show by example how the theory developed in this chapter can
be used for solving (scalar) rational equations of the form

c(λ)

a(λ)
= −d(λ)

b(λ)
, (6.25)

where a(λ), b(λ), c(λ) and d(λ) are nonzero scalar polynomials, and where the
numerators and the denominators of each rational function can be expressed in terms
of different polynomial bases. For instance, let us assume that the polynomials a(λ)
and c(λ) are written in terms of the monomial basis, that is,

a(λ) =
n∑
i=0

aiλ
i and c(λ) =

n∑
i=0

ciλ
i,

with n = max{deg a(λ), deg c(λ)}, and that the polynomials b(λ) and d(λ) are
written in terms of Chebyshev polynomials of the first kind {φj(λ)}∞j=0, that is,

b(λ) =
m∑
i=0

biφi(λ) and d(λ) =
m∑
i=0

diφi(λ),

with m = max{deg b(λ), deg d(λ)}. We recall that the Chebyshev basis {φj(λ)}∞j=0

satisfies the three-term recurrence relation:

1

2
φj+1(λ) = λφj(λ)− 1

2
φj−1(λ) j ≥ 1 (6.26)

where φ0(λ) = 1 and φ1(λ) = λ.
Notice that, outside the set of the roots of b(λ), that is, in Ω := C \ {λ0 ∈ C :

b(λ0) = 0}, equation (6.25) is equivalent to the equation

r(λ) := d(λ) + c(λ)a(λ)−1b(λ) = 0. (6.27)
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For computing the roots of (6.27), that is, the zeros that are not poles, we consider
a linear polynomial system matrix of the form

L(λ) =


Ma(λ) Mb(λ)
Ka(λ) 0

−Mc(λ) Md(λ)

0 Kd(λ)

 ,
where

Ma(λ) := [anλ+ an−1 an−2 an−3 · · · a1 a0] ,

Mc(λ) := [cnλ+ cn−1 cn−2 cn−3 · · · c1 c0] ,

and

Ka(λ) :=


−1 λ 0 · · · 0

0 −1 λ
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 −1 λ

 and Na(λ)T =


λn−1

...
λ
1


is a pair of dual minimal bases, and

Mb(λ) := [2bmλ+ bm−1 bm−2 − bm bm−3 · · · b1 b0] ,

Md(λ) := [2dmλ+ dm−1 dm−2 − dm dm−3 · · · d1 d0] ,

and, by (6.26),

Kd(λ) =



−1
2

λ −1
2

0 · · · 0

0 −1
2

λ −1
2

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . . −1
2

λ −1
2

0 · · · · · · 0 −1 λ


and Nd(λ)T =


φm−1(λ)
φm−2(λ)

...
φ1(λ)
φ0(λ)


is another pair of dual minimal bases. Observe that a(λ) = Ma(λ)Na(λ)T , c(λ) =
Mc(λ)Na(λ)T , b(λ) = Mb(λ)Nd(λ)T and d(λ) = Md(λ)Nd(λ)T .

It is immediate that the matrices[
a(λ0)
c(λ0)

]
and

[
a(λ0) b(λ0)

]
have full rank (equal to 1) at every λ0 ∈ Ω that is not a root of a(λ) and c(λ)

simultaneously. Hence, if c(λ)
a(λ)

is irreducible, i.e., a(λ) and c(λ) do not have roots in

common, then, by Theorem 6.1.2, L(λ) is a linearization of r(λ) in Ω. Therefore,
the zeros of L(λ) in Ω are the zeros of r(λ) in Ω.

The idea of transforming the rational problem (6.25) into an eigenvalue problem
is not new [77]. An algorithm based on the Ehrlich-Aberth iteration that uses this
approach can be found in [76].
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Chapter 7

Strongly minimal linearizations of
rational transfer functions

In this chapter we introduce the conditions for a linear polynomial system matrix

L(λ) :=

[
A(λ) −B(λ)
C(λ) D(λ)

]
:=

[
λA1 − A0 B0 − λB1

λC1 − C0 λD1 −D0

]
, (7.1)

where A(λ) is assumed regular, to be strongly minimal and prove that the strong
minimality conditions imply the strong irreducibility conditions in [91]. We remark
that, although the notions of irreducible or minimal polynomial system matrix refer
to the same conditions in Definition 2.4.2, the conditions for a polynomial system
matrix to be strongly irreducible or strongly minimal are different in general.

Recall that a strongly minimal polynomial system matrix, introduced in Chap-
ter 4 (Definition 4.1.15), contains the complete finite and infinite pole and zero
structures of its transfer function matrix

R(λ) := D(λ) + C(λ)A(λ)−1B(λ).

We will see that strongly minimal linear polynomial system matrices preserve the
minimal indices of their transfer function matrices R(λ) as well, when R(λ) is sin-
gular. Then, the pole structure, zero structure and null space structure of R(λ) can
be computed with the staircase algorithm and the QZ algorithm applied to A(λ)
and L(λ). We will also show that when the strong minimality conditions are not
satisfied, we can reduce the linear system matrix to one where they are satisfied, and
this without modifying the transfer function matrix. Such a procedure was already
derived in [87], but only for linear system matrices that were already minimal at
finite points. In this chapter we extend this to arbitrary linear system matrices.

For the particular case of proper rational matrices Rp(λ), it is known that they
can be written in state-space form as Rp(λ) := D + C(λI − A)−1B. Then, for the
corresponding state-space linear system matrix

Lp(λ) :=

[
λI − A −B
C D

]
,

135
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there are algorithms available in the literature to derive a minimal state-space linear
system matrix from a non-minimal one, and these algorithms are based on unitary
transformations only [84]. When allowing generalized state-space linear system ma-
trices, then all the rational matrices can be realized by linear system matrices of the
form

Lg(λ) :=

[
λE − A −B
C D

]
, (7.2)

where the matrix E is allowed to be singular. Moreover, when the pencils

[
λE − A −B

]
,

[
λE − A
C

]
(7.3)

have, respectively, full row rank and column rank for all finite λ, then we retrieve
the irreducibility or minimality conditions of Rosenbrock in (2.4.2), which imply
that the finite poles of R(λ) := D + C(λE − A)−1B are the finite eigenvalues of
λE−A and the finite zeros of R(λ) are the finite eigenvalues of Lg(λ). It was shown
in [92] that when imposing also the conditions that the pencil in (7.2) is strongly
irreducible, meaning that the matrices in (7.3) have full row rank for all finite and
infinite λ, then also the infinite pole and zero structure of R(λ) can be retrieved
from the infinite structure of λE −A and Lg(λ), respectively, and that the left and
right minimal indices of R(λ) and Lg(λ) are also the same. Moreover, a reduction
procedure to derive a strongly irreducible generalized state-space linear system from
a reducible one was also given in [84], and it is also based on unitary transforma-
tions only. In [91] these results were then extended to arbitrary polynomial system
matrices, but the procedure required irreducibility tests that were more involved.
In this chapter, we will show that these conditions can be simplified when the poly-
nomial system matrix is linear. In addition, the reduction procedure presented in
this chapter to derive strongly minimal linear systems only uses unitary equivalence
transformations. This implies that numerical errors performed during the reduction
procedure remain bounded. Since we use unitary transformations in both the re-
duction procedure and the computation of the eigenstructure, this guarantees that
we compute the exact eigenstructure of a perturbed linear polynomial system ma-
trix, but where the perturbation is of the order of the machine precision. The main
results in this chapter appear in [32].

Recall that in Chapter 6, we construct linear polynomial system matrices from
arbitrary transfer function matrices. Then, by combining the results in this chapter
with those in Chapter 6, we can get strongly minimal linearizations for any of
the representations of an arbitrary rational matrix considered in Chapter 6. More
precisely, given a rational matrix R(λ), we can use Theorem 6.1.2 to construct a
linear polynomial system matrix of R(λ) and, if the obtained system matrix is not
strongly minimal, we can apply the reduction procedure in this chapter to obtain a
strongly minimal one.



7.1. SOME PRELIMINARIES 137

7.1 Some preliminaries

Throughout this chapter we only consider the field of complex number C. As we
explain in Chapter 2, the strictly positive structural indices in the local Smith–
McMillan form of a rational matrix correspond to a zero, and the strictly negative
structural indices correspond to a pole. Then, the zero degree is defined as the
sum of all structural indices of all zeros (infinity included), and the polar degree is
the sum of all structural indices (in absolute value) of all poles (infinity included).
The polar degree of a rational matrix R(λ) is also called as the McMillan degree,
denoted by δ(R). The following degree sum theorem was proven in [92], and relates
the McMillan degree to the other structural elements of R(λ): to the the zero degree
δz(R), to the left nullspace degree δ`(R), that is the sum of all left minimal indices,
and to the right nullspace degree δr(R), that is the sum of all right minimal indices.

Theorem 7.1.1. Let R(λ) ∈ C(λ)m×n. Then

δ(R) := δp(R) = δz(R) + δ`(R) + δr(R).

Example 7.1.2. Let us consider the 2× 2 rational matrix

R(λ) =

[
e5(λ) 0
c/λ e1(λ)

]
(7.4)

where e5(λ) is a monic polynomial of degree 5 and e1(λ) is a monic polynomial of
degree 1, with e5(0) 6= 0 and e1(0) 6= 0. If c 6= 0, the only poles are 0 and infinity,
and the corresponding local Smith-McMillan forms for these two points are

λ0 = 0 : diag(λ−1, λ1), λ0 =∞ : diag((1/λ)−5, (1/λ)−1),

indicating that λ0 = 0 is a zero as well as a pole. The other finite zeros are the six
finite roots of e5(λ) and e1(λ). The polar degree and the zero degree for this example
are thus both equal to 7. When c = 0, the pole and zero at λ = 0 disappear and the
matrix is polynomial instead of rational. The polar and zero degree are then both
equal to 6.

7.2 Strong irreducibility and minimality

In this section we recall the strong irreducibility conditions in [91] for polynomial
system matrices, and we recall the notion of strong minimality. Then, we study the
relation between them for the case of linear system matrices. Consider a polynomial
system matrix

S(λ) :=

[
A(λ) −B(λ)
C(λ) D(λ)

]
, (7.5)

where A(λ) is assumed regular, of arbitrary degree d.
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Definition 7.2.1. A polynomial system matrix S(λ) as in (7.5) is said to be strongly
controllable and strongly observable, respectively, if the polynomial matrices

[
A(λ) −B(λ) 0
C(λ) D(λ) −I

]
, and

 A(λ) −B(λ)
C(λ) D(λ)

0 I

 , (7.6)

have no finite or infinite zeros. If both conditions are satisfied S(λ) is said to be
strongly irreducible.

Let us now consider the transfer function matrix R(λ) = D(λ)+C(λ)A(λ)−1B(λ)
of the polynomial system matrix in (7.5). In such a case, we also say that the system
quadruple {A(λ), B(λ), C(λ), D(λ)} realizes R(λ). Moreover, we say that the system
quadruple is strongly irreducible if the polynomial system matrix is strongly irre-
ducible. It was shown in [91] that the pole/zero and null space structure of R(λ) can
be retrieved from a strongly irreducible system quadruple {A(λ), B(λ), C(λ), D(λ)}
as follows.

Theorem 7.2.2. If the polynomial system matrix S(λ) in (7.5) is strongly irre-
ducible, then

1. the zero structure of R(λ) at finite and infinite λ is the same as the zero
structure of S(λ) at finite and infinite λ,

2. the pole structure of R(λ) at finite λ is the same as the zero structure at λ of
A(λ),

3. the pole structure of R(λ) at infinity is the same as the zero structure at infinity
of  A(λ) −B(λ) 0

C(λ) D(λ) −I
0 I 0

 ,
4. the left and right minimal indices of R(λ) and S(λ) are the same.

If one specializes this to the generalized state space model (7.2) one retrieves the
results of [92], which are simpler and only involve the pencils λE −A, for the finite
and infinite pole structure; (7.2), for the finite and infinite zero structure and (7.3),
for the definition of strongly irreducible.

We now show that the above conditions can be simplified when the system ma-
trices are linear as in (7.1). First, we present the definition of strongly E-controllable
and strongly E-observable polynomial system matrices, and based on them, we re-
defined the concept of strongly minimal polynomial system matrix. It is easy to see
that this definition is equivalent to that in Definition 4.1.15.
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Definition 7.2.3. Let d be the degree of the polynomial system matrix S(λ) in (7.5).
S(λ) is said to be strongly E-controllable and strongly E-observable, respectively, if
the polynomial matrices

[
A(λ) −B(λ)

]
, and

[
A(λ)
C(λ)

]
, (7.7)

have degree exactly d and have no finite or infinite eigenvalues. If both conditions
are satisfied S(λ) is said to be strongly minimal.

The letter E in the definition of strong E-controllability and E-observability refers
to the condition of the matrices in (7.7) not having eigenvalues, finite or infinite, and
emphasizes the differences with the concepts of “strong controlability, observability
and irreducibility” used in [92, 91].

7.2.1 Strongly minimal linearizations

In this work we focus on linear polynomial system matrices. This means that we
consider block partitioned pencils

L(λ) :=

[
λA1 − A0 B0 − λB1

λC1 − C0 λD1 −D0

]
=:

[
A(λ) −B(λ)
C(λ) D(λ)

]
, (7.8)

where A(λ) is regular.

7.2.1.1 Finite pole and zero structure

A linear polynomial system matrix L(λ) as in (7.8) contains the finite zero and pole
structures of its transfer function matrix R(λ) := D(λ) +C(λ)A(λ)−1B(λ) provided
that L(λ) is minimal. That is, if matrices

[
λA1 − A0 −λB1 +B0

]
,

[
λA1 − A0

λC1 − C0

]
, (7.9)

have, respectively, full row and column rank for all λ0 ∈ C. This is equivalent to
state that the pencils in (7.9) do not have finite eigenvalues. If L(λ) is minimal then
we know by Rosenbrock [78] (recall Theorem 2.4.4) that the finite zero structure
of R(λ) is the same as the finite zero structure of L(λ), and that the finite pole
structure of R(λ) is the same as the finite zero structure of λA1 − A0.

Since dim Nr(L) = dim Nr(R) and dim N`(L) = dim N`(R) (recall (2.10)), we
have that the number of right (resp. left) minimal indices of a minimal polynomial
system matrix is equal to the number of right (resp. left) minimal indices of its
transfer function matrix. However, their values may be different [92, 8].
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7.2.1.2 Finite and infinite pole and zero structure

Notice that Theorem 2.4.4 does not provide information about the structure at
infinity. The recovering of this structure requires the following concept introduced
in Chapter 4: L(λ) in (7.8) is minimal at infinity if the matrices

[
A1 −B1

]
and

[
A1

C1

]
(7.10)

have, respectively, full row and column rank. This condition is equivalent to state
that the pencils in (7.9) have degree exactly 1 and do not have eigenvalues at∞. A
linear polynomial system matrix that is minimal (at finite points) and also minimal
at ∞ is strongly minimal according to Definition 7.2.3. More precisely, a linear
polynomial system matrix L(λ) as in (7.8) is strongly minimal if the pencils

[
A(λ) −B(λ)

]
, and

[
A(λ)
C(λ)

]
, (7.11)

have degree exactly 1 and have no finite or infinite eigenvalues. As mentioned
before, the degree 1 pencils in (7.11) do not have infinite eigenvalues if and only if
the matrices in (7.10) have full row and full column rank, respectively. The ranks of
the matrices in (7.10) will be also called the ranks at infinity of the pencils in (7.7),
even in the case the matrices in (7.10) do not have full ranks.

We say that strongly minimal linear polynomial system matrices are strongly
minimal linearizations of their transfer function matrices.

Definition 7.2.4. Let R(λ) ∈ C(λ)m×n be a rational matrix. A linear polynomial
system matrix L(λ) as in (7.8) is said to be a strongly minimal linearization of R(λ)
if L(λ) is strongly minimal and its transfer function matrix is R(λ). Equivalently,
{A(λ), B(λ), C(λ), D(λ)} is said to be a strongly minimal linear realization of R(λ).

We prove in Proposition 7.2.10 that, for linear polynomial system matrices, the
strong irreducibility conditions hold if the strong minimality conditions are satisfied.
For this, we need to recall Lemma 1 of [92], which we give here in its transposed form.
Then, we prove Theorems 7.2.6 and 7.2.7, and Proposition 7.2.10 as a corollary of
them.

Lemma 7.2.5. The zero structure at infinity of the pencil
[
λK1 −K0 −L0

]
where K1 has full column rank, is isomorphic to the zero structure at zero of the
pencil

[
K1 − µK0 −L0

]
. Moreover, if the pencil has full row normal rank, then

it has no zeros at infinity, provided the constant matrix
[
K1 −L0

]
has full row

rank.

Proof. The first part is proven in [92]. The second part is a direct consequence of
the first part, when we evaluate at µ = 0. �
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Theorem 7.2.6. The pencil[
λA1 − A0 B0 − λB1 0
λC1 − C0 λD1 −D0 −I

]
, (7.12)

where λA1 − A0 is regular, has no zeros at infinity if the pencil[
λA1 − A0 B0 − λB1

]
(7.13)

has no eigenvalues at infinity.

Proof. Clearly the pencils in (7.12) and (7.13) have full row normal rank since λA1−
A0 is regular. We can thus apply the result of Lemma 7.2.5 as follows. If we use an
invertible matrix V to “compress” the columns of the coefficient of λ in the following
pencil [

λA1 − A0 B0 − λB1 0
λC1 − C0 λD1 −D0 −I

] [
V 0
0 I

]
=

[
λK1 −K0 −L0 0

λK̂1 − K̂0 −L̂0 −I

]
,

such that the matrix

[
K1

K̂1

]
has full column rank, then this pencil has no zeros

at infinity provided the constant matrix

[
K1 −L0 0

K̂1 −L̂0 −I

]
has full row rank. But

if
[
λA1 − A0 B0 − λB1

]
has no infinite eigenvalues, it follows that

[
A1 −B1

]
has full row rank. And since

[
A1 −B1

]
V =

[
K1 0

]
, K1 must have full row

rank as well (in fact, it is invertible). It then follows from Lemma 7.2.5 that the
pencil in (7.12) has no zeros at infinity. �

In the next theorem, we state without proof the transposed version of Theorem
7.2.6.

Theorem 7.2.7. The pencil λA1 − A0 B0 − λB1

λC1 − C0 λD1 −D0

0 I

 ,
where λA1 − A0 is regular, has no zeros at infinity if the pencil[

λA1 − A0

λC1 − C0

]
(7.14)

has no eigenvalues at infinity.

By Theorems 7.2.6, 7.2.7 and [91], we have the next result for recovering the
structure at infinity.
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Theorem 7.2.8. Let R(λ) be the transfer function matrix of L(λ) in (7.8). If L(λ)
is minimal at ∞ then

1. the zero structure of R(λ) at infinity is the same as the zero structure of L(λ)
at infinity, and

2. the polar structure of R(λ) at infinity is the same as the zero structure of the
pencil  λA1 − A0 −λB1 0

λC1 λD1 −Im
0 In 0

 (7.15)

at infinity.

The polar structure of R(λ) at ∞ can also be recovered without considering the
extended pencil in (7.15). In particular, both the zero and polar structures of R(λ)
at infinity can be obtained from the eigenvalue structures of the pencils L(λ) and
A(λ) at infinity as Theorem 7.2.9 shows (see Chapter 4 or [28]).

Theorem 7.2.9. Let R(λ) be the transfer function matrix of L(λ) in (7.8). Assume
that R(λ) has normal rank r. Let e1 ≤ · · · ≤ es be the partial multiplicities of
rev1A(λ) at 0 and let ẽ1 ≤ · · · ≤ ẽu be the partial multiplicities of rev1L(λ) at 0. If
L(λ) is minimal at ∞ then the structural indices at infinity q1 ≤ · · · ≤ qr of R(λ)
are

(d1, d2, . . . , dr) = (−es,−es−1, . . . ,−e1, 0, . . . , 0︸ ︷︷ ︸
r−s−u

, ẽ1, ẽ2, . . . , ẽu)− (1, 1, . . . , 1).

Notice that if a linear system matrix L(λ) is minimal (i.e., satisfies (7.9)) and, in
addition, satisfies the conditions in (7.13) and (7.14), then it is strongly minimal. By
Theorems 7.2.6 and 7.2.7, we have that these conditions imply strong irreducibility
on linear system matrices. We state such result in Proposition 7.2.10.

Proposition 7.2.10. A linear system matrix as in (7.8) is strongly irreducible if it
is strongly minimal.

Theorems 7.2.6 and 7.2.7 and Proposition 7.2.10 can be extended to polynomial
system matrices. However, we do not state these results here since we are focusing
on linear system matrices.

Strongly minimal linearizations L(λ) of a rational matrix R(λ) have been defined
with the goal of constructing pencils that allow us to recover the complete pole and
zero structures of R(λ) through Theorems 2.4.4 and 7.2.9, or 7.2.8. Surprisingly, the
condition of strong minimality implies that the minimal indices of L(λ) and R(λ)
are the same. This is proved in Theorem 7.2.11, which, together with Theorems
2.4.4 and 7.2.9, allows us to recover the complete eigenstructure of a rational matrix
from any of its strongly minimal linearizations.
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Theorem 7.2.11. Let L(λ) be a strongly minimal linearization of a rational matrix
R(λ). Then the left and right minimal indices of R(λ) are the same as the left and
right minimal indices of L(λ).

Proof. By Proposition 7.2.10, a strongly minimal linear polynomial system matrix
is strongly irreducible. Then, by [91, Result 2], the left and right minimal indices of
R(λ) and L(λ) are the same. �

Remark 7.2.12. It follows from Theorems 2.4.4, 7.2.8 and 7.2.11 that, if L(λ) is a
strongly minimal linearization of a rational matrix R(λ), then

δz(R) + δ`(R) + δr(R) = δz(L) + δ`(L) + δr(L),

and then from Theorem 7.1.1 that δp(R) = δp(L). But the only pole of L(λ) :=
λL1 + L0 is the point at infinity and its polar degree δp(L) is equal to rankL1 [84,
p. 126]. Therefore, the McMillan degree δp(R) of R(λ) equals the rank of L1 for
any strongly minimal linearization of R(λ), and no other pencils with the same zero
structure and the same left and right minimal indices as R(λ) can have a first order
coefficient with smaller rank. Thus, strongly minimal linerizations are optimal in
this sense.

7.2.2 Strongly minimal linearizations and their relation with
other classes of linearizations

In this subsection we study the relation of strongly minimal linearizations with
other definitions of strong linearizations of polynomial and rational matrices in the
literature (recall Section 2.5).

For polynomial matrices, first we can combine Theorem 2.4.4 applied to a poly-
nomial matrix P (λ) and the equality of the number of the minimal indices of L(λ)
and P (λ) with [22, Theorem 4.1] for proving that any minimal linear polynomial
system matrix of a polynomial matrix P (λ) is always a GLR-linearization of P (λ).
The reverse result is not true in general. Observe also that any minimal polyno-
mial system matrix of a polynomial matrix P (λ) must have the block A(λ) in (7.8)
unimodular, because P (λ) does not have finite poles. However, the following exam-
ple shows that strongly mininal linearizations for polynomial matrices are not, in
general, GLR-strong linearizations.

Example 7.2.13. (Strongly minimal linearizations of polynomial matrices are not
strong linearizations in the sense of Gohberg, Lancaster and Rodman) Consider the
polynomial matrix

P (λ) = λ2

[
0 0
0 1

]
+ λ

[
1 0
0 1

]
+

[
1 0
0 1

]
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and the partitioned pencil

L(λ) =

 −1 0 λ

0 λ+ 1 0

λ 0 λ+ 1

 .
The transfer function matrix of L(λ) is P (λ) and L(λ) is minimal and minimal
at infinity. Therefore, L(λ) is a strongly minimal linearization of P (λ) and also a
GLR-linearization of P (λ). However, rev1L(λ) is not unimodularly equivalent to
diag(rev2P (λ), 1) and, thus, L(λ) is not a GLR-strong linearization of P (λ). In
order to see this, observe that

rev2P (λ) = λ2

[
1 0
0 1

]
+ λ

[
1 0
0 1

]
+

[
0 0
0 1

]
and

rev1L(λ) =

 −λ 0 1

0 λ+ 1 0

1 0 λ+ 1

 ,
which makes it transparent that rev1L(λ) does not have eigenvalues (or zeros) at
zero, while rev2P (λ) does. In general, it is possible to prove by using Theorem 7.2.9
that strongly minimal linearizations of polynomial matrices of degree larger than 1
with eigenvalues at infinity are not GLR-strong linearizations.

Despite of the fact of strongly mininal linearizations not being GLR-strong linea-
rizations, strongly minimal linearizations L(λ) of a polynomial matrix P (λ) allow us
to recover always the complete list of structural data of P (λ), including its minimal
indices. Moreover, the minimal indices of L(λ) and P (λ) are always the same in
contrast with the minimal indices of GLR-strong linearizations whose values may
be different to those of P (λ). In addition, we will prove in Chapter 8 that strongly
mininal linearizations allow us to preserve structures of polynomial matrices that
cannot always be preserved by GLR-strong linearizations.

For rational matrices, the minimal linear polynomial system matrices of an arbi-
trary rational matrix R(λ) are particular cases of the linearizations of R(λ) defined
in [6], which were introduced with the idea of combining the concept of minimal
polynomial system matrix with the extension of GLR-linearizations from polyno-
mial to rational matrices. However, strongly minimal linearizations are not always
strong linearizations in the sense of [6] (Definition 2.5.3) since the first degree coeffi-
cients of their (1, 1)-blocks are not necessarily invertible. But, as in the polynomial
case, strongly minimal linearizations of a rational matrix allow us to recover always
the complete list of its structural data, including its minimal indices.
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7.3 Reduction to a strongly minimal linear sys-

tem matrix

In this section we give an algorithm to reduce an arbitrary linear system matrix to
a strongly minimal one.

Given a linear system quadruple {A(λ), B(λ), C(λ), D(λ)}, whereA(λ) ∈ C(λ)d×d,
B(λ) ∈ C(λ)d×n, C(λ) ∈ C(λ)m×d, D(λ) ∈ C(λ)m×n and A(λ) is assumed to
be regular, we describe first how to obtain a strongly E-controllable quadruple
{Ac(λ), Bc(λ), Cc(λ), Dc(λ)} of smaller state dimension (d− r). For that, our reduc-
tion procedure deflates finite and infinite “uncontrollable eigenvalues” by proceeding
in three different steps. Then the reduction to a strongly E-observable one is dual
and can be obtained by mere transposition of the system matrix and application of
the first method for obtaining a strongly E-controllable system.

Step 1: We first show that there exist unitary transformations U and V that
yield a decomposition of the type

[
U 0
0 Im

] [
A(λ) −B(λ)
C(λ) D(λ)

] [
V 0
0 In

]
=

 X(λ)Ŵ11 0 X(λ)W13

Ỹ (λ) Ã(λ) −B̃(λ)

Z̃(λ) C̃(λ) D(λ)

 ,
(7.16)

where Ŵ11 ∈ Cr×r and W13 ∈ Cr×n are constant, and Ŵ11 is invertible. This will
allow us in step 2 to deflate the block X(λ) and construct a lower order model that is
strongly E-controllable. In order to prove this, we start from the generalized Schur
decomposition for singular pencils (see [83])

U
[
A(λ) −B(λ)

]
W ∗ =

[
X(λ) 0 0

Y (λ) Â(λ) −B̂(λ)

]
, (7.17)

where X(λ) ∈ C[λ]r×r is the regular part of
[
A(λ) −B(λ)

]
, Â(λ) ∈ C[λ](d−r)×(d−r),

and
[
Â(λ) −B̂(λ)

]
has no finite or infinite eigenvalues anymore. The decompo-

sition in (7.17) can be obtained by using unitary transformations U and W. If we

partition U as

[
U1

U2

]
, with U1 ∈ Cr×d, then

U1

[
A(λ) −B(λ)

]
=
[
X(λ)W11 X(λ)W12 X(λ)W13

]
,

where W11 ∈ Cr×r, W12 ∈ Cr×(d−r) and W13 ∈ Cr×n are the corresponding sub-
matrices of W . Since A(λ) is regular, X(λ)

[
W11 W12

]
must be full normal rank,

and hence
[
W11 W12

]
must be full row rank as well. Therefore, there must exist

a unitary matrix V such that
[
W11 W12

]
V =

[
Ŵ11 0

]
, where Ŵ11 is invertible.
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Hence, we have

[
U 0
0 Im

] [
A(λ) −B(λ)
C(λ) D(λ)

] [
V 0
0 In

]
=

 X(λ)Ŵ11 0 X(λ)W13

Ỹ (λ) Ã(λ) −B̃(λ)

Z̃(λ) C̃(λ) D(λ)

 ,
where

W

[
V 0
0 In

]
=

 Ŵ11 0 W13

Ŵ21 Ŵ22 W23

Ŵ31 Ŵ32 W33

 .
Step 2: We now define E := −Ŵ−1

11 W13 and perform the following non-unitary
transformation on the pencil: X(λ)Ŵ11 0 X(λ)W13

Ỹ (λ) Ã(λ) −B̃(λ)

Z̃(λ) C̃(λ) D(λ)


 Ir 0 E

0 Id−r 0
0 0 In



=

 X(λ)Ŵ11 0 0

Ỹ (λ) Ã(λ) Ỹ (λ)E − B̃(λ)

Z̃(λ) C̃(λ) Z̃(λ)E +D(λ)

 .
We have obtained an equivalent system representation in which the (1, 1)-block,

X(λ)Ŵ11, can be deflated since it does not contribute to the transfer function. We
then obtain a smaller linear system pencil:[

Ã(λ) Ỹ (λ)E − B̃(λ)

C̃(λ) Z̃(λ)E +D(λ)

]
,

that has the same transfer function. One can also perform this elimination by
another unitary transformation W̃ constructed to eliminate W13:

[
Ŵ11 0 W13

] W̃11 0 W̃13

0 Id−r 0

W̃31 0 W̃33

 =
[
Ir 0 0

]
, (7.18)

implying W̃11 = Ŵ ∗
11 , W̃31 = W ∗

13, and W̃13 = −Ŵ−1
11 W13W̃33. This then yields X(λ)Ŵ11 0 X(λ)W13

Ỹ (λ) Ã(λ) −B̃(λ)

Z̃(λ) C̃(λ) D(λ)


 W̃11 0 W̃13

0 Id−r 0

W̃31 0 W̃33
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=

 X(λ) 0 0

Ỹ (λ)W̃11 − B̃(λ)W̃31 Ã(λ) Ỹ (λ)W̃13 − B̃(λ)W̃33

Z̃(λ)W̃11 +D(λ)W̃31 C̃(λ) Z̃(λ)W̃13 +D(λ)W̃33

 .
Notice that the new transfer function has now changed, but only by postmultiplica-
tion by the constant matrix W̃33, which moreover is invertible. This follows from[

E
In

]
W̃33 =

[
W̃13

W̃33

]
,

expressing that both matrices span the null-space of the same matrix
[
Ŵ11 W13

]
and where the right hand side matrix has full rank since it has orthonormal columns.
This also implies that[

Ã(λ) Ỹ (λ)E − B̃(λ)

C̃(λ) Z̃(λ)E +D(λ)

] [
Id−r 0

0 W̃33

]
=

[
Ã(λ) Ỹ (λ)W̃13 − B̃(λ)W̃33

C̃(λ) Z̃(λ)W̃13 +D(λ)W̃33

]
,

which shows that their Schur complements are related by the constant matrix W̃33.

Step 3: Finally, we show that the submatrix[
Ã(λ) Ỹ (λ)E − B̃(λ)

] [ Id−r 0

0 W̃33

]
=
[
Ã(λ) Ỹ (λ)W̃13 − B̃(λ)W̃33

]
,

has no finite or infinite eigenvalues anymore. For this, we first point out that the
following product of unitary matrices has the form given below

W

[
V 0
0 In

] W̃11 0 W̃13

0 Id−r 0

W̃31 0 W̃33

 =:

 Ir 0 0

0 Ṽ22 Ṽ23

0 Ṽ32 Ṽ33

 =:

[
Ir 0

0 Ṽ

]

because the identity (7.18) implies that the first block column equals
[
Ir 0 0

]
.

This then implies the equality[
X(λ) 0 0

Ỹ (λ)W̃11 − B̃(λ)W̃31 Ã(λ) Ỹ (λ)W̃13 − B̃(λ)W̃33

]

=

[
X(λ) 0 0

Y (λ) Â(λ) −B̂(λ)

] [
Ir 0

0 Ṽ

]
,

which in turn implies that
[
Ã(λ) Ỹ (λ)W̃13 − B̃(λ)W̃33

]
has no finite or infinite

eigenvalues. We thus have shown that the system matrix

Sc(λ) :=

[
Ac(λ) −Bc(λ)
Cc(λ) Dc(λ)

]
:=

[
Ã(λ) Ỹ (λ)W̃13 − B̃(λ)W̃33

C̃(λ) Z̃(λ)W̃13 +D(λ)W̃33

]
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is now strongly E-controllable and that its transfer function Rc(λ) equals R(λ)W̃33,

where R(λ) is the transfer function of the original quadruple and W̃33 is invertible.
We summarize the result obtained by the three-step procedure above in Theorem
7.3.1, where we denote d− r by dc, to indicate that it is the size of Ac(λ) in the new
strongly E-controllable system, and r is replaced by dc, so that d = dc + dc.

Theorem 7.3.1. Let {A(λ), B(λ), C(λ), D(λ)} be a linear system quadruple, with
A(λ) ∈ C[λ]d×d regular, realizing the rational matrix R(λ) := C(λ)A(λ)−1B(λ) +

D(λ) ∈ C(λ)m×n. Then there exist unitary transformations U, V ∈ Cd×d and W̃ ∈
C(d+n)×(d+n) such that the following identity holds[

U 0
0 Im

][
A(λ) −B(λ)
C(λ) D(λ)

][
V 0
0 In

]
W̃ =

 Xc(λ) 0 0
Yc(λ) Ac(λ) −Bc(λ)
Zc(λ) Cc(λ) Dc(λ)

 ,
where W̃ is of the form W̃ :=

 W̃11 0 W̃13

0 Idc 0

W̃31 0 W̃33

 ∈ C(dc+dc+n)×(dc+dc+n), dc is

the number of (finite and infinite) eigenvalues of
[
A(λ) −B(λ)

]
, and Xc(λ) ∈

C[λ]dc×dc is a regular pencil. Moreover,

a) the eigenvalues of
[
A(λ) −B(λ)

]
are the eigenvalues of Xc(λ),

b)
[
Ac(λ) −Bc(λ)

]
∈ C[λ]dc×(dc+n) has no (finite or infinite) eigenvalues,

c) the quadruple {Ac(λ), Bc(λ), Cc(λ), Dc(λ)} is a realization of the transfer func-

tion Rc(λ) := R(λ)W̃33, with W̃33 ∈ Cn×n invertible, and

d) if

[
A(λ)
C(λ)

]
has no finite or infinite eigenvalues, then

[
Ac(λ)
Cc(λ)

]
also has no

finite or infinite eigenvalues.

Remark 7.3.2. Notice that conditions b) and d) in Theorem 7.3.1 imply that the
system quadruple {Ac(λ), Bc(λ), Cc(λ), Dc(λ)} is strongly minimal.

Proof. The decomposition and the three properties a), b) and c) were shown in the
discussion above. The only part that remains to be proven is property d). This
follows from the identity (7.16), which yields[

U 0
0 Im

] [
A(λ)
C(λ)

]
V =

 X(λ)Ŵ11 0

Ỹ (λ) Ac(λ)

Z̃(λ) Cc(λ)

 .
This clearly implies that if

[
A(λ)
C(λ)

]
has full rank for all λ (including infinity), then

so does

[
Ac(λ)
Cc(λ)

]
. �
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We state below a dual theorem that constructs, from an arbitrary linear sys-
tem quadruple {A(λ), B(λ), C(λ), D(λ)}, a subsystem {Ao(λ), Bo(λ), Co(λ), Do(λ)}

where

[
Ao(λ)
Co(λ)

]
has no finite or infinite eigenvalues. Its proof is obtained by apply-

ing the previous theorem on the transposed system {AA(λ), CA(λ), BA(λ), DA(λ)}
and then transposing back the result.

Theorem 7.3.3. Let {A(λ), B(λ), C(λ), D(λ)} be a linear system quadruple, with
A(λ) ∈ C[λ]d×d regular, realizing the rational matrix R(λ) := C(λ)A(λ)−1B(λ) +

D(λ) ∈ C(λ)m×n. Then there exist unitary transformations U, V ∈ Cd×d and W̃ ∈
C(d+m)×(d+m) such that the following identity holds

W̃

[
U 0
0 Im

][
A(λ) −B(λ)
C(λ) D(λ)

][
V 0
0 In

]
=

 Xo(λ) Yo(λ) Zo(λ)
0 Ao(λ) −Bo(λ)
0 Co(λ) Do(λ)

 ,

where W̃ is of the form W̃ :=

 W̃11 0 W̃13

0 Ido 0

W̃31 0 W̃33

 ∈ C(do+do+m)×(do+do+m), do is the

number of (finite and infinite) eigenvalues of

[
A(λ)
C(λ)

]
, and Xo(λ) ∈ C[λ]do×do is a

regular pencil. Moreover,

a) the eigenvalues of

[
A(λ)
C(λ)

]
are the eigenvalues of Xo(λ),

b)

[
Ao(λ)
Co(λ)

]
∈ C[λ](do+m)×do has no (finite or infinite) eigenvalues,

c) the quadruple {Ao(λ), Bo(λ), Co(λ), Do(λ)} is a realization of the transfer func-

tion Ro(λ) := W̃33R(λ), with W̃33 ∈ Cm×m invertible, and

d) if
[
A(λ) −B(λ)

]
has no finite or infinite eigenvalues then

[
Ao(λ) −Bo(λ)

]
also has no finite or infinite eigenvalues.

In order to extract from the system quadruple {A(λ), B(λ), C(λ), D(λ)} a sub-
system {Aco(λ), Bco(λ), Cco(λ), Dco(λ)} that is both strongly E-controllable and E-
observable (and hence also strongly minimal), we only need to apply the above two
theorems one after the other. The resulting subsystem would then be a realization of
the transfer functionRco = Cco(λ)Aco(λ)−1Bco(λ)+Dco(λ) = W`R(λ)Wr ∈ C(λ)m×n.
Since the transfer function was changed only by left and right transformations that
are constant and invertible, the left and right nullspace will be transformed by these
invertible transformations, but their minimal indices will be unchanged.
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7.4 Computational aspects

In this section we give a more “algorithmic” description of the procedure described
in Section 7.3 to reduce a given system quadruple {A(λ), B(λ), C(λ), D(λ)} to a
strongly E-controllable quadruple {Ac(λ), Bc(λ), Cc(λ), Dc(λ)} of smaller size. We
describe the essence of the three steps that were discussed in that section.

Step 1 : Compute the staircase reduction of the submatrix
[
A(λ) −B(λ)

]
U
[
A(λ) −B(λ)

]
W ∗ =

[
X(λ) 0 0

Y (λ) Â(λ) −B̂(λ)

]
.

Step 2 : Compute the unitary matrices V and W̃ to compress the first block row
of W

[
W11 W12 W13

] [ V 0
0 In

] W̃11 0 W̃13

0 Id−r 0

W̃31 0 W̃33

 =
[
Ir 0 0

]
,

where V does the compression
[
W11 W12

]
V =

[
W̃ ∗

11 0
]

of the first two blocks and

W̃ does the further reduction of the first block row to
[
Ir 0 0

]
.

Step 3 : Display the uncontrollable part X(λ) using the transformations U , V and

W̃ [
U 0
0 Im

] [
A(λ) −B(λ)
C(λ) D(λ)

] [
V 0
0 In

]
W̃ =

 Xc(λ) 0 0
× Ac(λ) −Bc(λ)
× Cc(λ) Dc(λ)

 ,
where we have used the notations introduced in Section 7.3, and the resulting ×
entries are of no interest because they do not contribute to the transfer function
Rc(λ) := Cc(λ)Ac(λ)−1Bc(λ) +Dc(λ).

7.5 Numerical results

We illustrate in this section that the reduction procedure presented in this chapter
may improve the accuracy of computed eigenvalues, with a polynomial example and
a rational one.

Example 7.5.1. We consider the 2× 2 polynomial matrix

P (λ) =

[
e5(λ) 0

0 e1(λ)

]
,
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where e5(λ) is a polynomial of degree 5 with coefficients [9.6367e− 01 − 5.4026e−
07 2.6333e − 01 − 1.1101e − 04 − 2.9955e − 04 4.4650e − 02], ordered by
descending powers of λ, and e1(λ) is a polynomial of degree 1 with coefficients
[−2.1886e− 03 − 1.0000e + 00], that were randomly chosen. Expanding this fifth
order polynomial matrix as

P (λ) = P0 + P1λ+ · · ·+ P5λ
5,

a linear system matrix SP (λ) of P (λ) is given by the following 10× 10 pencil:

SP (λ) =


I2 −λI2 P1

I2 −λI2 P2

I2 −λI2 P3

I2 P4 + λP5

−λI2 P0

 .
The six finite Smith zeros of P (λ) are clearly those of the scalar polynomials e1(λ)
and e5(λ). These are also the finite zeros of SP (λ), since SP (λ) is minimal. However,
SP (λ) is not strongly minimal if P5 is singular and, in fact, it has 4 eigenvalues at
infinity (in the sense of [44]). But in the McMillan sense, P (λ) has no infinite
zeros. The deflation procedure that we derived in this chapter precisely gets rid
of the extraneous infinite eigenvalues of SP (λ). The numerical tests show that the
sensitivity of the true McMillan zeros also can benefit from this.

In this example we compare the roots computed by four different methods:

1. computing the roots of the scalar polynomials and appending four ∞ roots,

2. computing the generalized eigenvalues of SP (λ),

3. computing the roots of QSP (λ)Z for random orthogonal matrices Q and Z,

4. computing the roots of the minimal pencil obtained by our method.

The first column are the so-called “correct” eigenvalues λi, corresponding to the
first method, the next three columns are the corresponding errors δ

(k)
i := |λi− λ̂(k)

i |,
k = 2, 3, 4, of the above three methods1. The extraneous eigenvalues that are deflated
in our approach are put between brackets.

We notice that for the largest finite eigenvalue of the order of 102 the QZ algo-
rithm applied to SP (λ) gets 14 digits of relative accuracy but, when deflating the
four uncontrollable eigenvalues at ∞, our method recovers a relative accuracy of 16
digits.

1An error δ
(k)
i is NaN when it is the indeterminate form Inf − Inf. However, some of the

eigenvalues at ∞ are computed as a large but finite number and, then, the corresponding error is
Inf.
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λi δ
(2)
i δ

(3)
i δ

(4)
i

-4.5811e-01 2.7756e-16 4.4409e-16 1.1102e-16
3.5076e-01 + 3.5785e-01i 9.5020e-16 1.1102e-16 4.0030e-16
3.5076e-01 - 3.5785e-01i 9.5020e-16 1.1102e-16 4.0030e-16

-1.2170e-01 + 6.2287e-01i 6.7589e-16 7.8945e-16 2.2248e-16
-1.2170e-01 - 6.2287e-01i 6.7589e-16 7.8945e-16 2.2248e-16

-4.5691e+02 2.9559e-12 2.7285e-12 5.6843e-14
Inf NaN NaN (Inf)
Inf NaN NaN (Inf)
Inf NaN NaN (Inf)
Inf NaN NaN (Inf)

Table 7.1: The correct generalized λi and the corresponding accuracies δki for the
three different calculations

Example 7.5.2. The second example is the rational matrix R(λ) in (7.4) with
c = 1.

R(λ) =

[
e5(λ) 0
1/λ e1(λ)

]
= P0 + P1λ+ · · ·+ P5λ

5 +

[
0 0

1/λ 0

]
,

by using the notation of the example above. In this case, e5(λ) has the row vector
[4.7865e−02 1.4279e−04 2.4361e−03 −1.5336e−02 −9.9155e−01 1.1948e−01]
as coefficients, and e1(λ) has the row vector [6.5250e−03 9.9997e−01]. We consider
the 12× 12 linear system matrix

SR(λ) =


λI2 − A −B

I2 −λI2 P1

I2 −λI2 P2

I2 −λI2 P3

I2 P4 + λP5

C −λI2 P0

 ,

where

A =

[
0 0
1 0

]
, B =

[
0 0
1 0

]
C =

[
0 0
0 1

]
is a non-minimal realization of the strictly proper rational function 1/λ. In fact,
the matrix A in the realization triple (A,B,C) has two eigenvalues at λ = 0, of
which one is uncontrollable since 1/λ only has a pole at 0 of order 1. This is an
artificial example since we could have realized the strictly proper part by using
a minimal triple (A,B,C) by removing the uncontrollable eigenvalue, but this is
precisely what our reduction procedure does simultaneously for finite and infinite
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uncontrollable eigenvalues. The quantities given in the following table are defined
as in the previous example, except that we added two roots at 0 corresponding to
the “exact” eigenvalues.

λi δ
(2)
i δ

(3)
i δ

(4)
i

0 0 8.1752e-09 (4.5874e-16)
0 3.6752e-18 8.1752e-09 5.3729e-16

1.2028e-01 1.8041e-16 9.7145e-17 9.7145e-17
2.1135e+00 1.7764e-15 2.6645e-15 1.3323e-15
-2.1404e+00 1.7764e-15 2.2204e-15 8.8818e-16

-4.8180e-02 + 2.1412e+00i 2.3216e-15 1.7990e-15 4.0614e-15
-4.8180e-02 - 2.1412e+00i 2.3216e-15 1.7990e-15 4.0614e-15

-1.5325e+02 2.5580e-13 1.5321e-07 5.6843e-14
Inf NaN Inf (Inf)
Inf NaN Inf (Inf)
Inf NaN NaN (NaN)
Inf NaN NaN (NaN)

Table 7.2: The correct generalized λi and the corresponding accuracies δki for the
three different calculations

In this example the QZ algorithm applied to SR(λ) recovers well all generalized
eigenvalues. When applying the QZ algorithm to an orthogonally equivalent pencil
QSR(λ)Z both eigenvalues at 0 gets perturbed to two roots of the order of the
square root of the machine precision, which can be expected. But when deflating
the uncontrollable eigenvalue at 0 part of the accuracy gets restored.

These two examples show that deflating uncontrollable eigenvalues may improve
the sensitivity of the remaining eigenvalues which may improve the accuracy of their
computation.
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Chapter 8

Constructing strongly minimal
linearizations for rational matrices
from Laurent expansions:
preserving structures

In this chapter we will show a procedure to construct strongly minimal linearizations
(recall Definition 7.2.4) of arbitrary rational matrices R(λ) ∈ C(λ)m×n from their
Laurent expansions around the point at infinity. Namely,

R(λ) = Rdλ
d + . . .+R1λ+R0 +R−1λ

−1 +R−2λ
−2 +R−3λ

−3 + . . . , (8.1)

which is convergent for sufficiently large λ ∈ C. We will first pay special atten-
tion to the construction of strongly minimal linearizations for the particular case of
polynomial matrices P (λ), written in the form

P (λ) = Pdλ
d + . . .+ P1λ+ P0.

If the rational matrix R(λ) is square, i.e., m = n, and has a particular type
of self-conjugate structure then the coefficients Ri ∈ Cm×m of its expansion also
inherit the self-conjugate structure and the poles and zeros of R(λ) appear in self-
conjugate pairs. We will also show how to construct strongly minimal linearizations
preserving the structure for both polynomial and rational matrices. All the results
in this chapter appear in [34].

We will consider four types of self-conjugate rational matrices, two with respect
to the real line and two with respect to the imaginary axis:

• The Hermitian and skew-Hermitian rational matrices R(λ), with respect to
the real line, satisfy

[R(λ)]∗ = R(λ), and [R(λ)]∗ = −R(λ),

155
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respectively. They have poles and zeros that are mirror images with respect
to the real line R, and have coefficient matrices Ri that are Hermitian (i.e.
R∗i = Ri) and skew-Hermitian (i.e. R∗i = −Ri), respectively.

• The para-Hermitian and para-skew-Hermitian rational matrices, with respect
to the imaginary axis, satisfy

[R(λ)]∗ = R(−λ), and [R(λ)]∗ = −R(−λ),

respectively. They have poles and zeros that are mirror images with respect
to the imaginary line R, and have scaled coefficient matrices iRi that are
Hermitian and skew-Hermitian, respectively.

Para-Hermitian and para-skew-Hermitian structures are also called alternating
structures. There are equivalent definitions for real rational matrices, where all coef-
ficient matrices Ri are real. Namely, (skew-)symmetric and para-(skew-)symmetric
rational matrices. In these cases, poles and zeros appear in complex conjugate pairs
as well.

We will divide the construction of strongly minimal linearizations of arbitrary and
self-conjugate rational matrices in different sections. In Section 8.1, we construct
strongly minimal linearizations for arbitrary polynomial matrices and, in Section
8.2, for self-conjugate polynomial matrices. In Section 8.3, we construct strongly
minimal linearizations for arbitrary strictly proper rational matrices and, in Section
8.4, for self-conjugate strictly proper rational matrices. In Section 8.5 we state the
results for both arbitrary and self-conjugate rational matrices, by combining the
results in previous sections.

8.1 For arbitrary polynomial matrices

In this section we focus on constructing explicitly a strongly minimal linearization
for any given polynomial matrix P (λ) ∈ C[λ]m×n of degree d > 1:

P (λ) := P0 + P1λ+ · · ·+ Pdλ
d. (8.2)

Such a strongly minimal linearization is constructed in Theorem 8.1.2 and we will
prove in Section 8.2 that it inherits the structure of P (λ), when P (λ) possesses any
of the self-conjugate structures considered in this work. The construction uses three
pencils associated with P (λ) that have appeared before in the literature. They are
described in the following paragraphs.
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The pencil

Lr(λ) :=

[
Ar(λ) −Br(λ)

Cr(λ) Dr(λ)

]
:=


−In λIn 0

. . .
. . .

...
−In λIn 0

−In λIn

λPd . . . . . . λP2 λP1 + P0

 (8.3)

was used in the classical reference [87]. It is easy to see that Lr(λ) is a linear
polynomial system matrix of P (λ), since P (λ) = Dr(λ) + Cr(λ)Ar(λ)−1Br(λ), and
that it is minimal for all finite λ. For the point at ∞, E-controllability is clearly
satisfied but E-observability is only satisfied if the matrix Pd has full column rank n.
Thus, Lr(λ) is not a strongly minimal linearization of P (λ) when Pd does not have
full column rank. However, note that Lr(λ) is always a GLR-strong linearization of
P (λ). This can be seen, for instance, by noting that if the two block rows in (8.3)
are interchanged, we obtain one of the block Kronecker linearizations (with only one
block column) associated to P (λ) defined in [26, Section 4]. The pencil (8.3) has a
structure similar to that of the classical first or row Frobenius companion form.

The pencil

Lc(λ) :=

[
Ac(λ) −Bc(λ)

Cc(λ) Dc(λ)

]
:=



−Im λPd

λIm
. . .

...
. . . −Im

...
λIm −Im λP2

0 . . . 0 λIm λP1 + P0


(8.4)

is in some sense “dual” to (8.3). It is also a linear polynomial system matrix of
P (λ), since P (λ) = Dc(λ) + Cc(λ)Ac(λ)−1Bc(λ). Moreover, Lc(λ) is strongly E-
observable, but not necessarily strongly E-controllable, unless Pd has full row rank.
As a consequence, Lc(λ) is a strongly minimal linearization of P (λ) if and only if
Pd has full row rank. However, Lc(λ) is always a GLR-strong linearization of P (λ).
The pencil (8.4) has a structure similar to that of the classical second or column
Frobenius companion form.

The pencil

Ls(λ) :=

[
As(λ) −Bs(λ)

Cs(λ) Ds(λ)

]
:=



−Pd λPd

..
.
λPd − Pd−1

...

−Pd ..
. ...

...

−Pd λPd − Pd−1 . . . λP3 − P2 λP2

λPd . . . . . . λP2 λP1 + P0


(8.5)
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was originally proposed by Lancaster in [58, pp. 58-59] for regular polynomial matri-
ces with Pd invertible. In this chapter, we use it for arbitrary polynomial matrices,
including rectangular ones. Ls(λ) has the advantage to preserve the Hermitian or
skew-Hermitian nature of the coefficients of the linearization, if P (λ) happens to
have coefficients with such properties. The pencil Ls(λ) has been also studied more
recently in [53, 63], where it is seen as one of the pencils of the standard basis of
the linear space DL(P ) of pencils related to P (λ). It is well known that Ls(λ) is a
GLR-strong linearization of P (λ) if and only if Pd is invertible [21, 63]. In fact, in
this case, Ls(λ) is also a strongly minimal linearization of P (λ) since it is strongly
minimal and P (λ) = Ds(λ) + Cs(λ)As(λ)−1Bs(λ). However, if Pd is not invertible,
Ls(λ) is not a linearization of P (λ) in any of the senses considered in the literature
and, even more, it is not a Rosenbrock polynomial system matrix of P (λ) since As(λ)
is not regular. Despite of this fact, Ls(λ) is our starting point for constructing the
strongly minimal linearization of P (λ) of interest in this work.

The constant block Hankel matrix T defined in the next equation

T :=


Pd

..
.
Pd−1

Pd ..
. ...

Pd Pd−1 . . . P2

 (8.6)

plays a key role in the rest of the chapter. To begin with, it allows us to obtain the
following relations

[
As(λ) −Bs(λ)

]
= T

[
Ar(λ) −Br(λ)

]
,

[
As(λ)
Cs(λ)

]
=

[
Ac(λ)
Cc(λ)

]
T, (8.7)

between submatrices of the pencils Ls(λ), Lr(λ) and Lc(λ). The matrix T is invert-
ible if and only if Pd is square and invertible. Otherwise, T is singular and this is
the case that requires a careful analysis.

In [87], it was shown how to derive from the linear polynomial system ma-

trix Lr(λ) of P (λ), a smaller linear polynomial system matrix L̂r(λ) that is both
strongly E-controllable and E-observable, and hence strongly minimal, by using only
multiplications by constant unitary matrices. This was obtained by deflating the
unobservable infinite eigenvalues from the pencil Lr(λ). Moreover, the obtained

pencil L̂r(λ) allows us to recover the complete list of structural data of P (λ). The
reduction procedure in [87] has been extended to arbitrary linear polynomial system
matrices of arbitrary rational matrices R(λ) in Chapter 7, where it is proved that the
obtained strongly minimal linear polynomial system matrix has as transfer function
matrix Q1R(λ)Q2, where Q1 and Q2 are constant invertible matrices. We emphasize
that the procedures in [87, 32] lead to stable and efficient numerical algorithms since
both are based on unitary transformations.
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We show in Theorem 8.1.2 that a procedure similar to that in [87] can be applied

to Ls(λ) in order to derive a strongly minimal linear polynomial system matrix L̂s(λ)
of P (λ), despite of the fact that if Pd is not square or invertible, then Ls(λ) is not a
Rosenbrock polynomial system matrix since As(λ) is then not regular. Moreover, we
remark that the procedure in Theorem 8.1.2 is much simpler than those in [87, 32]
and that, as said before, it yields a polynomial system matrix whose transfer function
matrix is precisely P (λ). Before stating and proving Theorem 8.1.2, we prove the
simple auxiliary Lemma 8.1.1 and introduce some other auxiliary concepts.

A rational matrix G(λ) ∈ C(λ)p×n (with p < n) is said to be a rational basis if
its rows form a basis of the rational subspace they span, i.e., if it has full row normal
rank. Two rational bases G(λ) ∈ C(λ)p×n and H(λ) ∈ C(λ)q×n are said to be dual
if p+ q = n, and G(λ)H(λ)T = 0.

Lemma 8.1.1. Let

S(λ) :=

[
A(λ) −B(λ)
C(λ) D(λ)

]
∈ C[λ](p+m)×(p+n)

be a polynomial system matrix, where A(λ) is assumed to be regular. Let H(λ) be
a rational basis of the form H(λ) :=

[
M(λ) In

]
dual to

[
A(λ) −B(λ)

]
, i.e.,

such that
[
A(λ) −B(λ)

]
H(λ)T = 0, then

[
C(λ) D(λ)

]
H(λ)T is the transfer

function of S(λ).

Proof. The equation

[
A(λ) −B(λ)

] [ M(λ)T

In

]
= 0

implies A(λ)M(λ)T = B(λ) and, since A(λ) is regular, M(λ)T = A(λ)−1B(λ). Thus[
C(λ) D(λ)

]
H(λ)T = C(λ)A(λ)−1B(λ) +D(λ). �

Theorem 8.1.2. Let P (λ) ∈ C[λ]m×n be a polynomial matrix as in (8.2). Let T
be the block Hankel matrix in (8.6) and r := rankT . Let U =

[
U1 U2

]
and

V =
[
V1 V2

]
be unitary matrices that “compress” the matrix T as follows:

U∗TV =

[
0 0
0 U∗2TV2

]
=:

[
0 0

0 T̂

]
, (8.8)

where T̂ is of dimension r× r and invertible. Then, if Ls(λ) is the matrix pencil in
(8.5), the pencil diag(U∗, Im)Ls(λ) diag(V, In) is equal to the “compressed” pencil 0 0 0

0 Âs(λ) −B̂s(λ)

0 Ĉs(λ) D̂s(λ)

 :=

[
U∗As(λ)V −U∗Bs(λ)

Cs(λ)V Ds(λ)

]
, (8.9)
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and

L̂s(λ) :=

[
Âs(λ) −B̂s(λ)

Ĉs(λ) D̂s(λ)

]
(8.10)

is a strongly minimal linearization of P (λ), where Âs(λ) ∈ C[λ]r×r is regular. In

particular, P (λ) = D̂s(λ) + Ĉs(λ)Âs(λ)−1B̂s(λ).

Proof. It follows from (8.7) and the strong E-controllability of [ Ar(λ) −Br(λ) ] that
[ As(λ) −Bs(λ) ] has rank r for all λ, infinity included, and that its left null space
is spanned by the rows of U∗1 . Likewise, it follows from (8.7) and the strong E-

observability of
[
Ac(λ)
Cc(λ)

]
that

[
As(λ)
Cs(λ)

]
has rank r for all λ, infinity included and that

its right null space is spanned by the columns of V1. This proves the compressed
form (8.9).

We then prove that the r × r matrix pencil Âs(λ) is regular. This follows from
the identity

Âs(λ) = U∗2TAr(λ)V2, where Ar(λ) =


−In λIn

. . .
. . .

−In λIn
−In

 (8.11)

which, for λ = 0 becomes Âs(0) = −U∗2TV2 = −T̂ .
The fact that [ Âs(λ) −B̂s(λ) ] has full row rank r for all λ,∞ included, follows from

the identity[
0 Âs(λ) −B̂s(λ)

]
= T̂ V ∗2

[
Ar(λ) −Br(λ)

]
diag(V, In).

The fact that
[
Âs(λ)

Ĉs(λ)

]
has full column rank r for all λ, ∞ included, follows from the

dual identity  0

Âs(λ)

Ĉs(λ)

 = diag(U∗, Im)

[
Ac(λ)
Cc(λ)

]
U2T̂ .

Together, these properties guarantee that L̂s(λ) is a strongly minimal linear

polynomial system matrix. Its transfer function Ĉs(λ)Âs(λ)−1B̂s(λ) + D̂s(λ) can
then be obtained from a particular dual basis N(λ) ∈ C(λ)n×(r+n) of [ Âs(λ) −B̂s(λ) ],
by using Lemma 8.1.1. Since[

0 0 0

0 Âs(λ) −B̂s(λ)

]
diag(V ∗, In) = U∗

[
As(λ) −Bs(λ)

]
= U∗T

[
Ar(λ) −Br(λ)

]
,

(8.12)
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it follows that

[
0 0 0

0 Âs(λ) −B̂s(λ)

]
diag(V ∗, In)


λd−1In
...
λIn
In

 = 0

and hence that

[
Âs(λ) −B̂s(λ)

]
diag(

[
0 Ir

]
V ∗, In)


λd−1In
...
λIn
In

 = 0.

Therefore, by setting

N(λ)T := diag(
[

0 Ir
]
V ∗, In)


λd−1In
...
λIn
In

 ∈ C[λ](r+n)×n,

we have that N(λ) is a dual basis of [ Âs(λ) −B̂s(λ) ] with its rightmost block equal to
In. By Lemma 8.1.1, and using the fact that

Ĉs(λ)
[

0 Ir
]
V ∗ =

[
0 Ĉs(λ)

]
V ∗ = Cs(λ),

we obtain that

[
Ĉs(λ) D̂s(λ)

]
N(λ)T =

[
Cs(λ) Ds(λ)

]

λd−1In
...
λIn
In

 = P (λ)

is the transfer function of L̂s(λ). �

Remark 8.1.3. Once the unitary matrices U and V and the matrix T̂ in (8.8)
are computed, Theorem 8.1.2 yields an efficient and stable algorithm for computing
the strongly minimal linear realization {Âs(λ), B̂s(λ), Ĉs(λ), D̂s(λ)} of P (λ). An

expensive method for computing U , V and T̂ is to compute the SVD of T . A cheaper
method is to use the complete orthogonal decomposition in [45, Sec. 5.4.2], which
amounts to compute two QR factorizations. The block Hankel structure of T (which
by flipping the order of the block rows becomes block Toeplitz) allows us to use the
very fast and stable method in [88, Sec. IV], which makes all the computations
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on m × n submatrices. The method in [88] has the additional advantage that if
rd = rank(Pd), then the rows of U∗(1 : (m − rd), 1 : m) and the columns of V (1 :
n, 1 : (n − rd)) (where we used MATLAB’s notation) of the computed U and V
are, respectively, unitary bases of the left and right nullspaces of Pd. Recall that
these subspaces are precisely the left and right eigenspaces associated to the infinite
eigenvalue of P (λ) when P (λ) is regular.

Remark 8.1.4. Even though the pencil Ls(λ) in (8.5) is not a Rosenbrock polyno-
mial system matrix and neither is a GLR-linearization of P (λ) if Pd is rectangular
or square and singular, it is easy to see, by using unimodular transformations that
are well-known in the literature, that it has the same finite eigenvalues as P (λ) with
the same partial multiplicities. For this purpose, note that

V (λ)Ls(λ)W (λ) = diag(−T, P (λ)),

where

V (λ) :=


1
0 1
...

. . .
. . .

0 · · · 0 1
λd−1 · · · λ2 λ 1

⊗ Im, W (λ) :=


1 λ λ2 . . . λd−1

1 λ
. . .

...
. . .

. . . λ2

1 λ
1

⊗ Im.

Since the polynomial matrices V (λ) and W (λ) are unimodular, and diag(−T, P (λ))
is strictly equivalent to diag(0, Ir, P (λ)), this implies that Ls(λ) is unimodularly
equivalent to diag(0, Ir, P (λ)). Therefore, Ls(λ) and P (λ) have the same finite ei-
genvalues with the same partial multiplicities. Of course, this also follows from
Theorem 8.1.2 and the properties of strongly minimal linearizations studied in Sec-
tion 7.2.2. However, note that Ls(λ) is not a GLR-linearization of P (λ) because
Ls(λ) is not unimodularly equivalent to diag(I, P (λ)).

On the other hand, if we consider the pencil L̂s(λ) in (8.10), then Theorem

8.1.2 proves that Ls(λ) is strictly equivalent to diag(0, L̂s(λ)). Combining the re-

sults above, we see that L̂s(λ) and diag(Ir, P (λ)) have the same normal rank and

the same finite eigenvalues and partial multiplicities, which implies that L̂s(λ) and

diag(Ir, P (λ)) are unimodularly equivalent [39] and, therefore, that L̂s(λ) is a GLR-
linearization of P (λ). This is a particular instance of the result mentioned in Sec-
tion 7.2.2 that any minimal linear polynomial system matrix of P (λ) is a GLR-
linearization of P (λ).

8.2 For self-conjugate polynomial matrices

The main purpose of this section is to prove that the strongly minimal lineariza-
tion (8.10) of the matrix polynomial P (λ) developed in Theorem 8.1.2 inherits the
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structure of P (λ) for any of the four structures considered in this work.
We start by reviewing the four structures of interest in this chapter and their

properties. In these definitions, note that if P (λ) is the complex polynomial matrix
in (8.2), then

[P (λ)]∗ := P ∗0 + P ∗1 λ+ · · ·+ P ∗dλ
d
.

The considered self-conjugate structures are:

1. Hermitian polynomial matrices, which are defined as those satisfying [P (λ)]∗ =
P (λ). Equivalently, they are Hermitian for λ ∈ R or have Hermitian coeffi-
cients P ∗i = Pi. They have a set of eigenvalues Λ that is symmetric with
respect to the real axis: Λ = Λ.

2. Skew-Hermitian polynomial matrices, which are defined as those satisfying
[P (λ)]∗ = −P (λ). Equivalently, they are skew-Hermitian for λ ∈ R or have
skew-Hermitian coefficients P ∗i = −Pi. They have a set of eigenvalues Λ that
is symmetric with respect to the real axis: Λ = Λ.

3. Para-Hermitian polynomial matrices, which are those satisfying [P (λ)]∗ =
P (−λ). Equivalently, they are Hermitian for λ ∈ R, i.e., for λ on the imag-
inary axis, or have scaled Hermitian coefficients P ∗i = (−1)iPi. They have
a set of eigenvalues Λ that is symmetric with respect to the imaginary axis:
Λ = −Λ.

4. Para-skew-Hermitian polynomial matrices, which are defined as those satisfy-
ing [P (λ)]∗ = −P (−λ). Equivalently, they are skew-Hermitian for λ ∈ R or
have skew-Hermitian scaled coefficients P ∗i = (−1)(i+1)Pi. They have a set of
eigenvalues Λ that is symmetric with respect to the imaginary axis: Λ = −Λ.

When the polynomial matrix P (λ) has real coefficients Pi, these conditions become
conditions on the transpose of each Pi, and the polynomial matrices are said to be
symmetric, skew-symmetric, para-symmetric and para-skew-symmetric.

We first point out that the block Hankel matrix T defined in (8.6) and its com-
pression (8.8) inherit particular properties from the self-conjugate structures defined
above.

Lemma 8.2.1. Let P (λ) ∈ C[λ]m×m be a polynomial matrix as in (8.2). Let us
define the scaling matrix S := diag((−1)(d−1)Im, . . . , (−1)2Im,−Im). Then the block
Hankel matrix T in (8.6) satisfies the following equations

1. for Hermitian P (λ): P ∗i = Pi and T ∗ = T ,

2. for skew-Hermitian P (λ): P ∗i = −Pi and T ∗ = −T ,

3. for para-Hermitian P (λ): P ∗i = (−1)iPi and (ST )∗ = ST ,
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4. for para-skew-Hermitian P (λ): P ∗i = (−1)(i+1)Pi and (ST )∗ = −ST .

The left and right transformations U and V of Theorem 8.1.2 can then be chosen
as U = V in the Hermitian and skew-Hermitian cases and as U = SV in the
para-Hermitian and para-skew-Hermitian cases.

Proof. The symmetries of the coefficient matrices Pi trivially yield the four types
of symmetries of T mentioned in the Theorem. For the compression (8.8), we can
then choose U = V in the Hermitian and skew-Hermitian cases because T is normal,
and we can choose U = SV in the para-Hermitian and para-skew-Hermitian cases
because ST is then normal. �

This implies that in the decomposition of Theorem 8.1.2, it suffices to construct
a transformation V that compresses the columns of T in order to obtain a rank r
factorization

U∗TV =

[
0 0

0 T̂

]
=

[
0 0
0 U∗2TV2

]
(8.13)

where T̂ is r × r and is invertible. This then leads to the following theorem.

Theorem 8.2.2. Let P (λ) ∈ C[λ]m×m be a polynomial matrix as in (8.2), with a
Hermitian, skew-Hermitian, para-Hermitian or para-skew-Hermitian structure. Let
U, V be the unitary matrices appearing in (8.8), where U = V in the Hermitian and
skew-Hermitian cases, and U = SV in the para-Hermitian and para-skew-Hermitian
cases with S := diag((−1)(d−1)Im, . . . , (−1)2Im,−Im). Then the linear polynomial
system matrix

L̂s(λ) :=

[
Âs(λ) −B̂s(λ)

Ĉs(λ) D̂s(λ)

]
,

defined in Theorem 8.1.2, is a strongly minimal linear polynomial system matrix of
P (λ) with the same self-conjugate structure as P (λ).

Proof. Let us denote the original pencil in (8.5) as

Ls(λ) = L0 + λL1,

then we have the following properties in the four self-conjugate cases :

1. for Hermitian P (λ),
L∗0 = L0, and L∗1 = L1,

2. for skew-Hermitian P (λ),

L∗0 = −L0, and L∗1 = −L1,
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3. for para-Hermitian P (λ),

L∗0 diag(S, Im) = diag(S, Im)L0, and L∗1 diag(S, Im) = − diag(S, Im)L1,

4. for para-skew-Hermitian P (λ),

L∗0 diag(S, Im) = − diag(S, Im)L0, and L∗1 diag(S, Im) = diag(S, Im)L1.

If we choose in the first two cases U = V , and in the last two cases U = SV then
we obtain for the transformed pair of matrices

L̃0 := diag(U∗, Im)L0 diag(V, Im), and L̃1 := diag(U∗, Im)L1 diag(V, Im)

the properties

1. for Hermitian P (λ),
L̃∗0 = L̃0, and L̃∗1 = L̃1,

2. for skew-Hermitian P (λ),

L̃∗0 = −L̃0, and L̃∗1 = −L̃1,

3. for para-Hermitian P (λ),

L̃∗0 = L̃0, and L̃∗1 = −L̃1,

4. for para-skew-Hermitian P (λ),

L̃∗0 = −L̃0, and L̃∗1 = L̃1,

and moreover, their first m(d− 1)− r columns and rows are zero because of (8.13).
The pencil L̃s(λ) thus has the same self-conjugate structure as P (λ), and so does

the deflated pencil L̂s(λ). The strong minimality follows from Theorem 8.1.2. �

Remark 8.2.3. We remark that the procedure presented in Theorem 8.1.2 has an
interpretation in terms of strongly minimal realizations of strictly proper rational
matrices that have all its poles at 0. To see that, we apply the change of variable
λ = 1/µ to the system matrix[

λE − F λG

λH 0

]
:=

[
Âs(λ) −B̂s(λ)

Ĉs(λ) 0

]
and we multiply it by µ. Then, we obtain a new linear polynomial system matrix[

E − µF G

H 0

]
,
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whose transfer function matrix is

H(µF − E)−1G = P2 µ
−1 + P3 µ

−2 + · · ·+ Pd µ
−(d−1). (8.14)

It can be proved that new system is also strongly minimal. This means that the triple
{E − µF,−G,H} is a strongly minimal realization of the strictly proper transfer
function in (8.14), which has all its poles at µ = 0. Moreover, the minimal degree of

det(E − µF ) is known to be r = rankT , since, according to (8.11), Âs(0) = −F =

−T̂ is nonsingular.

We give a general procedure for the construction of strongly minimal realizations
of arbitrary strictly proper rational matrices in Section 8.3.

8.3 For arbitrary strictly proper rational matrices

For strictly proper rational matrices Rsp(λ) ∈ C(λ)m×n, we represent them via a
Laurent expansion around the point at infinity:

Rsp(λ) := R−1λ
−1 +R−2λ

−2 +R−3λ
−3 + . . . (8.15)

In this section, we obtain strongly minimal linearizations for such strictly proper
rational matrices by using the algorithm in [48, Section 3.4], as we explain in the se-
quel. Let the block Hankel matrix H and shifted block Hankel matrix Hσ associated
with Rsp(λ) be denoted as

H :=


R−1 R−2 . . . R−k

R−2 ..
.

R−k−1

... ..
.

..
. ...

R−k R−k−1 . . . R−2k+1

 , Hσ :=


R−2 R−3 . . . R−k−1

R−3 ..
.
R−k−2

... ..
.

..
. ...

R−k−1 R−k−2 . . . R−2k

 ,
(8.16)

then for sufficiently large k the rank rf of H equals the total polar degree of the finite
poles, i.e., the sum of the degrees of the denominators in the Smith McMillan form
of Rsp(λ) [55]. The general theory for Hankel based realizations of proper transfer
function matrices in [48, Section 3.4], implies that the following Rosenbrock linear
system matrix in Theorem 8.3.1 is a strongly minimal linearization for the strictly
proper rational matrix Rsp(λ).

Theorem 8.3.1. Let Rsp(λ) ∈ C(λ)m×n be a strictly proper rational matrix as in
(8.15). Let H and Hσ be the block Hankel matrices in (8.16) and rf := rankH. Let
U :=

[
U1 U2

]
and V :=

[
V1 V2

]
be unitary matrices such that

U∗HV =

[
Ĥ 0
0 0

]
=

[
U∗1HV1 0

0 0

]
, (8.17)
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where Ĥ is rf × rf and invertible. Let us now partition the matrices U1 and V1 as
follows

U1 =

[
U11

U21

]
, and V1 =

[
V11

V21

]
, (8.18)

where the matrices U11 and V11 have dimension m × rf and n × rf , respectively.
Then

Lsp(λ) :=

[
U∗1HσV1 − λĤ ĤV ∗11

U11Ĥ 0

]
(8.19)

is a strongly minimal linearization for Rsp(λ). In particular, Rsp(λ) = U11Ĥ(λĤ −
U∗1HσV1)−1ĤV ∗11.

8.4 For self-conjugate strictly proper rational ma-

trices

If a strictly proper rational matrix Rsp(λ) ∈ C(λ)m×m have one of the four self-
conjugate structures considered in this chapter, we use Theorem 8.3.1 and the ideas
developed in Chapter 3 (Remarks 3.5.6 and 3.7.4) to construct strongly mininimal
self-conjugate linearizations for Rsp(λ). First notice that the block Hankel matrices
H and Hσ in (8.16) have the following self-conjugate property depending on that of
Rsp(λ).

Lemma 8.4.1. Let Rsp(λ) ∈ C(λ)m×m be a strictly proper rational matrix as in
(8.15). Let us define the scaling matrix S := diag(−Im, (−1)2Im, . . . , (−1)kIm).
Then the block Hankel matrices H and Hσ in (8.16) satisfy the following equations

1. for Hermitian Rsp(λ): R∗−i = R−i, H
∗ = H and H∗σ = Hσ,

2. for skew-Hermitian Rsp(λ): R∗−i = −R−i, H∗ = −H and H∗σ = −Hσ,

3. for para-Hermitian Rsp(λ): R∗−i = (−1)iR−i, (SH)∗ = −SH and (SHσ)∗ =
SHσ,

4. for para-skew-Hermitian Rsp(λ): R∗−i = (−1)(i+1)R−i, (SH)∗ = SH and
(SHσ)∗ = −SHσ.

For each of these cases, the left and right transformations U and V in (8.17) can
be chosen as U = V in the Hermitian and skew-Hermitian cases and as U = SV in
the para-Hermitian and para-skew-Hermitian cases.

Proof. The symmetries of the coefficient matrices Ri trivially yield the four types
of symmetries of H and Hσ. For the rank compression (8.17), we can then choose
U = V in the Hermitian and skew-Hermitian cases because H is normal, and we
can choose U = SV in the para-Hermitian and para-skew-Hermitian cases because
SH is then normal. �
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We can now use Lemma 8.4.1 and Theorem 8.3.1 to obtain the following strongly
minimal linearizations for the four considered structures.

Theorem 8.4.2. Let Rsp(λ) ∈ C(λ)m×m be a strictly proper rational matrix as in
(8.15), and let H and Hσ be the associated block Hankel matrices appearing in (8.16).
Let U, V be the unitary matrices appearing in (8.17), where U = V if Rsp(λ) is Her-
mitian or skew-Hermitian, and U = SV if Rsp(λ) is para-Hermitian or para-skew-
Hermitian, and where S := diag(−Im, (−1)2Im, . . . , (−1)kIm). Finally, let U1, V1 be

the km× rf matrices formed by the first rf columns of U and V , respectively, Ĥ be
the rf × rf defined in (8.17) and U11, V11 be the m× rf matrices defined in (8.18).

1. If Rsp(λ) is Hermitian, then Ĥ∗ = Ĥ, H∗σ = Hσ, and

Lsp(λ) :=

[
V ∗1 HσV1 − λĤ ĤV ∗11

V11Ĥ 0

]

is a Hermitian strongly minimal linear polynomial system matrix of Rsp(λ).

2. If Rsp(λ) is skew-Hermitian, then Ĥ∗ = −Ĥ, H∗σ = −Hσ, and

Lsp(λ) :=

[
V ∗1 HσV1 − λĤ ĤV ∗11

V11Ĥ 0

]

is a skew-Hermitian strongly minimal linear polynomial system matrix of Rsp(λ).

3. If Rsp(λ) is para-Hermitian, then Ĥ∗ = −Ĥ, (SHσ)∗ = SHσ, and

Lsp(λ) :=

[
V ∗1 SHσV1 − λĤ ĤV ∗11

− V11Ĥ 0

]

is a para-Hermitian strongly minimal linear polynomial system matrix of Rsp(λ).

4. If Rsp(λ) is para-skew-Hermitian, then Ĥ∗ = Ĥ, (SHσ)∗ = −SHσ, and

Lsp(λ) :=

[
V ∗1 SHσV1 − λĤ ĤV ∗11

− V11Ĥ 0

]

is a para-skew-Hermitian strongly minimal linear polynomial system matrix of
Rsp(λ).

Proof. 1. If Rsp(λ) is Hermitian, then Lemma 8.4.1 and (8.17) imply that H∗ =

H, H∗σ = Hσ, U1 = V1, and U11 = V11. The result then follows from Ĥ =

V ∗1 HV1 = Ĥ∗ and (8.19).
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2. If Rsp(λ) is skew-Hermitian, then Lemma 8.4.1 and (8.17) imply that H∗ =
−H, H∗σ = −Hσ, U1 = V1, and U11 = V11. The result then follows from

Ĥ = V ∗1 HV1 = −Ĥ∗ and (8.19).

3. If Rsp(λ) is para-Hermitian, then Lemma 8.4.1 and (8.17) imply that (SH)∗ =
−SH, (SHσ)∗ = SHσ, U1 = SV1, and U11 = −V11. The result then follows

from Ĥ = V ∗1 SHV1 = −Ĥ∗ and (8.19).

4. If Rsp(λ) is para-skew-Hermitian, then Lemma 8.4.1 and (8.17) imply that
(SH)∗ = SH, (SHσ)∗ = −SHσ, U1 = SV1, and U11 = −V11. The result then

follows from Ĥ = V ∗1 SHV1 = Ĥ∗ and (8.19).
�

8.5 For arbitrary and self-conjugate rational ma-

trices

For any given rational matrix R(λ) ∈ C(λ)m×n we assume that we have an additive
decomposition into its polynomial part P (λ) and its strictly proper part Rsp(λ) as
in (2.1). That is,

R(λ) = P (λ) +Rsp(λ). (8.20)

For the Laurent expansion given in (8.1), this corresponds to

P (λ) := R0 +R1λ+ . . .+Rdλ
d, Rsp(λ) := R−1λ

−1 +R−2λ
−2 +R−3λ

−3 + . . .

In this section, we obtain strongly minimal linearizations for arbitrary and structured
rational matrices by combining strongly minimal linearizations for both parts. The
construction for the polynomial part was given in Sections 8.1 and 8.2, and for the
strictly proper part in Sections 8.3 and 8.4. Although some partial results can be
found in the literature [40, 27, 19], the derivation given here is new and more general.

Once we have strongly minimal linearizations for both the polynomial part and
the strictly proper part of a given rational matrix, it is straightforward to construct
a strongly minimal linearization for the sum, as shown below.

Theorem 8.5.1. Let R(λ) ∈ C(λ)m×n be an arbitrary rational matrix, i.e., regular
or singular. Let R(λ) = P (λ) + Rsp(λ) where P (λ) is the polynomial part of R(λ)
and Rsp(λ) is the strictly proper part of R(λ). Let

L̂s(λ) :=

[
Âs(λ) −B̂s(λ)

Ĉs(λ) D̂s(λ)

]
, and Lsp(λ) :=

[
Asp(λ) −Bsp(λ)

Csp(λ) 0

]
, (8.21)
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be strongly minimal linear polynomial system matrices of P (λ) and Rsp(λ) as des-
cribed in Theorems 8.1.2 and 8.3.1, respectively. Then

L(λ) :=

 Âs(λ) 0 −B̂s(λ)
0 Asp(λ) −Bsp(λ)

Ĉs(λ) Csp(λ) D̂s(λ)

 (8.22)

is a strongly minimal linearization of R(λ).

Proof. The transfer function of L(λ) is clearly

D̂s(λ) + Ĉs(λ)Âs(λ)−1B̂s(λ) + Csp(λ)Asp(λ)−1Bsp(λ) = P (λ) +Rsp(λ) = R(λ).

The strong minimality of L(λ) follows from the fact that the subsystems L̂s(λ) and
Lsp(λ) are strongly minimal and have no common poles. �

For the construction of self-conjugate strongly minimal linearizations of struc-
tured rational matrices we proceed in the same way and obtain the following result.

Theorem 8.5.2. Let R(λ) ∈ C(λ)m×m be an arbitrary rational matrix, i.e., regular
or singular, which has one of the following structures: Hermitian, skew-Hermitian,
para-Hermitian or para-skew-Hermitian. Let R(λ) = P (λ) + Rsp(λ) where P (λ) is
the polynomial part of R(λ) and Rsp(λ) is the strictly proper part of R(λ). Let

L̂s(λ) :=

[
Âs(λ) −B̂s(λ)

Ĉs(λ) D̂s(λ)

]
, and Lsp(λ) :=

[
Asp(λ) −Bsp(λ)

Csp(λ) 0

]
, (8.23)

be strongly minimal linear polynomial system matrices of P (λ) and Rsp(λ) as descri-
bed in Theorems 8.2.2 and 8.4.2, respectively, according to the corresponding struc-
ture of R(λ). Then

L(λ) :=

 Âs(λ) 0 −B̂s(λ)
0 Asp(λ) −Bsp(λ)

Ĉs(λ) Csp(λ) D̂s(λ)

 (8.24)

is a strongly minimal linearization of R(λ) with the same self-conjugate structure as
R(λ).

Proof. L(λ) is a strongly minimal linearization of R(λ) by using the same proof as
that of Theorem 8.5.1. That the self-conjugate structure of R(λ) and L(λ) are the

same, follows from the fact that the self-conjugate structures of L̂s(λ) and Lsp(λ)
coincide with that of R(λ). �
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8.6 Algorithmic aspects

The constructive proofs given in the earlier sections in fact lead to possible algo-
rithms for computing strongly minimal linearizations of rational matrices, provided
the Laurent expansion (8.1) is given up to the term R−2k. The two decompositions
that are required for the construction of the linearizations are the rank factorizations
of the matrices T in (8.13) and H in (8.17). Moreover, because of the symmetry in
these problems, only the right transformation has to be computed in the structured
cases.

It is worth pointing out also that both factorizations only require to construct
unitary transformations that “compress” the rows and columns of a given matrix,
which can be obtained by a QR factorization. Efficient algorithms that exploit
the special block-Hankel and or block-Toeplitz structure can be found in the litera-
ture [49, 88]. We imposed no conditions of the normal rank of the rational matrix,
although the self-conjugate structure imposes that they are square. There can there-
fore be a left and a right null space and their structural indices will be equal because
of the self-conjugate nature of the transfer function and the system matrix.

Since the linear polynomial system matrices derived here are strongly minimal
and structured, one can use the properties of such pencils to compute efficiently
the left and right eigenvectors in the regular case, and the left and right null space
structure in the singular case.
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Chapter 9

Structural backward stability in
rational eigenvalue problems
solved via block Kronecker
linearizations

In this chapter we study the backward stability of running a backward stable eigen-
structure solver on a pencil S(λ) that is a strong linearization of a rational matrix
R(λ) expressed in the form R(λ) = D(λ) +C(λI`−A)−1B, where D(λ) is a polyno-
mial matrix and C(λI`−A)−1B is a minimal state-space realization. We consider the
family of block Kronecker linearizations of R(λ), which have the following structure

S(λ) :=

 M(λ) K̂T
2 C KT

2 (λ)

BK̂1 A− λI` 0
K1(λ) 0 0

 ,
where the blocks have some specific structures. Backward stable eigenstructure
solvers, such as the QZ or the staircase algorithms, applied to S(λ) will compute
the exact eigenstructure of a perturbed pencil

Ŝ(λ) := S(λ) + ∆S(λ)

and the special structure of S(λ) will be lost, including the zero blocks below the
anti-diagonal. In order to link this perturbed pencil with a nearby rational matrix,
we construct in this chapter a strictly equivalent pencil

S̃(λ) = (I −X)Ŝ(λ)(I − Y )

that restores the original structure, and hence is a block Kronecker linearization
of a perturbed rational matrix R̃(λ) = D̃(λ) + C̃(λI` − Ã)−1B̃, where D̃(λ) is a
polynomial matrix with the same degree as D(λ). Moreover, we bound appropriate

173
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norms of D̃(λ)−D(λ), C̃−C, Ã−A and B̃−B in terms of an appropriate norm of
∆S(λ). These bounds may be, in general, inadmissibly large, but we also introduce
a scaling that allows us to make them satisfactorily tiny, by making the matrices
appearing in both S(λ) and R(λ) have norms bounded by 1. Thus, for this scaled
representation, we prove that the staircase and the QZ algorithms compute the
exact eigenstructure of a rational matrix R̃(λ) that can be expressed in exactly the
same form as R(λ) with the parameters defining the representation very near to
those of R(λ). This shows that this approach is backward stable in a structured
sense. All the results in this chapter appear in [33].

9.1 Some preliminaries

A wide family of strong linearizations called strong block minimal bases linearizations
is proposed in [6, Theorem 5.11] for any m × n rational matrix R(λ), inspired
by previous results for polynomial matrices in [26] (recall Theorem 2.5.5). These
linearizations are based on the splitting of R(λ) into its strictly proper part Rp(λ)
and its polynomial part D(λ) and in the representation:

R(λ) := Rp(λ) +D(λ) = C(λI` − A)−1B +
d∑
i=0

Diλ
i, (9.1)

where C(λI` − A)−1B is a minimal state-space realization of the strictly proper
part Rp(λ), represented in what follows by the triple {A,B,C}, and d > 1 is
the degree of the polynomial part. Then R(λ) is represented by the quadruple
{λI` −A,B,C,D(λ)}. Since in this chapter we are analyzing perturbations related
to backward errors of eigenvalue solvers of pencils with real or complex matrix co-
efficients, we restrict F to be the real field R or the complex field C.

A particular case of the strong block minimal bases linearizations in [6, Theorem
5.11] of any m × n rational matrix R(λ) represented as in (9.1) are (modulo block
permutations) the pencils of the form

S(λ) :=

 M(λ) K̂T
2 C KT

2 (λ)

BK̂1 A− λI` 0
K1(λ) 0 0

 , (9.2)

with

K1(λ) := Lε(λ)⊗ In, K̂1 := eTε+1 ⊗ In, K2(λ) := Lη(λ)⊗ Im, K̂2 := eTη+1 ⊗ Im,

and where ⊗ denotes the Kronecker product, ek = [0 · · · 0 1]T is the standard kth
unit vector of dimension k and Lk(λ) is the classical Kronecker block of dimension
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k × (k + 1)

Lk(λ) :=


1 −λ

1 −λ
. . .

. . .

1 −λ

 .
Moreover, the block M(λ) in (9.2) is related to the polynomial part D(λ) in (9.1)
by the “dual basis” vector Λk(λ) of powers of λ,

ΛT
k (λ) :=

[
λk · · · λ2 λ 1

]
,

which satisfies Lk(λ)Λk(λ) = 0 and also

D(λ) = (Λη(λ)⊗ Im)TM(λ)(Λε(λ)⊗ In).

Thus, d = ε+η+1 (see [26, eq. (4.5)]). The strong linearizations (9.2) are inspired by
the so-called “block Kronecker linearizations” that were introduced in [26, Section
4] for an arbitrary m×n polynomial matrix D(λ). Therefore, we use the same name
in the rational setting. The representation of R(λ) in (9.1) and the block Kronecker
linearizations S(λ) of R(λ) (9.2) are the two fundamental ingredients of this chapter.

As explained in [6, Section 3.1], the finite eigenvalues, together with their partial
multiplicities, of S(λ) (resp. A− λI`) coincide with the finite zeros (resp. poles) of
R(λ), together with their partial multiplicities. Moreover, the eigenvalue structure
at infinity of S(λ) allows us to obtain via a simple shift rule the pole-zero structure
at infinity of R(λ).1 In addition, as proved in [8, Section 6], the right (resp. left)
minimal indices of S(λ) are those of R(λ) plus ε (resp. η). Thus, S(λ) comprises the
complete eigenstructure of R(λ). Observe that the application to S(λ) of the QZ
algorithm [71], in the regular case, or of the staircase algorithm [83], in the singular
case, gives the zeros and the minimal indices, in the singular case, of R(λ), but not
the poles, which are in A− λI`.

It is worth mentioning that although the families of block Kronecker lineariza-
tions of polynomial [26] and rational [6] matrices are very recent, some particular
examples of strong linearizations in these families appeared much earlier in the litera-
ture. For instance, it was shown in [87] that a valid “realization” for the polynomial
part D(λ) in (9.1) is given by the following minimal polynomial system matrix

SD(λ) :=


In −λIn

In
. . .
. . . −λIn

In −λIn
λDd . . . . . . λD2 λD1 +D0

 :=

[
T (λ) −U(λ)
V (λ) W (λ)

]
,

1More precisely, according to [6, p. 1683], if r is the normal rank of R(λ) and e1 ≤ · · · ≤ er are
the r largest partial multiplicities at infinity of S(λ), then e1 − d ≤ · · · ≤ er − d are the structural
indices at infinity of R(λ).
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which means that D(λ) = W (λ) + V (λ)T (λ)−1U(λ). It is easy to see that after
moving the bottom block row of SD(λ) to the top position, a block Kronecker
linearizarion of D(λ) is obtained with K2(λ) empty [26, Section 4]. Combining the
minimal state-space realization C(λI` − A)−1B and the polynomial system matrix
SD(λ) yields the following minimal polynomial system matrix for the rational matrix
R(λ) in (9.1) :

SR(λ) :=



A− λI` B

In −λIn

In
. . .

. . . −λIn
In −λIn

C λDd . . . . . . λD2 λD1 +D0


:=

[
TR(λ) −UR(λ)

VR(λ) WR(λ)

]
,

i.e., R(λ) = WR(λ)+VR(λ)TR(λ)−1UR(λ). A pencil with a structure similar to SR(λ)
can also be found in [79]. It is easy to see that, modulo some block permutations,
SR(λ) is a particular case of the block Kronecker linearizations appearing in (9.2)

for R(λ), with K2(λ) empty and K̂2 = Im.
It was shown in [26] that perturbations of the block Kronecker linearizations of

a polynomial matrix D(λ) can be mapped to perturbations of the coefficients of
D(λ) without significant growth of the relative norms of the perturbations under
mild assumptions that require to scale D(λ) to have norm equal to 1 and to use
linearizations with the norm of M(λ) of the same order as the norm of D(λ) (see
[26, Corollary 5.24]). As a corollary of this perturbation result, we obtain that
under such assumptions the computation of the eigenvalues and minimal indices of
a polynomial matrix by applying the QZ or the staircase algorithm to one of its
block Kronecker linearizations is a backward stable method from the point of view
of the polynomial matrix. In this chapter we show that this can be extended to
rational matrices as well, considering as coefficients of the rational matrix those in
the quadruple {λI`−A,B,C,D(λ)}. However, we emphasize that the perturbation
analysis for block Kronecker linearizations of rational matrices is considerably more
complicated than the one in [26] and, therefore, we limit ourselves to perform a
first order analysis. We also remark that the scaling needed to get satisfactory
perturbation bounds is more delicate than the one in [26]. As far as we know, this is
the first structural backward error analysis of this type performed in the literature
for linearizations of rational matrices.

We assume throughout the chapter that ` > 0 since, otherwise, R(λ) in (9.1) is
a polynomial matrix and this case was studied in [26]. Except in Section 9.6, we
also assume that at least one of the parameters ε and η in (9.2) is larger than zero
since, otherwise, none of the blocks K1(λ) and K2(λ) appears and block Kronecker
linearizations collapse to much simpler pencils. Note that max(η, ε) > 0 implies that
the degree d of the polynomial part D(λ) of R(λ) is larger than 1. The simple case
d ≤ 1 is studied in Section 9.6.
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9.1.1 Norms

In order to measure perturbations, we need to introduce appropriate norms for
pencils, polynomial matrices and rational matrices expressed as in (9.1). For any
pair of matrices X and Y of arbitrary dimensions (that might be different), we will
use the following norms

‖(X, Y )‖F :=
(
‖X‖2

F + ‖Y ‖2
F

) 1
2 = ‖ [vec(X)T , vec(Y )T ] ‖2,

‖(X, Y )‖2 :=
(
‖X‖2

2 + ‖Y ‖2
2

) 1
2 ,

where ‖X‖F and ‖X‖2 are, respectively, the Frobenius and spectral matrix norms
and vec(X) is the operator that stacks the columns of a matrix into one column
vector [50]. For a pencil S(λ) := A−λB we define the corresponding norms via the
two matrix coefficients :

‖S(λ)‖F := ‖(A,B)‖F , ‖S(λ)‖2 := ‖(A,B)‖2.

More generally, for a polynomial matrix D(λ) :=
∑d

i=0 Diλ
i, we will use the norm

‖D(λ)‖F :=

√√√√ d∑
i=0

‖Di‖2
F ,

and for a list of polynomial matrices (D1(λ), . . . , Dp(λ)), the norm

‖(D1(λ), . . . , Dp(λ))‖F :=

√√√√ p∑
i=1

‖Di(λ)‖2
F .

Finally, for a rational matrix R(λ), represented by a quadruple {λI`−A,B,C,D(λ)},
as in (9.1), we use the “norm”

‖R(λ)‖F := ‖(λI` − A,B,C,D(λ))‖F =

√√√√`+ ‖A‖2
F + ‖B‖2

F + ‖C‖2
F +

d∑
i=0

‖Di‖2
F .

That is, the “norm” of a rational matrix R(λ) is defined as the norm of an associated
polynomial system matrix P (λ), in this case,

‖R(λ)‖F := ‖P (λ)‖F where P (λ) :=

[
λI` − A −B
C D(λ)

]
. (9.3)

We remark that ‖R(λ)‖F is not rigorously a “norm” for R(λ) because, for instance,
R(λ) is zero if B = 0 and D(λ) = 0, but ‖R(λ)‖F is not. Despite this fact, and
with a clear abuse of nomenclature, we will use the terminology “norm of a rational
matrix” in the sense explained above.

We describe in Section 9.2 the basic systems of matrix equations we will use
in this chapter, and, in Section 9.3, some bounds for the singular values of certain
matrices related to these systems of matrix equations.
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9.2 Generalized Sylvester equations

In order to restore the structure of perturbed block Kronecker linearizations of ratio-
nal matrices, we will need to guarantee that some matrix equations have solutions
and to bound the norm of their minimal norm solution. The matrix equations
that we will encounter are particular cases of the generalized Sylvester equation for
mi×ni pencils of matrices Ai− λBi, i = 1, 2, which is the following equation in the
unknowns X and Y :

X(A1 − λB1) + (A2 − λB2)Y = ∆a − λ∆b. (9.4)

It is easily seen to be equivalent to a linear system of equations, when rewriting it
as

XA1 + A2Y = ∆a,

XB1 +B2Y = ∆b,

or, when using Kronecker products and the vec(·) notation, as[
AT1 ⊗ Im2 In1 ⊗ A2

BT
1 ⊗ Im2 In1 ⊗B2

] [
vec(X)
vec(Y )

]
=

[
vec(∆a)
vec(∆b)

]
. (9.5)

The dimension of the unknowns X and Y are m2 ×m1 and n2 × n1, respectively,
and those of the right hand sides ∆a and ∆b are each m2×n1. These equations will
be used in this chapter in two contexts, which we briefly recall here.

9.2.0.1 Block elimination

Let Ai − λBi be two mi × ni pencils, i = 1, 2, that have respectively full column
normal rank n1 and full row normal rank m2. Then the problem of block anti-

diagonalizing the pencil

[
0 A1 − λB1

A2 − λB2 ∆a − λ∆b

]
, that is, finding X and Y such

that[
Im1 0
−X Im2

] [
0 A1 − λB1

A2 − λB2 ∆a − λ∆b

] [
In2 −Y
0 In1

]
=

[
0 A1 − λB1

A2 − λB2 0

]
,

(9.6)

amounts to finding a solution for the generalized Sylvester equation (9.4). It is
known that there exists a solution (X, Y ) ∈ Fm2×m1 × Fn2×n1 for a particular right
hand side (∆a,∆b) ∈ Fm2×n1 × Fm2×n1 if and only if the pencils[

0 A1 − λB1

A2 − λB2 ∆a − λ∆b

]
and

[
0 A1 − λB1

A2 − λB2 0

]
are strictly equivalent (i.e. have the same Kronecker structure) [23]. But in order to
have a solution for any right hand side ∆a−λ∆b one requires the stronger condition
that the pencils A1 − λB1 and A2 − λB2 have no common generalized eigenvalues
(see [86]). We recall here the result proven in [86] that is relevant for our work.
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Theorem 9.2.1. [86] Let the pencils Ai − λBi of dimensions mi × ni, i = 1, 2, be
respectively of full column normal rank n1 ≤ m1 and of full row normal rank m2 ≤
n2, and let these two pencils have no common generalized eigenvalues. Then there
always exists a solution (X, Y ) to the system of equations (9.6), for any perturbation
∆a − λ∆b. Moreover, the generalized eigenvalues of the pencil (9.6) are the union
of the generalized eigenvalues of the pencils Ai − λBi, i = 1, 2.

The system is underdetermined if either of the two inequalities m1 ≥ n1 and
n2 ≥ m2, is strict. Under the hypotheses of Theorem 9.2.1, the system (9.5) must
be compatible for any right hand side, and hence the Kronecker product matrix in
the left hand side of (9.5) must have full row rank 2m2n1. A bound for the minimum
Frobenius-norm solution (X, Y ) is then obtained in terms of the smallest singular
value σ2m2n1 of the matrix in (9.5):

‖(X, Y )‖F ≤
‖(∆a,∆b)‖F

σ2m2n1

([
AT1 ⊗ Im2 In1 ⊗ A2

BT
1 ⊗ Im2 In1 ⊗B2

]) . (9.7)

9.2.0.2 Equivalent pencils

The second problem in this chapter where a generalized Sylvester equation as in
(9.4) arises is that of strictly equivalent pencils (see e.g. [39]). Let the pencils
Ai − λBi, i = 1, 2, be both of dimension m × n, then they are strictly equivalent
if and only if there exist invertible matrices S and T such that S(A1 − λB1) =
(A2−λB2)T . Such pencils must then have the same Kronecker canonical form [39].
We are interested in finding the solution where S and T are as close as possible to
the identity matrix. This can be achieved by writing the transformation matrices as

S = I +X, T = I − Y

and then minimizing the Frobenius norm of the pair (X, Y ). The corresponding
equations are then

(I +X)(A1 − λB1) = (A2 − λB2)(I − Y )

or, when putting ∆a − λ∆b := (A2 − λB2)− (A1 − λB1), we finally obtain

X(A1 − λB1) + (A2 − λB2)Y = ∆a − λ∆b, (9.8)

which is again solved by using (9.5). We will use this to “restore” a slightly perturbed
pencil (A2−λB2) := (A1−λB1) + (∆a−λ∆b) to its original form (A1−λB1) using
a strict equivalence transformation

(I +X)−1(A2 − λB2)(I − Y ) = A1 − λB1 (9.9)
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that is very close to the identity, when we are sure that both pencils have the same
Kronecker canonical form. The bounds for the norm of X and Y are in fact given by
(9.7) for which we derive exact expressions in the next section. Notice that we can
not apply Theorem 9.2.1 to prove existence of a solution for equation (9.8), since
in this case both pencils must have the same generalized eigenvalues and the same
normal rank. A sufficient condition for the consistency of (9.8) is that A1−λB1 and
A2 − λB2 have the same Kronecker canonical form.

The condition that the Kronecker canonical form of a pencil does not change
under arbitrary sufficiently small perturbations only holds for very special pencils.
In particular, it holds for the Kronecker product of Kronecker blocks times identity
matrices, i.e., for Lk(λ) ⊗ Ir. This is a consequence of the results in [89], because
Lk(λ)⊗ Ir has full-Sylvester-rank by [89, Theorem 4.3(a)] and, then, [89, Theorem
6.6] guarantees that Lk(λ) ⊗ Ir + (∆a − λ∆b) has the same Kronecker canonical
form as Lk(λ)⊗ Ir for all the perturbations (∆a,∆b) whose norms are smaller than
the bounds in [89, Theorem 6.6]. Since we will solve (9.8)-(9.9) only in the case
A1−λB1 = Lk(λ)⊗Ir, these results prove that (9.8) has a solution for all sufficiently
small perturbations (∆a,∆b) in the cases of interest in this chapter.

9.3 Singular value bounds

In the analysis of Section 9.4, we will need upper bounds for the minimum norm so-
lutions of the generalized Sylvester equation (9.4) for pairs of pencils (Ai−λBi), i =
1, 2, which all involve Kronecker blocks Lk(λ) := Ek − λFk, where the k × (k + 1)
matrices Ek and Fk are given by

Ek :=


1 0

1 0
. . .

. . .

1 0

 and Fk :=


0 1

0 1
. . .

. . .

0 1

 .
To find such upper bounds is equivalent to find lower bounds for the singular values
in the denominator of the right hand side of (9.7). We consider the generalized
Sylvester equations for the following list of pencil pairs with their smallest singular
value of the corresponding linear maps:

1. A1 − λB1 = A− λI` and A2 − λB2 = Lε(λ)⊗ In:

ω1 := σ2`εn

[
AT ⊗ Iεn I` ⊗ Eε ⊗ In
I` ⊗ Iεn I` ⊗ Fε ⊗ In

]
. (9.10)

2. A1 − λB1 = LTη (λ)⊗ Im and A2 − λB2 = A− λI`:

ω2 := σ2ηm`

[
Eη ⊗ Im` Iηm ⊗ A
Fη ⊗ Im` Iηm ⊗ I`

]
. (9.11)
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3. A1 − λB1 = LTη (λ)⊗ Im and A2 − λB2 = Lε(λ)⊗ In:

ω3 := σ2ηmεn

[
Eη ⊗ Imεn Iηm ⊗ Eε ⊗ In
Fη ⊗ Imεn Iηm ⊗ Fε ⊗ In

]
. (9.12)

4. A1 − λB1 = Lk(λ)⊗ Ir and A2 − λB2 = Lk(λ)⊗ Ir:

ω4 := σ2(k+1)rkr

[
ET
k ⊗ Irkr I(k+1)r ⊗ Ek ⊗ Ir

F T
k ⊗ Irkr I(k+1)r ⊗ Fk ⊗ Ir

]
. (9.13)

In Lemma 9.3.1 we analyze the first problem and give a lower bound for ω1.

Lemma 9.3.1. Let ω1 be the singular value in (9.10). Then

ω1 ≥
1

1 + 2εmax(1, ‖A‖ε2)
. (9.14)

Proof. It follows from the properties of singular values of Kronecker products that
ω1 is also equal to

ω1 = σ2`ε

[
AT ⊗ Iε I` ⊗ Eε
I` ⊗ Iε I` ⊗ Fε

]
and using perfect shuffle permutations we also get

ω1 = σ2ε`

[
Iε ⊗ AT Eε ⊗ I`
Iε ⊗ I` Fε ⊗ I`

]
.

The smallest singular value σ2ε` is larger than the smallest singular value of any
2ε` × 2ε` submatrix. Let us take for this the submatrix obtained by dropping the
last block column :

M =

[
Iε ⊗ AT Iε ⊗ I`
Iε ⊗ I` Jε ⊗ I`

]
, where Jε :=


0 1

0
. . .
. . . 1

0

 ∈ Fε×ε.

We can factorize this matrix as

M =

[
Iε ⊗ AT Iε ⊗ I`
Iε ⊗ I` 0

] [
Iε` 0
0 Iε` − Jε ⊗ AT

] [
Iε ⊗ I` Jε ⊗ I`

0 Iε ⊗ I`

]
.

Therefore its inverse equals

M−1 =

[
Iε ⊗ I` −Jε ⊗ I`

0 Iε ⊗ I`

] [
Iε` 0
0 (Iε` − Jε ⊗ AT )−1

] [
0 Iε ⊗ I`

Iε ⊗ I` −Iε ⊗ AT
]
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=

[
Iε`
0

] [
0 Iε`

]
+

[
−Jε ⊗ I`

Iε`

]
(Iε` − Jε ⊗ AT )−1

[
Iε` −Iε ⊗ AT

]
.

It then follows that

‖M−1‖2 ≤ 1 +
√

2
√

1 + ‖A‖2
2

[
1 + ‖A‖2 + ‖A‖2

2 + . . .+ ‖A‖ε−1
2

]
,

since

(Iε` − Jε ⊗ AT )−1 =
ε−1∑
i=0

J iε ⊗ Ai
T
.

In particular, for ‖A‖2 ≤ 1 we obtain the bound ‖M−1‖2 ≤ 1+2ε, while for ‖A‖2 > 1
we obtain the bound ‖M−1‖2 ≤ 1 + 2ε‖A‖ε2. This finally yields the inequality

ω1 ≥
1

1 + 2εmax(1, ‖A‖ε2)
.

�

The second generalized Sylvester equation is essentially the transposed of the
first equation and the analysis is therefore completely analogous. This immediately
yields Lemma 9.3.2.

Lemma 9.3.2. Let ω2 be the singular value in (9.11). Then

ω2 ≥
1

1 + 2ηmax(1, ‖A‖η2)
. (9.15)

The third generalized Sylvester equation was analyzed in [26] and its associated
smallest singular value is exactly equal to ω3 = 2 sin(π/(4 min(ε, η) + 2)) if ε 6= η,
and to 2 sin(π/4η) if ε = η. Notice that we can assume min(ε, η) ≥ 1 since otherwise
the equation is void. For ε 6= η we then obtain ω3 ≥ 3

2 min(ε,η)+1
since sinx ≥ 3x/π

for 0 ≤ x ≤ π/6, and for ε = η we then obtain ω3 ≥
√

2
η

since sinx ≥ 2
√

2x/π for

0 ≤ x ≤ π/4. We have also that 2η = ε + η if ε = η and 2 min(ε, η) + 1 ≤ ε + η if
ε 6= η, which finally yields the lower bound in Lemma 9.3.3 for ω3.

Lemma 9.3.3. Let ω3 be the singular value in (9.12). Then

ω3 ≥
2
√

2

(ε+ η)
. (9.16)

In Lemma 9.3.4, we give a lower bound for the smallest singular value ω4 corres-
ponding to the fourth generalized Sylvester equation.

Lemma 9.3.4. Let ω4 be the singular value in (9.13). Then

ω4 ≥
3

4k − 1
. (9.17)
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Proof. We prove first that ω4 = 2 sin(π/(8k − 2)). This is obtained as follows. We
can again use the properties of Kronecker products to prove that

ω4 = σ2k(k+1)

[
ET
k ⊗ Ik I(k+1) ⊗ Ek

F T
k ⊗ Ik I(k+1) ⊗ Fk

]
.

This matrix can be transformed by row and column permutations to the direct sum
of smaller matrices :

M1 ⊕M1 ⊕M3 ⊕M3 ⊕ · · · ⊕M2k−1 ⊕M2k−1 ⊕N2k,

see Appendix C, where the blocks

Mk :=


1 1

1
. . .
. . . 1

1

 ∈ Fk×k, Nk :=


1 1

1
. . .
. . . 1

1 1

 ∈ Fk×(k+1) (9.18)

have as smallest singular values 2 sin π
4k+2

and 2 sin π
2k+2

, respectively (see [26, Proof
of Proposition B.4]). The smallest singular value therefore corresponds to M2k−1

and equals ω4 = 2 sin(π/(8k − 2)). For k ≥ 1, we use again that sinx ≥ 3x/π for
0 ≤ x ≤ π/6, to obtain the bound ω4 ≥ 3

4k−1
. �

9.4 Restoring the structure of the linearization

after perturbations

We now consider perturbations of the following block Kronecker linearization intro-
duced in (9.2)

S(λ) :=

 S11(λ) S12(λ) S13(λ)
S21(λ) S22(λ) 0
S31(λ) 0 0

 :=

 M(λ) K̂T
2 C KT

2 (λ)

BK̂1 A− λI` 0
K1(λ) 0 0

 , (9.19)

where S13(λ) is (η + 1)m × ηm and has full column rank ηm, S22(λ) is ` × ` and
is a regular pencil, S31(λ) is εn × (ε + 1)n and has full row rank εn, and where no
two of these three pencils have common generalized eigenvalues. As explained in the
introduction, if the state-space triple {A,B,C} is minimal, then S(λ) is a strong
linearization of the m× n rational matrix

R(λ) = C(λI` − A)−1B + (Λη(λ)⊗ Im)TM(λ)(Λε(λ)⊗ In). (9.20)

Except in Section 9.6, we assume in this section that max(η, ε) > 0. This means that
the degree d = ε+η+1 of the polynomial part D(λ) = (Λη(λ)⊗Im)TM(λ)(Λε(λ)⊗In)
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of R(λ) is greater than 1 and that at least one of the blocks K1(λ) or K2(λ) is not
an empty matrix. The degenerate case in which ε = 0 and η = 0 will be studied in
Section 9.6.

Since S(λ) is a strong linearization of R(λ), S(λ) has the exact eigenstructure
of the finite zeros of R(λ), and its infinite zero structure as well as its left and right
null-space structure can be correctly retrieved from the pencil via simple constant
shifts, as explained in the introduction. In order to compute this eigenstructure,
we make use of the staircase algorithm [83], followed by the QZ algorithm [71], on
S(λ). The backward stability of these two algorithms guarantees in fact that we
computed the exact eigenstructure of a slightly perturbed pencil

Ŝ(λ) := S(λ) + ∆S(λ), ∆S(λ) :=

 ∆11(λ) ∆12(λ) ∆13(λ)
∆21(λ) ∆22(λ) ∆23(λ)
∆31(λ) ∆32(λ) ∆33(λ)

 , (9.21)

where the pencil ∆S(λ) has a norm which is much smaller than the norm of S(λ).
More precisely, ‖∆S(λ)‖F = O(εM) ‖S(λ)‖F , where εM is the machine precision of
the computer. But even for very small perturbations, the structure of the pencil
S(λ) is lost, and therefore also the connection between Ŝ(λ) and some rational

matrix R̂(λ) is lost. In this section, we will show that this structure can be restored,
without affecting the computed eigenstructure. For this, one needs only to find
a strict equivalence transformation that is close to the identity and restores the
structure of Ŝ(λ) to a new pencil S̃(λ) that is a block Kronecker linearization, with

the same parameters ε and η as S(λ), of a rational matrix R̃(λ) :

S̃(λ) := (I −X)(S(λ) + ∆S(λ))(I − Y ) =

 M̃(λ) K̂T
2 C̃ KT

2 (λ)

B̃K̂1 Ã− λI` 0
K1(λ) 0 0

 . (9.22)

We will see that if ‖∆S(λ)‖F is sufficiently small, then the perturbed system triple

{Ã, B̃, C̃} is very close to the unperturbed minimal one {A,B,C} and, so, {Ã, B̃, C̃}
is still minimal, since minimality is a generic property equivalent to the controllabil-
ity matrix having full row rank and the observability matrix having full column rank
[55, Chapter 6]. Observe that according to [6], or the discussion in the introduction,

S̃(λ) is a strong linearization of the m× n rational matrix

R̃(λ) := C̃(λI` − Ã)−1B̃ + (Λη(λ)⊗ Im)TM̃(λ)(Λε(λ)⊗ In)

=: C̃(λI` − Ã)−1B̃ + D̃(λ) .
(9.23)

Since the eigenstructures of the pencils Ŝ(λ) and S̃(λ) are identical, the results in
this section prove that the computed finite eigenvalues of S(λ) and their partial

multiplicities are the exact finite zeros and their partial multiplicities of R̃(λ), the
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computed right (resp. left) minimal indices of S(λ) minus ε (resp. η) are the exact

right (resp. left) minimal indices of R̃(λ), and, if a number νr of right minimal indices
of S(λ) have been computed, then the computed n− νr largest partial multiplicities

at infinity of S(λ) minus d are the exact structural indices at infinity of R̃(λ). This
is a very strong backward error result for the computation of the eigenstructure of
R(λ) in the case we are able to prove that ‖Ã − A‖F , ‖B̃ − B‖F , ‖C̃ − C‖F and

‖D̃(λ)−D(λ)‖F are very small.

The restoration of the structure in Ŝ(λ) will be done in three steps, each of them
involving a strict equivalence transformation close to the identity:

• Step 1: We restore the block anti-triangular structure of the perturbed pencil
Ŝ(λ), i.e., the blocks (2,3), (3,2) and (3,3) are transformed to become 0.

• Step 2: We take care of the anti-diagonal blocks (1,3), (2,2) and (3,1), by
restoring their 0 and I block matrices.

• Step 3: We restore the special structure of the blocks (1,2) and (2,1).

At each step k, for k = 1, 2, 3, we obtain a pencil

Ŝk(λ) := (I −Xk)Ŝk−1(λ)(I − Yk) := Ŝk−1(λ) + ∆k(λ), (9.24)

where Ŝ0(λ) := Ŝ(λ) and ∆0(λ) := ∆S(λ) :

S(λ)
+∆0(λ)

−−→ Ŝ(λ) = Ŝ0(λ)
+∆1(λ)

−−→ Ŝ1(λ)
+∆2(λ)

−−→ Ŝ2(λ)
+∆3(λ)

−−→ Ŝ3(λ) = S̃(λ).

We will compute bounds for ‖(Xk, Yk)‖F as a function of ‖Ŝk−1(λ)‖F , where the
Frobenius norms are computed as defined in the introduction. Moreover, we define
the cumulative errors:

∆old
k (λ) :=

k−1∑
i=0

∆i(λ), and

∆new
k (λ) := ∆old

k (λ) + ∆k(λ) =
k∑
i=0

∆i(λ),

(9.25)

and we will also compute bounds for the Frobenius norm of these error pencils. In
our analysis, we will assume that δ := ‖∆S(λ)‖F

‖S(λ)‖F
is very small, since in practice is of

the order of the machine precision εM , and we will neglect, when appropriate, terms
of order larger than 1 in δ to simplify our bounds. Moreover, we will assume that
δ is sufficiently small for guaranteeing that all the steps in the analysis can be per-
formed, for instance, for guaranteeing that some perturbed matrices are invertible,
etc. In particular, we have Lemma 9.4.1 for computing bounds of the growth of the
cumulative errors ∆new

k (λ).
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Lemma 9.4.1. At each step k of our method, the perturbation ∆new
k (λ) can be

bounded by

‖∆new
k (λ)‖F ≤

√
2‖Ŝk−1(λ)‖2‖(Xk, Yk)‖F + ‖∆old

k (λ)‖F +O(δ2),

assuming that ‖(Xk, Yk)‖F is of the order of ‖∆S(λ)‖F .

Proof. At step k, we have Ŝk(λ) = (I −Xk)Ŝk−1(λ)(I − Yk). Therefore

∆new
k (λ) = ∆old

k (λ)−XkŜk−1(λ)− Ŝk−1(λ)Yk +XkŜk−1(λ)Yk.

It then follows that the increment (up to O(δ2) terms) is given by

−XkSa − SaYk + λ(XkSb + SbYk) +O(δ2),

where Sa − λSb := Ŝk−1(λ). We then use the inequalities

‖XkSa + SaYk‖2
F ≤ 2‖Sa‖2

2‖(Xk, Yk)‖2
F , ‖XkSb + SbYk‖2

F ≤ 2‖Sb‖2
2‖(Xk, Yk)‖2

F

and the definition for ‖Ŝk−1(λ)‖2, to finally get the required bound. �

9.4.1 Step 1: Restoring the block anti-triangular structure

For step 1, that is, restoring the block anti-triangular structure of S(λ) in the per-
turbed matrix pencil (9.21), we apply a strict equivalence transformation of the
type :  I(η+1)m 0 0

−X21 I` 0
−X31 −X32 Iεn

 Ŝ(λ)

 I(ε+1)n −Y12 −Y13

0 I` −Y23

0 0 Iηm

 (9.26)

in order to eliminate the perturbations ∆23(λ), ∆32(λ) and ∆33(λ) of the error matrix

pencil ∆0(λ). The notation Ŝaij−λŜbij := Ŝij := Ŝij(λ) will be used in this section to

refer to sub-blocks of Ŝ0(λ). Let us write down the equations that we get by setting
the blocks (2,3), (3,2) and (3,3) of the matrix in (9.26) equal to zero :

∆23(λ) := ∆a
23 − λ∆b

23 = X21Ŝ13 + Ŝ21Y13 + Ŝ22Y23 −X21Ŝ11Y13 −X21Ŝ12Y23,

∆32(λ) := ∆a
32 − λ∆b

32 = Ŝ31Y12 +X31Ŝ12 +X32Ŝ22 −X31Ŝ11Y12 −X32Ŝ21Y12,

∆33(λ) := ∆a
33 − λ∆b

33 = X31Ŝ13 + Ŝ31Y13 +X32∆23 + ∆32Y23

−X31Ŝ11Y13 −X32Ŝ21Y13 −X31Ŝ12Y23 −X32Ŝ22Y23.

(9.27)

This is a system of nonlinear matrix equations for the six matrix unknowns X21,
X31, X32, Y12, Y13 and Y23. We will show that it is consistent and that it has a
solution for which the norms of the unknowns are of the order of ‖∆0(λ)‖F , which



9.4. RESTORING THE STRUCTURE OF THE LINEARIZATION 187

implies that there are many terms in the above three equations that are of second
order.

Using Kronecker product and the vec(·) notation, the system of matrix equations
(9.27) can be rewritten as :

vec(∆a
23)

vec(∆b
23)

vec(∆a
32)

vec(∆b
32)

vec(∆a
33)

vec(∆b
33)


︸ ︷︷ ︸

:=c

= (T + ∆T )


vec(X21)
vec(Y23)
vec(X32)
vec(Y12)
vec(X31)
vec(Y13)


︸ ︷︷ ︸

:=x

−


vec(Z1)
vec(Z2)
vec(Z3)
vec(Z4)
vec(Z5)
vec(Z6)


︸ ︷︷ ︸

:=z

, (9.28)

where
Z1 := X21Ŝ

a
11Y13 +X21Ŝ

a
12Y23, Z2 := X21Ŝ

b
11Y13 +X21Ŝ

b
12Y23,

Z3 := X31Ŝ
a
11Y12 +X32Ŝ

a
21Y12, Z4 := X31Ŝ

b
11Y12 +X32Ŝ

b
21Y12,

Z5 := X31Ŝ
a
11Y13 +X32Ŝ

a
21Y13 +X31Ŝ

a
12Y23 +X32Ŝ

a
22Y23,

Z6 := X31Ŝ
b
11Y13 +X32Ŝ

b
21Y13 +X31Ŝ

b
12Y23 +X32Ŝ

b
22Y23,

∆T =



∆a
13
T ⊗ I` Iηm ⊗∆a

22 0 0 0 Iηm ⊗∆a
21

∆b
13
T ⊗ I` Iηm ⊗∆b

22 0 0 0 Iηm ⊗∆b
21

0 0 ∆a
22
T ⊗ Iεn I` ⊗∆a

31 ∆a
12
T ⊗ Iεn 0

0 0 ∆b
22
T ⊗ Iεn I` ⊗∆b

31 ∆b
12
T ⊗ Iεn 0

0 Iηm ⊗∆a
32 ∆a

23
T ⊗ Iεn 0 ∆a

13
T ⊗ Iεn Iηm ⊗∆a

31

0 Iηm ⊗∆b
32 ∆b

23
T ⊗ Iεn 0 ∆b

13
T ⊗ Iεn Iηm ⊗∆b

31


,

and

T =



T11 T12 0 0 0 T16

T21 T22 0 0 0 0
T33 T34 T35 0
T43 T44 0 0

T55 T56

T65 T66

 ,

with[
T11 T12

T21 T22

]
:=

[
Eη ⊗ Im` Iηm ⊗A
Fη ⊗ Im` Iηm ⊗ I`

]
,

[
T33 T34

T43 T44

]
:=

[
AT ⊗ Iεn I` ⊗ Eε ⊗ In
I` ⊗ Iεn I` ⊗ Fε ⊗ In

]
,

[
T55 T56

T65 T66

]
:=

[
Eη ⊗ Imεn Iηm ⊗ Eε ⊗ In
Fη ⊗ Imεn Iηm ⊗ Fε ⊗ In

]
,

{
T16 := Iηm ⊗ eTε+1 ⊗B
T35 := eTη+1 ⊗ CT ⊗ Iεn

.

We emphasize that the matrices in the two lines above are precisely those appearing
in equations (9.11), (9.10) and (9.12), respectively.
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The smallest singular value of T and the 2–norm of ∆T will be needed in the
analysis of the bound for the structured backward errors. More precisely for proving
that (9.27) is consistent and bounding the norm of one of its solutions. A lower
bound for σmin(T ) and an upper bound for ‖∆T‖2 are given in Lemma 9.4.2 and
Lemma 9.4.3, respectively.

Lemma 9.4.2. Let T be the matrix in (9.28). Let α := 1 + 2εmax(1, ‖A‖ε2), β :=
1 + 2ηmax(1, ‖A‖η2), γ := ε+η

2
√

2
and s := max(α, β, γ) + γ(β‖B‖2 + α‖C‖2) then

σmin(T ) ≥ 1

s
.

Proof. If we partition the matrix T as a block triangular matrix

T =

 T1 0 TB
T2 TC

T3

 ,
then the diagonal blocks have full row ranks because their smallest singular values
are strictly larger than zero according to Lemmas 9.3.2, 9.3.1 and 9.3.3, respectively.
Therefore, they are right invertible, with Moore–Penrose pseudoinverses T ri satisfy-
ing TiT

r
i = I, for i = 1, 2, 3. Moreover, ‖T r1 ‖2 = ω−1

2 , ‖T r2 ‖2 = ω−1
1 and ‖T r3 ‖2 = ω−1

3 ,
with ω1, ω2 and ω3 as in (9.10), (9.11) and (9.12). A right inverse T r for T is given
by

T r =

 T r1 0 −T r1TBT r3
T r2 −T r2TCT r3

T r3


since TT r = I. It then follows that the smallest singular value of T is lower bounded
by ‖T r‖−1

2 . This right inverse can be written as the sum of three matrices (one of
them being diag(T r1 , T

r
2 , T

r
3 )), and the 2-norm of each of them can be upper bounded

using the results of Section 9.3 and the fact that ‖TB‖2 = ‖B‖2 and ‖TC‖2 = ‖C‖2.
We then obtain the bound :

σmin(T ) ≥1/
[
max(ω−1

1 , ω−1
2 , ω−1

3 ) + ω−1
3 (ω−1

2 ‖B‖2 + ω−1
1 ‖C‖2)

]
≥1/ [max(α, β, γ) + γ(β‖B‖2 + α‖C‖2)] ,

by taking into account inequalities (9.14), (9.15), (9.16). �

Lemma 9.4.3. Let ∆T be the matrix in (9.28) and let ∆S(λ) be the pencil in (9.21).
Then

‖∆T‖2 ≤
√

3‖∆S(λ)‖2.
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Proof. We consider a permutation matrix P such that

∆T =



∆a
13
T ⊗ I` 0 0 0 Iηm ⊗∆a

22 Iηm ⊗∆a
21

∆b
13
T ⊗ I` 0 0 0 Iηm ⊗∆b

22 Iηm ⊗∆b
21

0 I` ⊗∆a
31 ∆a

22
T ⊗ Iεn ∆a

12
T ⊗ Iεn 0 0

0 I` ⊗∆b
31 ∆b

22
T ⊗ Iεn ∆b

12
T ⊗ Iεn 0 0

0 0 ∆a
23
T ⊗ Iεn ∆a

13
T ⊗ Iεn Iηm ⊗∆a

32 Iηm ⊗∆a
31

0 0 ∆b
23
T ⊗ Iεn ∆b

13
T ⊗ Iεn Iηm ⊗∆b

32 Iηm ⊗∆b
31


P

:= [T1|T2|T3]P.

Using properties of norms and Kronecker products (see [54, Chapter 4]) we have
that ‖Ti‖2 ≤ ‖∆S(λ)‖2 for i = 1, 2, 3. Finally, by [52, Lemma 3.5],

‖∆T‖2 ≤
√

3 max{‖T1‖2, ‖T2‖2, ‖T3‖2} ≤
√

3‖∆S(λ)‖2.

�

In order to prove that the system of nonlinear matrix equations (9.27) is consis-
tent, first, we remove quadratic terms in Xij and Yij of these equations and we get
the following system of linear equations :

∆23(λ) = X21Ŝ13 + Ŝ21Y13 + Ŝ22Y23,

∆32(λ) = Ŝ31Y12 +X31Ŝ12 +X32Ŝ22,

∆33(λ) = X31Ŝ13 + Ŝ31Y13 +X32∆23 + ∆32Y23.

This linear system of matrix equations can be rewritten as the underdetermined
linear system :

(T + ∆T )x = c, (9.29)

with the same notation as in (9.28). Next we prove that (9.29) is consistent for
any right hand side if ∆T is sufficiently small. From the minimum norm solution
of (9.29), we obtain in Theorem 9.4.6 that there exists a solution for the quadratic
system (9.28) under certain conditions and bound its norm.

Lemma 9.4.4. Let (T + ∆T )x = c be the underdetermined linear system in (9.29),
and let us assume that σmin(T ) > ‖∆T‖2. Then (T + ∆T )x = c is consistent and its
minimum norm solution (X0, Y 0) := (X0

21, X
0
31, X

0
32, Y

0
12, Y

0
13, Y

0
23) satisfies

‖(X0, Y 0)‖F ≤
1

σ
‖(∆23(λ),∆32(λ),∆33(λ))‖F ,

where σ := σmin(T )− ‖∆T‖2.

Proof. Analogous proof as for [26, Lemma 5.6]. �
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The notation σ := σmin(T ) − ‖∆T‖2 has been chosen to remind that σ is a
lower bound for the smallest singular value of T + ∆T, since σmin(T + ∆T ) ≥
σmin(T )− ‖∆T‖2 by Weyl’s perturbation theorem for singular values [54, Theorem
3.3.16]. Lemma 9.4.5 gives a sufficient condition on ‖∆S(λ)‖2 that guarantees σ > 0
and, hence, that allows us to apply Lemma 9.4.4.

Lemma 9.4.5. Consider the real number s defined as in Lemma 9.4.2. Let T and
∆T be the matrices in (9.29), and let ∆S(λ) be the pencil in (9.21). If ‖∆S(λ)‖2 <

1
2s

then

σ = σmin(T )− ‖∆T‖2 >
2−
√

3

2s
> 0.

Proof. If ‖∆S(λ)‖2 < 1
2s

we have, by Lemmas 9.4.2 and 9.4.3, that σmin(T ) −
‖∆T‖2 ≥ 1

s
−
√

3 ‖∆S(λ)‖2 >
2−
√

3
2s

> 0. �

Theorem 9.4.6 establishes conditions in order the system of matrix equations
(9.27) to have a solution as we announced. Moreover, it gives an upper bound for
the Frobenius norm of this solution. We remark that Theorem 9.4.6 is similar to [26,
Theorem 5.8], though the involved systems of matrix equations are very different
from each other. Therefore, some details in the proof of Theorem 9.4.6 are omitted
since can be found in [26].

Theorem 9.4.6. There exists a solution (X, Y ) := (X21, X31, X32, Y12, Y13, Y23) of
the quadratic system of equations (9.28) satisfying

‖(X, Y )‖F ≤ 2
θ

σ
,

whenever

σ > 0 and
θω

σ2
<

1

4
, (9.30)

where ω := ‖(M(λ), A−λI`, B, C)‖F +‖∆S(λ)‖F , θ := ‖(∆23(λ),∆32(λ),∆33(λ))‖F ,
and σ = σmin(T )− ‖∆T‖2.

Proof. Since σ > 0, we can apply Lemma 9.4.4 and consider (X0, Y 0) the minimum
norm solution of (9.29). Let

x0 :=
[

vec(X0
21)T vec(Y 0

23)T vec(X0
32)T vec(Y 0

12)T vec(X0
31)T vec(Y 0

13)T
]T
.

Let us define the sequence {(X i, Y i) := (X i
21, X

i
31, X

i
32, Y

i
12, Y

i
13, Y

i
23)}∞i=0 such that,

for each i > 0, (X i, Y i) is the minimum norm solution of the linear system

(T + ∆T )


vec(X i

21)
vec(Y i

23)
vec(X i

32)
vec(Y i

12)
vec(X i

31)
vec(Y i

13)

 = c+


vec(Zi−1

1 )
vec(Zi−1

2 )
vec(Zi−1

3 )
vec(Zi−1

4 )
vec(Zi−1

5 )
vec(Zi−1

6 )

 , (9.31)
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where

Zi−1
1 := X i−1

21 Ŝa11Y
i−1

13 +X i−1
21 Ŝa12Y

i−1
23 , Zi−1

2 := X i−1
21 Ŝb11Y

i−1
13 +X i−1

21 Ŝb12Y
i−1

23 ,

Zi−1
3 := X i−1

31 Ŝa11Y
i−1

12 +X i−1
32 Ŝa21Y

i−1
12 , Zi−1

4 := X i−1
31 Ŝb11Y

i−1
12 +X i−1

32 Ŝb21Y
i−1

12 ,

Zi−1
5 := X i−1

31 Ŝa11Y
i−1

13 +X i−1
32 Ŝa21Y

i−1
13 +X i−1

31 Ŝa12Y
i−1

23 +X i−1
32 Ŝa22Y

i−1
23 , and

Zi−1
6 := X i−1

31 Ŝb11Y
i−1

13 +X i−1
32 Ŝb21Y

i−1
13 +X i−1

31 Ŝb12Y
i−1

23 +X i−1
32 Ŝb22Y

i−1
23 .

Note that the minimum norm solution of (9.31) is obtained by multiplying the right
hand side of (9.31) by the Moore-Penrose pseudoinverse of T + ∆T , denoted by
(T + ∆T )†, and that x0 = (T + ∆T )†c.

Now we assume that θω
σ2 < 1

4
holds. Then we can prove that the sequence

{(X i, Y i)}∞i=0 converges to a solution (X, Y ) of the quadratic system of equations
(9.28) analogously as it is done in [26, Theorem 5.8]. For that, we have to take into
account that, if ‖(X i−1, Y i−1)‖F ≤ ρi−1, then

‖(Xi, Y i)‖F

≤ ‖(X0, Y 0)‖F + ‖(T + ∆T )†‖2

∥∥∥∥∥
[
Xi−1

21 0

Xi−1
31 Xi−1

32

][
Ŝ11 Ŝ12

Ŝ21 Ŝ22

] [
Y i−1

12 Y i−1
13

0 Y i−1
23

]∥∥∥∥∥
F

≤ ρ0 + σ−1ρ2
i−1ω := ρi,

where ‖(X0, Y 0)‖F ≤ θσ−1 := ρ0. Therefore, we can define the same fixed point
iteration as in the proof of [26, Theorem 5.8] and we obtain that the sequence is
bounded, i.e., ‖(X i, Y i)‖F ≤ ρ, with ρ < 2σ−1θ, for all i ≥ 0. In addition, if we
define the sequence {Ci := (X i+1, Y i+1)− (X i, Y i)}∞i=0 then

‖Ci‖F ≤‖(T + ∆T )†‖2

(∥∥∥∥∥
[
Xi

21 0
Xi

31 Xi
32

][
Ŝ11 Ŝ12

Ŝ21 Ŝ22

] [
Y i

12 Y i
13

0 Y i
23

]

−
[
Xi−1

21 0

Xi−1
31 Xi−1

32

] [
Ŝ11 Ŝ12

Ŝ21 Ŝ22

][
Y i−1

12 Y i−1
13

0 Y i−1
23

]∥∥∥∥∥
F

)

≤‖(T + ∆T )†‖2

(∥∥∥∥∥
[
Xi

21 −X
i−1
21 0

Xi
31 −X

i−1
31 Xi

32 −X
i−1
32

][
Ŝ11 Ŝ12

Ŝ21 Ŝ22

] [
Y i

12 Y i
13

0 Y i
23

]∥∥∥∥∥
F

+

∥∥∥∥∥
[
Xi−1

21 0

Xi−1
31 Xi−1

32

] [
Ŝ11 Ŝ12

Ŝ21 Ŝ22

] [
Y i

12 − Y
i−1

12 Y i
13 − Y

i−1
13

0 Y i
23 − Y

i−1
23

]∥∥∥∥∥
F

)
≤2σ−1ρω‖Ci−1‖F .

The above inequality implies that {(X i, Y i)}∞i=0 is a Cauchy sequence, since 2σ−1ρω <
1. Thus, taking limits in both sides of (9.31), we see that {(X i, Y i)}∞i=0 converges to
a solution (X, Y ) of the system of equations in (9.28) with ‖(X, Y )‖F ≤ ρ. �
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Theorem 9.4.6, together with Lemma 9.4.5, allow us to prove in Theorem 9.4.7
that there exists a solution (X, Y ) of (9.27) which is of the order of the perturbation
∆S(λ) whenever ‖∆S(λ)‖F is properly upper bounded.

Theorem 9.4.7. Consider the real number s defined as in Lemma 9.4.2. Let S(λ)
be a block Kronecker linearization as in (9.19), and let ∆S(λ) be a perturbation of
S(λ) as in (9.21) such that

‖∆S(λ)‖F <

(
2−
√

3

4s

)2
1

1 + ‖(M(λ), A− λI`, B, C)‖F
. (9.32)

Then there exists a solution (X, Y ) := (X21, X31, X32, Y12, Y13, Y23) of the quadratic
system of matrix equations in (9.27) that satisfies

‖(X, Y )‖F ≤
4s‖∆S(λ)‖F

2−
√

3
. (9.33)

Proof. We have

‖∆S(λ)‖F <

(
2−
√

3

4s

)2
1

1 + ‖(M(λ), A− λI`, B, C)‖F
≤ 1

2s

since s ≥ 1. Then, by Lemma 9.4.5, σ = σmin(T )− ‖∆T‖2 >
2−
√

3
2s

> 0. In addition,
using the same notation as in Theorem 9.4.6,

θω

σ2
≤ ‖∆S(λ)‖F (‖(M(λ), A− λI`, B, C)‖F + ‖∆S(λ)‖F )(

2−
√

3
2s

)2 <
1

4
,

by (9.32). Therefore, conditions in (9.30) hold and, by Theorem 9.4.6, there exists
a solution (X, Y ) of the system in (9.27) satisfying

‖(X, Y )‖F ≤ 2
θ

σ
≤ 4s‖∆S(λ)‖F

2−
√

3
.

�

After restoring the block anti-triangular structure of S(λ), we get the perturba-
tion error ∆new

1 (λ) defined in (9.25). The following first order bound for the norm
of ∆new

1 (λ) in Corollary 9.4.8 follows from Lemma 9.4.1 and Theorem 9.4.7.

Corollary 9.4.8. Let us define the scalar f1 := 4
√

2s
2−
√

3
. Then

‖∆new
1 (λ)‖F ≤ [1 + f1‖Ŝ0(λ)‖2] ‖∆S(λ)‖F +O(δ2)

≤ [1 + f1‖S(λ)‖2] ‖∆S(λ)‖F +O(δ2).
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9.4.2 Step 2: Restoring the Kronecker blocks K1(λ), K2(λ)
and the identity I`

At this stage we have obtained a pencil Ŝ1(λ) = S(λ) + ∆new
1 (λ) of the type

Ŝ1(λ) :=

 M̂(λ) Ĉ(λ) K̂T
2 (λ)

B̂(λ) Â− λÎ` 0

K̂1(λ) 0 0

 , (9.34)

where the zero blocks below the anti-diagonal are exact and Ŝ1(λ) is strictly equiva-

lent to Ŝ(λ). In this subsection, we will use ∆a
ij − λ∆b

ij to denote the corresponding
blocks of the updated perturbation matrix ∆new

1 (λ). We assume that the norm of

the perturbation ∆new
1 (λ) is small enough for K̂1(λ) and K̂2(λ) to be also minimal

bases with row degrees all equal to 1 and the row degrees of their dual minimal

bases all equal to ε and η, respectively [26, Corollary 5.15]. Thus, K̂1(λ) and K̂2(λ)
have the same Kronecker canonical forms as K1(λ) and K2(λ), respectively, and
are strictly equivalent to them. We will then perform step 2, that is, an updating
block-diagonal strict equivalent transformation of the type I(η+1)m −X11 0 0

0 I` −X22 0
0 0 Iεn −X33

 Ŝ1(λ)

 I(ε+1)n − Y11 0 0

0 I` − Y22 0
0 0 Iηm − Y33


(9.35)

such that

(I −X33)K̂1(λ)(I − Y11) = K1(λ), (I −X11)K̂T
2 (λ)(I − Y33) = KT

2 (λ),

and
(I −X22)Î`(I − Y22) = I`.

In the last three equations the sizes of some identity matrices are not specified for
simplicity. Clearly, these three problems are independent from each other and can
be treated separately.

Let us first look at the equation restoring K1(λ). As pointed out in Section 9.2,
this can be reduced to the solution of a Sylvester equation. Let

K̂1(λ) = K1(λ) + ∆K1(λ) := Lε(λ)⊗ In+ ∆K1(λ) := (Eε−λFε)⊗ In+ (∆a
31−λ∆b

31).

Then, making the change of variables Y11 := Y and X33 := X(I + X)−1, it suffices
to solve

(K1(λ) + ∆K1(λ))Y +XK1(λ) = ∆K1(λ),

or, equivalently,[
ET
ε ⊗ Inεn I(ε+1)n ⊗ (Eε ⊗ In + ∆a

31)
F T
ε ⊗ Inεn I(ε+1)n ⊗ (Fε ⊗ In + ∆b

31)

] [
vec(X)
vec(Y )

]
=

[
vec(∆a

31)
vec(∆b

31)

]
. (9.36)
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By Lemma 9.3.4, the smallest singular value of the unperturbed problem satisfies

σ2εn(ε+1)n

[
ET
ε ⊗ Inεn I(ε+1)n ⊗ Eε ⊗ In

F T
ε ⊗ Inεn I(ε+1)n ⊗ Fε ⊗ In

]
≥ 3

4ε− 1
.

Then, by using Weyl’s perturbation theorem for singular values [54, Theorem 3.3.16],
one obtains the following bound for the minimum norm solution of (9.36)

‖(X, Y )‖F ≤
[

3

4ε− 1
− ‖∆a

31‖2 − ‖∆b
31‖2

]−1

‖(∆a
31,∆

b
31)‖F ,

assuming that the perturbation is small enough for satisfying 3
4ε−1

− ‖∆a
31‖2 −

‖∆b
31‖2 > 0. In addition,

‖(X33, Y11)‖F ≤ ‖(X, Y )‖F/(1− ‖(X, Y )‖F ).

Since ‖∆a
31‖2 and ‖∆b

31‖2 are of the order of δ, finally yields

‖(X33, Y11)‖F ≤
4ε− 1

3
‖(∆a

31,∆
b
31)‖F +O(δ2), (9.37)

by neglecting quantities of the order of O(δ2).
The problem for restoring K2(λ) is clearly dual to the problem of K1(λ) and will

therefore yield the bound

‖(X11, Y33)‖F ≤
4η − 1

3
‖(∆a

13,∆
b
13)‖F +O(δ2). (9.38)

The problem of restoring I` amounts to solving (I`−X22)(I`+∆b
22)(I`−Y22) = I`,

with Î` = I` + ∆b
22. There are many possible solutions. A very simple one is to take

Y22 = 0 and I` −X22 = (I` + ∆b
22)−1, assuming ∆b

22 is small enough for the inverse
to exist. This means that X22 = ∆b

22 +O(‖∆b
22‖2

F ) and

‖(X22, Y22)‖F = ‖∆b
22‖F +O(δ2). (9.39)

We summarize this discussion in the following Theorem.

Theorem 9.4.9. Let the pencil Ŝ1(λ) have the block anti-triangular form given
in (9.34). If max(ε, η) > 0, then the updating strict equivalence transformation

(I −X)Ŝ1(λ)(I − Y ) detailed in (9.35) exists and can be bounded by

‖(X, Y )‖F ≤
4 max(ε, η)− 1

3
‖∆new

1 (λ)‖F +O(δ2).

Proof. The bound for ‖(X, Y )‖F follows directly from the identity

‖(X, Y )‖2
F = ‖(X11, Y33)‖2

F + ‖(X22, Y22)‖2
F + ‖(X33, Y11)‖2

F ,

from the inequality

‖(∆a
13,∆

b
13)‖2

F + ‖∆b
22‖2

F + ‖(∆a
31,∆

b
31)‖2

F ≤ ‖∆new
1 (λ)‖2

F

and from the individual inequalities (9.37), (9.38) and (9.39). �
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The following first order bound in Corollary 9.4.10 for the norm of the pertur-
bation error ∆new

2 (λ) follows from Lemma 9.4.1, Theorem 9.4.9 and Corollary 9.4.8.

Corollary 9.4.10. Let us define the scalar f2 :=
√

2(4 max(ε,η)−1)
3

. Then

‖∆new
2 (λ)‖F ≤ [1 + f2‖Ŝ1(λ)‖2] ‖∆new

1 (λ)‖F +O(δ2)

≤ [1 + f2‖S(λ)‖2] ‖∆new
1 (λ)‖F +O(δ2).

9.4.3 Step 3: Restoring the constant B and C matrices

From steps 1 and 2, described in the previous subsections, we have obtained a pencil
Ŝ2(λ) = S(λ) + ∆new

2 (λ) of the type

Ŝ2(λ) :=

 M̂(λ) Ĉ(λ) KT
2 (λ)

B̂(λ) Â− λI` 0
K1(λ) 0 0

 (9.40)

strictly equivalent to Ŝ(λ). We emphasize that the blocks M̂(λ), B̂(λ), Ĉ(λ) and the

matrix Â are obviously different in (9.40) and in (9.34). We use the same symbols for
avoiding a cumbersome notation. In this subsection, we will use ∆ij(λ) = ∆a

ij−λ∆b
ij

to denote the corresponding blocks of the updated perturbation matrix ∆new
2 (λ). In

this third step, we will restore the pencil Ŝ2(λ) to one where the blocks

B̂(λ) = BK̂1 + ∆21(λ), and Ĉ(λ) = K̂T
2 C + ∆12(λ)

are transformed to B̃K̂1 and K̂T
2 C̃, respectively. We recall that

K1(λ) = Lε(λ)⊗ In, K̂1 = eTε+1 ⊗ In, K2(λ) = Lη(λ)⊗ Im, K̂2 = eTη+1 ⊗ Im,
where ek is the standard kth unit vector of dimension k and Lk(λ) is the classical
Kronecker block of dimension k×(k+1), as introduced below (9.2). We will construct
for this a strict equivalence transformation of the type Im(η+1) −X12 0

I` −X23

Inε

 Ŝ2(λ)

 In(ε+1)

−Y21 I`
0 −Y32 Imη


=

 M̃(λ) K̂T
2 C̃ KT

2 (λ)

B̃K̂1 Â− λI` 0
K1(λ) 0 0

 (9.41)

The problems for B̂(λ) and Ĉ(λ) can again be treated separately. Let us first focus
on the subsystem[

Im(η+1) −X12

I`

][
Ĉ(λ) LTη (λ)⊗ Im
Â− λI` 0

] [
I`
−Y32 Imη

]

=

[
eη+1 ⊗ C̃ LTη (λ)⊗ Im
Â− λI` 0

]
.
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If we partition the matrices X12, Y32 and Ĉ(λ) as follows :

X12 :=


E1

E2

...
Eη
Eη+1

 , Y32 :=


F1

F2

...
Fη

 , Ĉ(λ) :=


C01

C02

...
C0η

C0(η+1)

−


C11

C12

...
C1η

C1(η+1)

λ,
where all blocks have dimension m× `, then we need to solve the following system
of equations [

E1 F1 E2 ... Fη Eη+1

]
(I(2η+1)` +N)

=
[
C11 C01 C12 ... C0η C1(η+1)

]
,

where

I(2η+1)` +N :=



I` Â
I` I`

I` Â
. . .

. . .

I` I`
I`


,

and C̃ := C0(η+1) − Eη+1Â. Clearly

‖
[
E1 F1 E2 . . . Fη Eη+1

]
‖F = ‖(X12, Y32)‖F ,

‖
[
C11 C01 C12 . . . C0η C1(η+1)

]
‖F ≤ ‖∆12(λ)‖F ,

and, since the matrix N is nilpotent with N2η+1 = 0,

(I(2η+1)` +N)−1 =

2η∑
i=0

(−N)i.

In addition, N has even powers N2i of 2-norm ‖Âi‖2 ≤ ‖Â‖i2, whereas the odd

powers N2i−1 have 2-norm max(‖Âi−1‖2, ‖Âi‖2) ≤ max(‖Â‖i−1
2 , ‖Â‖i2). Since both

of them can be bounded by max(1, ‖Â‖i2), it then follows that

‖(X12, Y32)‖F ≤ ‖∆12(λ)‖F (1 + 2 max(1, ‖Â‖2) + · · ·+ 2 max(1, ‖Â‖η2))

≤ [1 + 2ηmax(1, ‖Â‖η2)] ‖∆12(λ)‖F .
(9.42)

The discussion for the B̂(λ) block is clearly analogous and will yield the bound

‖(X23, Y21)‖F ≤ [1 + 2εmax(1, ‖Â‖ε2)]‖∆21(λ)‖F . (9.43)

We can thus summarize this discussion in the following Theorem.
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Theorem 9.4.11. Let the pencil Ŝ2(λ) have the anti-triangular form given in (9.40).

Then the updating strict equivalence transformation (I − X)Ŝ2(λ)(I − Y ) detailed
in (9.41) exists and can be bounded by

‖(X, Y )‖F ≤ [1 + 2 max(η, ε) max(1, ‖Â‖max(η,ε)
2 )] ‖∆new

2 (λ)‖F .

Proof. The bound for ‖(X, Y )‖F follows directly from the identity

‖(X, Y )‖2
F = ‖(X12, Y32)‖2

F + ‖(X23, Y21)‖2
F ,

from the inequality ‖∆12(λ)‖2
F + ‖∆21(λ)‖2

F ≤ ‖∆new
2 (λ)‖2

F and from the individual
inequalities (9.42) and (9.43). �

The following first order bound in Corollary 9.4.12 for the norm of the perturba-
tion error ∆new

3 (λ) follows from Lemma 9.4.1, Theorem 9.4.11 and Corollaries 9.4.8
and 9.4.10.

Corollary 9.4.12. Let us define the scalar f3 :=
√

2 [1+2 max(η, ε) max(1, ‖Â‖max(η,ε)
2 )].

Then

‖∆new
3 (λ)‖F ≤ [1 + f3‖Ŝ2(λ)‖2] ‖∆new

2 (λ)‖F +O(δ2)

≤ [1 + f3‖S(λ)‖2] ‖∆new
2 (λ)‖F +O(δ2).

9.4.4 Putting it all together

In this subsection, we combine the obtained results regarding the strict equivalence
transformation that restores in Ŝ(λ) of (9.21) the special structure of the unper-
turbed block Kronecker linearization S(λ) defined in (9.2), in such a way that the

eigenstructure of Ŝ(λ) can be linked to that of a particular rational matrix R̃(λ) as in
(9.23). The final goal is to bound the norms of the differences between the quadru-

ples {λI`−A,B,C,D(λ)} and {λI`− Ã, B̃, C̃, D̃(λ)} that are used for representing

the unperturbed rational matrix R(λ) and the perturbed one R̃(λ), respectively.
Recall that we were given the pencil S(λ) of which we want to compute the

eigenstructure, since it gives the one of the rational matrix R(λ) in (9.20). Instead,
our backward stable algorithm applied to S(λ) computes the exact eigenstructure

of a slightly perturbed pencil Ŝ(λ) with additive error ∆S(λ) which is induced by
the eigenstructure algorithm and is bounded as :

‖∆S(λ)‖F ≤ c(`,mη, nε) · εM · ‖S(λ)‖F ,

where εM is the machine precision of the used computer, and c(`,mη, nε) is a mod-
erate function depending only on the size of the matrix pencil. We then constructed
in three steps a new modified block Kronecker linearization

S̃(λ) := (I−X)Ŝ(λ)(I−Y ) := (I−X3)(I−X2)(I−X1)Ŝ(λ)(I−Y1)(I−Y2)(I−Y3)
(9.44)
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as in (9.22), strictly equivalent to Ŝ(λ), where both ‖X‖F and ‖Y ‖F are also of the
order of the machine precision times some factors and such that the corresponding
rational matrix R̃(λ) (9.23) has a similar representation as R(λ). Since Ŝ(λ) and

S̃(λ) are strictly equivalent pencils, they have exactly the same eigenstructure, which
implies that we have computed the exact eigenstructure of the nearby rational matrix
R̃(λ).

For convenience, the blocks of S̃(λ) will be expressed in the sequel as M̃(λ) :=

M(λ) + ∆M(λ), Ã := A + ∆A, B̃ := B + ∆B and C̃ := C + ∆C. In the previous

subsections, we rewrote S̃(λ) as an additive perturbation

S̃(λ) = S(λ) + ∆new
3 (λ)

and derived a first order bound for the norm of the error pencil ∆new
3 (λ) in Corollaries

9.4.8, 9.4.10 and 9.4.12 :

‖∆new
3 (λ)‖F ≤ (1 + f1‖S(λ)‖2)(1 + f2‖S(λ)‖2)(1 + f3‖S(λ)‖2)‖∆S(λ)‖F +O(δ2).

(9.45)
This implies, in particular, that if ‖∆S(λ)‖F is sufficiently small, then the norms of

the perturbations ∆A, ∆B and ∆C are sufficiently small to guarantee that C̃(λI`−
Ã)−1B̃ is a minimal state-space realization, as announced. Then, according to [6],

S̃(λ) is indeed a strong linearization of the rational matrix R̃(λ) in (9.23). Moreover,

(9.45) also implies that if ‖∆S(λ)‖F is sufficiently small, then D̃(λ) :=
∑d

i=0(Di +
∆Di)λ

i in (9.23) is a polynomial matrix with the same degree d = η + ε+ 1 as the
polynomial part D(λ) of R(λ) (recall that we are assuming that d is the degree of
D(λ) or, equivalently, that Dd 6= 0).

Notice that R̃(λ) in (9.23) is the transfer function of the following perturbed
polynomial system matrix

P (λ) + ∆P (λ) :=

[
λI` − A −B
C D(λ)

]
+

[
−∆A −∆B

∆C
∑d

i=0 ∆Diλ
i

]
, (9.46)

where P (λ) is a polynomial system matrix of the original rational matrix R(λ).
Recall that ‖R(λ)‖F is defined in (9.3) as ‖P (λ)‖F . This motivates us to define the
norm of the perturbation of R(λ) as

‖∆R(λ)‖F := ‖∆P (λ)‖F =

√√√√‖∆A‖2
F + ‖∆B‖2

F + ‖∆C‖2
F +

d∑
i=0

‖∆Di‖2
F .

After this discussion, we present our main perturbation results in Theorems
9.4.13 and 9.4.15. The first one focuses on block Kronecker linearizations and the
second one on the corresponding rational matrices.
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Theorem 9.4.13. Let R(λ) be the m × n rational matrix in (9.1) and let S(λ)
be a block Kronecker linearization of R(λ) as in (9.2). Let us define α := 1 +
2εmax(1, ‖A‖ε2), β := 1 + 2ηmax(1, ‖A‖η2), γ := ε+η

2
√

2
and s := max(α, β, γ) +

γ(β‖B‖2+α‖C‖2). Assume that max(ε, η) > 0 and consider the functions dependent
on the initial data

f1 := f1(ε, η, ‖A‖2, ‖B‖2, ‖C‖2) :=
4
√

2s

2−
√

3
,

f2 := f2(ε, η) :=

√
2 (4 max(ε, η)− 1)

3
,

f3 := f3(ε, η, ‖A‖2) :=
√

2 [1 + 2 max(η, ε) max(1, ‖A‖max(η,ε)
2 )].

Let Ŝ(λ) := S(λ) + ∆S(λ) be a perturbed pencil as in (9.21). If ‖∆S(λ)‖F is suf-

ficiently small, then Ŝ(λ) is strictly equivalent to a block Kronecker linearization

S̃(λ) as in (9.22) with the same parameters ε and η as S(λ), i.e., the transforma-

tion (9.44) exists. Moreover, S̃(λ) = S(λ) + ∆new
3 (λ) with

‖∆new
3 (λ)‖F ≤ (1 + f1‖S(λ)‖2)(1 + f2‖S(λ)‖2)(1 + f3‖S(λ)‖2)‖∆S(λ)‖F +O(δ2),

(9.47)

where δ := ‖∆S(λ)‖F
‖S(λ)‖F

.

Proof. This follows directly from (9.45), except that we have replaced the 2-norm

of Â in f3 in Corollary 9.4.12 by that of A, because the difference can be absorbed
in the O(δ2) term. �

Theorem 9.4.13 does not provide directly bounds on the norms of the differ-
ences between the quadruples representing the rational matrices R(λ) and R̃(λ)

corresponding to the block Kronecker linearizations S(λ) and S̃(λ). The reason is

that the polynomial parts D(λ) = (Λη(λ) ⊗ Im)TM(λ)(Λε(λ) ⊗ In) and D̃(λ) =

(Λη(λ) ⊗ Im)TM̃(λ)(Λε(λ) ⊗ In) of R(λ) and R̃(λ) are not directly visible in S(λ)

and S̃(λ). For this reason, we will need Lemma 9.4.14, that follows from [26, Lemma
2.15, Theorem 4.4 and Lemma 5.23(b)].

Lemma 9.4.14. Let M(λ) be a m(η + 1) × n(ε + 1) pencil and let Λk(λ) :=[
λk · · · λ 1

]T
. If we define the polynomial matrix Q(λ) as

Q(λ) := (Λη(λ)⊗ Im)T M(λ) (Λε(λ)⊗ In), (9.48)

then we can bound its norm as follows

‖Q(λ)‖F ≤
√

2 min(ε+ 1, η + 1) ‖M(λ)‖F .

Moreover, for every polynomial matrix Q(λ) of degree at molerstewart1973t d =
ε + η + 1, there exist infinitely many pencils M(λ) satisfying (9.48). For each of
these pencils ‖M(λ)‖F ≥ ‖Q(λ)‖F/

√
2d and there exist pencils such that ‖Q(λ)‖F =

‖M(λ)‖F .
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As commented in [26], Fiedler and proper generalized Fiedler pencils (modulo
permutations) of a polynomial matrix Q(λ) satisfy ‖Q(λ)‖F = ‖M(λ)‖F in Lemma
9.4.14. On the other hand, it might be worth to remind that there exist pencils
M(λ) satisfying (9.48) with norm arbitrarily larger than the norm of Q(λ).

We are finally in the position of proving the main perturbation result of this
chapter.

Theorem 9.4.15. Let R(λ) = C(λI` − A)−1B +
∑d

i=0 Diλ
i be an m × n rational

matrix, where C(λI` − A)−1B is a minimal state-space realization of the strictly
proper part of R(λ), let S(λ) be a block Kronecker linearization of R(λ) as in (9.2)
with max(ε, η) > 0, and let f1, f2, f3 be the functions defined in Theorem 9.4.13. Let

Ŝ(λ) := S(λ) + ∆S(λ) be a perturbed pencil as in (9.21). If ‖∆S(λ)‖F is sufficiently

small, then Ŝ(λ) is strictly equivalent to a block Kronecker linearization S̃(λ) as in
(9.22), with the same parameters ε and η as S(λ), of a rational matrix

R̃(λ) = C̃(λI` − Ã)−1B̃ +
d∑
i=0

D̃iλ
i,

where C̃(λI`−Ã)−1B̃ is a minimal state-space realization of the strictly proper part of

R̃(λ). Moreover, if Ã := A+∆A, B̃ := B+∆B, C̃ := C+∆C and D̃i := Di+∆Di,
i = 0, 1, . . . , d, then√
‖∆A‖2

F + ‖∆B‖2
F + ‖∆C‖2

F +
∑d

i=0 ‖∆Di‖2
F

‖R(λ)‖F
≤ KS,R

‖∆S(λ)‖F
‖S(λ)‖F

+O(δ2), (9.49)

where

KS,R :=
√

2 min(ε+ 1, η + 1) (1+f1‖S(λ)‖2)(1+f2‖S(λ)‖2)(1+f3‖S(λ)‖2)
‖S(λ)‖F
‖R(λ)‖F

and δ = ‖∆S(λ)‖F
‖S(λ)‖F

.

Proof. Since S̃(λ) and S(λ) have the same structure according to Theorem 9.4.13,

∆new
3 (λ) = S̃(λ)− S(λ) =

 M̃(λ)−M(λ) K̂T
2 (C̃ − C) 0

(B̃ −B)K̂1 Ã− A 0
0 0 0


and ‖∆new

3 (λ)‖F =

√
‖∆A‖2

F + ‖∆B‖2
F + ‖∆C‖2

F + ‖M̃(λ)−M(λ)‖2
F . Next, we

combine this expression of ‖∆new
3 (λ)‖F with

∑d
i=0Diλ

i = (Λη(λ)⊗Im)TM(λ)(Λε(λ)⊗
In),

∑d
i=0 D̃iλ

i = (Λη(λ)⊗ Im)TM̃(λ)(Λε(λ)⊗ In) and Lemma 9.4.14, and we get√√√√‖∆A‖2
F + ‖∆B‖2

F + ‖∆C‖2
F +

d∑
i=0

‖∆Di‖2
F ≤

√
2 min(ε+ 1, η + 1) ‖∆new

3 (λ)‖F .

The rest of the proof follows from (9.47). �



9.4. CONDITIONS FOR STRUCTURAL BACKWARD STABILITY 201

The strength of the new structured backward error analysis that we present in
this chapter for the computation of the eigenstructure of a rational matrix R(λ) by
applying a backward stable generalized eigenvalue algorithm to a block Kronecker
linearization S(λ) of R(λ) is that we can interpret the computed eigenstructure as

the exact eigenstructure for a slightly perturbed rational matrix R̃(λ) corresponding

to the nearby quadruple {λI` − Ã, B̃, C̃, D̃(λ)}, and that we have a bound on the
error because we have a specific coordinate system in which we can describe both
the original rational matrix R(λ) and its perturbed version R̃(λ), namely by the

quadruples {λI` − A,B,C,D(λ)} and {λI` − Ã, B̃, C̃, D̃(λ)}. It still remains to
analyze under which conditions this bound is satisfactory. This is the purpose of
the next section.

9.5 Sufficient conditions for structural backward

stability

The goal of this section is to establish sufficient conditions on R(λ) and S(λ) that
guarantee that KS,R in (9.49) is moderate and, thus, that guarantee structural back-
ward stability. We advance that these conditions are the following

max(‖A‖F , ‖B‖F , ‖C‖F , ‖D(λ)‖F ) ≤ 1 and ‖M(λ)‖F ≈ ‖D(λ)‖F , (9.50)

where the notation introduced in the previous section is used. Observe that the
first condition is a condition on R(λ) while the second one is on S(λ). According to
Lemma 9.4.14, the second condition can be satisfy simply by choosing an adequate
block Kronecker linearization S(λ). In addition, we will see that the conditions
(9.50) are essentially necessary for KS,R to be moderate, though this does not mean
that they are necessary for structural backward stability since (9.49) is an upper
bound. For the sake of clarity, the discussion in this section focuses on identifying
the key ingredients for structural backward stability instead of on providing precise
bounds. There exist, obviously, rational matrices which do not satisfy the first
condition in (9.50). We will discuss in Section 9.7 how to proceed in such cases.

In the first place observe that each of the essential four factors of KS,R, that

is, (1 + f1‖S(λ)‖2), (1 + f2‖S(λ)‖2), (1 + f3‖S(λ)‖2) and ‖S(λ)‖F
‖R(λ)‖F

, is larger than 1.
This is obvious for the first three factors. For the fourth factor, it follows from the
equalities

‖S(λ)‖2
F = ‖A‖2

F + ‖B‖2
F + ‖C‖2

F + ‖M(λ)‖2
F + `+ 2(mη + nε) and

‖R(λ)‖2
F = ‖A‖2

F + ‖B‖2
F + ‖C‖2

F + ‖D(λ)‖2
F + ` .

(9.51)

To find upper bounds for the three factors (1 + f1‖S(λ)‖2), (1 + f2‖S(λ)‖2),
(1 + f3‖S(λ)‖2) of KS,R requires to upper bound each fi and ‖S(λ)‖2. For this
purpose, we consider Lemmas 9.5.1 and 9.5.2. Lemma 9.5.1 provides a bound on the
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function f1 that allows us to identify its molerstewart1973t relevant dependencies.
Moreover, Lemma 9.5.1 emphasizes the key role of t := max(η, ε) in our perturbation
analysis. Lemma 9.5.2 bounds ‖S(λ)‖2.

Lemma 9.5.1. Let us define Ma := max(1, ‖A‖2), Mb := max(‖B‖2, ‖C‖2) and
t := max(η, ε) > 0 and consider the functions f1, f2 and f3 in Theorem 9.4.13.
Then

1 ≤ f1 ≤ 22(1+2 tM t
a)(1+

√
2 tMb), 1 ≤ f2 =

√
2

3
(4t−1), 1 ≤ f3 =

√
2 (1+2 tM t

a).

Proof. It follows by taking into account the inequalities γ ≤ t√
2

and s ≤ (1 +

2tM t
a)(1 +

√
2 tMb). �

Lemma 9.5.2. Let S(λ) be the block Kronecker linearization (9.2). Then

max(1, ‖A‖2, ‖B‖2, ‖C‖2, ‖M(λ)‖2) ≤ ‖S(λ)‖2

and

‖S(λ)‖2 ≤
√

2 + ‖

[
M(λ) K̂T

2 C

BK̂1 A

]
‖2 ≤

√
2 +

√
‖A‖2F + ‖B‖2F + ‖C‖2F + ‖M(λ)‖2F .

Proof. The first inequality follows from the definition of the 2-norm of a pencil given
in the introduction and the fact that the 2-norm of a matrix is larger than or equal
to the 2-norm of any of its submatrices. The second inequality follows from applying
the triangular inequality to

S(λ) =

 M(λ) K̂T
2 C 0

BK̂1 A 0
0 0 0

+

 0 0 KT
2 (λ)

0 −λI` 0
K1(λ) 0 0

 .

Note that the 2-norm of a pencil as defined in the introduction is indeed a norm
and, so, the triangular inequality can be applied. �

We remark that Lemmas 9.5.1 and 9.5.2 imply that the conditions (9.50) are es-
sentially necessary for KS,R to be moderate. This can be seen as follows. First, from

Lemma 9.4.14, we have ‖M(λ)‖F ≥ ‖D(λ)‖F/
√

2(ε+ η + 1). Thus, max(‖A‖F ,
‖B‖F , ‖C‖F , ‖D(λ)‖F )� 1 implies ‖S(λ)‖2 � 1, which in turns implies KS,R � 1,

since fi ≥ 1 for i = 1, 2, 3. Moreover, if ‖M(λ)‖F � ‖D(λ)‖F , then
‖S(λ)‖F
‖R(λ)‖F

� 1

may happen, according to (9.51), and KS,R � 1 in that situation. We empha-
size that the condition ‖M(λ)‖F ≈ ‖D(λ)‖F was also used in the analysis in [26,
Corollary 5.24].

Next, we prove the announced result that conditions (9.50) are sufficient for KS,R

to be moderate and, thus, for structural backward stability.
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Corollary 9.5.3. Under the hypotheses and with the notation of Theorem 9.4.15,
assume, in addition, that (9.50) holds and let t := max(η, ε) > 0. Then,

KS,R ≤ g tq
√
m+ n ,

where q = 5, if η > 0 and ε > 0, q = 9/2, if η = 0 or ε = 0, and g is a moderate
number (a constant that does not depend on η, ε,m, n, `). Moreover√
‖∆A‖2

F + ‖∆B‖2
F + ‖∆C‖2

F +
∑d

i=0 ‖∆Di‖2
F

‖R(λ)‖F
≤ g tq

√
m+ n

‖∆S(λ)‖F
‖S(λ)‖F

+O(δ2) .

Proof. Note that (9.50) and Lemmas 9.5.1 and 9.5.2 imply ‖S(λ)‖2 . 2 +
√

2,
f1 ≤ g1t

2, f2 ≤ g2t, and f3 ≤ g3t, with g1, g2, g3 moderate numbers. Moreover, from
(9.51), (9.50) and ‖R(λ)‖F ≥ 1, we get that ‖S(λ)‖2

F ≈ ‖R(λ)‖2
F + 2(mη + nε) and

‖S(λ)‖2
F ≤ (1 + 2(mη + nε)) ‖R(λ)‖2

F ≤ 3 (m+ n) t ‖R(λ)‖2
F .

It only remains to analyze the factor
√

2 min(ε+ 1, η + 1) of KS,R, which is less

than or equal to
√

2(t+ 1), if η > 0 and ε > 0, or equal to
√

2, if η = 0 or ε = 0.
Combining all these bounds with the fact that t ≥ 1, the result follows as a corollary
of Theorem 9.4.15. �

Remark 9.5.4. Observe that (9.50) allow max(‖A‖F , ‖B‖F , ‖C‖F , ‖D(λ)‖F )� 1.
However, since the rational matrix R(λ) in (9.1) can be multiplied by a nonzero
number without affecting at all its eigenstructure, it is natural and convenient to
use as sufficient conditions

max(‖A‖F , ‖B‖F , ‖C‖F , ‖D(λ)‖F ) = 1 and ‖M(λ)‖F ≈ ‖D(λ)‖F . (9.52)

Such conditions would have appeared as sufficient in the analysis if we had defined
the norm of R(λ) as

|||R(λ)|||F :=

√√√√‖A‖2
F + ‖B‖2

F + ‖C‖2
F +

d∑
i=0

‖Di‖2
F , (9.53)

instead as in (9.3) (observe that we have removed the ` summand), depending only
on the free parameters of the representation of R(λ) in (9.1). We have chosen to use
(9.3) because, first, it identifies the informal “norm” of R(λ) with the formal norm
of the polynomial system matrix P (λ) and, second, it corresponds to the particular
case E = I` of the more general representation R(λ) = C(λE − A)−1B + D(λ),
with E nonsingular, when taking as norm the one of the corresponding polynomial
system matrix. Under the conditions (9.52), it is essentially equivalent to use (9.3) or
(9.53) as “norm” of R(λ). The use of representations R(λ) = C(λE−A)−1B+D(λ)
for rational matrices is of interest in certain applications and the block Kronecker
linearizations in this case are obtained just by replacing A−λI` by A−λE in (9.2).
We will consider the analysis of this general case in the future.
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9.6 Restoring the structure when the polynomial

part of the rational matrix is linear

In this section, we consider the particular case of having a rational matrix with
linear polynomial part. That is, the case of having a rational matrix that can be
written in the form

R(λ) = C(λI` − A)−1B +M(λ),

where C(λI` − A)−1B is a minimal state-space realization and M(λ) is a matrix
pencil. Then R(λ) can be strongly linearized using the following linear polynomial
system matrix

S(λ) :=

[
M(λ) C
B A− λI`

]
. (9.54)

Notice that, in this case, the linearization does not have the block anti-triangular
structure as the block Kronecker linearization in (9.2) since K1(λ) and K2(λ) are
empty matrices. The strong linearization (9.54) can be seen as the limit case of
(9.2) when ε = η = 0.

If we compute the eigenstructure of S(λ), the backward stability of the staircase
algorithm [83] and the QZ algorithm [71] guarantees that we computed the exact
eigenstructure of a slightly perturbed pencil

Ŝ(λ) := S(λ) + ∆S(λ), ∆S(λ) :=

[
∆11(λ) ∆12(λ)
∆21(λ) ∆22(λ)

]
. (9.55)

The structure of (9.54) is lost in (9.55) since the off-diagonal blocks of Ŝ(λ) are not
constant matrices and the identity block I` is not preserved by the perturbation.

Notice that restoring in Ŝ(λ) the original structure of S(λ) is much simpler than
in previous sections, as we do not have to restore any anti-triangular zero block nor
the minimal bases K1(λ) and K2(λ) in (9.19). We only have to take care of restoring
the identity matrix I` and the constant matrices B and C to obtain in two steps a
new strictly equivalent linear polynomial system matrix

S̃(λ) := (I −X)Ŝ(λ)(I − Y ) := (I −X2)(I −X1)Ŝ(λ)(I − Y1)(I − Y2) (9.56)

of the form

S̃(λ) :=

[
M̃(λ) C̃

B̃ Ã− λI`

]
, (9.57)

where M̃(λ) := M(λ)+∆M(λ), Ã := A+∆A, B̃ := B+∆B and C̃ := C+∆C. For
that, we consider the discussion in Subsection 9.4.2, for restoring I`; and a simplified
version of the discussion in Subsection 9.4.3, for restoring the constant matrices B
and C. In particular, from the bound in (9.39) and a counterpart of Theorem 9.4.11
we get the following result.
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Theorem 9.6.1. Let S(λ) be a minimal linear system matrix as in (9.54). The
transformation (X, Y ) in (9.56) exists and we can bound the corresponding pertur-

bation S̃(λ)− S(λ) as follows :

‖S̃(λ)− S(λ)‖F ≤ (1 +
√

2‖S(λ)‖2)2 ‖∆S(λ)‖F +O(δ2). (9.58)

In addition, if ‖S̃(λ)−S(λ)‖F is sufficiently small, then the perturbed pencil S̃(λ) is

a minimal linear system matrix of the rational matrix R̃(λ) = C̃(λI`−Ã)−1B̃+M̃(λ)
and√
‖∆A‖2

F + ‖∆B‖2
F + ‖∆C‖2

F + ‖∆M(λ)‖2
F

‖R(λ)‖F
≤ (1+

√
2‖S(λ)‖2)2 ‖∆S(λ)‖F

‖S(λ)‖F
+O(δ2),

where δ = ‖∆S(λ)‖F/‖S(λ)‖F .

The simplicity of the bound in Theorem 9.6.1 is also a consequence of ‖S(λ)‖F =
‖R(λ)‖F .

9.7 Scaling for obtaining structural backward sta-

bility

Once a block Kronecker linearization S(λ) in (9.2) of R(λ) in (9.1) satisfying

‖M(λ)‖F ≈ ‖D(λ)‖F
is chosen and the staircase or the QZ algorithm is applied to S(λ), structural back-
ward stability is guaranteed for the computed eigenstructure if the first condition in
(9.50) holds. However, there exist rational matrices which do not satisfy

max(‖A‖F , ‖B‖F , ‖C‖F , ‖D(λ)‖F ) ≤ 1

and, therefore, the computation of their eigenstructure via a block Kronecker linea-
rization might not be structurally backward stable. In this section, we study how
to proceed in these cases.

Multiplication by a constant. Observe that the eigenstructure of the ratio-
nal matrix R(λ) does not change at all if it is multiplied by a positive real con-
stant dR. Choosing appropriately dR, we get easily a rational matrix such that
max(‖B‖F , ‖C‖F , ‖D(λ)‖F ) ≤ 1. Even more, if dR is an integer power of 2, this
multiplication can be performed without introducing any rounding error.

Diagonal scaling. The above explanation indicates that the crucial point is how
to deal with rational matrices with ‖A‖F > 1. For this, note that when representing
a rational matrix R(λ) by a realization quadruple {λI`−A,B,C,D(λ)}, where D(λ)
is polynomial,

R(λ) := C(λI` − A)−1B +
d∑
i=0

Diλ
i,
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one can change the coordinate system of the state-space realization {A,B,C} of the
strictly proper part of R(λ) by a diagonal similarity scaling

T := diag(d1, . . . , d`) with di > 0,

without changing R(λ) since

C(λI` − A)−1B = CT (λI` − T−1AT )−1T−1B.

Thus, before multiplying R(λ) by dR, we can choose T to balance A, i.e., to minimize
its Frobenius norm under all diagonal similarities by making the 2-norms of the rows
and columns of T−1AT become equal [74]. Moreover, at the same time, the Frobenius
norms of T−1B and CT can be made equal by considering a positive scalar factor
multiplying T . Observe, in addition, that if the entries of T are integer powers of
2, this process does not introduce rounding errors, though, in this case, the norm
of T−1AT is only approximately minimized. However, the effects of T are limited
since ‖T−1AT‖F ≥

√
|λ1|2 + · · ·+ |λ`|2, where λ1, . . . , λ` are the eigenvalues of A,

for any invertible T , i.e., diagonal or not. Therefore, other approaches are needed
for dealing with all instances of matrices A with large norms. It is important to
emphasize at this point that the influence of a large norm matrix A on the bound
(9.49) is huge, because it contributes to ‖S(λ)‖2, but also the factor ‖A‖max(η,ε)

2 is
present in both f1 and f3.

Change of variable. The final solution comes from changing the variable λ to

λ̂ := dλλ

and from combining this with the multiplication by the constant dR and the diagonal
scaling T discussed above. Note that the change of variable transforms the zeros
and the poles of R(λ) in a very simple way, preserving their partial multiplicities,
and that does not change at all its minimal indices [65, 82].

The combination of all these scalings yields a new transfer function

R̂(λ̂) := D̂(λ̂) + Ĉ(λ̂I` − Â)−1B̂ := dRR(λ̂/dλ) (9.59)

where
Â := dλT

−1AT, B̂ :=
√
dλdR T

−1B, Ĉ :=
√
dλdR CT (9.60)

and
D̂i := dRd

−i
λ Di, for all i = 0, 1, . . . , d. (9.61)

Then, we can choose dλ := min(1, ‖T−1AT‖−1
F ), such that Â has norm smaller than

or equal to 1. Note that the preliminary balancing will make this step milder, in
the sense that dλ will be closer to 1. Finally, based on (9.59), we summarize the

following scaling procedure for obtaining a rational matrix R̂(λ̂) with

max(‖Â‖F , ‖B̂‖F , ‖Ĉ‖F , ‖D̂(λ̂)‖F ) = 1

from the data {A,B,C,D0, D1, . . . , Dd}:
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Step 1. Compute T = diag d1, . . . , d` to balance A and to make equal the norms of
T−1B and CT .

Step 2. Choose dλ := min(1, ‖T−1AT‖−1
F ).

Step 3. Choose

dR =
1

max( ‖
√
dλ T

−1B‖2
F , ‖
√
dλCT‖2

F ,

√√√√ d∑
i=0

‖d−iλ Di‖2
F )

.

Step 4. Compute {Â, B̂, Ĉ, D̂0, D̂1, . . . , D̂d} as in (9.60)-(9.61).

This process can be easily arranged to use scale factors that are all integer powers
of two and, thus, can be implemented without any rounding error. Moreover, this
scaling can be applied directly to the pencil S(λ). More precisely, the pencil

Ŝ(λ̂) := D`S(λ̂/dλ)Dr,

where the left and right diagonal scalings D` and Dr are given by

D` := diag d
1
2
Rd
−η
λ Im, . . . , d

1
2
Rd

0
λIm, d

1
2
λd
−1
1 , . . . , d

1
2
λd
−1
` , d

− 1
2

R dελIn, . . . , d
− 1

2
R d1

λIn,

Dr := diag d
1
2
Rd
−ε
λ In, . . . , d

1
2
Rd

0
λIn, d

1
2
λd1, . . . , d

1
2
λd`, d

− 1
2

R dηλIm, . . . , d
− 1

2
R d1

λIm,

is a block Kronecker linearization of the rational matrix R̂(λ̂) in (9.59).

9.8 Numerical experiments

In this section, we describe three experiments illustrating that the potential sources
of structural backward instability revealed by the bound (9.49) are indeed observed
in practice. More precisely, the experiments will illustrate that if a rational matrix
R(λ) as in (9.1) does not satisfy the first condition in (9.50), then the computation
of the eigenstructure of R(λ) by applying the QZ algorithm to a block Kronecker
linearization S(λ) of R(λ) that satisfies ‖M(λ)‖F = ‖D(λ)‖F is not structurally
backward stable. Moreover, the experiments also illustrate that the scaling described
in Section 9.7 is effective and leads to structured backward stability for the scaled
rational matrices and linearizations.

A difficulty for performing fully reliable numerical experiments in this setting
is that to estimate the actual global backward error for the whole computed eigen-
structure, i.e., the left-hand side of (9.49), is a challenging optimization problem for
which we do not know yet a solution. Therefore, we will limit ourselves to comput-
ing a lower bound for the backward error based on the “local” backwards errors of
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each computed zero of the rational matrix, as we explain below. This lower bound
might severely underestimate the actual global backward error. Thus, we cannot
check from our experiments the sharpness of the bound (9.49), which, on the other
hand, was deduced through many potentially overestimating inequalities with the
main goal of getting a bound as clear as possible instead of optimizing its sharpness.

For simplicity, we will restrict our numerical experiments to square and regular
rational matrices R(λ) with a corresponding quadruple {A,B,C,D(λ)} of moderate
dimensions and degree of its polynomial part: m = n = 2, ` = 5, d = 3. The block
Kronecker pencil we choose for our computations is

S(λ) :=


λD3 +D2 0 0 I2

0 λD1 +D0 C −λI2

0 B A− λI` 0
I2 −λI2 0 0

 ,
which has η and ε equal to 1, size 11 × 11 and satisfies ‖M(λ)‖F = ‖D(λ)‖F . We
also will look at the polynomial system matrix

P (λ) :=

[
A− λI` B
C D(λ)

]
, D(λ) := D0 + λD1 + λ2D2 + λ3D3

of R(λ) because it allows us to estimate the backward errors of our algorithm

as follows. We look for a rational matrix R̃(λ) corresponding to a quadruple
{A + ∆A,B + ∆B,C + ∆C, (D + ∆D)(λ)} such that all its finite zeros are ex-
actly all the computed finite eigenvalues obtained by applying the QZ algorithm
to S(λ) and such that ‖( ∆A,∆B,∆C, (∆D)(λ) )‖F is as small as possible. As a
consequence of the classical results of Rosenbrock [78], this is equivalent to find

a perturbed polynomial system matrix P (λ) + ∆P (λ) of R̃(λ), whose finite zeros
are the computed eigenvalues λi and such that ‖( ∆A,∆B,∆C, (∆D)(λ) )‖F is as
small as possible. Therefore, {∆A,∆B,∆C,∆D0,∆D1,∆D2,∆D3} must have the
property that simultaneously, at each computed eigenvalue λi, the matrix

P (λi) + ∆P (λi) = P (λi) +

[
∆A ∆B 0 0 0 0 0 0
∆C ∆D0 0 ∆D1 0 ∆D2 0 ∆D3

]
I`+m
λiI`+m
λ2
i I`+m
λ3
i I`+m


must be singular. To find the smallest possible Frobenius norm of all possible
{∆A,∆B,∆C,∆D0,∆D1,∆D2,∆D3} that satisfy this property for all computed λi
is not obvious, however to solve this problem for only one computed λi is easy. For
this purpose, let ∆(i) be the minimum Frobenius norm matrix that makes P (λi)+∆(i)

singular. Note that ∆(i) can be computed through the singular value decomposition
of P (λi) and that, generically, it is a rank one matrix with Frobenius norm equal to
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σminP (λi). Then, the linear system

∆(i) :=

[
∆

(i)
11 ∆

(i)
12

∆
(i)
21 ∆

(i)
22

]
=

[
∆A ∆B 0 0 0 0 0 0
∆C ∆D0 0 ∆D1 0 ∆D2 0 ∆D3

]
I`+m
λiI`+m
λ2
i I`+m
λ3
i I`+m


for the unknowns {∆A,∆B,∆C,∆D0,∆D1,∆D2,∆D3} is consistent and its min-

imum Frobenius norm solution is given by

∆A := ∆
(i)
11 , ∆B := ∆

(i)
12 , ∆C := ∆

(i)
21 , ∆Dk := ∆

(i)
22λ

k

i /g(λi), k = 0, 1, 2, 3,

where g(λi) := (1 + |λi|2 + |λi|4 + |λi|6), and the Frobenius norm of this 7-tuple of
matrices is given by

r(P, λi) := ‖

[
∆

(i)
11 ∆

(i)
12

∆
(i)
21 ∆

(i)
22/
√
g(λi)

]
‖F .

This leads us to use in our experiments

r(P ) := max
i
r(P, λi) (9.62)

as an estimate for the structured absolute backward error induced by our algorithm,
i.e., as an estimate for the numerator of the left-hand side of (9.49). We emphasize
that this is a lower bound for the actual global structured backward error, since it
corresponds to a rational matrix that has only one of the computed eigenvalues as
a finite zero.

Experiment 1. In the first experiment, we investigate the behavior of the
structured backward error for rational matrices with matrices A of increasing (large)
norms, and with the rest of the matrices in the quadruple {A,B,C,D(λ)} having
norms of order 1. The reason why we pay first particular attention to the norm of A
is because according to the bound (9.49) the influence of A should be huge because
it contributes to ‖S(λ)‖2 and also to f1 and f3. For this purpose, we generated
with the Matlab function randn, 7 batchs of samples of 50 random matrix-tuples
{A,B,C,D0, D1, D2, D3}, and in each batch indexed with i, we multiplied the matrix
A by 10i, with i going from 1 till 7, in each of the 50 runs of each batch. In each
batch, we computed the average of the absolute backward error estimators (9.62) for
both the original matrix-tuples and the scaled ones after applying the procedure in
Section 9.7. In Figure 9.1, we plot the results of these computations: the horizontal
axis represents the index i defining each batch and the vertical axis the logarithm of
the average absolute backward errors. Ideally, the absolute backward error should
be of order εM ‖R(λ)‖F , where εM is the machine precision, and, so, we also plot
this magnitude for the unscaled original data taking in each batch the average of
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all ‖R(λ)‖F (for the scaled data, this magnitude is always of order εM and is not
plotted).

We observe that the absolute backward errors for the unscaled problem grow very
strongly with the index i, i.e., with the norm of A, and that computing the zeros of a
rational matrix by applying the QZ algorithm to the block Kronecker linearization
S(λ) is highly structurally backward unstable for large norms of A, as predicted by
the bound (9.49). In contrast, when applying the scaling procedure described in
Section 9.7, this growth is absent and we get perfect structural backward stability
for the scaled rational matrix, as predicted by (9.49).

Figure 9.1: Experiment 1: behavior of absolute structured backward errors for
increasing values of the norm of A.

Experiment 2. In the second experiment, we investigate the behavior of the
structured backward error for rational matrices with matrices A of norms of order 1,
and with the rest of the matrices in the quadruple {A,B,C,D(λ)} having increasing
(large) norms. The situation in this experiment is opposite to the one in the first
experiment. The matrices are generated following the same pattern of the first
experiment except by the fact that once the matrices {A,B,C,D0, D1, D2, D3} are
generated with randn, B is multiplied by 10i/2, C by 10i/3, D1 by 10i, D2 by 10i/2

and D3 by 10i/3, for i = 1, . . . , 7. The results are plotted in Figure 9.2 and the
conclusions are the same as in the first experiment and are in agreement with our
analysis. However, note that the growth of the absolute backward errors of the
original unscaled data is much smaller than in the first experiment. This effect is
qualitatively expected from the bound (9.49), since f3 does not depend on the norms
of B, C and D(λ), but the observed very large quantitative difference is not fully
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explained by (9.49). Possible reasons of this are that, as we have emphasized before,
our backward error estimator is a lower bound that may underestimate severely
the actual global backward error and/or that the bound in (9.49) overestimates the
actual error.

Figure 9.2: Experiment 2: behavior of absolute structured backward errors for
increasing values of the norms of B, C and D(λ).

Experiment 3. The last experiment we present combines the scalings used in
the first and second experiments. That is, once the matrices {A,B,C,D0, D1, D2, D3}
are generated with randn, A is multiplied by the factor used in Experiment 1 and
B,C,D1, D2, and D3 are multiplied by the factors used in Experiment 2. Taking
into account that the function f1 appearing in the bound (9.49) includes a product
of the norm of A times the norm of B and a product of the norm of A times the norm
of C, we expect backward errors larger than those of Experiment 1. The results are
plotted in Figure 9.3. The errors are indeed larger than those in Figure 9.1, but just
a bit larger. The possible reasons of this small increment of the errors are the same
as in the second experiment.

The main conclusion of this section is that our main a priori structured back-
ward error bound (9.49) identifies correctly the sources of instability of computing
the eigenstructure of a rational matrix by applying the QZ algorithm to its block
Kronecker linearizations and that the scaling proposed in Section 9.7 leads to struc-
tural backward stability.
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Figure 9.3: Experiment 3: behavior of absolute structured backward errors for
increasing values of the norms of A, B, C and D(λ).



Chapter 10

Conclusions, publications and
open problems

In this chapter, we give some concluding remarks of the results presented in this
PhD thesis and summarize the main original contributions. We also list all the
papers (published or in development) that include the results obtained in this dis-
sertation, and the conferences where many of them have been presented. Finally,
we suggest a collection of related open problems and recommendations for future
research directions.

10.1 Conclusions and original results

In this section, we highlight the main original results in this dissertation together
with some conclusions of each chapter. In general, it is worth mentioning that as a
consequence of the results of this thesis and, in particular, as a consequence of the
new definition of local linearization of rational matrices in Chapter 4, most of the
linearizations for rational matrices in the literature have been unified in a general
framework. In particular, the theory of local linearizations of rational matrices
captures all the pencils that have been used (as far as we know) in the literature
for solving REPs arising from approximating NLEPs; some of them are analysed in
Chapter 5. In addition, the definition of local linearizations includes the definition
of linearizations and strong linearizations of arbitrary rational matrices presented
in [6], just by considering as set the whole underlying field and including infinity in
the strong case. But the conditions for a linearization to be strong in Chapter 4 and
those in [6] are different. More precisely, given a minimal linear polynomial system
matrix

L(λ) =

[
A1λ+ A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
∈ F[λ](n+q)×(n+r),

213
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for the linearization to be strong in [6] it is required A1 to be invertible (recall
Proposition 3.1.1). However, we do not require A1 to be invertible but

rank

[
A1

C1

]
= rank

[
A1 B1

]
= n,

which is the condition for minimality at infinity introduced in Chapter 4. A parti-
cular case of local linearizations in the strong sense are the strongly minimal linea-
rizations in Chapter 7, for which the transfer function matrix is exactly the desired
rational matrix. Strongly minimal linearizations include the generalized state-space
systems originally used in [92] for linearizing rational matrices. Thus, the new local
theory of linearizations for rational matrices is a flexible tool that generalizes and
includes most of the previous results available in the literature in this area. More-
over, local linearizations allow us to introduce in Chapters 6 and 8 linearizations
of rational matrices that can not be constructed with the previous definitions of
linearization. All these results are in part possible due to the new treatment of
minimality of polynomial system matrices at infinity.

We first started in Chapter 3 by considering the definition of strong linearization
for rational matrices given in [6], and we proved the key Lemma 3.1.2, which allows
us to construct infinitely many strong linearizations for any rational matrix R(λ) ∈
F(λ)p×m from any given strong linearization of R(λ). Then Lemma 3.1.2 was applied
to construct linearizations of square rational matrices R(λ) ∈ F(λ)m×m, written as
the sum of their polynomial and strictly proper parts. Namely,

R(λ) := D(λ) +Rsp(λ).

More precisely, Lemma 3.1.2 has been combined with some of the strong linea-
rizations constructed in [6, Theorem 5.11] for rational matrices and with strong
linearizations of its polynomial part D(λ) to create new families of strong lineariza-
tions of square rational matrices. In particular, we considered the families of strong
linearizations of polynomial matrices presented in [36] to linearize the polynomial
parts. These are, the ansatz spaces M1(D) and M2(D), where the corresponding
polynomial matrix is expressed in terms of any polynomial basis satisfying a three
term recurrence relation. The main results for the construction of the strong li-
nearizations of rational matrices from M1(D) and M2(D) are Theorems 3.2.9 and
3.3.4, respectively. Such linearizations were called M1- and M2-strong lineariza-
tions, respectively. The recovery of the eigenvectors of the rational matrix from
those of the linearizations in these families has been studied and stated in different
results. For M1-strong linearizations, Theorems 3.4.4 and 3.4.5 state the recovery
of right and left eigenvectors associated with finite eigenvalues, respectively, and
Theorem 3.4.7 the recovery of right and left eigenvectors associated with infinity.
For M2-strong linearizations, Theorems 3.4.9 and 3.4.10 state the recovery of right
and left eigenvectors associated with finite eigenvalues, respectively, and Theorem
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3.4.12 the recovery of right and left eigenvectors associated with infinity. Moreover,
the preservation of symmetric and Hermitian structures of the rational matrix in
the linearizations have been studied in Theorem 3.6.9 and Corollary 3.6.11, for the
symmetric case, and in Theorem 3.7.5 and Corollary 3.7.6, for Hermitian structures.
Finally, a result on how to construct strong linearizations when the polynomial part
is expressed in other polynomial bases is given in Theorem 3.8.1.

We would like to emphasize that the techniques developed in this chapter could
be applied to construct other families of strong linearizations of rational matrices
R(λ) expressed as the sum of its polynomial part D(λ) and its strictly proper part
Rsp(λ), given a strong linearization of D(λ) in any of the families of strong lineariza-
tions of polynomial matrices developed in the last years and a minimal state-space
realization of Rsp(λ). However, although any rational matrix can be expressed as the
sum of its polynomial and strictly proper parts, this expression may not be easily
available from the applications and/or may not be the best representation in a par-
ticular problem. Then linearizations for more general representations are presented
in Chapter 6. But in Chapter 6 we used the definition of linearization for rational
matrices introduced in Chapter 4, since with other definitions of linearization for
rational matrices existing in the literature it is not possible to develop the results in
Chapter 6.

In Chapter 4 a theory of local linearizations of rational matrices has been
carefully introduced and analysed. For that, we first developed the extension of
Rosenbrock’s minimal polynomial system matrices to a local sense. The notions of
polynomial system matrices minimal in a set and at infinity are given in Definitions
4.1.1 and 4.1.8, respectively. For minimality at infinity we used the notion of g-
reversal of rational matrices introduced in Definition 4.1.7. We studied the pole and
zero information that one can obtain from polynomial system matrices minimal in
a set and at infinity in Theorems 4.1.5 and 4.1.11, respectively. The study of the
recovery of the invariant orders at infinity is given in Theorem 4.1.13. Polynomial
system matrices that are minimal in the whole underlying field and also at infinity
are called strongly minimal in Definition 4.1.15. Then we present the notions of
linearizations of rational matrices in a set and also at infinity in Definitions 4.2.1
and 4.2.9, respectively, together with spectral characterizations in Theorems 4.2.6
and 4.2.14 and the recovery of the invariant orders at infinity in Proposition 4.2.15.
When a linearization of a rational matrix satisfy the minimality conditions in the
whole underlying field and also at infinity for a particular choice of the g−reversal,
then we say it is a strong linearization of grade g (Definition 4.2.16). We also define
and analyze the very general family of block full rank pencils and linearizations, as
templates that cover many of the pencils, available in the literature, that linearize
rational matrices in a target set, in the whole field and/or at infinity. In particular,
block full rank pencils and linearizations in a set are introduced in Theorems 4.3.5
and 4.4.1, and block full rank pencils and linearizations at infinity in Theorems 4.3.7
and 4.4.10.
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In Chapter 5 we apply the theory of local linearizations in Chapter 4 to a
number of pencils that have appeared in the influential papers [47, 60] on solving
numerically NLEPs by combining rational approximations and linearizations of the
resulting rational matrices. In particular, the pencils introduced in [47] have been
studied in Theorems 5.1.1 and 5.1.3. In addition, in [47] trimmed linearizations are
considered when the coefficients defining the NLEPs have low rank. These trimmed
linearizations are studied in Theorems 5.1.5 and 5.1.7. The pencils introduced in [60]
have been studied in Theorem 5.2.6 and their minimality conditions in Theorems
5.2.8 and 5.2.9. In [60] trimmed linearizations exploiting low rank structures are
also considered, which we analyzed in Theorem 5.2.13. It has been emphasized
throughout the chapter that the theory of local linearizations allows us to view
these pencils, and to explain their properties, from rather different perspectives, by
using the notions of block full rank pencils and linearizations in Chapter 4.

In Chapter 6 rational matrices R(λ) are expressed in the general form

R(λ) = D(λ) + C(λ)A(λ)−1B(λ),

where A(λ), B(λ), C(λ) and D(λ) are polynomial matrices with arbitrary degrees.
From these representations we have constructed a family of linear polynomial matri-
ces that, under some minimality conditions, are local linearizations for R(λ) in the
sense defined in Chapter 4. These linearizations are presented in Theorems 6.1.2 and
6.2.1. Moreover, we have showed in Theorem 6.4.12 how to recover the eigenvectors
of R(λ), when R(λ) is regular, from those of any of the new linearizations. The
recovery of right and left minimal bases and minimal indices of R(λ), when R(λ) is
singular, is studied in Theorems 6.4.9 and 6.4.11, respectively. Finally, in Section
6.5 we apply the theory in this chapter to the solution of scalar rational equations.

We emphasize that in contrast to the construction of other families of lineari-
ations for rational matrices, as those introduced in Chapter 3 or in the references
[2, 7, 27, 79], the construction of the linearizations in this chapter do not require
neither to write the corresponding rational matrix R(λ) as the sum of its polynomial
part and its strictly proper part nor to express the strictly proper rational part in
state-space form, which can introduce errors that were not in the original problem.

In Chapter 7 we considered realizations {A(λ), B(λ), C(λ), D(λ)} for a given
rational transfer function matrix R(λ) = C(λ)A(λ)−1B(λ)+D(λ), where the matri-
ces A(λ), B(λ), C(λ) and D(λ) are pencils, and where A(λ) is assumed to be regular.
We showed that if the corresponding linear polynomial system matrix

L(λ) :=

[
A(λ) −B(λ)
C(λ) D(λ)

]
(10.1)

is strongly minimal then the poles, zeros and left and right null space structures
of the rational matrix R(λ) can be recovered from the generalized eigenstructures
of A(λ) and L(λ), and L(λ) is named as a strongly minimal linearization of R(λ)
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(Definition 7.2.4). In particular, in Proposition 7.2.11 we proved that if L(λ) is
a strongly minimal linearization of a rational matrix R(λ) then the left and right
minimal indices of R(λ) and those of L(λ) are the same. In Subsection 7.2.2 we stu-
died the relation of strongly minimal linearizations with other definitions of strong
linearizations for polynomial and rational matrices in the literature. In addition, by
Theorems 7.2.6 and 7.2.7, we showed that the strong minimality conditions imply
the strong irreducibility conditions in [91]. We stated such result in Proposition
7.2.10. We also showed in Section 7.3 how to obtain such a strongly minimal linear
system matrix from a non-minimal one, by applying a reduction procedure that is
based on the classical staircase algorithm developed in [83]. The main results in that
section are stated in Theorems 7.3.1 and 7.3.3. These results extend those previ-
ously obtained in the literature for generalized state space systems and polynomial
matrices.

In Chapter 8 we looked at strongly minimal linear polynomial system matri-
ces for any given rational matrix R(λ), preserving the structure whenever we have
a specific type of self-conjugate structure on R(λ). We showed that there always
exist strongly minimal linear polynomial system matrices that have the same self-
conjugate structure as the transfer function matrix. For that we first constructed,
in Theorem 8.1.2, strongly minimal linearizations for arbitrary polynomial matrices
and, in Theorem 8.2.2, for self-conjugate polynomial matrices. Then, in Theorem
8.3.1, we constructed strongly minimal linearizations for arbitrary strictly proper
rational matrices and, in Theorem 8.4.2, for self-conjugate strictly proper rational
matrices. Finally, in Theorems 8.5.1 and 8.5.2 we stated the results for both arbi-
trary and structured rational matrices. These results were known for the case of
arbitrary proper transfer functions [48], but were extended in this chapter to ra-
tional matrices that are not proper. Moreover, the derivation is new and is based
on arguments that are very similar for the strictly proper part and the polynomial
part of the rational matrix. The proofs are also constructive and lead to efficient
algorithms for their construction.

It is worth mentioning that the strong linearizations constructed in Chapter 3
preserving symmetric and Hermitian structures require the degree of the polynomial
part of the rational matrix to be odd or that, when it is even, the leading matrix
coefficient to be invertible. Both restrictions are inherited from the classical theory
of linearizations for structured polynomial matrices and they do not appear by
considering strongly minimal linearizations as we showed in this chapter. As far as
we know, it is the first time that such a completely restriction free construction of
structured linearizations has been achieved.

In Chapter 9 we developed the first structured backward error analysis for an
algorithm that computes the eigenstructure of a rational matrix via linearization.
More precisely, the considered algorithm starts from a rational matrix expressed as
in (9.1) and computes its eigenstructure by applying a backward stable generalized
eigenproblem algorithm to its block Kronecker linearizations described in (9.2). The



218 CHAPTER 10. CONCLUSIONS

main result is stated in Theorem 9.4.15, and in Theorem 9.6.1 for the case of ra-
tional matrices with linear polynomial part. As a consequence of this analysis, we
have identified the simple sufficient conditions (9.50) for global structural backward
stability. In the case of rational matrices which do not satisfy these conditions, we
have developed in Section 9.7 an scaling procedure that transforms the original ra-
tional matrix in another one for which structural backward stability is guaranteed.
A number of numerical experiments confirming the predictions of the backward error
analysis have been performed and discussed in Section 9.8. The results in Chap-
ter 9 showed that solving numerically REPs via block Kronecker linearizations is a
backward stable process in a global sense, under certain conditions involving both
the representation of the rational matrix and the choice of the linearization.
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1−1−1− F. M. Dopico, S. Marcaida, M. C. Quintana, Strong linearizations of
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full rank linearizations of rational matrices, submitted. Available as arXiv:
2011.00955v1.

The original results in Chapter 6 are contained in the following paper:
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neral representations, submitted. Available as arXiv:2003.02934v1.

The original results in Chapter 7 are contained in the following paper:
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ces of rational transfer functions, to appear in ”Realization and Model Reduction
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toulas”, Springer-Verlag. Available as arXiv:1903.05016v2.
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The original results in Chapter 8 are contained in the following paper:
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self-conjugate linearizations for polynomial and rational matrices, in preparation.

The original results in Chapter 9 are contained in the following paper:
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stability in rational eigenvalue problems solved via block Kronecker linearizations,
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10.3 Contributions to conferences

The author of this dissertation has presented many of the original results in this
thesis in several conferences. Among them, we emphasize one of the main interna-
tional conferences in the area of Applied Mathematics: the International Congress
on Industrial and Applied Mathematics (ICIAM), and one of the main international
conferences in the area of Applied Linear Algebra: the Society for Industrial and
Applied Mathematics (SIAM) Conference on Applied Linear Algebra. All the con-
tributions are listed in what follows in reversed chronological order:

(1) May 17 - 21, 2021: SIAM Conference on Applied Linear Algebra
(LA21). Virtual conference, originally scheduled in New Orleans, Louisiana,
USA. Type of participation: Invited talk in minisymposium “Structured Eigen-
value Problems.” Title of the work: Block Full Rank Linearizations of Rational
Matrices.

(2) July 15-19, 2019: International Congress on Industrial and Ap-
plied Mathematics (ICIAM 19). Universidad de Valencia, Valencia, Spain.
Type of participation: Invited talk in minisymposium “Nonlinear and multi-
parameter eigenvalue problems”. Title of the work: Local Linearizations of
Rational Matrices and their Applications to Nonlinear Eigenvalue Problems.

(3) May 29-30, 2019: Workshop “Advances in numerical linear alge-
bra: celebrating the centenary of the birth of James H. Wilkin-
son”. University of Manchester, Manchester, United Kingdom. Type of par-
ticipation: Poster. Title of the work: On the Structure of Linearizations for
Rational Approximations of Nonlinear Eigenvalue Problems.

(4) September 19, 2018: Autumn of Eigenvalues Seminar Series - Part
II. Instituto de Ciencias Matematicas (ICMAT), Madrid, Spain. Type of par-
ticipation: Invited talk. Title of the work: Symmetric Strong Linearizations
of Symmetric Rational Matrices.
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(5) May 30 - June 1, 2018: ALAMA 2018 meeting. Complejo San Juan,
Sant Joan d’Alacant, Spain. Type of participation: Contributed talk. Title
of the work: Strong linearizations of rational matrices with polynomial part
expressed in an orthogonal basis.

(6) May 4-8, 2018: SIAM Conference on Applied Linear Algebra
(LA18). Hong Kong Baptist University, Hong Kong, China. Type of partic-
ipation: Invited talk in minisymposium “Polynomial and Rational Matrices”.
Title of the work: Strong linearizations of rational matrices with polynomial
part expressed in an orthogonal basis.

(7) September 11-13, 2017: Workshop of Young Researchers in Math-
ematics. Universidad Complutense de Madrid, Madrid, Spain. Type of par-
ticipation: Contributed talk. Title of the work: Constructing new classes of
Strong Linearizations of Rational Matrices.

10.4 Open problems and future research

In this section, we discuss some open problems and directions for future research
related to the results developed in this dissertation. We think that, after the results
presented in this thesis and others existing in the literature, the study of the theo-
retical properties of linearizations of rational matrices is quite developed. However,
there are few numerical stability results in this regard, in the spirit of those we
presented in Chapter 9 that are limited to the family of “block Kronecker lineari-
zations” in [6]. Therefore, the problems proposed in this section will focus more on
addressing numerical properties for rational matrices and their linearizations than
on theoretical results. For the case of polynomial matrices, the study of the nu-
merical properties of their linearizations is well understood. The general idea is to
extend those results for rational matrices.

Problem 1: Study the numerical properties of the linearizations introduced in this
dissertation. In particular, given a linearization of a REP in a set, it is important to
study the global backward stability in terms of the structure of the representation of
the rational matrix defining the REP when applying a numerical method to compute
the eigenvalues of the corresponding linearization and it gets perturbed, as it is done
for the family of “block Kronecker linearizations” in Chapter 9. A first interesting
problem inside the general Problem 1 is to extend the analysis in Chapter 9 for block
Kronecker linearizations when in the representation of the rational matrix (λI`−A)
is replaced by (λE − A) with E nonsingular. This might help to avoid the scaling
of the variable for getting backward stability in certain cases.

Now we briefly recall the families of linearizations for rational matrices introduced
in this thesis:
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(1) The strong linearizations of rational matrices in Chapter 3, where the corres-
ponding rational matrix R(λ) is written in the form R(λ) = D(λ) + C(Inλ −
A)−1B with polynomial partD(λ) expressed in an orthogonal basis and C(Inλ−
A)−1B being a minimal state space realization.

(2) The family of block full rank linearizations in Chapter 4. Associated with
such linearizations, rational matrices R(λ) are written in the form R(λ) =
N2(λ)[M(λ) +C(λ)A(λ)−1B(λ)]N1(λ)T where M(λ), C(λ), A(λ) and B(λ) are
pencils and N1(λ) and N2(λ) are rational bases.

(3) The linearizations of rational matrices from general representations in Chapter
6, where rational matrices are written as R(λ) = D(λ)+C(λ)A(λ)−1B(λ), with
D(λ), C(λ), A(λ) and B(λ) being arbitrary polynomial matrices.

(4) The strongly minimal linearizations in Chapter 8, where rational matrices R(λ)
are written from their Laurent expansions around the point at infinity. That
is, R(λ) = Rdλ

d + . . .+R1λ+R0 +R−1λ
−1 +R−2λ

−2 +R−3λ
−3 + . . . .

We notice that for the families of linearizations in (1), (2) and (3) the matrix co-
efficients defining the representations of the rational matrix are reflected on the
linearizations. Then, in principle, one might use ideas similar to those in Chapter 9
in order to recover the structure of the rational matrix in the corresponding lineari-
zation when it gets perturbed. However, the coefficients of the Laurent expansions
do no appear in the strongly minimal linearizations in (4). Thus one should take
into account, in addition, the numerical transformations done to build the lineari-
zations in order to determine which rational matrix is linearized by the perturbed
pencil for studying backward stability. The fact that this construction is based on
unitary transformations gives us some hope of solving this difficult problem.

Problem 2: Define different condition numbers of eigenvalues λ of REPs, for differ-
ent representations of the rational matrix defining the REP, that is their sensitivity
to perturbations of the parameters defining the representation. For the case of poly-
nomial matrices, definitions of condition numbers in the literature take into account
that the corresponding polynomial matrix can be written in terms of different poly-
nomial bases. For the case of rational matrices, it is important to consider as well
different representations of the corresponding rational matrix and different types
of perturbations. After the condition numbers are defined, the next step would be
to compare the condition numbers with the standard condition numbers of the ge-
neralized eigenvalue problems associated with different linearizations by analyzing
their ratios. An eigenvalue λ could then be computed stably from the linearization
if the ratio is moderate. These results would determine which representations of
rational matrices and which linearizations have favorable properties with respect to
conditioning.

Problem 3: Define different local backward errors for particular computed pairs
of eigenvalue λ and associated eigenvector x of REPs considering different represen-
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tations of the corresponding rational matrix and different types of perturbations.
Obtaining explicit formulas of backward errors of an approximate eigenpair (λ, x)
for rational matrices can be much more involved than for polynomial matrices. This
is due to the fact that in many of the representations of rational matrices appear
inverses of polynomial matrices containing the pole information. After expressions
or methods for computing local backward errors are obtained, the next step would
be to compare the obtained local backward errors with the standard backward errors
of the generalized eigenvalue problems associated with linearizations. These results
would determine which representations of rational matrices and which linearizations
have favorable properties with respect to local backward stability.

Problem 4: Study the stability and accuracy of the linearization-based algorithm
proposed in Section 6.5 for solving (scalar) rational equations as in (6.25).

Problem 5: For rational matrices R(λ) expressed in the general form R(λ) =
D(λ) + C(λ)A(λ)−1B(λ), the linearizations constructed in Chapter 6 are of the
form

L(λ) =


MA(λ) MB(λ)
KA(λ) 0

−MC(λ) MD(λ)

0 KD(λ)


where

[
MA(λ)
KA(λ)

]
and

[
MD(λ)
KD(λ)

]
are (degenerate) strong block minimal bases li-

nearizations of A(λ) and D(λ), respectively. A related problem is to develop the
construction by considering general strong block minimal bases linearizations of A(λ)
and D(λ) as in Definition 2.5.1. That is, strong block minimal bases linearizations

of the form

[
MA(λ) K2

A(λ)T

K1
A(λ) 0

]
and

[
MD(λ) K2

D(λ)T

K1
D(λ) 0

]
for A(λ) and D(λ), res-

pectively. In such a case, the recovery rules for minimal bases and minimal indices
from the linearization would be analogous for the right and left null spaces, as well
as the recovery of eigenvectors. In addition, the linearizations could also preserve
structures.

Problem 6: The results in Chapter 8 are not only important for preserving struc-
tures of rational matrices but for the particular case of structured polynomial matri-
ces. In particular, in Sections 8.1 and 8.2, we construct structured strongly minimal
linearizations of structured polynomial matrices with (skew-)Hermitian and alter-
nating structures. An open problem is to construct strongly minimal linearizations
preserving other structures of polynomial matrices as (anti-)palindromic, that are
also important in applications [64]. A polynomial matrix P (λ) is palindromic if
[P (λ)]∗ = revP (λ), and anti-palindromic if [P (λ)]∗ = − revP (λ).
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Proof of Theorem 6.4.9

Proof. Let us consider a right minimal basis {zi(λ)}si=1 of L(λ) with right minimal
indices εi = deg zi(λ), for i = 1, . . . , s. By Lemma 2.4.5, we have that the polynomial
vectors zi(λ) must be of the form

zi(λ) =

[
yi(λ)
xi(λ)

]
(i = 1, . . . , s),

for some basis {xi(λ)}si=1 of Nr(R̂). We notice that the vectors xi(λ) must be
polynomial vectors, otherwise the vectors zi(λ) would not be polynomial vectors.

We will prove that the polynomial basis {xi(λ)}si=1 is minimal by using Theorem
2.3.3. For this purpose, let us define the polynomial matrices

B(λ) :=
[
z1(λ) · · · zs(λ)

]
and B̂(λ) :=

[
x1(λ) · · · xs(λ)

]
.

First, let us show that B̂(λ) has full column rank for every λ0 ∈ F. Con-
sider the unimodular (and, so, invertible at every λ0 ∈ F) matrix UA(λ)−1 =[
N̂A(λ)T NA(λ)T

]
defined in (6.7). By (6.8), we have
MA(λ0)
KA(λ0)
−MC(λ0)

0

UA(λ0)−1 =


∗ A(λ0)

InρA 0
∗ −C(λ0)
0 0

 ,
for every λ0 ∈ F. The equation above, together with (6.21), implies that the (con-
stant) matrix 

MA(λ0)
KA(λ0)
−MC(λ0)

0
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has full column rank for every λ0 ∈ F. Then, from L(λ0)B(λ0) = 0, we obtain
MA(λ0) MB(λ0)
KA(λ0) 0
−MC(λ0) MD(λ0)

0 KD(λ0)

[ ∗
B̂(λ0)

]
= 0,

where ∗ indicates a constant matrix that is not important for the argument. By
Lemma 6.4.8, we conclude that B̂(λ0) has full column rank.

Let us consider the highest column degree coefficient matrices of B(λ) and B̂(λ),

which we denote by Bhcd and B̂hcd, respectively. Let us show, next, that the matrix
B̂hcd has full column rank. For this purpose, let us write

L(λ) =


MA(λ) MB(λ)
KA(λ) 0

−MC(λ) MD(λ)

0 KD(λ)

 =:


M1Aλ+M0A M1Bλ+M0B

K1Aλ+K0A 0

−M1Cλ−M0C M1Dλ+M0D

0 K1Dλ+K0D

 .
(A.1)

Consider the unimodular matrix ŨA(λ)−1 =
[
ÑA(λ)T revρA NA(λ)T

]
defined in

(6.12). By (6.14), we have
rev1MA(0)
rev1KA(0)
− rev1MC(0)

0

 ŨA(0)−1 =


M1A

K1A

−M1C

0

 ŨA(0)−1 =


∗ revρA+1A(0)

InρA 0
∗ − revρA+1C(0)
0 0

 .
The above equation, together with (6.22), implies that the matrix

M1A

K1A

−M1C

0


has full column rank. Moreover, from Lemma 6.4.5, we obtain

zi(λ) =

[
yi(λ)
xi(λ)

]
=

[
yεi
xεi

]
λεi + lower degree terms, with xεi 6= 0.

Hence, from L(λ)zi(λ) = 0, we get
M1A

K1A

−M1C

0

 yεi +


M1B

0
M1D

K1D

xεi = 0,
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which implies

yεi = −


M1A

K1A

−M1C

0


† 
M1B

0
M1D

K1D


︸ ︷︷ ︸

=:E

xεi (i = 1, . . . , s),

where † denotes the pseudoinverse operation. Thus, we have Bhcd =
[
EB̂hcd

B̂hcd

]
. There-

fore, the matrix B̂hcd must have full column rank since, otherwise, the matrix Bhcd

would not have full column rank.
By Theorem 2.3.3, we conclude that {xi(λ)}si=1 is a right minimal basis of R̂(λ).

Moreover, since εi = deg zi(λ) = deg xi(λ), for i = 1, . . . , s, the right minimal indices

of R̂(λ) are equal to the right minimal indices of L(λ). This establishes the first
statement in part (a) and in part (b).

Finally, let us prove that xi(λ) = ND(λ)Tui(λ), for some right minimal basis
{ui(λ)}si=1 of R(λ). First, from Lemma 6.4.2, we get xi(λ) = ND(λ)Tui(λ), for
i = 1, . . . , s, for some basis {ui(λ)}si=1 of Nr(R). Since ND(λ) is a minimal basis, by
[38, Main Theorem, part 4], the vectors ui(λ) must be polynomial vectors.

We will show that the polynomial basis {ui(λ)}si=1 is minimal by using Theorem
2.3.3. For this purpose, let us define

B̃(λ) :=
[
u1(λ) · · · us(λ)

]
.

Clearly, we have B̂(λ) = ND(λ)T B̃(λ). Since B̂(λ0) has full column rank for every

λ0 ∈ F, because {xi(λ)}si=1 is a right minimal basis of R̂(λ), we obtain that B̃(λ0)

must also have full column rank for every λ0 ∈ F. Next, let us denote by B̃hcd

the highest column degree coefficient matrix of B̃. Since ND(λ) is a minimal basis
with all its row degrees equal, the highest column degree coefficient of ND(λ)T is its

leading coefficient matrix, which we denote by NρD . Then, we have B̂hcd = NρDB̃hcd.

Since B̂hcd has full column rank, so does B̃hcd.
By Theorem 2.3.3, we conclude that {ui(λ)}si=1 is a right minimal basis of R(λ).

Moreover, by [38, Main Theorem, part 5] and the fact that ND(λ) is a minimal basis
with all its row degrees equal to ρD, we have

deg xi(λ) = ρD + deg ui(λ) (i = 1, . . . , s),

which shows that the right minimal indices of R(λ) are equal to ε1 − ρD ≤ · · · ≤
εs − ρD. This concludes the proof. �
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Proof of Theorem 6.4.11

Proof. Let us consider a left minimal basis {zi(λ)T}ti=1 of L(λ) with left minimal
indices ηi = deg zi(λ), for i = 1, . . . , t. By Lemma 2.4.5, the polynomial vector
zi(λ)T must be of the form

zi(λ)T =
[
yi(λ)T xi(λ)T

]
(i = 1, . . . , t),

for some basis {xi(λ)T}ti=1 of the left nullspace of R̂(λ). We observe the vectors
xi(λ)T must be polynomial vectors because the vectors zi(λ)T are polynomial.

We will prove that the polynomial basis {xi(λ)T}ti=1 is a minimal basis by using
the characterization in Theorem 2.3.3. With this goal in mind, let us introduce the
polynomial matrices

X(λ) :=

x1(λ)T

...
xt(λ)T

 and Z(λ) :=

z1(λ)T

...
zt(λ)T

 =

y1(λ)T x1(λ)T

...
...

yt(λ)T xt(λ)T

 =:
[
Y (λ) X(λ)

]
.

Let us show, first, that the polynomial matrix X(λ) has full row rank for every
λ0 ∈ F. For this purpose, consider the unimodular matrices UA(λ)−1 and UD(λ)−1

defined in (6.7). By (6.8), we have that the matrix[
MA(λ0) MB(λ0)
KA(λ0) 0

] [
UA(λ0)−1 0

0 UD(λ0)−1

]
=

[
∗ A(λ0) ∗ B(λ0)

InρA 0 0 0

]
has full row rank for every λ0 ∈ F because of (6.23). Hence,

[
MA(λ0) MB(λ0)
KA(λ0) 0

]
has full

row rank for every λ0 ∈ F. Then, from Z(λ0)L(λ0) = 0, we obtain

[
Y (λ0) X(λ0)

] 
MA(λ0) MB(λ0)
KA(λ0) 0
−MC(λ0) MD(λ0)

0 KD(λ)

 = 0.
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By Lemma 6.4.8, we conclude that X(λ0) has full row rank for every λ0 ∈ F.
Let Zhrd and Xhrd be the highest row degree matrix coefficients of Z(λ) and

X(λ), respectively. Let us show that the matrix Xhrd has full row rank. Consider

the unimodular matrices ŨA(λ)−1 and ŨD(λ)−1 defined in (6.12). By (6.14), we have
that [

rev1MA(0) rev1MB(0)
rev1KA(0) 0

][
ŨA(0)−1 0

0 ŨD(0)−1

]
=[

∗ revρA+1A(0) ∗ revρD+1B(0)
InρA 0 0 0

]
has full row rank for every λ0 ∈ F because of (6.24). Hence, using the notation

introduced in (A.1), we have that the matrix
[

rev1MA(0) rev1MB(0)
rev1KA(0) 0

]
=
[
M1A M1B
K1A 0

]
has

full row rank. Thus, Lemma 6.4.5 implies

zi(λ)T =
[
yi(λ)T xi(λ)T

]
=
[
yTηi xTηi

]
ληi + lower degree terms, with xηi 6= 0.

Then, from zi(λ)TL(λ) = 0, we obtain

[
yTηi xTηi

] 
M1A M1B

K1A 0
−M1C M1D

0 K1D

 = 0.

Since the matrix
[
M1A M1B
K1A 0

]
has full row rank, we have

yTηi = −xTηi

[
−M1C M1D

0 K1D

] [
M1A M1B

K1A 0

]†
︸ ︷︷ ︸

=:F

,

where † indicates the pseudoinverse operation. Therefore, Zhrd =
[
XhrdF Xhrd

]
.

Conclusively, the matrix Xhrd has full row rank because Zhrd has full row rank.
From Theorem 2.3.3, we get that {xi(λ)T}ti=1 is a left minimal basis of R̂(λ).

Moreover, by Lemma 6.4.5, we have ηi = deg zi(λ) = deg xi(λ), for i = 1, . . . , t.

Therefore, L(λ) and R̂(λ) have the same left minimal indices. This establishes the
first statement in part (a) and in part (b).

By Lemma 6.4.2, the vector xi(λ)T must be of the form

xi(λ)T =
[
ui(λ)T wi(λ)T

]
(i = 1, . . . , t),

for some basis {ui(λ)T}ti=1 of the left nullspace of R(λ). We notice that the vectors
ui(λ) must be polynomial vectors because the xi(λ) vectors are polynomial. Our
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final goals are, first, to show that {ui(λ)T}Ti=1 is a left minimal basis of R(λ) and,
second, to show that deg ui(λ) = ηi, for i = 1, . . . , t.

We begin by noticing that if we combine Lemmas 2.4.5 and 6.4.2, we get that
the vector zi(λ)T must be of the form

zi(λ)T =
[
α1i(λ)T α2i(λ)T ui(λ)T wi(λ)T

]
(i = 1, . . . , t),

for some vectors αji(λ), with j = 1, 2, conformable with the partition of L(λ). We
claim that {

[
α1i(λ)T ui(λ)T

]
}ti=1 is a left minimal basis of the polynomial system

matrix P (λ) =
[
A(λ) B(λ)
−C(λ) D(λ)

]
with left minimal indices η1 ≤ · · · ≤ ηt. To see this,

first, from zi(λ)TL(λ) = 0, we obtain[
α1i(λ)T ui(λ)T

] [ MA(λ) MB(λ)
−MC(λ) MD(λ)

]
+
[
α2i(λ)T wi(λ)T

] [KA(λ) 0
0 KD(λ)

]
= 0.

(B.1)
Multiplying (B.1) on the right by diag(NA(λ)T , ND(λ)T ) yields[

α1i(λ)T ui(λ)T
] [ A(λ) B(λ)
−C(λ) D(λ)

]
= 0. (B.2)

Hence, the polynomial vector
[
α1i(λ)T ui(λ)T

]
∈ N`(P ).

Next, let us consider the polynomial matrix

Û(λ) :=

α11(λ)T u1(λ)T

...
...

α1t(λ)T ut(λ)T

 =:
[
A1(λ) U(λ)

]
.

From (B.2), Û(λ)P (λ) = 0. Let us show that Û(λ0) has full row rank for every
λ0 ∈ F. From Z(λ0)L(λ0) = 0, we obtain

[
Û(λ0) ∗

]
MA(λ0) MB(λ0)
−MC(λ0) MD(λ0)
KA(λ0) 0

0 KD(λ0)

 = 0.

Since diag(KA(λ0), KD(λ0)) has full row rank for every λ0 ∈ F (because KA(λ) and

KD(λ) are both minimal basis), we conclude, by Lemma 6.4.8, that the matrix Û(λ0)
has full row rank for every λ0 ∈ F.

Let us denote by Ûhrd the highest row degree coefficient matrix of Uhrd, and
show that Ûhrd has full row rank. Since KA(λ) and KD(λ) are minimal bases with
constant row degrees (equal to 1), by [38, Main Theorem, part 5], we get

deg
[
α2i(λ)T wi(λ)T

] [KA(λ) 0
0 KD(λ)

]
= 1 + deg

[
α2i(λ)T wi(λ)T

]
.
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In addition, by (B.1), we have that[
α2i(λ)T wi(λ)T

] [KA(λ) 0
0 KD(λ)

]
= −

[
α1i(λ)T ui(λ)T

] [ MA(λ) MB(λ)
−MC(λ) MD(λ)

]
and, therefore,

1 + deg
[
α2i(λ)T wi(λ)T

]
≤ 1 + deg

[
α1i(λ)T ui(λ)T

]
.

Hence, we have

deg
[
α2i(λ)T wi(λ)T

]
≤ deg

[
α1i(λ)T ui(λ)T

]
. (B.3)

Thus, from Z(λ)L(λ) = 0, we obtain

[
Ûhrd ∗

]
M1A M1B

−M1C M1D

K1A 0
0 K1D

 = 0.

Since the matrix diag(K1A, K1D) has full row rank (because KA(λ) and KD(λ) are
both minimal bases with constant row degrees), by Lemma 6.4.8, we have that the

matrix Ûhrd has also full row rank. Conclusively, since dimN`(L) = dimN`(P )
(becasue L(λ) is a linearization of P (λ) in the classical matrix polynomial sense),
Theorem 2.3.3 implies that {

[
α1i(λ)T ui(λ)T

]
}ti=1 is a left minimal basis of P (λ), as

we claimed. Moreover, by (B.3), we have ηi = deg zi(λ)T = deg
[
α1i(λ)T ui(λ)T

]
.

Hence, the left minimal indices of P (λ) are also equal to η1 ≤ · · · ≤ ηt.
After this small detour, we are ready to prove that {ui(λ)T}ti=1 is a minimal basis

of R(λ), with minimal indices η1 ≤ · · · ≤ ηt, by using Theorem 2.3.3. To this goal,
let us consider the polynomial matrix

U(λ) :=

u1(λ)T

...
ut(λ)T

 .
From Û(λ0)P (λ0) = 0, we get[

A1(λ0) U(λ0)
] [ A(λ0) B(λ0)
−C(λ0) D(λ0)

]
= 0.

Since the matrix
[
A(λ0) B(λ0)

]
has full row rank for every λ0 ∈ F, Lemma 6.4.8

implies that U(λ0) has also full row rank for every λ0 ∈ F.
Let Uhrd denote the highest row degree coefficient matrix of U(λ). It remains to

show that Uhrd has full row rank. First, let us prove that

deg
[
α1i(λ)T ui(λ)T

]
= deg ui(λ)T (i = 1, . . . , t). (B.4)
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By contradiction, assume[
α1i(λ)T ui(λ)T

]
=
[
αTi 0

]
ληi + lower degree terms, with αi 6= 0.

Since
[
α1i(λ)T ui(λ)T

]
P (λ) = 0, we have that αTi

[
revρA+1A(0) revρD+1 B(0)

]
=

0. Then αi = 0 by (6.24), which is a contradiction. Hence Ûhrd must be of the form

Ûhrd =
[
A Uhrd

]
, for some matrix A. Considering again that Û(λ)P (λ) = 0, we

have [
A1(λ) U(λ)

] [ A(λ)
−C(λ)

]
= 0 and

[
A1(λ) U(λ)

] [B(λ)
D(λ)

]
= 0,

and, therefore,

[
A Uhrd

] [ revρA+1 A(0)
− revρA+1C(0)

]
= 0 and

[
A Uhrd

] [revρD+1B(0)
revρD+1D(0)

]
= 0.

That is, [
A Uhrd

] [ revρA+1 A(0) revρD+1 B(0)
− revρA+1C(0) revρD+1 D(0)

]
= 0. (B.5)

Taking into account (B.5) and condition (6.24), Lemma 6.4.8 implies that Uhrd has
full row rank.

Thus, by Theorem 2.3.3, {ui(λ)T}ti=1 is a left minimal basis of R(λ). Moreover,
by (B.4), the left minimal indices of R(λ) are η1 ≤ · · · ≤ ηt, as we wanted to
prove. �
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Appendix C

Auxiliary result for Lemma 9.3.4

We prove in this appendix that the matrix[
A B
C D

]
:=

[
ET
k ⊗ Ik I(k+1) ⊗ Ek

F T
k ⊗ Ik I(k+1) ⊗ Fk

]
appearing in the proof of Lemma 9.3.4 can be transformed by row and column
permutations to the direct sum of the following matrices :

M1 ⊕M1 ⊕M3 ⊕M3 ⊕ · · · ⊕M2k−1 ⊕M2k−1 ⊕N2k,

where the blocks Mk and Nk are as defined in (9.18). Let us take for example k = 3,
then the matrix looks like

[
A B
C D

]
:=



I3 E3

I3 E3

I3 E3

E3

F3

I3 F3

I3 F3

I3 F3


.

There are three submatrices M1, M3 and M5 that take elements a, b, c and d in the
respective blocks A, B, C and D, as indicated below

M1 =
[
b
]
, M3 =

 b a
c d

b

 , M5 =


b a

c d
b a

c d
b


and they each start with a leading element in one of the E3 blocks. For instance,
M1 = [b10,13], M3 starts with the leading element b7,9 in the third E3 block, and M5

233
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starts with the leading element in the second E3 block :

M1 = [b10,13] ,

M3 =

 b7,9 a7,7

c10,7 d10,14

b11,14

 , M5 =


b4,5 a4,4

c7,4 d7,10

b8,10 a8,8

c11,8 d11,15

b12,15

 .
Notice that the

[
b a

]
and

[
c d

]
pairs have the same row index and that the[

a
c

]
and

[
d
b

]
pairs have the same column index, which explains the permutation

that has to be constructed to extract the matrix. Also the transitions

b7,9 → b11,14, and b4,5 → b8,10 → b12,15

always go down to the next diagonal element in the next E3 block. In a similar
fashion, one finds another set of submatrices M1, M3 and M5 that take elements a,
b, c and d in the respective blocks A, B, C and D in a different order, as indicated
below

M1 =
[
d
]
, M3 =

 d c
a b

d

 , M5 =


d c

a b
d c

a b
d


and they each start with a trailing element in one of the first three F3 blocks. Finally,
the remaining matrix N6 takes elements in the blocks A, B, C and D in the following
order

N6 =


b a

c d
b a

c d
b a

c d


and starts with the leading element in the leading E3 block, and ends with the
trailing element in the trailing F3 block.
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