
NOTES ON A BASIC (PARTIAL) COURSE ON NUMERICAL
LINEAR ALGEBRA

FERNANDO DE TERÁN†

1. Presentation of the course. The main four problems in numerical linear
algebra (NLA) are the following (we set F = R or C):

1. Solution of systems of linear equations (SLE): Compute x such that:

Ax = b, with A ∈ Fn×n, b ∈ Fn.

2. Least squares problems (LSP): Compute:

min
x
‖Ax− b‖2 A ∈ Fm×n, b ∈ Fn.

3. Eigenvalue problems (EP): Compute eigenvalues (and eigenvectors) of matri-
ces, namely, pairs (λ, v) such that:

Av = λv, λ ∈ F, v ∈ Fn, A ∈ Fn×n.

4. Compute the singular value decomposition (SVD) of a matrix A ∈ Fm×n:

A = UΣV ∗,

with

U, V being

{
unitary (if F = C), or
orthogonal (if F = R)

,

and

Σ = diag(σ1, . . . , σr, 0, . . . , 0).

The values σ1 ≥ . . . ≥ σr > 0 are the singular values of A.

(For the notion of unitary and orthogonal matrix see Definition 4.1)

1.1. Background. Throughout this course we will use the following notions and
notations.

Given a matrix A ∈ Cm×n = [aij ], the notation |A| := [|aij |] stands for the matrix
whose entries are the absolute values of the entries of A, A> denotes the transpose
of A, and A∗ denotes its conjugate transpose. The identity n × n matrix is denoted
by In. Sometimes we introduce some specific notation for the entries of a matrix, like
above, but otherwise we denote by A(i, j) the (i, j) entry of A.

1.1.1. Matrix norms and spectral radius. Matrix norms will be used through-
out this course. For a nice introduction to this issue we refer to [6, Lecture 3].

Definition 1.1. (Consistent family of matrix norms) A map ‖ · ‖ : Cm×n −→ R
is a consistent family of matrix norms if is satisfies the following properties:

(i) ‖A‖ ≥ 0, and ‖A‖ = 0 if and only if A = 0.
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(ii) ‖αA‖ = |α| · ‖A‖, for any A ∈ Cm×n and α ∈ C.
(iii) ‖A+B‖ ≤ ‖A‖+ ‖B‖, for any A,B ∈ Cm×n.
(iv) ‖AB‖ ≤ ‖A‖ · ‖B‖, for any A ∈ Cm×n, B ∈ Cn×p.

Example 1. The standard matrix norms in this course are the following:
Let [xij ] ∈ Cm×n. Then:

• The 1-norm: ‖[xij ]‖1 := max
j=1,...,n

m∑
i=1

|xij |.

• The infinite norm: ‖[xij ]‖∞ := max
i=1,...,m

n∑
j=1

|xij |.

• The Frobenius norm: ‖[xij ]‖F :=
√∑

ij |xij |2.

• The 2-norm (or spectral norm):

‖X‖2 := max{
√
|λ| : λ is an eigenvalue of X∗X}.

These maps define also norms in Cn, since Cn ≡ Cn×1. Note, in particular,

that if x =
[
x1 . . . xn

]> ∈ Rn, then ‖x‖F =
√
|x1|2 + · · ·+ |xn|2 = ‖x‖2 (the

standard Euclidean norm). It is also straightforward to see that this also coincides
with the spectral norm.

Note also that ‖[xij ]‖1 is the maximum 1-norm of the columns of [xij ], and that
‖[xij ]‖∞ is the maximum 1-norm of the rows of [xij ].

The reason to term the map ‖·‖ in Definition 1.1 as a “family” of norms is because
we want to introduce a map valid for all values m,n, so it is not a single map from a
single space Cm×n, but a “family” of maps from infinitely many spaces. In particular,
property (iv) in Definition 1.1 is valid for all matrices A,B such that the product is
well-defined.

An absolute norm is a matrix norm ‖·‖ such that ‖A‖ = ‖|A|‖, for any A ∈ Cm×n.

Exercise 1. Which of the norms in Definition 1 are absolute norms?

Definition 1.2. (Spectral radius). The spectral radius of the matrix A ∈ Cn×n
is the nonnegative real number:

ρ(A) := max{|λ| : λ is an eigenvalue of A}.

The spectral radius is not a matrix norm, but is closely related to matrix norms.
In particular, we have the following result.

Lemma 1.3. Let ‖ · ‖ be a matrix norm and A ∈ Cn×n. Then ρ(A) ≤ ‖A‖.
Proof. By definition, there is some eigenvalue λ of A such that |λ| = ρ(A). By

definition of eigenvalue, there is some v 6= 0 such that Av = λv. Then ‖Av‖ = ‖λv‖
and, using properties (ii) and (iv) in Definition 1.1, we arrive at |λ| · ‖v‖ ≤ ‖A‖ · ‖v‖,
and, since v 6= 0, this implies ρ(A) = |λ| ≤ ‖A‖.

The spectral radius is a relevant notion in matrix analysis and applied linear
algebra. Among its many properties, we recall the following one, that will be used
later.

Lemma 1.4. If ‖A‖ < 1 then the matrix I +A is invertible and

‖(I +A)−1‖ ≤ 1

1− ‖A‖
.
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Proof. By contradiction, if I+A is not invertible then 0 is an eigenvalue of I+A,
so there is a nonzero vector v ∈ Cn such that Av = −v. But this implies that λ = −1
is an eigenvalue of A, in contradiction with the hypothesis that ρ(A) ≤ ‖A‖ < 1.

To prove the second claim, notice that, for each N ≥ 0,

(I +A) · (I −A+A2 + · · ·+ (−1)NAN ) = I + (−1)NAN+1,

so

(I +A)−1(I + (−1)NAN+1) =

N∑
k=0

(−1)kAk.

From this we get

(I +A)−1 = (−1)N+1(I +A)−1AN+1 +

N∑
k=0

(−1)kAk.

Taking norms, and using properties (ii)–(iv) in Definition 1.1, we arrive at

‖(I +A)−1‖ ≤ ‖(I +A)−1‖ · ‖A‖N+1 +

N∑
k=0

‖A‖k.

When N →∞, ‖A‖N → 0, because ‖A‖ < 1, so

‖(I +A)−1‖ ≤
∞∑
k=0

‖A‖k =
1

1− ‖A‖
,

and this concludes the proof.

1.1.2. Basic notions on matrices. In Lesson 2 we will use the following notion.
Definition 1.5. (Triangular matrix). A matrix A = [aij ] ∈ Fn×n is said to be:
• upper triangular if aij = 0 for i > j,
• lower triangular if aij = 0 for i < j,
• triangular if it is either upper triangular or lower triangular.

We will use the following elementary properties on the inverses of triangular
matrices.

Lemma 1.6. If A is an invertible lower (respectively, upper) triangular matrix,
then A−1 is also a lower (resp., upper) triangular matrix. Moreover, if all diagonal
entries of A are equal to 1, then all diagonal entries of A−1 are equal to 1.

Exercise 2. Prove Lemma 1.6.

Permutations matrices are used in Lesson 3.

Definition 1.7. (Permutation matrix). A permutation matrix is an n×n matrix
which is obtained by permuting the rows of the n× n identity matrix.

It is interesting to notice that a permutation matrix P is obtained after permuting
some rows of In, but also by permuting some columns of In. Actually, the column
permutation and the row permutation of In are the same. Related to this, if P is a
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n×n permutation matrix, then PIn is obtained from In by permuting some rows, and
InP is obtained from In by permuting exactly the same columns, since PIn = InP .

Some elementary properties of permutation matrices that will be used in this
course are listed in the following lemma, whose proof is straightforward.

Lemma 1.8. Let P, P1, P2 be n × n permutation matrices and X an arbitrary
n× n matrix. Then:

(i) PX is obtained from X by permuting the same rows as in PIn.
(ii) XP is obtained from X by permuting the same columns as InP .
(iii) P−1 = P>.
(iv) detP = ±1.
(v) P1P2 is also a permutation matrix.

1.2. Some indications about the content. This course includes some exer-
cises, which are either theoretical or numerical (or both). Those requiring numerical

computations with a computer are indicated with the symbol .

1.3. Some comments on the bibliography. For Lesson 2 we have mainly
followed [3] and [6]. Lesson 3 is mainly based on [3], and some parts are also taken from
[6]. As for Lesson 4, we have essentially followed [4] and [6]. The remaining references
are excellent basic textbooks on numerical linear algebra and matrix computations.
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2. Lesson 1: Conditioning, floating point arithmetic, and stability.
Though some of the notions introduced in this lesson are valid also for complex num-
ber, we will focus on the set of real numbers (namely, F = R). In particular, in
Section 2.2, we only look at real arithmetic. Of course, all computers are able to deal
with complex numbers, but this in the end is based on real arithmetic. Though the
analysis for complex arithmetic does not require too much additional effort, we omit it
for two reasons. The first one is a time restriction, and the second one is that it is not
frequent in the literature to find an explicit numerical analysis on complex arithmetic
for backward error and conditioning of elementary algorithms and problems in NLA.

2.1. Conditioning. When working with computers, we can not be sure that the
original data are the exact ones. When introducing our (hopefully exact) data in the
computer, these data are affected by rounding errors (see Section 2.2).

We can think of a problem as a function from a set of data (X) to a set of
solutions (Y ), where each set is endowed with a norm.

Problem f

f : X −→ Y
x (data) 7→ f(x) (solution)

We will refer to the elements in X as “points”, even though X is not necessarily an
affine space. Hence, you can replace sentences like “a given point x ∈ X” by “a given
data x ∈ X”. Moreover, for simplicity we will write ‖ · ‖ for both norms in X and Y ,
even though they are not necessarily the same.

In this setting, x denotes the exact data, which are affected by some perturbation,
δx. These perturbations may come not only from rounding errors, but also from
uncertainty in the measurements, or from any other source of error. Then, the error
in the solution is given by

(2.1) δf := f(x+ δx)− f(x)

� We want to compare δf with δx, where δf is as in (2.1).

Definition 2.1. (Normwise absolute condition number) The condition number
of the problem f at a given point x ∈ X is the non-negative number

(2.2) κ̂f (x) := lim
δ→0

sup
‖δx‖≤δ

‖δf‖
‖δx‖

,

with δf as in (2.1).

Remark 1. Some observations about Definition 2.1 are in order:
(a) The condition number κ̂f (x) compares absolute changes in the solutions with

absolute changes in the data.
(b) In general, to get an acceptable measure of the condition number κ̂f (x) it is

not necessary to take the limit, but just to get

κ̂f (x) ≈ sup
‖δx‖≤δ

‖δf‖
‖δx‖

,

for δ small enough.
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(c) If f is a differentiable function of the data x ∈ X, then

κ̂f (x) = ‖Jf (x)‖,

where Jf is the Jacobian matrix of f (namely, the linear operator associated
to the differential).

If we look at relative variations of the data, and look, accordingly, for relative
variations in the solution, then we arrive at the following notion.

Definition 2.2. (Normwise relative condition number) The relative condition
number of the problem f at the point x ∈ X is the nonnegative number:

(2.3) κf (x) := lim
δ→0

sup
‖δx‖
‖x‖ ≤δ

‖δf‖/‖f‖
‖δx‖/‖x‖

.

Remark 2. Again, if f is a differentiable function of the data x ∈ X, then we
have

κf (x) =
‖x‖
‖f(x)‖

· ‖Jf (x)‖.

� One of the central questions in NLA is to measure condition numbers. We will
analyze the condition number for some of the main four problems of NLA mentioned
in Section 1.

We will frequently say that a given problem is well-conditioned or ill-conditioned,
depending on how big is the condition number. There is no a fixed quantity that es-
tablishes the difference between these two categories. In general, whether a problem
is well-conditioned or ill-conditioned depends on the context. Is it a relative condition
number of 103 enough to say that a problem is ill-conditioned? There is no a satisfac-
tory answer to this question. What the relative condition number tells us in this case
is that a relative error of 1 unit in the data could cause a relative error of 103 units
in the solutions or, in other words, that the error in the solutions of the problem can
be 103 times bigger than the error in the data.

Remark 3. (Choice of the norm). Condition numbers depend on the norms in
X and Y . This is not, in general a problem, and it should be clear from the very
beginning which is the norm we are using. In this course, both X and Y will be either
Fn or Fn×n, and the standard norms in these spaces are the norms in Example 1.

Example 2. Let f be the function (problem) assigning to each nonzero real value
its inverse:

f : R \ {0} −→ R

x 7→ f(x) =
1

x
.

This function is differentiable, so

κ̂f (x) =
1

|x|2
.

Note that when x → 0, the condition number κ̂f (x) goes to infinity, so inverting a
number close to zero is ill-conditioned in absolute terms..
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However, in relative terms

κf (x) =
|x|
|f(x)|

|f ′(x)| = 1,

so the problem of inverting nonzero real numbers is well conditioned in relative terms.

Example 3. Let us consider the following particular values in Example 2. Set:
x = 10−6 and x̃ = 10−6 + 10−10. Then the absolute error in the inversion of x is
given by: ∣∣ 1

x −
1
x̃

∣∣
|x− x̃|

=
1

10−12 + 10−16
≈ 1012,

which is a big number. However, the relative error is∣∣ 1
x −

1
x̃

∣∣÷ ∣∣ 1x ∣∣
|x−x̃|
|x|

=
|x|
|x̃|
≈ 1.

The reason for such a difference is that∣∣∣∣ 1x − 1

x̃

∣∣∣∣ = 106 − 106

1 + 10−4
≈ 102,

which is a big quantity, compared just with the original data, which are of order 10−6.
However, it is a small error compared to the magnitude of 1/x.

In the following, for the sake of simplicity, and since the function f is clear by
the context, we will replace the subscript f in the notation for condition numbers by
a reference to the norm. Then, for instance, κ̂∞ is the absolute condition number in
the ∞-norm, and κ1 is the relative condition number in the 1-norm.

Example 4. Let us now consider the function assigning to each pair of real
numbers their difference:

f : R2 −→ R[
x
y

]
7→ f

([
x
y

])
= x− y.

Again, this function is differentiable, and

κ̂∞

([
x
y

])
=

∥∥∥∥J ([ x
y

])∥∥∥∥
∞

=
∥∥∥[ ∂f

∂x
∂f
∂y

]∥∥∥
∞

= ‖
[

1 −1
]
‖∞ = 2,

κ̂1

([
x
y

])
= 1.

However

κ1

([
x
y

])
=

∥∥∥∥[ x
y

]∥∥∥∥
1

|x− y|

∥∥∥∥J ([ x
y

])∥∥∥∥
1

=
|x|+ |y|
|x− y|

.

Therefore, κ1

([
x
y

])
can be arbitrarily large if x ≈ y and x, y are not close to zero.
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Example 4 highlights the well-know fact that subtracting nearby numbers can
be problematic. But note that this just gives problems in relative terms, since the
absolute condition number is not big. Summarizing:

� The problem of subtracting two numbers is relatively ill–conditioned when
these two numbers are close to each other (and not close to zero), though it is abso-
lutely well-conditioned. The effect produced by ill-conditioning when subtracting two
nearby numbers is known as cancellation.

Exercise 3. Let x = 99, y = 100, x+δx = 99, y+δy = 101, and set f

([
x
y

])
=

x− y.

(a) Compute κ̂1

([
x
y

])
.

(b) Compute κ1

([
x
y

])
.

(c) Compute the absolute error:

∥∥∥∥∥∥f
 x+ δx

y + δy

−f
 x

y

∥∥∥∥∥∥
1∥∥∥∥∥∥

 δx
δy

∥∥∥∥∥∥
1

.

(d) Compute the relative error:

∥∥∥∥∥∥f
 x+ δx

y + δy

−f
 x

y

∥∥∥∥∥∥
1

/∥∥∥∥∥∥f
 x

y

∥∥∥∥∥∥
1∥∥∥∥∥∥

 δx
δy

∥∥∥∥∥∥
1

/∥∥∥∥∥∥
 x
y

∥∥∥∥∥∥
1

.

(e) Compare the results obtained in (c) and (d).

In the previous examples we have included the absolute condition number just for
the sake of comparison. However, it is not illustrative, because it does not take into
account the magnitude of the original data or the solution. In the following, we will
only focus on the relative condition number. Nonetheless, the next example shows
that this is not the whole story, and that the normwise relative condition number
is not always the best way to get an idea on how much sensible is the problem to
realistic perturbations.

Example 5. Let f be the function

f : R2 \
{[

x
0

]}
−→ R[

x
y

]
7→ f

([
x
y

])
=
x

y
.

This is again a differentiable function, so

κ2

([
x
y

])
=

∥∥∥∥[ x
y

]∥∥∥∥
2

|x/y|

∥∥∥∥J ([ x
y

])∥∥∥∥
2

=

√
x2 + y2

|x/y|

∥∥∥∥[1

y
− x

y2

]∥∥∥∥
2

=
x2 + y2

|xy|
=

∣∣∣∣xy
∣∣∣∣+
∣∣∣y
x

∣∣∣ .
Example 5 shows that the division of two real numbers x, y is ill-conditioned

when either |x/y| or |y/x| is large, namely, when x, y are quite different to each
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other. However, this is not in accordance with the experience in practice. The reason
to explain the results from Example 5 is that in this example we are considering
all perturbations of x, y, and this is not realistic. To be more precise, the usual
perturbations in practice are small perturbations of x and y independently. However,
in Example 5 we are allowing all kind of perturbations and this, when x, y are very
different form each other, may produce unrealistic perturbations. An example of a
non-realistic perturbation is the following.

Example 5. (Continued). Set x = 1, y = 10−16, and x+ δx = 1, y+ δy = 10−10.
Note that the perturbation in the variable y is huge in relative terms if we just look at
y, but compared to the norm of the whole pair (x, y) it is a small perturbation:∥∥∥∥[ δx

δy

]∥∥∥∥
∞∥∥∥∥[ x

y

]∥∥∥∥
∞

= 10−10 − 10−16.

However, it produces a big (relative) change in the function f , namely:∥∥∥∥f ([ x+ δx
y + δy

])
− f

([
x
y

])∥∥∥∥
∞

/ ∥∥∥∥f ([ x
y

])∥∥∥∥
∞∥∥∥∥[ δx

δy

]∥∥∥∥
∞

/ ∥∥∥∥[ x
y

]∥∥∥∥
∞

=
(1016 − 1010)/1016

10−10 − 10−16
≈ 1010.

Exercise 4. We have seen in Example 2 that inverting a nonzero number is
a well-conditioned problem in relative terms. However, in Example 5 we have seen
that, even when if we fix the numerator to be 1, the condition number of the division
between two real numbers x, y can be arbitrarily large. Which is the reason for this?

A realistic perturbation of the pair (x, y) in Example 5 would be a small relative
perturbation in both x and y, namely, a perturbation of the form (δx, δy) with both
|δx|/|x| and |δy|/|y| being small.

The normwise relative condition number, however, does not take into account
this issue. For this, we need to look at what happens in each coordinate of the data.
This leads to the notion of componentwise relative condition number, which we are
not going to define formally because is beyond the scope of this course but, following
Definition 2.3, it can be informally defined as

(2.4) κ
(comp)
f (x) := lim

δ→0
sup

Erc(x)≤δ

‖δf‖/‖f‖
Erc(x)

,

where Erc(x) is some measure of the componentwise relative error in the data x. In
the case of Example 5, this componentwise relative error is:

Erc := Erc

([
x
y

])
= max

{
|δx|
|x|

,
|δy|
|y|

}
.

Then, with some elementary manipulations, we get∣∣∣∣δf ([ x
y

])∣∣∣∣ =

∣∣∣∣x+ δx

y + δy
− x

y

∣∣∣∣ =

∣∣∣∣xy
∣∣∣∣
∣∣∣∣∣
δx
x −

δy
y

1 + δy
y

∣∣∣∣∣ ≤
∣∣∣∣xy
∣∣∣∣ 2Erc

1− Erc
,
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so ∣∣∣∣δf ([ x
y

])∣∣∣∣∣∣∣∣f ([ x
y

])∣∣∣∣ ≤ 2 · Erc
1− Erc

≈ 2Erc .

As a consequence, κ
(comp)
f

([
x
y

])
= 2, which means that the problem of dividing

two real numbers x, y, with y 6= 0, is well-conditioned componentwise.

Though componentwise conditioning is relevant in NLA, we will not pay much
attention to it, due to time restrictions.

Exercise 5. . In order to check the effect of cancellation, we are going to
compute the value of e−30 using the Taylor polynomial of the exponential:

(2.5) ex ≈
N∑
k=0

xk

k!
.

In particular, we look for an approximation to e−30 with absolute error less than 10−10.
(a) Use the bound for the residual of the N th Taylor expansion for the function

f(x) around x0:

RN (x) ≤ |f
(N+1)(c)|

(N + 1)!
|x− x0|N+1, for some c with |x− c| ≤ |x− x0|,

to determine which is the smallest value of N in (2.5) that guarantees an
approximation (in absolute terms) with error at most 10−10.

(b) Write a MATLAB code to compute e−30 using the sum (2.5) for the value of N
obtained in (a), and compute it using this routine.

(c) Compute the value of e−30 just typing exp(−30) in MATLAB, and compare with
the result obtained in (b). Explain what happens and why happens.

(d) Compute e−30 by first computing e30 using again (2.5) with the appropriate
value of N , and then inverting the result.

(e) Compare the result in (d) with the ones in (b)–(c). Is this in accordance with
your explanations in (c)?

10



HIGHLIGHTS:

� The conditioning of a problem measures the sensitivity of the solution of this
problem to (small) changes in the data.

� The word “conditioning” makes reference to a problem, and not to an algorithm.
Moreover, it is a mathematical property, and it has nothing to do with the computer.

� The normwise condition number measures the sensitivity of the solution with
respect to changes in norm of the set of data. In some cases, it is more appropriate
to look at the componentwise condition number, which measures the sensitiv-
ity of the solution with respect to changes in each of the components of the data,
independently.

� If the problem, f , is differentiable, then the condition number at a certain data,
x, is the norm of the Jacobian of f at x.

� Subtracting two nearby numbers is ill-conditioned.

2.2. Floating point arithmetic. Since any machine (computer) has a finite
memory, it is only allowed to represent a finite subset of the set of real (or complex)
numbers. In this section we provide an overview on some of the basic features of the
number system in a computer: How many numbers can a computer store?, how large
is the distance between two consecutive numbers?, how does the computer operate
with numbers?

The standard number system in the current computers is the floating point
system. The underlying idea of such a system is that the relative separation between
two consecutive numbers in the system is essentially constant through all the system
range.

Definition 2.3. (Floating point system). A floating point system (FPS) is a
subset F ⊆ R defined as

(2.6) F := {±0.d1d2 · · · dt · βe : 0 ≤ di ≤ β − 1; d1 ≥ 1, emin ≤ e ≤ emax} ∪ {0},

where
• β ∈ N, β ≥ 2 is called the base of the system;
• t ∈ N, t ≥ 1 is called the precision of the system;
• e, emin, emax ∈ Z.

Numbers in F are usually called floating point numbers, or machine numbers.

Remark 4. The decimal notation in (2.6) stands for the following number:

0.d1d2 · · · dt :=
d1

β
+
d2

β2
+ · · ·+ dt

βt
.

Remark 5. The condition d1 ≥ 1 in (2.6) guarantees the uniqueness of the
representation of any number in the system (2.6).

Exercise 6. (Integer representation of F ). Prove that any number x ∈ F , with
F as in (2.6), can be written in the form

(2.7) x = ±mβe−t, with βt−1 ≤ m ≤ βt − 1.
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Note that the number m in (2.7) is a whole number, and that any whole number
in the indicated range provides a number in the system (2.6). Then, Equation (2.7)
provides an equivalent expression for numbers in (2.6).

Let us summarize some basic facts about floating point systems.

• The standard floating point systems in most computers are the IEEE single
precision and IEEE double precision systems. Actually, most computers have
the double system by default, though the simple can be also chosen (in MATLAB

just type single(a), where a is the number you want to convert to single
precision). The basic ingredients of each system are indicated in Table 2.1.

• The floating point system has an additional position for the zero number.
• Any floating point system contains the number 1. It is the first number with

exponent e = 1.
• The distance between 1 and the next floating point number is β1−t. This

distance β1−t is known as the machine epsilon (machep).

system base (β) precision (t) emin emax machep (β1−t) unit roundoff (β−t)

IEEE single 2 24 -126 127 1.2 · 10−7 6 · 10−8

IEEE double 2 53 -1022 1023 2.2 · 10−16 1.1 · 10−16

Table 2.1
Basic ingredients of IEEE systems

When shifting from base-10 to base-2 representation (or vice versa) it may happen
that a number with only a finite amount of nonzero decimals becomes a periodic
number. This is, surprisingly, what happens with 0.1.

Exercise 7. Find the expression for the decimal number 0.1 in base 2.

2.2.1. Rounding numbers: the float function. When the user inserts a
number x ∈ R in a computer, the computer automatically rounds it to a number in
its floating point system F (as long as x lies within the range of F ). We use the
standard notation:

fl(x) := number in the system (2.6) which is closest to x.

In the case where there are two closest numbers to x, there are several rules to
choose one of them, but we are not going to get into these details.

The first natural question to ask is: how far is away the number fl(x) from x?
The next result provides a bound for this distance.

Theorem 2.4. Let x ∈ R be within the range of F . Then

(a) fl(x) = x(1 + δ), with |δ| ≤ 1
2β

1−t,

(b) fl(x) =
x

1 + α
, with |α| ≤ 1

2β
1−t.

Proof. If x ∈
[
βe−1, βe

]
, for some emin ≤ e ≤ emax, then |fl(x) − x| ≤ βe−t

2 , by
(2.7). Now:

(a) Let δ =
fl(x)− x

x
, then |δ| ≤ βe−t/2

βe−1
=

1

2
β1−t.

(b) Let α =
x− fl(x)

fl(x)
, then |α| ≤ βe−t/2

βe−1
=

1

2
β1−t.

12



The number

u :=
1

2
β1−t,

appearing in Theorem 2.4 is known as the unit roundoff of the system F . If β = 2
it is just u = β−t.

Remark 6. Some remarks are in order:
(a) The zero number is always rounded to zero.
(b) If the number x ∈ R does not lie within the range of F , then it is either because

it is less (in absolute value) than the smallest nonzero number in the system,
or because it is larger than the largest one in F . In the first case, fl(x) = 0
(this in known as underflow), whereas in the second case, the computer does
not round it and produces an error message (this is known as overflow).

2.2.2. Absolute and relative separation of numbers in floating point
systems. We restrict ourselves in this section to positive numbers, for simplicity. We
want to know the absolute and relative distance between two consecutive numbers in
F , xn < xn+1. We first analyze the absolute distance.

Let us fix an exponent emin ≤ e ≤ emax. Looking at (2.7), we see that the
difference between two consecutive numbers with exponent e in (2.6) is

xn+1 − xn = βe−t.

Indeed, the numbers in F with exponent e are of the form

β−1βe, (β−1 + β−t)βe, (β−1 + 2β−t)βe, . . . , (1− β−t)βe.

Now, the first number in F with exponent e+1 is β−1βe+1 = βe, so the difference
between this number and the precedent one is

xn+1 − xn = βe − (1− β−t)βe = βe−t.

As a consequence, any two consecutive numbers in F between βe−1 and βe are at

the same distance, namely βe−t . This means that, each time we change the expo-

nent by adding up one unit, the absolute separation between floating point numbers
increases in β.

Figure 2.1 displays all positive numbers in a floating point system (2.6) with
β = 2, t = 3, emin = −4, emax = 3. As can be seen, the more to the right are the
numbers, the more separated they are.

Now, let us look at the relative distance. Let us assume that βe−1 ≤ xn < xn+1 ≤
βe. Then, the relative separation, sr, between xn and xn+1 satisfies

β−t =
βe−t

βe
≤ sr =

xn+1 − xn
xn

=
βe−t

xn
≤ βe−t

βe−1
= β1−t.

Moreover, the maximum of the relative distance, β1−t, is attained for x = βe−1 (the
smallest number with exponent e), and it decreases until the minimum, β−t, which is
attained at x = (1−β−t)βe (the largest number with exponent e). This is illustrated
in Figure 2.2 for a binary system with precision t = 24.
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Fig. 2.1. β = 2, t = 3, emin = −4, emax = 3

Fig. 2.2. Relative distance from x to the next larger machine number (β = 2, t = 24). Taken
from [3, p. 40]

.

2.2.3. Floating point operations. by “floating point operations” we under-
stand the following arithmetic operations: + (sum), − (subtraction), × (multiplica-
tion), ÷ (division), and

√
· (square root). Clearly, the system F in (2.6) is not closed

under such arithmetic operations. Then, the question that arises is: what does the
computer do when the result of operating two numbers in F is not a number in F?
The answer is not easy and, essentially, depends on the computer. However, it is
possible to model what most computers do as follows.

� In the following, we denote by ∗ any of the arithmetic operations mentioned above,
and by ~ its floating counterpart, that is: if x, y ∈ F , then x~y is the output provided

14



by the computer as x ∗ y.

Floating point arithmetic model

Let x, y ∈ F . Then

(2.8) x~ y = (x ∗ y)(1 + δ), with |δ| ≤ u,

where u is the unit roundoff.

Some comments on the floating point arithmetic model are in order:
• Comparing with the natural assumption x ~ y = fl(x ∗ y), the assumption

(2.8) is more pessimistic, because in the case x ∗ y ∈ F , the model does not
require δ = 0.

• However, and having in mind the precedent comment, we will sometimes
write fl(x ∗ y) instead of x~ y. This will simplify the developments.

• The model does not tell us which is exactly x~ y. It only provides a bound
on it with respect to the exact value x ∗ y. This allows us to deal easily with
rounding errors, at the expense of working with unknown quantities (δ).

• Note that the model does not guarantee that the standard arithmetic laws
(associative, distributive) are still true in floating point arithmetic. For in-
stance, in general x⊗ (y⊕z) 6= (x⊗y)⊕ (y⊗z), and x⊗ (y⊗z) 6= (x⊗y)⊗z.

• In general, we start with two real numbers, x, y ∈ R not necessarily in F . In
this case, the operation performed by the computer would be fl(x) ~ fl(y).

Example 6. Let x, y ∈ R+. We are going to analyze the error when computing
x+ y in a computer with unit roundoff u.

As mentioned before, the computer performs:

fl(x)⊕ fl(y) ≡ fl(x+ y) = x(1 + u1)⊕ y(1 + u2) = [x(1 + u1) + y(1 + u2)] (1 + u3),

with |u1|, |u2|, |u3| ≤ u, by (2.8). Then

(2.9) fl(x+ y) = x(1 + u1)(1 + u3) + y(1 + u2)(1 + u3) = x(1 + δ1) + y(1 + δ2),

with |δ1|, |δ2| ≤ 2u+ u2. As a consequence, fl(x+ y)− (x+ y) = xδ1 + yδ2, so

|fl(x+ y)− (x+ y)| = |x||δ1|+ |y||δ2| ≤ (|x|+ |y|)(2u+ u2) = |x+ y|(2u+ u2),

where in the last equality we have used that x, y are both positive. Equivalently

(2.10)
|fl(x+ y)− (x+ y)|

|x+ y|
≤ 2u+ u2.

Equation (2.10) provides a bound on the relative error when computing the sum of
two positive numbers in floating point arithmetic.

2.3. Computational cost. Another relevant feature of numerical algorithms
is their computational cost (or computational complexity). This is measured as the
number of elementary arithmetic operations. Each floating point operation counts one
operation in the computer, termed as flop. Then, the computational cost is measured
in number of flops. The computational cost of competitive algorithms must be a
polynomial in the size of the problem. In the four basic NLA problems mentioned at
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HIGHLIGHTS:

�A floating point system aims the relative distance between two consecutive numbers
to be essentially constant for all numbers in the system.

� The relative distance between two consecutive numbers are bounded between the
machine epsilon, β1−t, and the unit roundoff, β−t.

� The absolute separation increases as the numbers increase in absolute value. It
increases by a factor or β as the exponent of the numbers increase by one unit.

� The floating point arithmetic model assumes that the relative error when rounding
an elementary arithmetic operation of machine numbers is at most the unit roundoff
of the computer.

the beginning of this notes, the size of the problem refers to the size of the matrix
A and, when it is square, this value is n. We say that an algorithm is, for instance,
of order n3, and denote it by O(n3), when the amount of operations involved in the
algorithm is a cubic polynomial in n. Sometimes we also indicate the coefficient of the
leading term of this polynomial and say, for instance, that an algorithm is O( 2

3n
3).

2.4. Order of approximation. The “big-O” notation will be also used in this
course with a different meaning to the one in the previous section, related to small
quantities, instead of big quantities. This notation is relevant to measure the accuracy
of the algorithms.

By O(u) we denote a function of u such that, when u approaches 0, there is a
quantity C, independent on u, such that O(u) ≤ Cu. However, the quantity C may
depend on other quantities (like the size of the problem).

2.5. Stability of numerical algorithms. Following the developments in Sec-
tion 2.1, we represent both a problem, f , and an algorithm to solve this problem, f̃ ,
as functions from a set of data (X) to a set of solutions (Y ):

Problem f

f : X −→ Y
x (data) 7→ f(x) (exact solution)

Algorithm f̃

f̃ : X −→ Y

x (data) 7→ f̃(x) (computed solution)

For a given data x ∈ X, the algorithm computes an approximate solution f̃(x)
to the exact solution f(x).

� The GOAL of this section is to compare f(x) and f̃(x) in a relative way, that is,
to measure the relative error

(2.11)
‖f̃(x)− f(x)‖
‖f(x)‖

.
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The first attempt to introduce a notion of a good algorithm in this respect is the
following definition.

Definition 2.5. The algorithm f̃ for the problem f is accurate if, for any x ∈ X,

(2.12)
‖f̃(x)− f(x)‖
‖f(x)‖

= O(u).

However, condition (2.12) is too ambitious, since it is a condition on the algorithm
that disregards the conditioning of the problem. More precisely, even in the ideal
situation where

(2.13) f̃(x) = f(fl(x)),

then the relative error (2.11) can be large if the problem is ill-conditioned (and this
last property has nothing to do with the algorithm). We also want to note that (2.13)
means that the only error committed by the computer is the roundoff error, which is
an unavoidable assumption.

Tho following definition is more realistic, since it takes into account the condi-
tioning of the problem.

Definition 2.6. The algorithm f̃ for the problem f is stable if for any x ∈ X
there is some x̃ ∈ X satisfying

‖f̃(x)− f(x̃)‖
‖f(x)‖

= O(u), and
‖x− x̃‖
‖x‖

= O(u).

In other words, a stable algorithm produces an approximate solution for an ap-
proximate data. We can go even further in this direction.

Definition 2.7. The algorithm f̃ for the problem f is backward stable if for any
x ∈ X there is some x̃ ∈ X satisfying

f̃(x) = f(x̃), and
‖x− x̃‖
‖x‖

= O(u).

In other words, a backward stable algorithm provides the exact solution for a
nearby data. This is the most ambitious requirement for an algorithm, since data are
always subject to rounding errors.

Definitions 2.5, 2.6, and 2.7 depend on two objects: (a) the norm in the sets of
data and solutions, and (b) the quantity C such that O(u) ≤ Cu when u approaches
0. Regarding the norm, in all problems of this course, X and Y are finite dimensional
vector spaces. Since all norms in finite dimensional spaces are equivalent, the notions
of accuracy, stability, and backward stability do not depend on the norm. As for the
quantity C, it must be independent on u, but it will usually depend on the dimension
of the spaces X,Y . However, in order for the quantity O(u) not being too large, this
dependence is expected to be, at most, polynomial.

A natural question regarding Definitions 2.5, 2.6, and 2.7 is about the relationships
between them. For instance: is an accurate algorithm necessarily backward stable,
or vice versa? It is immediate that a backward stable algorithm is stable, and that
an accurate algorithm is stable. However, is not so easy to see whether the other
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implications are true or not. Actually, none of them is true. In particular, an accurate
algorithm is not necessarily backward stable.

Example 7. Equation (2.10) tells us that the sum of two real numbers of the
same sign in floating point arithmetic is an accurate algorithm, and Equation (2.9)
implies that it is backward stable as well.

In terms of the goal mentioned at the beginning of this section, one may wonder
which is the connection between the stability (or the backward stability) and the
relative error (2.11). The following results provides an answer to this question.

Theorem 2.8. Let f̃ be a stable algorithm for the problem f : X → Y , whose
relative condition number at the data x ∈ X is denoted by κ(x). Then

‖f̃(x)− f(x)‖
‖f(x)‖

= O(uκ(x)).

The proof of Theorem 2.8 for f̃ being backward stable is immediate (see [6, Th.
15.1]). For f being just stable is more involved, and is out of the scope of this course.

What Theorem 2.8 tells us is that when using a stable algorithm for solving a
problem, the forward error of the algorithm depends on the conditioning. In particu-
lar, this can be summarized as:

f̃ stable + f well-conditioned ⇒ f̃ accurate

HIGHLIGHTS:

� Stability is a property of an algorithm used to solve a given problem.

� The best property one can expect from an algorithm is to be backward stable,
because accuracy is too ambitious due to the presence of rounding errors.

� A stable algorithm applied to solve a well-conditioned problem produces an accu-
rate solution.
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3. Lesson 2: Solution of systems of linear equations. The main object
of this Lesson is a (real) system of linear equations, namely:

(3.1) Ax = b, A ∈ Fn×n, b ∈ Fn.

Moreover, we will assume that the system (3.1) has a unique solution, so the coef-
ficient matrix A is invertible.

The goals of this Lesson are:

1. To review the standard method for solving (3.1).
2. To analyze the conditioning of the problem of solving (3.1).
3. To analyze the backward error of the standard algorithm to solve (3.1).

3.1. Conditioning. In this section, we analyze both the relative normwise and
relative componentwise conditioning of the general problem

(3.2)
f : Fn×n × Fn −→ Fn

(A, b) 7→ x,

where x ∈ Rn is the solution of (3.1). In other words, the problem f associates to
each pair (A, b) ∈ Rn×n × Rn (data) the solution of the corresponding system (3.1).

3.1.1. Normwise conditioning. We begin with the following result.

Theorem 3.1. Let A ∈ Fn×n be an invertible matrix and b, δb ∈ Fn. Let
δA ∈ Fn×n be such that ‖A−1‖ · ‖δA‖ < 1, for some matrix norm ‖ · ‖. Let x be a
solution of (3.1) and δx be such that

(3.3) (A+ δA)(x+ δx) = b+ δb.

Then

(3.4)
‖δx‖
‖x‖

≤ ‖A−1‖ · ‖A‖
1− ‖A−1 · δA‖

·
(
‖δA‖
‖A‖

+
‖δb‖
‖b‖

)
.

Proof. We first prove that the condition ‖A−1‖ · ‖δA‖ < 1 implies that the
matrix A + δA is invertible. For this, note that A + δA is invertible if and only if
I + A−1 · δA is invertible. From Lemma 1.3 and property (iv) in Definition 1.1 we
get ρ(A−1 · δA) ≤ ‖A−1 · δ‖ ≤ ‖A−1‖ · ‖δA‖ < 1, and then Lemma 1.4 implies that
I +A−1 · δA is invertible.

Now, from (3.3) we immediately get δA · x + (A + δA)δx = δb, which implies
δx = (A+ δA)−1(δb− δA ·x), and taking norms and applying the second claim in the
statement of Lemma 1.4 we arrive at

‖δx‖ ≤ ‖A−1‖
1− ‖A−1 · δA‖

(‖δA‖ · ‖x‖+ ‖δb‖) .

Now, dividing by ‖x‖ and using that ‖b‖ ≤ ‖A‖ · ‖x‖ in the rightmost summand, we
arrive at (3.4).

Definition 3.2. The number

(3.5) κ‖·‖(A) = ‖A−1‖ · ‖A‖
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is the condition number for inversion of the matrix A in the norm ‖ · ‖.

Note that, using (3.5) and ‖A−1 · δA‖ ≤ ‖A−1‖ · ‖δA‖, inequality (3.4) leads to

(3.6)
‖δx‖
‖x‖

≤
κ‖·‖(A)

1− κ‖·‖(A) · ‖δA‖‖A‖

·
(
‖δA‖
‖A‖

+
‖δb‖
‖b‖

)
.

When ‖δA‖/‖A‖ is small (which should be the case if the perturbation δA is
small enough), then

κ‖·‖(A)

1− κ‖·‖(A) · ‖δA‖‖A‖

≈ κ‖·‖(A)

so (3.6) is approximately

(3.7)
‖δx‖
‖x‖

≤ κ‖·‖(A) ·
(
‖δA‖
‖A‖

+
‖δb‖
‖b‖

)
.

Bound (3.7) indicates that the condition number for inversion of A, κ‖·‖(A), is
a measure of the condition number for the solution of the general SLE (3.2). If the
right-hand side of (3.7) is considered as a normwise measure of the relative error in
the data (A, b), then the relative error in the solution is not magnified more than
κ‖·‖(A) times.

Exercise 8. Set

A =

[
1 1

1 + 10−n 1

]
, b =

[
1 + 10n

2 + 10n

]
.

(a) Give an explicit expression, depending on n, for the solution, x, of (3.1), with
A, b as above.

(b) Compute κ1(A), depending on n.
(c) Use MATLAB to compute the solution of (3.1), with A, b as above, for n =

8, 10, 12, 14.
(d) Are your results in accordance with (3.7)?
(In order to answer (d) you should know that the unit roundoff by default in

MATLAB, which works in IEEE with double precision by default, is u = 10−16, see
Table 2.1. This means that the rightmost factor in the right-hand side of (3.7) is
approximately 10−16).

3.1.2. Componentwise conditioning. In the following, a matrix inequality
A ≤ B, with A,B ∈ Fn×n is understood entrywise, that is aij ≤ bij , for any entries
aij , bij of A and B, respectively.

Let us assume that the matrix δA satisfies

(3.8) |δA| ≤ ε|A|,

for some ε > 0, and, for simplicity, we assume δb = 0 (so the right-hand side of (3.1)
is not perturbed).

Then

A · δx = −δA(x+ δx)⇒ δx = A−1(−δA(x+ δx))⇒ |δx| ≤ |A−1|(|δA| · |x+ δx|).
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For the last implication we have used that |AB| ≤ |A| · |B|, for any pair of matrices
A ∈ Cm×n, B ∈ Cn×p. Now, from (3.8) we get

|δx| ≤ ε|A−1| · |A| · |x+ δx|.

Then, if ‖ · ‖ is any norm with the property

|A| ≤ |B| ⇒ ‖A‖ ≤ ‖B‖

(like, for instance, any absolute norm, as well as the 2-norm), this implies

‖δx‖ ≤ ε‖|A−1| · |A|‖ · ‖x+ δx‖,

which in turn implies

(3.9)
‖δx‖
‖x+ δx‖

≤ ε‖|A−1| · |A|‖.

The factor κCR(A) := ‖|A−1| · |A|‖ in the right-hand side of (3.9) is know as the
componentwise condition number, or Bauer-Skeel condition number.

Inequality (3.9) provides also an estimation of the componentwise relative condi-
tioning of the problem (3.1). This estimation is, precisely, the Bauer-Skeel condition
number. The advantage of inequality (3.9) against (3.7) is that the Bauer-Skeel con-
dition number κCR(A) is smaller than the condition number for inversion κ(A), and
in some cases it is much smaller.

� Or course, both (3.4) and (3.9) are bounds, which means that the right-hand side
could be much greater than the left-hand side. However, these bounds are attainable,
which means that, for any value of n, there are data (A, b) for which these inequalities
become equalities.

3.2. Gaussian elimination and LU factorization. Gaussian elimination is
still the standard algorithm for solving systems of linear equations. The goal of this
section is to analyze this method from the point of view of the computational cost
and backward error. We will also see that this method is equivalent to factorizing a
matrix as a product of a lower (L) and an upper (U) triangular matrix, which leads
to the LU factorization.

3.2.1. Triangular systems. A general strategy to solve a SLE is to transform
the original system (3.1) into an equivalent one (i.e., one having exactly the same
solutions),

(3.10) Tx = b′,

whose solution can be obtained easily. The standard choice for such a system (3.10)
is one whose coefficient matrix T is a triangular matrix. Both upper triangular
and lower triangular are equivalent alternatives, but here we concentrate on upper
triangular matrices. The arguments and developments for lower triangular matrices
are completely analogous.

The standard algorithm to solve an upper triangular system (3.10) is as follows.
We denote T = [tij ] and, for simplicity, b′ = [bi]. Then the system (3.10) becomes

(3.11)

t11x1 + t12x2 + t13x3 + · · ·+ t1nxn = b1
t22x2 + t23x3 + · · ·+ t2nxn = b2

...
...

...
tn−1,n−1xn−1 + tn−1,nxn = bn−1

tnnxn = bn

.
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The following algorithm solves (3.11) through the standard procedure of backward
substitution.

Algorithm 1: Algorithm to solve an upper triangular system (3.11) by
backward substitution.

x̂n = bn � tnn
for i = n− 1 : −1 : 1

x̂i = (bi 	 (ti,i+1 ⊗ x̂i+1)	 (ti,i+2 ⊗ x̂i+2)	 · · · 	 (tin ⊗ x̂n))� tii
end

In Algorithm 1, and in what follows, we will use a hat, (̂·), for the computed
(approximate) quantities. Note that in Algorithm 1 we are assuming that the data,
(T, b) are the exact values, so they are machine numbers. This will be a general
assumption in this course, and it is only relevant for the backward error analysis.

For lower triangular systems Algorithm 1 works in a similar way with forward
substitution instead.

Computational cost.
Note that the first step of Algorithm 1 involves just one flop (a division). At

each new step we add 2 new flops, namely, one subtraction and one multiplication.
Hence, the total cost of Algorithm 1 is

1 + 3 + 5 + · · ·+ 2n− 1 = n2 .

This cost is exact, and not an approximation.

Backward error analysis.
The following result shows that Algorithm 1 is backward stable.

Theorem 3.3. Let us assume that Algorithm 1 computes a solution x̂ of the
system Tx = b, with T upper triangular. Then there is an upper triangular matrix
∆T such that

(3.12) (T + ∆T )x̂ = b,

with

|∆T | ≤ (nu+O(u2))|T |,

and therefore ‖∆T‖1,∞,F ≤ (nu+O(u2))‖T‖1,∞,F .
Proof. From the third line in Algorithm 1 we get

ti,i+k ⊗ x̂i+k = ti,i+kx̂i+k(1 + εi+k),

with |εi+k| ≤ u and 1 ≤ k ≤ n− i. We also have

bi 	 (ti,i+1 ⊗ x̂i+1) = (bi − ti,i+1x̂i+1(1 + εi+1))(1 + δ1)

and, iterating

(bi 	 (ti,i+1 ⊗ x̂i+1 	 · · · 	 (ti,i+k−1 ⊗ x̂i+k−1))	 (ti,i+k ⊗ x̂i+k) =
(bi 	 (ti,i+1 ⊗ x̂i+1 	 · · · 	 (ti,i+k−1 ⊗ x̂i+k−1)− ti,i+k ⊗ x̂i+k)(1 + δk),
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with |δk| ≤ u, and 1 ≤ k ≤ n− i. Then we arrive at

x̂i =

b1(1 + δ1) · · · (1 + δn−i)−
n−1∑
k=1

x̂i+kti,i+k(1 + εi+k)(1 + δk) · · · (1 + δn−i)

tii(1 + αi)
,

with |αi| ≤ u. Operating we get

tii(1 + αi)

(1 + δ1) · · · (1 + δn−i)
· x̂i = bi −

n−i∑
k=1

ti,i+k(1 + εi+k)

(1 + δ1) · · · (1 + δk−1)
· x̂i+k.

Now, setting

tii + ∆tii =
tii(1 + αi)

(1 + δ1) · · · (1 + δn−i)
= tii(1 + θii),

ti,i+k + ∆ti,i+k =
ti,i+k(1 + εi+k)

(1 + δ1) · · · (1 + δk−1)
= ti,i+k(1 + θi,i+k),

with θii ≤ (n− i+ 1)u+O(u2) ≤ nu+O(u2), and θi,i+k ≤ ku+O(u2) ≤ nu+O(u2),
the result follows.

Some relevant remarks about Theorem 3.3:

• Theorem 3.3 guarantees that the backward substitution algorithm for upper
triangular systems is backward stable, not only normwise, but also compo-
nentwise.

• It also says that the computed solution is a solution of a nearby system which
has the same right-hand side as the original system, namely b.

• Moreover, this nearby system is also upper triangular.

Exercise 9. With the notation from Theorem 3.3, prove that

(3.13)
‖x− x̂‖1,∞,F
‖x̂‖1,∞,F

≤ (nu+O(u2))‖|T−1| · |T |‖1,∞,F .

Equation (3.13) says that the Bauer-Skeel condition number of T is the condition
number of solving the triangular system (3.10). For a more general result in this
direction see [3, p. 155].

3.2.2. General systems. Gaussian elimination is a numerical method to get
an upper triangular matrix from a given matrix A ∈ Fn×n using elementary row
operations. It performs at most n steps, where each single step can be depicted as
follows:

(3.14) A =

 a b>

c A22

 −→ Ã =

 a b>

0 Ã22

 , Ã22 = A22 −
1

a
c · b>,

where a 6= 0 and b, c ∈ Fn−1.
Let us review the Gaussian elimination method with an elementary example. We

want to solve the SLE:

2x1 + 4x2 + 4x3 = 2,
x1 − x2 + 2x3 = 2,
3x1 + x2 + 2x3 = 0.
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This system can be written in the form (3.1), with

A =

 2 4 4
1 −1 2
3 1 2

 , b =

 2
2
0

 .
The Gaussian elimination method (or, the Gauss method, or Gaussian elimination,
for short) proceeds by choosing the (1, 1) entry of the coefficient matrix A (which is
the pivot entry of this step) and performs elementary row operations to make zero all
the entries below the pivot entry. Then the process is iterated with the (2, 2) entry,
then the (3, 3) entry, and so on. In the case of the previous system this goes as follows: 2 4 4 2

1 −1 2 2
3 1 2 0

 −→

 2 4 4 2
0 −3 0 1
0 −5 −4 −3

 −→

 2 4 4 2
0 −3 0 1
0 0 −4 − 14

3

 ,
F21(− 1

2 )
F31(− 3

2 )
F32(− 5

3 )

where Fij(α) is the elementary row operation that consists of replacing the ith row by
the ith row plus α times the jth row, that is: Fij(α) ≡ Rowi + αRowj 7→ Rowi. Let
us just look at the coefficient matrix, forgetting for a moment about the right-hand
side term b. If we recall that elementary row operations are equivalent to multiply on
the left by the corresponding elementary matrix, then the previous transformations
on the matrix A can be written as matrix multiplications in the form:

(3.15)

 1 0 0
0 1 0
0 − 5

3 1

 1 0 0
− 1

2 1 0
− 3

2 0 1

A =

 2 4 4
0 −3 0
0 0 −4

 .
Multiplying by the inverses of the two lower triangular matrices in the left-hand side
of (3.15), we arrive at

(3.16) A =

 1 0 0
1
2 1 0
3
2 0 1

 1 0 0
0 1 0
0 5

3 1

 2 4 4
0 −3 0
0 0 −4

 .
Now, notice that we can multiply the first two matrices in the right-hand side of (3.16)
in a fast way. Just replace the first column in the identity matrix by the first column
of the first matrix, and the second column of the identity matrix by the second column
of the second matrix. In other words:

(3.17) A =

 1 0 0
1
2 1 0
3
2

5
3 1

 2 4 4
0 −3 0
0 0 −4

 .
Now, if we denote

L =

 1 0 0
1
2 1 0
3
2

5
3 1

 , U =

 2 4 4
0 −3 0
0 0 −4

 ,
then Equation (3.17) gives

(3.18) A = LU, with

{
L: lower triangular with 1’s in the diagonal,
U : upper triangular.
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� The matrix U is the upper triangular matrix obtained after applying Gaussian
elimination on A, and the matrix L encodes in each column the multipliers used at
each step to make zeroes below the corresponding pivot (with the signs shifted) .

The previous example illustrates the LU factorization and its connection with
Gaussian elimination in a particular case. However, it is immediate to realize about
problems with this procedure for a general matrix A. As we will see, not every n× n
matrix can be decomposed in the form (3.18). It may happen that at some step of
the Gaussian elimination, say the ith step, the (i, i) entry of the updated matrix is
zero, so it can not act as a pivot to make zeroes below it. Nonetheless, it is also easy
to find a solution for this problem: just look at some nonzero entry in the ith column
and below the ith row, (namely, at the (i + j, i) position), and permute the ith row
with the (i + j)th row. Note that we must permute with a row which is below the
ith one, since otherwise that would place a nonzero entry below and to the left of the
(i, i) entry, and we would loose the upper triangular property of the resulting matrix.
A row permutation is equivalent to multiply on the left by a permutation matrix, by
Lemma 1.8. Then, it is natural to replace (3.18) by

(3.19) A = PLU, with

 P : permutation matrix,
L: lower triangular with 1’s in the diagonal,
U : upper triangular.

If a given n × n matrix A can be written in the form (3.19), then the following
algorithm computes the solution of (3.1) by solving only triangular systems.

Algorithm 2: Solves (3.1) using Gaussian elimination.

1. Factorize A as in (3.19).
2. Solve PLy = b as Ly = P>b and using forward substitution.
3. Solve Ux = y by backward substitution.

Algorithm 2 provides a method to solve linear systems (3.1) provided that the
coefficient matrix can be factorized in the form (3.19). The natural question now is:
can every n× n invertible matrix be decomposed in the form (3.19)? To answer this
question is the goal of the following section.

3.2.3. Existence and uniqueness of LU and PLU factorization for in-
vertible matrices. By an LU factorization of a matrix we mean a factorization like
in (3.18), and a PLU factorization is a factorization like (3.19).

Theorem 3.4. Let A ∈ Fn×n be invertible. If A has a an LU factorization, then
it is unique.

Proof. Let A = LU = L̃Ũ be two LU factorizations of A. Then, since A is invert-
ible, both factors are invertible and L−1L̃ = UŨ−1. Since L−1L̃ is lower triangular
and UŨ−1 is upper triangular, it must be L−1L̃ = UŨ−1 = D, with D diagonal.
But, since the main diagonal of L−1L̃ is all 1’s, it must be D = In, and this implies
L = L̃, U = Ũ .

The following result characterizes the set of matrices having an LU factorization.

Theorem 3.5. An invertible matrix A ∈ Fn×n has an LU factorization if and
only if the matrix A(1 : j, 1 : j) is invertible, for all j = 1, . . . , n.
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Proof. ⇒ Let us assume that A has an LU factorization, and, for a fixed
1 ≤ j ≤ n, let us partition it as

(3.20) A =

[
A11 A12

A21 A22

]
=

[
L11 0
L21 L22

] [
U11 U12

0 U22

]
,

with A11 = A(1 : j, 1 : j). Then (3.20) implies that A11 = L11U11. Since A is
invertible, both L11 and U11 must be invertible, so A11 must be invertible as well.

⇐ Let us proceed by induction on n. For n = 1 the result is trivial. Let us
assume the result true for n− 1, and let us partition A as

A =

[
B b
c> ann

]
with B = A(1 : n − 1, 1 : n − 1). Since, by hypothesis, B is invertible, we can apply
the induction hypothesis to B, so, it has an LU decomposition, namely B = LBUB .
We are going to see that there is an LU factorization of A of the form

A =

[
LB 0
`> 1

] [
UB u
0 unn

]
=

[
LBUB LBu
`>UB `>u+ unn

]
,

for some `, u ∈ Cn. For this, just equate in the previous identity to get

LBu = b ⇒ u = L−1
B b,

`>UB = c> ⇒ `> = c>U−1
B ,

`>u+ unn = ann ⇒ unn = ann − `>u,
where in the first two equations we have used that LB and UB are invertible, because
B is invertible. As a consequence, A has an LU factorization.

Theorem 3.5 is in accordance with the intuition that matrices like A = [ 0 1
1 0 ] do

not have an LU factorization since it is not possible to perform Gaussian elimination
(without permutation of rows). However, the following result guarantees that, if we
allow for such row permutations, then we can always get a PLU factorization.

Theorem 3.6. Let A ∈ Fn×n be an invertible matrix. Then A has a PLU
factorization.

Proof. Let us prove it by induction on n. The proof is constructive and actually
provides the standard algorithm to compute the LU factorization of A.

For n = 1, we just take P = L = 1, U = A ∈ F. Let us assume the result true for
matrices of order n− 1.

Let A be of size n×n and let P1 be a permutation matrix such that P1A(1, 1) = a11

is nonzero. Such a P1 exists because A is invertible. Now we solve the block matrix
equation

P1A =

[
a11 A12

A21 A22

]
=

[
1 0
L21 In−1

] [
u11 U12

0 Ã22

]
=

[
u11 U12

L21u11 L21U12 + Ã22

]
,

whereA21, A
>
12 ∈ F(n−1)×1, for the unknowns L21 ∈ F(n−1)×1, u11 ∈ F, U12 ∈ F1×(n−1),

and Ã22 ∈ F(n−1)×(n−1) (note that Ã22 is not necessarily upper triangular). Equating
above gives

(3.21)



u11 = a11 6= 0,
U12 = A12,

L21u11 = A21 ⇒ L21 =
1

a11
·A21,

Ã22 = A22 − L21U12 = A22 −
1

a11
·A21A12.
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Since A is invertible,

0 6= det(P1A) = u11 det Ã22 ⇒ det Ã22 6= 0,

so Ã22 is invertible as well. Since it has size (n − 1) × (n − 1) we can apply the

induction hypothesis, which guarantees that there is some P̃ such that

(3.22) P̃ Ã22 = L̃Ũ .

As a consequence,

P1A =

[
1 0
L21 In−1

] [
u11 U12

0 Ã22

]
=

[
1 0
L21 In−1

] [
u11 U12

0 P̃>L̃Ũ

]
=

[
1 0
L21 In−1

] [
1 0

0 P̃>L̃

] [
u11 U12

0 Ũ

]
=

[
1 0

0 P̃>

] [
1 0

P̃L21 L̃

] [
u11 U12

0 Ũ

]
.

.

Finally, adding up the first permutation we arrive at the PLU decomposition of A:

(3.23)

([
1 0

0 P̃

]
P1

)
︸ ︷︷ ︸

P

A =

[
1 0

P̃L21 L̃

]
︸ ︷︷ ︸

L

[
u11 U12

0 Ũ

]
︸ ︷︷ ︸

U

,

so A = P>LU .

Exercise 10. Adapt the proof of Theorem 3.6 to prove that it is also true for
any A ∈ Fn×n, invertible or not. What do L and U in the singular case look like?

Remark 7. Since the only operations used in the proof of Theorem 3.6 are sums,
subtractions, multiplications, and divisions, the LU is valid over any field F.

Remark 8. Note that a similar result to Theorem 3.6 is true for a factorization of
the form AP = LU , that is, multiplication on the right by a permutation (equivalently,
performing column operations instead of row operations). Moreover, we can get a
decomposition A = P1LUP2, with P1, P2 being permutation matrices. This allows
us to choose the pivot at the ith step not only from the ith column, but from the
rectangular submatrix with indices (i : n, i : n).

3.2.4. The LU algorithm using Gaussian elimination. The following prac-
tical comments on the proof of Theorem 3.5 are key to get the algorithm for computing
the PLU factorization:

• Instead of A = PLU we apply the permutations on A, to get PA = LU , so
we end up with an LU factorization of some matrix obtained from A by row
permutation.

• At the ith step, the permutation (if any) only permutes rows from i to n.
Moreover, we see from (3.23) that the successive permutations can be stored
independently and applied on the whole matrix A at the end of the algorithm.

• At the ith step, once we have computed Ã22 using (3.21), the first row of U
and the first column of L remain fixed until the end of the process, so they
are the final row of U and the final column of L. This is iterated at each step,
so at the ith step we get the ith row of U and the ith column of L.
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• Up to permutations, we see from (3.23) that the first column of L and the
first row of U at each step are computed like in (3.21), which is just one
step of Gaussian elimination (3.14). More precisely, the rows of matrix U are
the rows of the upper triangular matrix obtained by Gaussian elimination,
whereas the ith column of L encodes the multipliers used to make zeroes
below the pivot at the ith step.

• Similarly, the columns of A with indices from 1 to i−1 are not used anymore
from the ith step on, so we can replace them by the columns of L obtained
in steps from the 1st to the (i− 1)th, in order to save storage requirements.

With all these observations in mind we are in the position of stating the algorithm
to compute the LU factorization of A ∈ Fn×n.

Algorithm 3: LU factorization with Gaussian elimination.

% INPUT: A ∈ Fn×n invertible.
% OUTPUT: A permutation matrix P and a matrix Ã such that:
% U = triu(Ã), L = In + tril(Ã,−1) and PA = LU

P = In
for i = 1 : n− 1

Permute the ith and the jth row of A, with j > i, such that A(i, i) 6= 0
Exchange the ith and jth row in P
A(i+ 1 : n, i) = A(i+ 1 : n, i)/A(i, i)
A(i+ 1 : n, i+ 1 : n) = A(i+ 1 : n, i+ 1 : n)−A(i+ 1 : n, i) ·A(i, i+ 1 : n)

end

Though in this course we do not pay special attention to the storage requirements,
Algorithm 3 only requires 2n2 storage, since at each step it produces a couple of n×n
matrices, namely P and Ã.

� Algorithm 3 is a very simple algorithm. Note that, forgetting about permutations,
it just contains two lines of code!!

3.2.5. Computational cost of solving (3.1) using the LU factorization.
We want to estimate the computational cost of Algorithm 2. This algorithm involves
Algorithm 3 for computing the PLU factorization of A. Then, it consists of three
steps:

Step1. Compute P,L, U as in (3.19) using Algorithm 3.
Step2. Solve PLy = b.
Step3. Solve Ux = y.

In the estimation of the computational complexity we will not take into account
the permutations, and just focus on counting the number of flops.

Let us start counting the number of flops of Algorithm 3. The first line, at the
ith step involves n−i divisions. The second line involves (n−i)2 products and (n−i)2

subtractions. Then, the cost of Algorithm 3 is:

Cost of Algorithm 3:

n−1∑
i=1

(
2(n− i)2 + (n− i)

)
= 2

n−1∑
j=1

j2 +

n−1∑
j=1

j = 2
(n− 1)n(2n− 1)

6
+

(n− 1)n

2

=
(n− 1)n(4n+ 1)

6
=

2

3
n3 +O(n2).
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The cost of Step 2 is n2 − n (exact), and the cost of Step 3 is n2 (exact) (see
the cost of Algorithm 1).

Then, adding up:

� The cost of Algorithm 2 (solving (3.1) with Gaussian elimination / LU factoriza-

tion) is 2
3 n

3 +O(n2)

3.2.6. Backward error analysis of Gaussian elimination. Let us start with
the following result, whose proof is beyond the scope of this course.

Theorem 3.7. Let A ∈ Fn×n be invertible and L̂, Û be the factors computed
through Algorithm 3 in a machine with unit roundoff u. Then there is some matrix
E such that

(3.24) A+ E = L̂Û , and |E| ≤ (nu+O(u2)) |L̂| · |Û |.

As a consequence of Theorem 3.7 we get the following result for the solution of
(3.1) using Algorithm 2.

Theorem 3.8. Let A ∈ Fn×n invertible and b ∈ Fn. Let us assume that the
SLE (3.1) is solved using Algorithm 2 in a computer with unit roundoff u. Then the
computed solution x̂ satisfies

(3.25) (A+ ∆A)x̂ = b, with |∆A| ≤ (3nu+O(u2)) |L̂| · |Û |,

with L̂, Û being the computed factors of the LU factorization of A from Algorithm

3.

Exercise 11. Prove Theorem 3.8 using Theorem 3.7.

Some relevant observations on Theorems 3.7 and 3.8 are:
• Taking absolute norms ‖ · ‖ in both (3.24) and (3.25) we arrive at

‖E‖ ≤ (nu+O(u2))‖L̂‖ · ‖Û‖,

in (3.24), and

(3.26) ‖∆A‖ ≤ (3nu+O(u2))‖L̂‖ · ‖Û‖

from (3.25). This gives us a bound for the backward error of Algorithm 3

and Algorithm 2, respectively.
• The previous bounds do not guarantee that computing the LU factorization

using Algorithm 3, is backward stable. For that, we should guarantee that
the computed factors L̂, Û are the LU factors of a nearby matrix, that is, of
some ∆A such that

‖∆A‖ ≤ O(u)‖A‖ (normwise), or
|∆A| ≤ O(u)|A| (componentwise).

Then, Theorem (3.24) does not guarantee that Algorithm 3 is backward stable.
In section 3.2.8 we will analyze this issue more in depth. First, we are going to
motivate it by pointing at the place where it may fail in order to be backward stable.
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3.2.7. The need for an appropriate pivoting strategy. Let us consider the
following example. Set

A =

[
10−20 1

1 1

]
.

The exact LU factorization of A is

L =

[
1 0

1020 1

]
, U =

[
10−20 1

0 1− 1020

]
.

However, if we apply Algorithm 3 without row permutations (since there is no
need for that) then we get

L̂ =

[
1 0

fl(1020) 1

]
=

[
1 0

1020 1

]
Û =

[
10−20 1

0 fl(1− 1020)

]
=

[
10−20 1

0 −1020

]
.

You can check in MATLAB (with double precision) that fl(1020) = 1020 and fl(1 −
1020) = −1020. Then this would give:

L̂Û =

[
10−20 1

1 0

]
.

As a consequence,

∆A = A− L̂Û =

[
0 0
0 1

]
,

so the backward error in the ∞-norm of this computed LU factorization is

‖∆A‖∞
‖A‖∞

=
1

2
6= O(u).

This is a huge backward error which indicates that Algorithm 3 is not backward
stable.

Furthermore, let us apply this LU factorization to solve a particular SLE using
Algorithm 2. Let us consider, for instance

Ax =

[
1
0

]
,

with A as above. The exact solution is

(3.27) x =
1

1− 10−20

[
−1
1

]
.

However, if we follow Algorithm 2 with the computed factors L̂, Û , then we first solve

L̂ŷ =

[
1
0

]
⇒ ŷ =

[
1

−1020

]
,

and then we solve

(3.28) Û x̂ = ŷ ⇒ x̂ =

[
0
1

]
.
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Comparing x and x̂ in (3.27) and (3.28) we realize that there is a huge error, since
the computed solution has nothing to do with the exact one (they are in completely
different directions!).

Let us explain what has happened in this case. The problem has arised when
approximating fl(1 − 1020) ≡ fl(a22 − 1020) = −1020 (actually we would have the
same problem with any value of a22 for which fl(a22 − 1020) = −1020).

Exercise 12. Describe the set of real numbers 0 < a < 1020 such that fl(a −
1020) = −1020 in a floating point system with unit roundoff u = 10−16.

This problem arises because there are some entries of L and/or U which are quite
big compared to the entries of A. Then, when rounding these numbers, we loose all
information about some of the entries of A, which are completely different to the exact
ones when multiplying the computed factors L̂, Û .

How to avoid this problem? The idea is to keep control on the size of the entries
of L and U against the size of the elements of A. But the question is: how can we do
this?

Looking at Algorithm 3 we see that there are different choices for the permuta-
tion P . In the precedent example, we have not performed any permutation since the
(1, 1) entry of A is nonzero. This has produced a huge number in the (2, 1) position of
L. But this can be avoided if we exchange the first and second row, namely, starting
with

PA =

[
1 1

10−20 1

]
.

Now, the exact LU factorization of PA is

PA =

[
1 0

10−20 1

]
︸ ︷︷ ︸

L

[
1 1
0 1− 10−20

]
︸ ︷︷ ︸

U

,

and the computed factors would be

L̂ =

[
1 0

10−20 1

]
, Û =

[
1 1
0 1

]
.

Now we have

A− L̂Û = ∆A =

[
0 0
0 10−20

]
,

so the backward error of the LU factorization is

‖∆A‖∞
‖A‖∞

=
10−20

2
= O(u).

The underlying problem here is that in Algorithm 3 it is not specified how to
permute the rows, at each step, if there is more than one nonzero entry in the ith
column. This should be specified in the algorithm.

The way to choose how the rows are permuted in Algorithm 3 is known as a
pivoting strategy. There are several options, but here we are only going to consider
the following one:
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Partial pivoting strategy: At each step of Algorithm 3, chose a
permutation, Pi such that PiA(i, i) is the entry with largest modulus
in A(i : n, i).

When we use the partial pivoting strategy in Algorithm 3 we end up with what
is known as Gaussian elimination with partial pivoting.

3.2.8. Is Algorithm 3 with partial pivoting backward stable?. Algorithm

3 is currently the standard algorithm (with some improvements) to compute the LU
factorization of a given matrix A ∈ Fn×n. Even though it is widely used and works
well in practice, it is still an open question to determine whether it is backward stable
or not. Though this answers the question in the title of this section, we are going to
explain the natural attempts to analyze the backward stability of Algorithm 3.

Looking at (3.26), Algorithm 2 would be normwise backward stable if

(3.29) ‖L̂‖ · ‖Û‖ = O(‖A‖).

Gaussian elimination with partial pivoting ensures that |L̂(i, j)| ≤ 1, for i ≥ j, which

implies ‖L̂‖∞ ≤ n, and (3.25) gives (in the ∞-norm):

(3.30) ‖∆A‖∞ ≤ (3n2u+O(u2))‖Û‖∞.

Therefore, the problem reduces to analyze what happens with ‖Û‖∞. In order to
achieve (3.29), and following (3.30), we need to analyze the ratio between ‖A‖∞ and

‖Û‖∞. This leads to the following definition.

Definition 3.9. (Growth factor). Let A ∈ Fn×n be invertible and let Û be its LU
factor computed using Gaussian elimination with partial pivoting. Then the growth
factor of A is

gpp(A) :=
maxi,j |Û(i, j)|
maxi,j |A(i, j)|

.

Note that ‖Û‖∞n ≤ maxi,j |Û(i, j)| ≤ (maxi,j |A(i, j)|) · gpp(A) ≤ gpp(A)‖A‖∞.
As a consequence, using (3.26) and Theorem 3.8, Gaussian elimination with partial
pivoting provides a solution of (3.1), x̂, such that

(A+ ∆A)x̂ = b, with ‖∆A‖∞ ≤ (3n2u+O(u2))gpp(A)‖A‖∞.

Then, in order to guarantee backward stability of Gaussian elimination with par-
tial pivoting, we should guarantee that the growth factor gpp(A) is not quite big. The
following result establishes a bound on the growth factor.

Proposition 3.10. If gpp(A) is the growth factor of the Gaussian elimination
with partial pivoting applied to a matrix A ∈ Fn×n, then

gpp(A) ≤ 2n−1.

Exercise 13. Prove Proposition 3.10.

Unfortunately, the bound in Proposition 3.10 is sharp, since there are n × n
matrices for which this bound is attainable.
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Exercise 14. Find a matrix Mn, with size n×n such that gpp(Mn) = 2n−1, and
prove that, indeed, gpp(Mn) = 2n−1. (Warning: Do not try to find Mn by yourself !
Look at the bibliography.)

From Theorems 3.7 and 3.8, Equation (3.30), and using Proposition 3.10, we can
conclude the following.

Theorem 3.11. Let A ∈ Fn×n be invertible and L̂, Û be the factors computed
through Algorithm 3 with partial pivoting in a machine with unit roundoff u. Then
there is some matrix E such that

A+ E = L̂Û , and ‖E‖∞ ≤ (n22n−1u+O(u2)) ‖A‖∞ .

As a consequence of Theorem 3.7 we get the following result for the solution of
(3.1) using Algorithm 2.

Theorem 3.12. Let A ∈ Fn×n be invertible and b ∈ Fn. Let us assume that the
SLE (3.1) is solved using Algorithm 2 in a computer with unit roundoff u. Then the
computed solution x̂ satisfies

(3.31) (A+ ∆A)x̂ = b, with ‖∆A‖∞ ≤ (3n22n−1u+O(u2)) ‖A‖∞,

with L̂, Û being the computed factors of the LU factorization of A from Algorithm

3.
Theorems 3.11 and 3.12 say, in some sense, that the LU factorization and Gaus-

sian elimination with partial pivoting are backward stable, since the factors n22n−1

and 3n22n−1 depend only on the size of the problem, n. However, they are not poly-
nomials in n, but exponential, so they are huge for large values of n. Therefore, for
n large enough, these bounds could not guarantee any single digit of accuracy in the
computations. To show this is the goal of the next exercise.

Exercise 15. Let n = 100 and assume that we apply Gaussian elimination
(Algorithm 2) with partial pivoting to solve (3.1) in a machine with IEEE double
(unit roundoff u = 10−16).

(a) Estimate the bound in (3.31).
(b) Theorem 2.8 indicates that

‖x− x̂‖
‖x‖

≤ (3n22n−1u+O(u2))κ∞(A).

Assume κ∞(A) = 1 (which is a very optimistic assumption!). Then compute
the bound for the relative error in the solution given by the inequality above.
How many digits of accuracy in the computed solution x̂ are guaranteed by
this bound?

The value n = 100 in Exercise 15 is just a moderate value (the standard size of
matrices in applications are of the order of thousands). Therefore, the situation can
be even much worse than the one in this exercise. However, it is very rare in practice
that gpp is so big as 2n−1.

One of the most challenging open problems concerning LU factorization is to
provide an average estimation of the growth factor. In practice, gpp(A) .

√
n, and

Gaussian elimination with partial pivoting is considered backward stable in practice.
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HIGHLIGHTS:

� The standard algorithm to solve a SLE (3.1) is Gaussian elimination. This is
equivalent to compute the LU factorization of A and then solve two triangular sys-
tems.

� Every square matrix A has an LU factorization, permuting adequately the rows
of A.

� The pivot at each step is not unique. There are several strategies to choose it, but
the standard one is the one known as partial pivoting, which chooses the entry with
largest modulus among all possible pivots which can be obtained by row permutations.

� The computational complexity of Gaussian elimination is 2
3 n

3 +O(n2).

� Though Gaussian elimination with partial pivoting has not been proved to be
backward stable, it is considered backward stable in practice.

3.3. Positive definite matrices and Cholesky factorization. The Gaus-
sian elimination method admits many refinements when applied to matrices enjoying
special structures. Among these structures, one of particular relevance is the one of
symmetric positive definite matrices. These matrices appear frequently in applica-
tions in different areas of science. Besides its algorithmic simplifications, the refined
Gaussian elimination method has an important property when applied to symmetric
positive definite matrices, namely, it is backward stable. This fact is really surprising,
because the algorithm is no more than an adjustment of Gaussian elimination to the
particular structure.

3.3.1. Properties of symmetric positive definite and symmetric posi-
tive semidefinite matrices. Let us start with the basic definition of these kinds of
matrices.

Definition 3.13. (Symmetric positive definite and symmetric positive semidef-
inite matrix). A matrix A ∈ Rn×n is symmetric positive definite (respectively, sym-
metric positive semidefinite) if

(i) A = A>

(ii) x>Ax > 0 (resp. x>Ax ≥ 0), for all x ∈ Rn and x 6= 0.

Condition (i) in Definition 3.13 is the symmetric condition, and condition (ii) is
the positive definite (resp. positive semidefinite) condition.

In the following, we will use the abbreviations spd (symmetric positive definite)
and sps (symmetric positive semidefinite). We will also use the following properties
of spd and sps matrices.

Lemma 3.14.
(i) If X ∈ Rn×n is invertible, then A is spd (resp., sps) if and only if X>AX is

spd (resp., sps).
(ii) If A is spd (resp., sps) and H := A(i : j, i : j) is a principal submatrix of A,

then H is spd (resp., sps).
(iii) If A is spd (resp., sps) then

(iii-a) A(i, i) > 0 (resp., A(i, i) ≥ 0).
(iii-b) |A(i, j)| <

√
A(i, i)A(j, j) (resp., |A(i, j)| ≤

√
A(i, i)A(j, j)) if i 6= j.
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(iii-c) maxi,j |A(i, j)| ≤ maxiA(i, i).
(iii-d) maxi 6=j |A(i, j)| < maxiA(i, i).

Exercise 16. Prove Lemma 3.14.

3.3.2. Cholesky factorization. The following result is the analogue to the LU
decomposition for spd and sps matrices.

Theorem 3.15. (Cholesky factorization). A matrix A ∈ Rn×n is spd (resp., sps)
if and only if A can be factorized as

(3.32) A = LL>

for some lower triangular matrix L ∈ Rn×n with positive (resp., nonnegative) elements
in the main diagonal. Moreover, if A is spd, then the factorization (3.32) is unique.

The factorization (3.32) is called the Cholesky factorization of A, and L is called
the Cholesky factor of A.

Proof. ⇐ Let A = LL>. Then x>Ax = x>LL>x = (L>x)>L>x = ‖L>x‖22,
which is > 0, for all x 6= 0 (if A is spd) and ≥ 0 (if A is sps).

⇒ Let us first prove the existence of the factorization (3.32). We proceed by

induction. The case n = 1 is trivial, since A =
√
A
√
A ≡ LL>. Let us assume the

result true for matrices with size (n− 1)× (n− 1).
Let A ∈ Rn×n be spd. Using Gaussian elimination (3.21) we can decompose A as

(3.33)

A=

[
a11 A>21

A21 A22

]
=

[
1 0

1
a11
A21 In−1

] [
a11 A>21

0 A22 − 1
a11
A21A

>
21

]
=

[
1 0

1√
a11
A21 In−1

] [ √
a11 A>21

0 A22 − 1√
a11
A21A

>
21

]
=

[ √
a11 0
A21√
a11

In−1

][
1 0

0 A22 − A21A
>
21

a11

][ √
a11

A>21√
a11

0 In−1

]

(note that, by Lemma 3.14(iii-a), a11 > 0). Now, using Lemma 3.14, the submatrix

A22 − A21A
>
21

a11
is spd, so applying the induction hypothesis, there is some L̃ in the

conditions of the statement such that A22 − A21A
>
21

a11
= L̃L̃>. Replacing this in (3.33)

we arrive at

(3.34) A =

[ √
a11 0
A21√
a11

L̃

]
︸ ︷︷ ︸

L

[ √
a11

A>21√
a11

0 L̃>

]
︸ ︷︷ ︸

L>

,

which is a decomposition (3.32).
If A is sps, then the arguments are exactly the same ones as for the spd case if

a11 6= 0. If a11 = 0, Lemma 3.14(iii-b) implies that A21 = 0 in (3.33), so A>21 = 0
as well, and then A =

[
0 0
0 A22

]
, with A22 being sps by Lemma 3.14(ii). Then we can

apply the induction hypothesis on A22, to get

A =

[
0 0
0 A22

]
=

[
0 0

0 L̃L̃>

]
=

[
0 0

0 L̃

] [
0 0

0 L̃>

]
,

which is a decomposition like (3.32).

35



As for the uniqueness of (3.32), we will proceed by showing that equation (3.32)
has a unique solution, provided that L is lower triangular. Therefore, we just need to
solve for entries (i, j) with i ≤ j. Equating the (i, j) entries in (3.32) we arrive at

(3.35) A(i, j) =

j∑
k=1

L(i, k)(L>)(k, j) =

j∑
k=1

L(i, k)L(j, k).

Now, for i = j = 1 in (3.35) we get A(1, 1) = L(1, 1)2 ⇒ L(1, 1) =
√
A(1, 1), and

for j = 1, i ≥ 2 in (3.35) we get L(i, 1) = A(i,1)
L(1,1) . This uniquely determines the first

column of L. Now, let us assume that we have uniquely determined the first j − 1
columns of L. Then (3.35) gives

A(j, j) =

j∑
k=1

L(j, k)2 ⇒ L(j, j) =

√√√√A(j, j)−
j−1∑
k=1

L(j, k)2,

which is uniquely determined. Moreover, for i > j (3.35) also gives

L(i, j)L(j, j) = A(i, j)−
j−1∑
k=1

L(i, k)L(j, k)⇒ L(i, j) =
A(i, j)−

∑j−1
k=1 L(i, k)L(j, k)

L(j, j)
,

which is again uniquely determined. As a consequence, the jth column of L is also
uniquely determined.

Remark 9. The Cholesky factorization (3.32) for spd matrices is the analogous
result to the LU factorization for general matrices. Note, however, that (3.32) requires
just one matrix (L), instead of two (L,U) in (3.18). This is completely natural and
expected due to the symmetry of A.

The uniqueness condition of (3.32) is no longer true for sps matrices. As a coun-
terexample, consider the following two different decompositions (3.32) of the same sps
matrix: 1 1 1

1 1 1
1 1 3

 =

 1 0 0
1 0 0

1 0
√

2

 1 1 1
0 0 0

0 0
√

2

 =

 1 0 0
1 0 0
1 1 1

 1 1 1
0 0 1
0 0 1

 .
Equation (3.33) provides the following algorithm to compute the Cholesky fac-

tor of A. It is exactly the same as Gaussian elimination (Algorithm 3), without
permutations and with an additional line for the diagonal entry.

Algorithm 4: Cholesky factorization.

% INPUT: A ∈ Rn×n spd.
% L such that A = LL>

for i = 1 : n
A(i, i) =

√
A(i, i)

A(i+ 1 : n, i) = A(i+ 1 : n, i)/A(i, i)
trilA(i+1 : n, i+1 : n) = tril(A(i+1 : n, i+1 : n)−A(i+1 : n, i)·A(i, i+1 : n))

end
L = trilA

Computational cost: Since Algorithm 4 performs half of the operations in Algorithm

3, the computational cost of the Cholesky factorization is 1
3n

3 +O(n2) flops
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3.3.3. Backward stability of Cholesky factorization. The most important
property of Algorithm 4 is that it is backward stable. This is in stark contrast with
Algorithm 3 for general n × n matrices. In order to approach this result, we first
state the following theorem, which is just the analogue of Theorem 3.7.

Theorem 3.16. Let A ∈ Rn×n be a spd matrix, and let us assume that Algorithm
4 produces a matrix L̂ in a machine with unit roundoff u. Then

(3.36) L̂L̂> = A+ E, with |E| ≤ ((n+ 1)u+O(u2))|L̂| · |L̂>| .

Similarly, the following result is the analogue of Theorem 3.8.

Theorem 3.17. Let A ∈ Rn×n be a sdp matrix, and let L̂ be its Cholesky factor
computed with Algorithm 4 in a machine with roundoff error u. Let x̂ be the computed
solution of the SLE (3.1), obtained using the Cholesky factorization and then solving
two triangular systems. Then, there is some matrix ∆A such that

(A+ ∆A)x̂ = b, with |∆A| ≤ ((3n+ 1)u+O(u2))|L̂| · |L̂>|.

So far, there is nothing new concerning backward error for linear systems with spd
coefficient matrices compared to general systems, as should be expected. However,
the following key inequality makes the difference:

(3.37) ‖|L̂| · |L̂>|‖2 ≤ ‖|L̂|‖22 ≤ ‖|L̂|‖2F = ‖L̂‖2F ≤ n‖L̂‖22 = n‖A+ E‖2,

with E as in (3.36). Now, joining (3.36) and (3.37),

(3.38)
‖E‖2 ≤ ‖|E|‖2 ≤ ((n+ 1)u+O(u2))‖|L̂| · |L̂>|‖2

≤ ((n+ 1)u+O(u2))n(‖A‖2 + ‖E‖2),

and solving for ‖E‖2 we arrive at

(3.39) ‖E‖2 ≤ (n(n+ 1)u+O(u2))‖A‖2.

Exercise 17. Obtain (3.39) from (3.38).

Replacing (3.39) in (3.36) we obtain the main results in this section, which guar-
antee backward stability of Algorithm 4 and the solution of (3.1), with A being spd,
using Cholesky factorization.

Theorem 3.18. (Computing Cholesky with Gaussian elimination is backward
stable). Let A ∈ Rn×n be a spd matrix, and let us assume that Algorithm 4 produces

an outpout matrix L̂ in a machine with unit roundoff u. Then

L̂L̂> = A+ E, with ‖E‖2 ≤ (n(n+ 1)u+O(u2))‖A‖2.

Theorem 3.19. (Solving SLE with Cholesky is backward stable). Let A ∈ Rn×n

be a sdp matrix, and L̂ its Cholesky factor computed with Algorithm 4 in a machine
with roundoff error u. Let x̂ be the computed solution of the SLE (3.1), obtained
using the Cholesky factorization and then solving two triangular systems. Then, there
is some matrix ∆A such that

(A+ ∆A)x̂ = b, with ‖∆A‖2 ≤ ((3n+ 1)nu+O(u2))‖A‖2.
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HIGHLIGHTS:

� For symmetric positive definite matrices the Cholesky factorization plays the role
of LU factorization.

� The computational cost to compute the Cholesky factorization is 1
3n

3 +O(n2).

� Cholesky algorithm for positive definite matrices is backward stable.
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4. Lesson 3: The QR factorization.

4.1. The importance of unitary/orthogonal matrices. Another important
class of matrices is the following.

Definition 4.1. (Unitary and orthogonal matrix). A matrix U ∈ Cn×n is said
to be

• unitary if U∗U = In,
• orthogonal if U>U = In.

Unitary matrices play a relevant role in matrix computations, due essentially to
the following properties.

Lemma 4.2. Let U, V be unitary matrices of appropriate sizes. Then
(i) ‖U‖2 = 1.
(ii) ‖UAV ‖2 = ‖A‖2, for any matrix A of appropriate size.
(iii) UV is also a unitary matrix.

Exercise 18. Prove Lemma 4.2.

Real orthogonal matrices are the counterpart of (complex) unitary matrices over
the real field. In particular, all claims in Lemma 4.2 can be directly translated to
real orthogonal matrices replacing ∗ by >. For this reason, orthogonal matrices are
specially relevant over the real field. Note, however, that orthogonal matrices can also
have complex entries.

The relevance of unitary matrices in matrix computations relies on claim (ii)
in Lemma 4.2. Most problems in NLA involve matrix multiplications. Think, for
instance, of Gaussian elimination: in order to get the upper triangular matrix U from
a given matrix A we need to perform elementary row operations, which consist, as
we have seen, of multiplying A on the left by elementary matrices. The problem with
matrix multiplications is that they can significantly alter the condition number of the
original matrix (consider for instance, the trivial example A = In and multiply it by
another n×n matrix with large condition number). However, property (ii) in Lemma
4.2 guarantees that this does not happen with unitary matrices and with the 2-norm.
For this reason, and from the point of view of conditioning, to work with unitary (or
real orthogonal) matrices is preferable than doing it with general matrices.

4.2. QR factorization. In Lesson 3 we have reviewed the standard way to
solve linear systems (3.1) (Gaussian elimination), which consists of transforming the
coefficient matrix A into an upper triangular matrix using elementary row operations.
These transformations are not unitary (which means that the L matrix in the LU
factorization is not unitary). This fact is, precisely, the one that prevents the LU
factorization from being backward stable. More precisely, the norm of the matrix U
obtained after applying these elementary transformations may be much larger than
the one of the original matrix A. Therefore, one may wonder whether it is possible
to achieve an upper triangular form using unitary transformations. The answer is
yes, and is given by the QR factorization. As in Lesson 3, we focus on the real case
(namely, F = R).

Theorem 4.3. (QR factorization). Every invertible matrix A ∈ Rn×n has a
factorization A = QR, where Q ∈ Rn×n is an orthogonal matrix and R ∈ Rn×n is
an upper triangular matrix. The factorization is unique if R has positive diagonal
elements.
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Proof. The proof is essentially the one in [4, Fact. 3.32]. Let us first prove the
existence of a QR factorization. Since A is nonsingular, there is some x 6= 0 such that
Ax 6= 0, so x>A>Ax = ‖Ax‖2 > 0. Since the matrix M = A>A is symmetric, the
previous inequality implies that it is spd. Then, by Theorem 3.15, there is a lower
triangular matrix L with positive diagonal elements such that M = LL>. Moreover, L
is invertible, because M is. Then M = A>A = LL>. Multiplying by A−> := (A−1)>

on the left gives A = QR, with Q = A−>L, and R = L>, which is upper triangular
with positive diagonal entries. It remains to prove that Q defined in this way is
orthogonal. For this, let us multiply

Q>Q = (A−>L)>A−>L = L>A−1A−>L = L>(A>A)−1L = L>M−1L
= L>(LL>)−1L = L>(L−>L−1)L = (L>L−>)(L−1L) = In,

so Q is, indeed, orthogonal.
Now, let us prove the uniqueness. Let us assume that A = QR = Q̃R̃ are two

factorizations of A as in the statement. Then S := Q−1Q̃ = RR̃−1. The matrix S
is both orthogonal, by Lemma 4.2(iii), and upper triangular with positive diagonal

elements. Now Exercise 19 implies that S = In, which in turn implies that Q = Q̃
and R = R̃.

Exercise 19. Prove that if G ∈ Rn×n is both orthogonal and upper triangular
with positive diagonal elements, then it must be G = In. Why this is not true anymore
if we remove the condition of having positive diagonal elements?

The QR factorization provides an alternative method to Algorithm 2 for solving
the SLE (3.1), namely:

1. Compute the QR factorization of A = QR.
2. Compute ŷ = Q>b.
3. Solve Rx = ŷ.

However, in order to decide about whether it is competitive or not with Algorithm

2 solved using Algorithm 3 we should first derive an algorithm to compute the QR
factorization and analyze it from the point of view of backward stability and compu-
tational cost.

The proof of Theorem 4.3 provides a construction from the Cholesky factorization
of the matrix M = A>A, and it involves the following three steps: (i) the computation
of the product A>A; (b) the computation of the Cholesky factorization of A>A; and
(c) the computation of the product A−>L to get the matrix Q. This procedure present
several disadvantages from the computational point of view. The most important one
is that the computation of A>A is subject to rounding errors which may produce a
non-symmetric (computed) matrix, and then the Cholesky factorization of M could
not be computed. As a consequence, this procedure is not appropriate.

4.2.1. Computation of QR factorization: Householder reflectors. There
are several ways to compute the QR factorization of A ∈ Rn×n. The one we present
here uses Householder reflectors and goes as follows.

We multiply on the left the matrix A by a sequence of orthogonal transformations,
Q1, Q2, . . . , Qn (Householder reflectors), such that Qk, for k = 1, . . . , n makes zeroes
below the diagonal in the kth column while preserving the zeroes introduces by the
matrices Q1, . . . , Qk−1. In this sense, it works like Gaussian elimination, but with
orthogonal transformations, instead of elementary row transformations. The resulting
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matrix Qn · · ·Q2Q1A = R is the upper triangular matrix of the QR factorization,
while the transpose of the matrix Q is Q> = Qn · · ·Q2Q1.

Let us explain how the Householder reflector Qk works. The matrix Qk, for
k = 1, . . . , n, is of the form

(4.1) Qk =

[
Ik−1 0

0 Hk

]
,

where Hk is a unitary matrix. Assume that we have already constructed k−1 matrices
Q1, . . . , Qk−1 such that, for 1 ≤ i ≤ k − 1, the ith column of (Qk−1 · · ·Q1)A has null
entries below the ith coordinate. Then, we want to construct an orthogonal matrix
Qk such that the same holds for the first k columns of (Qk · · ·Q1)A. If Qk has the
form (4.1), this guarantees that multiplying on the left by Qk does not alter the first
k − 1 columns of (Qk−1 · · ·Q1)A. Now, let v(k) be the kth column of (Qk−1 · · ·Q1)A
and let us denote

x(k) =

 x1

...
xn−k+1

 ∈ Rn−k+1,

the vector whose coordinates are the last (bottom) n − k + 1 coordinates of v(k).
In other words, x(k) is the vector obtained from v(k) after removing the first k − 1
coordinates. Now, we look for an orthogonal transformation, Hk, such that

(4.2) Hkx
(k) = ±‖x(k)‖2e1,

where e1 is the first column of In−k+1. The only nonzero entry of the right-hand
side vector in (4.2) is the first one, which means that the kth column of (Qk · · ·Q1)A
will have null entries below the kth coordinate, as wanted. The factor ‖x(k)‖2 must
appear because we want Hk to be orthogonal, and then ‖Hkx

(k)‖2 = ‖x(k)‖2, by
Lemma 4.2(ii), taking U = Hk, V = I, and A = x(k) in this lemma. A natural choice
for such Hk is the “reflection” across the hyperplane orthogonal to ‖x(k)‖2e1 − x(k).
Figure 4.1 depicts this reflection in R2 (the orthogonal hyperplane is the dashed line
H, and x plays the role of x(k)).

Fig. 4.1. Householder reflector in R2. Taken from [6].

However, there is another way to get the same vector, namely, reflecting across the
orthogonal hyperplane to −‖x(k)‖2e1 − x(k). This is illustrated in Figure 4.2, where
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the (orthogonal) hyperplanes are the dashed lines, and are denoted by H+ and H−.
Note that, as shown in the picture, x goes to a vector whose first entry is negative if
we reflect across H−.

Fig. 4.2. Two possible Householder reflector in R2. Taken from [6].

In both cases, Hk is defined as follows:

(4.3) Hk = In−k+1 − 2
y(k)(y(k))>

(y(k))>y(k)
,

where y(k) = sign(x1)‖x(k)‖2e1 ± x(k). The right choice is the plus sign (+) in order
to keep x(k) as far away as possible from its image to avoid cancellation (see [6]).

Summarizing, by choosing Hk as in (4.3) we guarantee the following:

(P1) The matrix Hk is orthogonal.

(P2) The first k columns of (Qk · · ·Q1)A are of the form



± ∗ · · · ∗
0 ± · · · ∗

0 0
. . .

...
...

...
. . . ±

0 0 · · · 0
...

...
...

0 0 · · · 0


,

where ± are nonzero entries and the entries marked with ∗ are not relevant.

Note that (4.3), with the (+) sign for y(k), makes the signs (±) in the diagonal
to be all (+). Essentially, what we do is to first reflect onto −‖x‖e1 and then shift
the (−) sign with (+).

Property (P2) is an immediate consequence of (4.2). The proof of property (P1)
is left as an exercise.

Exercise 20. Prove property (P1) above.

Note that (P1) implies that that Qk in (4.1) is orthogonal as well. As for (P2),
it shows that the product (Qn · · ·Q1)A is upper triangular with positive diagonal
entries.

The following algorithm constructs the matrix R of the QR transformation using
the previous ideas. As for the matrix U in the LU factorization, R is obtained by
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replacing the corresponding entries in the matrix A, for storage saving. Note that the
algorithm also stores the vectors qk (for latter use).

Algorithm 5: Householder QR factorization.

% INPUT: An n× n matrix A
% OUTPUT: The matrix R of the QR factorization of A

for k = 1 : n
x = A(k : n, k)
qk = sign(x1)‖x‖2e1 + x
qk = qk/‖qk‖2
A(k : n, k : n) = A(k : n, k : n)− 2qk(q>k A(k : n, k : n))

end
R = A

Exercise 21. Let

A =


1 5 4 3 2
2 1 5 4 3
3 2 1 5 4
4 3 2 1 5
5 4 3 2 1

 , b =


1
−1
2
−1
1

 .

(a) Solve Ax = b using Algorithm 2. Provide not just the solution, x, but also
the LU factorization of A, with 4 decimal digits.

(b) Solve Ax = b using Algorithm 7. Provide not just the solution, x, but also
the matrix R in the QR factorization of A, together with the vectors qk, for
k = 1, . . . , 5, with 4 decimal digits.

4.2.2. LU versus QR for solving linear systems. Algorithm 5 does not
compute the matrix Q of the QR factorization of A. This is because for solving SLE
we do not need to compute it. To see this, note that if A = QR is the QR factorization
of A, then (3.1) is equivalent to Rx = Q>b, so we just need to compute R and Q>b.
It is possible to compute Q>b without explicitly computing Q. This is the reason for
storing the vectors qk. In particular, from these vectors we can compute Q>b using
the following algorithm. Again, Q>b is replaced by b for saving storage.

Algorithm 6: Implicit calculation of the product Q>b
% INPUT: A vector b and the vectors qk, for k = 1 : n in Algorithm 5

% OUTPUT: The vector Q>b, with Q being the Q factor in the QR
% decomposition of A

for k = 1 : n
b(k : n) = b(k : n)− 2qk(q>k b(k : n))

end

Now, joining Algorithm 5 and Algorithm 6 we arrive at the following algorithm
to solve (3.1) using the QR factorization.
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Algorithm 7: Solves (3.1) using QR factorization.

1. Factorize A = QR using Householder reflectors.
2. Compute y = Q>b.
3. Solve Rx = y by backward substitution.

Computational cost: The computational cost of Algorithm 7 is
4

3
n3 flops (see,

for instance, [6, Lecture 10]).

The relevant difference between Algorithm 2 and Algorithm 7 is that Algorithm
7 is backward stable. Moreover, we have a perfect backward stability result.

Theorem 4.4. (Solving SLE using QR is backward stable). If Algorithm 7

produces a solution x̂ to (3.1), in a machine with unit roundoff u, then there is some
matrix ∆A such that

(4.4) (A+ ∆A)x̂ = b, with ‖∆A‖ ≤ O(u)‖A‖.

For the proof of Theorem 4.4, we refer to the proof of Theorem 16.2 in [6]. We
just give some general indications to understand why Theorem 4.4 is true. This is
a consequence of the fact that all three steps in Algorithm 7 are backward stable.
We already know that the third step (solution of triangular systems by backward
substitution) is backward stable (Theorem 3.3). It is not difficult to prove that the
second step is also backward stable. As for the first one (computation of the QR
factorization using Householder reflectors), the backward stability strongly relies on
the property that Householder reflectors are orthogonal matrices.

Remark 10. Note that no special assumptions in the statement of Theorem 4.4
are made on the matrix norm ‖ · ‖. Among the standard norms introduced in Section
1, only the 2-norm satisfies ‖UAV ‖ = ‖A‖, for any U, V unitary (in order words,
only the 2-norm is unitarily invariant). This means that, if ‖ · ‖ is any of the other
norms (the 1, ∞, or Frobenius norms) then it could happen that, when multiplying by
the Householder reflectors, the norm of the resulting matrix increases substantially.
However, it can only increase up to some point. In particular, it can not go to infinity
as u goes to zero, since all norms are equivalent in a finite-dimensional vector space.
Note that inequality (4.4) is independent on the choice of the norm, as long as they
are all equivalent.

However, Algorithm 7 is twice more expensive than Algorithm 2, and for this
reason Algorithm 2 is the one used in practice.
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HIGHLIGHTS:

� Any invertible matrix A ∈ Rn×n can be written as A = QR, with Q being
orthogonal and R being upper triangular with positive diagonal entries. This is known
as the QR factorization of A, and it is unique.

� The computational cost to compute the QR factorization using Householder re-
flections is 4

3n
3 +O(n2), which is twice the cost of the LU factorization.

� The computation of the QR factorization using Householder reflections is back-
ward stable.

� The QR factorization can be used to solve SLE (3.1) through Algorithm 7, which
is backward stable.

� Despite the backward stability of Algorithm 7, its computational cost, which is
twice as much as the computational cost of solving (3.1) using the LU factorization,
makes this last procedure preferable in practice.
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5. Lesson 4: Least squares problems and the SVD.

5.1. The singular value decomposition (SVD). The singular value decom-
position (SVD) of a matrix A ∈ Cn×n is another factorization of A that provides very
useful information, including:

• The rank of A.
• The 2-norm of A.
• The robustness of rankA against small perturbations. This tells us how far

is A away from a matrix of lower rank. In particular, if A is invertible, the
SVD will tell us how far is A away from being singular.

Furthermore, there are many applications of the SVD decomposition. In this
course, we will review one of its basic applications to image compressing and restora-
tion (Section 5.4).

Note that in this section we are considering matrices with complex entries and
either square or rectangular. This is a more general setting than in precedent sections,
where only the real square case was considered.

In the proof of the SVD we will use the following results. We recall that a
Hermitian matrix is a matrix H ∈ Cn×n such that H∗ = H, and that a matrix A is
unitarily diagonalizable is there is a unitary matrix U such that U∗AU is diagonal.

Exercise 22. Prove that rankA = rankA∗A, for any A ∈ Cm×n.

Exercise 23. Prove that the eigenvalues of a Hermitian positive definite matrix
are real nonnegative numbers.

Theorem 5.1. Any Hermitian matrix is unitarily diagonalizable.

The SVD is stated in the following result, whose proof is taken from [5, p. 31].

Theorem 5.2. (SVD). Let A ∈ Cm×n. Then, there are two unitary matrices
U ∈ Cm×m, V ∈ Cn×n, and a diagonal matrix Σ = diag(σ1, . . . , σr, 0, . . . , 0), with
σ1 ≥ · · · ≥ σr > 0 such that

(5.1) A = UΣV ∗.

The values σ1, . . . , σr are uniquely determined and they are known as the singular
values of A. The columns of U (resp. V ) are known as left (resp. right singular
vectors of A.

If A has real entries, then all U,Σ, V in (5.1) can be taken to be real.

Proof. Let r := rankA. By Exercise 22, rankA∗A = r. The matrix A∗A is
Hermitian and positive definite. By Exercise 23, the eigenvalues of A∗A are real and
nonnegative. Let σ2

1 ≥ · · · ≥ σ2
r > 0 = σ2

r+1 = · · · = σ2
n be the eigenvalues of A∗A.

Let V =
[
V1 V2

]
(with V1 ∈ Cn×r) be a unitary matrix whose columns are the

eigenvectors of A∗A. This matrix exists, by Theorem 5.1. Then

V ∗(A∗A)V =

[
Σ2

+ 0
0 0

]
,

where Σ+ = diag(σ1, . . . , σr). Then we have

(5.2) V ∗1 A
∗AV1 = Σ2

+, V ∗2 A
∗AV2 = 0.
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The second identity is equivalent to (AV2)∗(AV2) = 0. By Exercise 22, rank(AV2) =
rank(AV2)∗(AV2) = 0, so we conclude that

(5.3) AV2 = 0.

Now let

(5.4) U1 = AV1Σ−1
+ .

Then (5.2) implies that U∗1U1 = Ir. Let us choose U2 such that
[
U1 U2

]
is unitary.

Then, (5.2), (5.3), and (5.4) together imply

U∗AV =

[
U∗1AV1 U1A

∗V2

U∗2AV1 U∗2AV2

]
=

[
Σ+ 0
0 0

]
,

and from this it follows that A = UΣV ∗, since U, V are unitary.

If A is real, note that all arguments are still true replacing ∗ by > and all matrices
involved can be chosen to be real.

The decomposition (5.1) is known as a singular value decomposition (SVD) of A.

One may wonder about the uniqueness of the SVD of A. Theorem 5.2 claims
uniqueness of the singular values, but nothing is said about the singular vectors.
In the next result we provide an answer to this question, together with some other
properties of the SVD.

Lemma 5.3. Let A be as in the statement of Theorem 5.2.

(i) The singular values are the nonnegative square roots of the eigenvalues of
AA∗ or, equivalently, of A∗A (that’s why they are uniquely determined).

(ii) The columns of U are eigenvectors of AA∗, and the columns of V are eigen-
vectors of A∗A, arranged in the same order as the corresponding eigenvalues
σ2
i .

(iii) If m ≤ n and if AA∗ has different eigenvalues, then U is determined up to
a right diagonal factor D = diag(eiθ1 , . . . , eiθn), with all θi ∈ R, that is, if
A = U1ΣV ∗1 = U2ΣV ∗2 then U2 = U1D.

(iv) If m < n then V is never uniquely determined.
(v) If m = n and U is given, then V is uniquely determined .

(vi) If n ≤ m, analogous results hold by considering A∗.
(vii) ‖A‖2 = σ1.

Exercise 24. Prove Lemma 5.3.

Moreover, the following properties on U1 and V2 hold.

Lemma 5.4. If U1 and V1 are as above, then

(a) The columns of U1 are an orthonormal basis of the column space of A.
(b) The columns of V2 are an orthonormal basis of the null space of A.

Exercise 25. Prove Lemma 5.4.

We are not getting into the problem of computing the SVD of a given matrix.
Instead of this, we will review some relevant applications of the SVD.
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5.2. Low rank approximations. In many situations it may be convenient to
approximate a given matrix A by some other matrix with smaller rank, which is called
a low-rank approximation of A. It is desirable that this low-rank approximation is the
closest to A in some sense. A natural notion of “closeness” is given by the distance,
and in particular the distance defined by the 2-norm (we will see more on this in
Section 5.3). Then the low-rank approximation problem is as follows:

Low-rank approximation problem:
Given a matrix A, find a matrix Aρ such that

‖A−Aρ‖2 = min{‖A−B‖2 : rank B ≤ ρ}

The solution to this problem goes though the SVD of A. To state it, we need to
recall that any matrix M ∈ Cm×n with rankM = ρ can be written as a sum of rank-1
matrices

M = x1y
∗
1 + · · ·+ xρy

∗
ρ,

for some vectors xi, yi ∈ Cn, for i = 1, . . . , ρ. In particular, the SVD of A in (5.1)
allows to decompose A as a sum of r rank-1 matrices as follows:

(5.5) A =

r∑
i=1

σiuiv
∗
i ,

where ui, vi, for i = 1, . . . , r, are the ith columns of U and V , respectively. With these
considerations in mind, we can state the solution of the Low-rank approximation
problem.

Theorem 5.5. (Optimal low-rank approximation). Let A ∈ Cm×n be as in (5.5),
with σ1 ≥ · · · ≥ σr > 0 being the nonzero singular values of A, and let ρ ≤ r. Set

(5.6) Aρ :=

ρ∑
i=1

σiuiv
∗
i .

Then

‖A−Aρ‖2 = min{‖A−B‖2 : rankB ≤ ρ} = σρ+1,

where, if ρ = r, then σρ+1 = 0.
Proof. First note that, if A and Aρ are as in (5.5) and (5.6), respectively, then

‖A−Aρ‖2 = ‖
∑r
i=ρ+1 σiuiv

∗
i ‖2 = σρ+1, by Lemma 5.3(vii). It remains to prove that,

for any B with rankB ≤ ρ, it must be ‖A−B‖2 ≥ σρ+1. We omit this part and refer
to [4, Fact 4.13] for a proof.

As a consequence of Theorem 5.5, the best approximation to A with rank ρ is
obtained from the SVD of A by truncating the sum in (5.5) from the ρth singular
value on.

In particular, we can determine the distance of an invertible matrix to the set of
singular (i. e., non-invertible) matrices.

Corollary 1. Let A ∈ Cn×n be invertible and σ1 ≥ · · · ≥ σn > 0 be the singular
values of A. Then

σn = min{‖E‖2 : A+ E is singular}.
48



Proof. If E is such that A + E is singular, then rank(A + E) ≤ n − 1, so by
Theorem 5.5,

‖E‖2 = ‖A− (A+ E)‖2 ≤ σn.

Corollary 1 tells us about how far is an invertible matrix away from being singular.
In other words, it provides the norm of the smallest perturbation that makes an
invertible matrix to become singular. Though it does not explicitly show us how to
construct this matrix, we can derive a procedure to get it using the SVD. This goes
as follows:

1. Compute the SVD (5.1) of A.
2. Set E = −σnunv∗n.

The matrix E constructed above clearly satisfies ‖E‖2 = σn and A+E is singular.
Note, moreover, that E is a rank-1 perturbation.

Exercise 26. Let A be the matrix in Exercise 8.
(a) Compute the SVD of A for n = 8, 10, 12, 14.
(b) Indicate the distance to singularity of A for the previous values of n.
(c) Construct a perturbation E such that A+E is singular, for each of the previous

values of n.

Exercise 27. Assume that A is invertible with SVD as in (5.1). Give an ex-
pression for a SVD of A−1.

The previous arguments are closely related to the condition number for inversion
of A. This number is a measure of the sensitivity (conditioning) of the problem of
inverting a matrix. It is expected to be big if the matrix is invertible (otherwise the
problem of computing its inverse makes no sense) but close to being singular. In
particular, from Lemma 5.3(vii) and Exercise 27, we see that

κ2(A) = ‖A−1‖2‖A‖2 =
σ1

σn
.

This shows, again, that if σn is small, then A is ill-conditioned by inversion.

5.3. Least squares problems. We are now interested in the case where the
linear system (3.1) does not have a solution. This happens when the vector b does
not belong to the column space of A ∈ Cm×n. The typical situation is when m > n,
so the system has more equations than unknowns, because these systems generically
have no solution. In this setting, we are interested in computing a vector x̂ which
is the “closest” to a solution. But, for this, we first need to define what we mean
by “close”. This closeness, as in the previous section, is measured in terms of the
distance induced by the 2-norm.

Least squares problem (LSP):

Given A ∈ Cm×n and b ∈ Cm, the least squares problem associated to Ax = b
consists of finding a vector x̂ ∈ Cn such that

(5.7) ‖Ax̂− b‖2 = min{‖Ax− b‖2 : x ∈ Cn}.
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The vector x̂ in (5.7) is a least squares solution of the system (3.1), and Ax̂ − b
is called the least squares residual. Then, a LSP aims to find those vectors x̂ ∈ Cn
which minimize the residual.

Some observations are in order:

• For the sake of completeness, we have stated the LSP for complex rectangular
matrices, instead of real (and square) ones.

• The least squares solution is not necessarily unique.

The main question related to the LSP is the following: Does it always have a
solution? In other words, Given A ∈ Cm×n and b ∈ Cm arbitrary, does necessarily
exist a vector x̂ satisfying (5.7)? The answer to this problem is YES. Now, we are
going to review several different ways to compute it.

5.3.1. Solution of LSP using the SVD. Let us decompose the SVD of A
(5.1) as in the proof of Theorem 5.2, namely

A = U

[
Σ+ 0
0 0

]
V ∗, U =

[
U1 U2

]
, U =

[
V1 V2

]
,

where Σ+ = diag(σ1, . . . , σr) is r× r, U1 is m× r, U2 is m× (m− r), V1 is n× r, and
V2 is n× (n− r).

The following result provides a formula for the solution of the LSP.

Theorem 5.6. (Solution of the LSP). Let A ∈ Cm×n and b ∈ Cm. Then the
solutions of the LSP (5.7) are of the form

x̂ = V1Σ−1
+ U∗1 b+ V2z,

for any z ∈ Cn−r.
Proof. Let x̂ be a solution of the least squares problems, and let us partition

V ∗x̂ =

[
V ∗1 x̂
V ∗2 x̂

]
=

[
y
z

]
.

Now, we replace the SVD of A into the residual

Ax̂− b = U

[
Σ+ 0
0 0

]
V ∗x̂− b = U

[
Σ+y − U∗1 b
−U∗2 b

]
.

Since the 2-norm is unitarily invariant (see Remark 10), applying the square of the
2-norm in the previous identity we get

‖Ax̂− b‖22 = ‖Σ+y − U∗1 b‖22 + ‖U∗2 b‖22.

Since the second summand in the right-hand side is independent on y, z, the residual
is minimized when the first summand in the right-hand side is zero. This happens
when y = Σ−1

+ U∗1 b. Therefore, the solution to the LSP (5.7) is given by

x̂ = V

[
y
z

]
= V1y + V2z = V1Σ−1

+ U∗1 b+ V2z.

Note that, by (5.3), A(V2z) = 0, for any z ∈ Cn−r. Therefore, the vector V2z does
not have any influence on the residual, so z can be any vector.
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As a consequence of Theorem 5.6, if rankA = r < n, then the LSP (5.7) has
infinitely many solutions, and the essential part of the solution contains the matrix
V1Σ−1

+ U∗1 . This matrix is obtained from the SVD of A just inverting the singular
values and exchanging the roles of U and V . Note that, when A is invertible, this is
just A−1 (as expected). Moreover, when A is not invertible, this matrix shares some
properties with the inverse of a matrix. In fact, it is a particular case of what is known
as a pseudoinverse (or generalized inverse).

Definition 5.7. Let A ∈ Cm×n with an SVD given by (5.1), and partition
Σ =

[
Σ+ 0
0 0

]
, with Σ+ invertible. Then the matrix

A† := V

[
Σ−1

+ 0
0 0

]
U∗

is called the Moore-Penrose inverse of A.

The following lemma supports the use of the word “inverse” for A†.

Lemma 5.8. Let A ∈ Cm×n.
• If A is invertible then A† = A−1.
• If rankA = n, then A† = (A∗A)−1A∗. This implies A†A = In, so A† is a left

inverse of A.
• If rankA = m, then A† = A∗(AA∗)−1. This implies AA† = Im, so A† is a

right inverse of A.

Exercise 28. Prove Lemma 5.8.

Using the Moore-Penrose inverse we can give a more condensed expression for the
least squares solution.

Corollary 2. Let A ∈ Cm×n, and b ∈ Cm. The solution of the LSP (5.7) is

x̂ = A†b+ y, where y ∈ Ker(A).

5.3.2. Solution of LSP using the QR factorization. Another way to solve
the LSP (5.7) is by means of the so-called normal equations, as explained in the
following result.

Theorem 5.9. Let A ∈ Cm×n and b ∈ Cm. Then x̂ is a solution of the LSP
(5.7) if and only if x̂ is a solution of

(5.8) A∗Ax̂ = A∗b.

Exercise 29. Prove Theorem 5.9.

The equations of system (5.8) are known as the normal equations associated with
the LSP (5.7). They relate the LSP with a SLE, which is nice because it allows us
to address a LSP as a SLE. However, the solution of the LSP using normal equations
can be numerically unstable, since the conditioning of the problem can be as big as
κ2(A)2, instead of κ2(A) (see [4, p. 103]).

In this course we have just defined the QR factorization for real square invertible
matrices. However, the QR factorization can be extended to complex arbitrary ma-
trices (square and rectangular). Though we are not getting into the details, the QR
factorization for complex rectangular matrices is of the same form as for real invertible
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matrices. More precisely, given a matrix A ∈ Cm×n, there are two matrices Q ∈ Cm×n
(with orthonormal columns, that is, satisfying Q∗Q = In) and R ∈ Cn×n (upper tri-
angular) such that A = QR. Using this decomposition, we can find an expression for
the solution of the normal equations (5.8). To be precise, (5.8) is equivalent to

R∗Rx̂ = R∗Q∗b.

If A has full column rank (which means that m ≥ n and rankA = n), then R∗ is
invertible, and this system is equivalent to

Rx̂ = Q∗b.

This is an upper triangular system, that can be solved by backward substitution.

5.4. Image processing. Another application of the SVD is in image processing.
In particular, we are going to review the implications of the SVD in the process of
compression and restoration of images.

For the sake of simplicity, let us focus on the simplest case of a black and white im-
age. The information of this image is stored in a matrix, whose dimensions correspond
to the resolution of the image. For instance, an image with resolution 1368 × 1712
means that the image is decomposed into a grid of 1368 × 1712 small squares (pix-
els), each one having an independent intensity of black color. This corresponds to a
matrix of size 1368 × 1712, where each entry encodes the intensity of black color in
the corresponding pixel. In some cases, it may be preferable to reduce the amount
of stored information, at the cost of loosing some definition in the image. This leads
to the question on how to get the best compromise between the amount of stored
information and the quality of the image. The SVD is helpful in this question, based
on Equation (5.5) and Theorem 5.5. More precisely, the decomposition in 5.5 allows
to store the information of the matrix A ∈ Cn×n through the sum of r rank-1 ma-
trices, together with r real values (the singular values σ1 ≥ · · · ≥ σr > 0). This is
a total amount of r(m + n) + r numbers, since each rank-1 matrix of size m × n is
stored in 2 vectors, one of size m × 1, and the other one of size 1 × n. Of course, if
r = m = n (so the matrix is invertible), then this amounts to 2n2 + n, which is more
information than storing directly the n× n whole matrix. However, when the matrix
is rectangular, and m << n or n << m, or even when it is square n× n but r << n,
this quantity can be much smaller than mn, which is the storage requirement of the
whole matrix. Then, what we can do is to replace the whole matrix A by a good
low-rank approximation. The notion of “good” here depends on the particular case,
but the idea is to find a low rank approximation that allows to decrease the storage
cost without loosing too much definition in the image. Theorem 5.5 tells us that the
best rank-ρ approximation to a given matrix (in terms of the distance induced by the
2-norm) is obtained by truncating the sum (5.5), namely removing the last summands,
and keeping the first ρ summands, which correspond to the largest singular values.

In general, a rank-100 approximation (that is, using only the largest 100 singular
values) is enough to get a good approximation to the original image. However, the
amount of information stored in this approximation is much less than the one stored
in the original matrix. In particular, for an image with 1368 × 1712 resolution, the
information required to store the rank-100 approximation as a matrix (5.5) with r =
100 is 100(1368 + 1712) + 100 = 308100 bytes. Compared to the size of the whole
matrix this gives a compression rate of

cr =
308100

1368 · 1712
= 0.1315,
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which means that the information stored in the approximation is only 13.15% of the
whole information, which is an important saving.

Exercise 30. (Mandatory). Choose your favorite picture (one not having a very
high resolution!) and put it into your working path in MATLAB (for instance, as a jpg
file). Name the picture using the command name = imread(’image.jpg’). Then
run the command compress (that should be as well in your working path in MATLAB),
by choosing 4 different values for the rank, which is the variable p in the input of the
code. Your choices should include: a small rank (around 1/10 of the rank of the whole
matrix), a moderate choice (around 100), and a large number (like 1/2 of the whole
rank). Then display the following information:

• The original picture.
• The 4 pictures obtained after applying the compress code.
• The rate of compression of each picture (indicate the computations carried

out to get it).

HIGHLIGHTS:

� The SVD is a matrix factorization which displays relevant information of an arbi-
trary matrix (like the rank and the singular values).

� The singular values measure how far is a matrix of certain rank away from the set
of matrices with smaller rank.

� The SVD is a useful tool in many applied settings, including low-rank approxima-
tions, solution of LSP, and image processing.

� A LSP arises naturally from a SEL with no solution, and aims to compute the
vector with smallest residual (that is, in some sense, the “closest” to a solution).
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