Uniqueness of solution of a generalized \star-Sylvester equation

Fernando de Terán

Departamento de Matemáticas
Universidad Carlos III de Madrid
Generalized ★-Sylvester equation

Given \(A, B, C, D, E \in \mathbb{C}^{n \times n} \)

Goal: Find necessary and sufficient conditions for the equation

\[
AXB + CX^\star D = E
\]

to have a **unique solution**.

\((X \in \mathbb{C}^{n \times n}, \text{unknown})\)

\((\star = \top \text{ or } \ast)\)
Motivation

- **Natural extension of** $AX + X^*D = E$.
 - Numerical methods for palindromic eigenvalue problems
 [Byers-Kressner’06], [Kressner-Schröder-Watkins’09],
 [Dmytryshyn-Kågström’15]
 - Congruence orbits ($D = A, E = 0$) [D.-Dopico’11]

- Closely related to $AXB + CXD = E$ [Chu’87]

- Iterative algorithms for solving
 $\sum_{i=1}^{r} A_iXB_i + \sum_{j=1}^{s} C_jX^TD_j = E$
 [Wang-Cheng-Wei’07], [Xie-Ding-Ding’09], [Li-Wang-Zhou-Duan’10],
 [Song-Chen’11], [Song-Chen-Zhao’11], [Song-Feng-Whang-Zhao’14],...
Motivation

- Natural extension of \(AX + X^*D = E \).
 - Numerical methods for palindromic eigenvalue problems
 [Byers-Kressner’06], [Kressner-Schröder-Watkins’09], [Dmytryshyn-Kågstöm’15]
 - Congruence orbits \((D = A, E = 0)\) [D.-Dopico’11]

- Closely related to \(AXB + CXD = E \) [Chu’87]

- Iterative algorithms for solving
 \[
 \sum_{i=1}^{r} A_iXB_i + \sum_{j=1}^{s} C_jX^TD_j = E
 \]
 [Wang-Cheng-Wei’07], [Xie-Ding-Ding’09], [Li-Wang-Zhou-Duan’10],
 [Song-Chen’11], [Song-Chen-Zhao’11], [Song-Feng-Whang-Zhao’14],...
Motivation

- Natural extension of $AX + X^*D = E$.
 - Numerical methods for palindromic eigenvalue problems [Byers-Kressner’06], [Kressner-Schröder-Watkins’09], [Dmytryshyn-Kågström’15]
 - Congruence orbits ($D = A, E = 0$) [D.-Dopico’11]

- Closely related to $AXB + CXD = E$ [Chu’87]

- Iterative algorithms for solving $\sum_{i=1}^{r} A_i XB_i + \sum_{j=1}^{s} C_j X^T D_j = E$
 [Wang-Cheng-Wei’07], [Xie-Ding-Ding’09], [Li-Wang-Zhou-Duan’10],
 [Song-Chen’11], [Song-Chen-Zhao’11], [Song-Feng-Whang-Zhao’14],...
Motivation

- Natural extension of $AX + X^*D = E$.
 - Numerical methods for palindromic eigenvalue problems [Byers-Kressner’06], [Kressner-Schröder-Watkins’09], [Dmytryshyn-Kåhgśtom’15]
 - Congruence orbits ($D = A, E = 0$) [D.-Dopico’11]

- Closely related to $AXB + CXD = E$ [Chu’87]

- Iterative algorithms for solving $\sum_{i=1}^{r} A_i XB_i + \sum_{j=1}^{s} C_j X^T D_j = E$
 - [Wang-Cheng-Wei’07], [Xie-Ding-Ding’09], [Li-Wang-Zhou-Duan’10],
 - [Song-Chen’11], [Song-Chen-Zhao’11], [Song-Feng-Whang-Zhao’14],...
Motivation

- Natural extension of $AX + X^*D = E$.
 - Numerical methods for palindromic eigenvalue problems
 [Byers-Kressner’06], [Kressner-Schröder-Watkins’09],
 [Dmytryshyn-Kågström’15]
 - Congruence orbits ($D = A, E = 0$) [D.-Dopico’11]

- Closely related to $AXB + CXD = E$ [Chu’87]

- Iterative algorithms for solving $\sum_{i=1}^{r} A_iXB_i + \sum_{j=1}^{s} C_jX^TD_j = E$
 [Wang-Cheng-Wei’07], [Xie-Ding-Ding’09], [Li-Wang-Zhou-Duan’10],
 [Song-Chen’11], [Song-Chen-Zhao’11], [Song-Feng-Whang-Zhao’14], ...
Which kind of characterization are we looking for?

\[\Lambda(A - \lambda B) = \text{Spectrum of } A - \lambda B \]

Theorem (Uniqueness of solution for generalized Sylvester) [Chu’87]

The equation \(AXB - CXD = E\) has a unique solution iff \(A - \lambda C\) and \(D - \lambda B\) are regular and \(\Lambda(A - \lambda C) \cap \Lambda(D - \lambda B) = \emptyset\).

\((A, C \in \mathbb{R}^{m \times m}; \quad B, D \in \mathbb{R}^{n \times n})\)

Theorem (Uniqueness of solution for \(\star\)-Sylvester) [Byers-Kressener’06, Kressner-Schröder-Watkins’09]

\(AX + X^*D = E\) has unique solution iff \(A - \lambda D^*\) is regular and:

- \(\star = \star\): If \(\lambda \in \Lambda(A - \lambda D^*)\), then \((1/\lambda) \not\in \Lambda(A - \lambda D^*)\).
- \(\star = \top\): If \(1 \neq \lambda \in \Lambda(A - \lambda D^\top)\), then \((1/\lambda) \not\in \Lambda(A - \lambda D^\top)\), and \(m_1(A - \lambda D^\top) \leq 1\).

\(m_{\mu}(A - \lambda B)\): algebraic multiplicity of \(\mu\) in \(A - \lambda B\)
Which kind of characterization are we looking for?

\(\Lambda(A - \lambda B) = \text{Spectrum of } A - \lambda B \)

Theorem (Uniqueness of solution for generalized Sylvester) [Chu’87]

The equation \(AXB - CXD = E \) has a **unique solution** iff \(A - \lambda C \) and \(D - \lambda B \) are **regular** and \(\Lambda(A - \lambda C) \cap \Lambda(D - \lambda B) = \emptyset \).

\((A, C \in \mathbb{R}^{m \times m}; \quad B, D \in \mathbb{R}^{n \times n})\)

Theorem (Uniqueness of solution for \(\star \)-Sylvester) [Byers-Kressener’06, Kressner-Schröder-Watkins’09]

\(AX + X^\star D = E \) has unique solution iff \(A - \lambda D^\star \) is **regular** and:

- \(\star = \star \): If \(\lambda \in \Lambda(A - \lambda D^\star) \), then \((1/\lambda) \not\in \Lambda(A - \lambda D^\star) \).
- \(\star = \top \): If \(1 \neq \lambda \in \Lambda(A - \lambda D^\top) \), then \((1/\lambda) \not\in \Lambda(A - \lambda D^\top) \), and \(m_1(A - \lambda D^\top) \leq 1 \).

\(m_\mu(A - \lambda B) : \text{algebraic multiplicity of } \mu \text{ in } A - \lambda B \)
Which kind of characterization are we looking for?

\[\Lambda(A - \lambda B) = \text{Spectrum of } A - \lambda B \]

Theorem (Uniqueness of solution for generalized Sylvester) [Chu’87]

The equation \(AXB - CXD = E \) has a **unique solution** iff \(A - \lambda C \) and \(D - \lambda B \) are **regular** and \(\Lambda(A - \lambda C) \cap \Lambda(D - \lambda B) = \emptyset \).

\[(A, C \in \mathbb{R}^{m \times m}; \quad B, D \in \mathbb{R}^{n \times n})\]

Theorem (Uniqueness of solution for ★-Sylvester) [Byers-Kressener’06, Kressner-Schröder-Watkins’09]

\(AX + X^*D = E \) has unique solution iff \(A - \lambda D^* \) is **regular** and:

- \(★ = ★ \): If \(\lambda \in \Lambda(A - \lambda D^*) \), then \((1/\lambda) \notin \Lambda(A - \lambda D^*) \).
- \(★ = \top \): If \(1 \neq \lambda \in \Lambda(A - \lambda D^\top) \), then \((1/\lambda) \notin \Lambda(A - \lambda D^\top) \), and \(m_1(A - \lambda D^\top) \leq 1 \).

\[m_\mu(A - \lambda B) : \text{algebraic multiplicity of } \mu \text{ in } A - \lambda B \]
Which kind of characterization are we looking for?

\[\Lambda(A - \lambda B) = \text{Spectrum of } A - \lambda B \]

Theorem (Uniqueness of solution for generalized Sylvester) [Chu’87]

The equation \(AXB - CXD = E \) has a **unique solution** iff \(A - \lambda C \) and \(D - \lambda B \) are **regular** and \(\Lambda(A - \lambda C) \cap \Lambda(D - \lambda B) = \emptyset \).

\((A, C \in \mathbb{R}^{m \times m}; \ B, D \in \mathbb{R}^{n \times n}) \)

Theorem (Uniqueness of solution for \(\star \)-Sylvester) [Byers-Kressener’06, Kressner-Schröder-Watkins’09]

\(AX + X^\star D = E \) has unique solution iff \(A - \lambda D^\star \) is **regular** and:

- \(\star = \star \): If \(\lambda \in \Lambda(A - \lambda D^\star) \), then \((1/\lambda) \notin \Lambda(A - \lambda D^\star) \).
- \(\star = \top \): If \(1 \neq \lambda \in \Lambda(A - \lambda D^\top) \), then \((1/\lambda) \notin \Lambda(A - \lambda D^\top) \), and \(m_1(A - \lambda D^\top) \leq 1 \).

\(m_\mu(A - \lambda B) : \text{algebraic multiplicity of } \mu \text{ in } A - \lambda B \)
Which kind of characterization are we looking for? (cont.)

Know conditions for $AXB - CXD = E$ and $AX + X^*D = E$: in terms of **spectral properties** of **matrix pencils** constructed from the coefficient matrices.
Which kind of characterization are we looking for? (cont.)

Know conditions for $AXB - CXD = E$ and $AX + X^*D = E$: in terms of spectral properties of matrix pencils constructed from the coefficient matrices.

Q: Analogous characterization for $AXB + CX^*D = E$??
The vec approach

\[\text{vec} (AXB + CX^* D) = \text{vec} (E) \] leads to

- \[\star = \top : [B^\top \otimes A + \Pi (C \otimes D^\top)] \text{vec} (X) = \text{vec} (E) \]

- \[\star = \star : (B^\top \otimes A) \text{vec} (X) + \Pi (C \otimes D^\top) \text{vec} (X) = \text{vec} (E) \]
The vec approach

\[\text{vec}(AXB + CX^*D) = \text{vec}(E) \quad \text{leads to} \]

\[\begin{array}{c}
\star = \top : [B^\top \otimes A + \Pi(C \otimes D^\top)] \text{vec}(X) = \text{vec}(E) \\
\star = \star : (B^\top \otimes A) \text{vec}(X) + \Pi(C \otimes D^\top) \text{vec}(\overline{X}) = \text{vec}(E)
\end{array} \]

Linear over \(\mathbb{C} \) \(\checkmark \)
The vec approach

\[\text{vec} \left(AXB + CX^*D \right) = \text{vec} \left(E \right) \quad \text{leads to} \]

- \(\star = \top \): \[[B^\top \otimes A + \Pi(C \otimes D^\top)] \text{vec} \left(X \right) = \text{vec} \left(E \right) \]
 Linear over \(\mathbb{C} \) ✓

- \(\star = \ast \): \((B^\top \otimes A) \text{vec} \left(X \right) + \Pi(C \otimes D^\top) \text{vec} \left(X \right) = \text{vec} \left(E \right) \)
 Not linear over \(\mathbb{C} \)
The vec approach

\[\text{vec}(AXB + CX^* D) = \text{vec}(E) \quad \text{leads to} \]

- \(\star = \top : \quad \left[B^\top \otimes A + \Pi(C \otimes D^\top) \right] \text{vec}(X) = \text{vec}(E) \]
 \text{Linear over } \mathbb{C} \checkmark

- \(\star = \star : \quad (B^\top \otimes A) \text{vec}(X) + \Pi(C \otimes D^\top) \text{vec}(\overline{X}) = \text{vec}(E) \]
 \text{Not linear over } \mathbb{C} \leadsto \text{vec}(X) = [\text{vec}(\text{Re } X); \text{vec}(\text{Im } X)]
The vec approach

\[\text{vec}(AXB + CX^*D) = \text{vec}(E) \]
leads to

- \(\star = \top : [B^\top \otimes A + \Pi(C \otimes D^\top)] \text{vec}(X) = \text{vec}(E) \)
 \textbf{Linear over} \(\mathbb{C} \) \(\checkmark \)

- \(\star = \star : (B^\top \otimes A) \text{vec}(X) + \Pi(C \otimes D^\top) \text{vec}(\bar{X}) = \text{vec}(E) \)
 \textbf{Linear over} \(\mathbb{R} \) \(\checkmark \sim \) \(\text{vec}(X) = [\text{vec}(\text{Re } X); \text{vec}(\text{Im } X)] \)
The vec approach

\[\text{vec}(AXB + CX^*D) = \text{vec}(E) \] leads to

- \[\star = \top : [B^\top \otimes A + \Pi(C \otimes D^\top)]\text{vec}(X) = \text{vec}(E) \]
 Linear over \(\mathbb{C} \) \(\checkmark \)

- \[\star = \ast : (B^\top \otimes A)\text{vec}(X) + \Pi(C \otimes D^\top)\text{vec}(X) = \text{vec}(E) \]
 Linear over \(\mathbb{R} \) \(\checkmark \) \(\sim \) vec \((X) = [\text{vec}(\text{Re } X); \text{vec}(\text{Im } X)] \)

\(AXB + CX^*D = E \) can be written as a linear system \(MY = b \):

\[Y = \begin{cases} \text{vec}(X), & \text{if } \star = \top \\ [\text{vec}(\text{Re } X); \text{vec}(\text{Im } X)], & \text{if } \star = \ast \end{cases} \]
The vec approach (cont.)

\[M \in \begin{cases} \mathbb{C}^{n^2 \times n^2}, & \text{if } \star = \top, \\ \mathbb{R}^{(2n^2) \times (2n^2)}, & \text{if } \star = \ast \end{cases} \]
The vec approach (cont.)

\[M \in \begin{cases}
\mathbb{C}^{n^2 \times n^2}, & \text{if } \star = \top, \\
\mathbb{R}^{(2n^2) \times (2n^2)}, & \text{if } \star = \ast
\end{cases} \]

😊 Too large!
The vec approach (cont.)

\[M \in \begin{cases}
\mathbb{C}^{n^2 \times n^2}, & \text{if } \star = T, \\
\mathbb{R}^{(2n^2) \times (2n^2)}, & \text{if } \star = \ast
\end{cases} \]

😊 Too large!
😊 Not easy to handle with
The vec approach (cont.)

\[M \in \begin{cases}
\mathbb{C}^{n^2 \times n^2}, & \text{if } \star = \top, \\
\mathbb{R}^{(2n^2) \times (2n^2)}, & \text{if } \star = \ast
\end{cases} \]

Too large!
Not easy to handle with

\[\text{AXB} + \text{CX}^\ast D = E \text{ has a unique solution } \iff M \text{ is nonsingular} \]
The vec approach (cont.)

\[M \in \begin{cases}
\mathbb{C}^{n^2 \times n^2}, & \text{if } \star = \top, \\
\mathbb{R}^{(2n^2) \times (2n^2)}, & \text{if } \star = \ast
\end{cases} \]

Too large!

Not easy to handle with

\[AXB + CX^\ast D = E \text{ has a unique solution } \iff M \text{ is nonsingular} \]

\[
\begin{align*}
AXB + CX^\ast D &= E \\
AXB + CX^\ast D &= 0
\end{align*}
\]

We only need to look at the homogeneous equation!
The vec approach (cont.)

\[M \in \begin{cases}
 \mathbb{C}^{n^2 \times n^2}, & \text{if } \star = \top, \\
 \mathbb{R}^{(2n^2) \times (2n^2)}, & \text{if } \star = \star
\end{cases} \]

 unloaded! Not easy to handle with

\[AXB + CX^*D = E \text{ has a unique solution } \iff M \text{ is nonsingular} \]

\[AXB + CX^*D = E \text{ has a unique solution} \]
\[\iff \]
\[AXB + CX^*D = 0 \text{ has a unique solution} \]

We only need to look at the homogeneous equation!
Two basic preparatory results

Lemma 1

If \(AXB + CX^*D = 0 \) has a unique solution, then

(a) At least one of \(A, C \) is invertible.

(b) At least one of \(B, D \) is invertible.
Two basic preparatory results

Lemma 1

If \(AXB + CX^* D = 0 \) has a unique solution, then

(a) At least one of \(A, C \) is invertible.

(b) At least one of \(B, D \) is invertible.
Two basic preparatory results

Lemma 1

If \(AXB + CX^*D = 0 \) has a unique solution, then

(a) At least one of \(A, C \) is invertible.
(b) At least one of \(B, D \) is invertible.
Two basic preparatory results

Lemma 1

If $AXB + CX^*D = 0$ has a unique solution, then

(a) At least one of A, C is invertible.
(b) At least one of B, D is invertible.
Two basic preparatory results

Lemma 1

If $AXB + CX^*D = 0$ has a unique solution, then

(a) At least one of A, C is invertible.
(b) At least one of B, D is invertible.

Proof. (a) If A, C both singular, then $Au = 0 = Cv$, with $u, v \neq 0 \Rightarrow X = uv^*$ is a nonzero solution.
(b) If B, D both singular, then $u^*D = v^*B = 0$ with $u, v \neq 0 \Rightarrow X = uv^*$ is a nonzero solution □
Two basic preparatory results

Lemma 1

If $AXB + CX^*D = 0$ has a unique solution, then

(a) At least one of A, C is invertible.
(b) At least one of B, D is invertible.

Proof. (a) If A, C both singular, then $Au = 0 = Cv$, with $u, v \neq 0 \Rightarrow X = uv^*$ is a nonzero solution.
(b) If B, D both singular, then $u^*D = v^*B = 0$ with $u, v \neq 0 \Rightarrow X = uv^*$ is a nonzero solution

If both A, C or both B, D are singular, then $AXB + CX^*D = 0$ has a rank-1 solution
Two basic preparatory results

Lemma 1

If $AXB + CX^*D = 0$ has a unique solution, then

(a) At least one of A, C is invertible.
(b) At least one of B, D is invertible.

Proof. (a) If A, C both singular, then $Au = 0 = Cv$, with $u, v \neq 0 \Rightarrow X = uv^*$ is a nonzero solution.
(b) If B, D both singular, then $u^*D = v^*B = 0$ with $u, v \neq 0 \Rightarrow X = uv^*$ is a nonzero solution

If both A, C or both B, D are singular, then $AXB + CX^*D = 0$ has a rank-1 solution.

We will see that also one of A, D, and one of B, C must be invertible!
Two basic preparatory results

Lemma 1

If $AXB + CX^*D = 0$ has a unique solution, then

(a) At least one of A, C is invertible.
(b) At least one of B, D is invertible.

We can restrict ourselves to:

If A, B invertible: $X + A^{-1}CX^*DB^{-1} = 0 \iff \star$-Stein
Two basic preparatory results

Lemma 1

If \(AXB + CX^*D = 0 \) has a unique solution, then

(a) At least one of \(A, C \) is invertible.
(b) At least one of \(B, D \) is invertible.

We can restrict ourselves to:

If \(A, B \) invertible: \(X + A^{-1}CX^*DB^{-1} = 0 \) \(\iff \star \)-Stein
If \(A, D \) invertible: \(XBD^{-1} + A^{-1}CX^* = 0 \) \(\iff \star \)-Sylvester
Two basic preparatory results

Lemma 1

If \(AXB + CX^*D = 0 \) has a unique solution, then

(a) At least one of \(A, C \) is invertible.
(b) At least one of \(B, D \) is invertible.

We can restrict ourselves to:

If \(A, B \) invertible: \(X + A^{-1}CX^*DB^{-1} = 0 \) ⇔ \(\ast \)-Stein
If \(A, D \) invertible: \(XBD^{-1} + A^{-1}CX^* = 0 \) ⇔ \(\ast \)-Sylvester
If \(C, B \) invertible: \(C^{-1}AX + X^*DB^{-1} = 0 \) ⇔ \(\ast \)-Sylvester
Two basic preparatory results

Lemma 1

If $AXB + CX^* D = 0$ has a unique solution, then

(a) At least one of A, C is invertible.
(b) At least one of B, D is invertible.

We can restrict ourselves to:

If A, B invertible: $X + A^{-1} CX^* DB^{-1} = 0 \iff \star$-Stein
If A, D invertible: $XBD^{-1} + A^{-1} CX^* = 0 \iff \star$-Sylvester
If C, B invertible: $C^{-1} AX + X^* DB^{-1} = 0 \iff \star$-Sylvester
If C, D invertible: $C^{-1} AXBD^{-1} + X^* = 0 \iff \star$-Stein

Fernando de Terán (UC3M) Unique solution of generalized \star-Sylvester equations ALAMA, June 2016 8 / 15
Two basic preparatory results

Lemma 1

If $AXB + CX^*D = 0$ has a unique solution, then

(a) At least one of A, C is invertible.

(b) At least one of B, D is invertible.

Lemma 2

$AXB + X^* = 0$ has a unique solution $\iff AB^*Y + Y^* = 0$ has a unique solution
Two basic preparatory results

Lemma 1
If \(AXB + CX^*D = 0\) has a unique solution, then
(a) At least one of \(A, C\) is invertible.
(b) At least one of \(B, D\) is invertible.

Lemma 2
\(AXB + X^* = 0\) has a unique solution \(\iff\) \(AB^*Y + Y^* = 0\) has a unique solution

Proof. \((\Leftarrow):\ AXB + X^* = 0 \ (X \neq 0) \ \Rightarrow (AB^*)(X^*A^*) + AX = 0, \) so \(Y = (AX)^* \neq 0\) is solution of \(AB^*Y + Y^* = 0.\)
\((\Rightarrow):\ AB^*Y + Y^* = 0 \ (Y \neq 0) \ \Rightarrow X = B^*Y \neq 0\) is a solution of \(AXB + X^* = 0.\) \(\Box\)
Two basic preparatory results

Lemma 1
If $AXB + CX^*D = 0$ has a unique solution, then

(a) At least one of A, C is invertible.
(b) At least one of B, D is invertible.

Lemma 2
$AXB + X^* = 0$ has a unique solution $\iff AB^*Y + Y^* = 0$ has a unique solution

Corollary
$AXB + CX^*D = 0$ has a unique solution if and only if

(a) A is invertible and $D^*A^{-1}CY + Y^*B = 0$ has a unique solution, or
(b) C is invertible and $B^*C^{-1}AY + Y^*D = 0$ has a unique solution.
Two basic preparatory results

Lemma 1

If \(AXB + CX^*D = 0 \) has a unique solution, then

(a) At least one of \(A, C \) is invertible.

(b) At least one of \(B, D \) is invertible.

Lemma 2

\(AXB + X^* = 0 \) has a unique solution \(\iff \) \(AB^*Y + Y^* = 0 \) has a unique solution

Corollary

\(AXB + CX^*D = 0 \) has a unique solution if and only if

(a) \(A \) is invertible and \(D^*A^{-1}CY + Y^*B = 0 \) has a unique solution, or

(b) \(C \) is invertible and \(B^*C^{-1}AY + Y^*D = 0 \) has a unique solution.
Characterization for \star-Sylvester (again)

Theorem (Uniqueness of solution for \star-Sylvester) [Byers-Kressner’06, Kressner-Schröder-Watkins’09]

$AX + X^* D = E$ has unique solution if and only if $A - \lambda D^*$ is regular and:

- $\star = \star$: If $\lambda \in \Lambda(A - \lambda D^*)$, then $(1/\lambda) \notin \Lambda(A - \lambda D^*)$.
- $\star = \top$: If $1 \neq \lambda \in \Lambda(A - \lambda D^\top)$, then $(1/\lambda) \notin \Lambda(A - \lambda D^\top)$, and $m_1(A - \lambda D^\top) \leq 1$.

S $\subseteq C \cup \{\infty\}$ is reciprocal free if $\lambda \neq \mu - 1$ for all $\lambda, \mu \in S$.

\star-reciprocal free if $\lambda \neq (\mu)^{-1}$ for all $\lambda, \mu \in S$.

Fernando de Terán (UC3M)
Characterization for \star-Sylvester (again)

Theorem (Uniqueness of solution for \star-Sylvester) [Byers-Kressner’06, Kressner-Schröder-Watkins’09]

$AX + X^*D = E$ has unique solution if and only if $A - \lambda D^*$ is **regular** and:

- $\star = \star$: If $\lambda \in \Lambda(A - \lambda D^*)$, then $(1/\lambda) \not\in \Lambda(A - \lambda D^*)$.
- $\star = \top$: If $1 \neq \lambda \in \Lambda(A - \lambda D^\top)$, then $(1/\lambda) \not\in \Lambda(A - \lambda D^\top)$, and $m_1(A - \lambda D^\top) \leq 1$.

Two different proofs:

- **[BK’06]** ($\star = \top$): Relies on some continuity arguments of operators.
- **[KSW’09]** ($\star = \star$)

- **[D-Dopico-Guillery-Montealegre-Reyes’11]**: Using The **Kronecker canonical form** of $A + \lambda B^*$.

$S \subseteq \mathbb{C} \cup \{\infty\}$ is reciprocal free if $\lambda \neq \mu - 1$ for all $\lambda, \mu \in S$.

\star-reciprocal free if $\lambda \neq (\mu)^{-1}$ for all $\lambda, \mu \in S$.

Fernando de Terán (UC3M)
Characterization for \star-Sylvester (again)

Theorem (Uniqueness of solution for \star-Sylvester) [Byers-Kressner’06, Kressner-Schröder-Watkins’09]

$AX + X^D = E$ has unique solution if and only if $A - \lambda D^\star$ is regular and:

- $\star = \star$: If $\lambda \in \Lambda(A - \lambda D^\star)$, then $(1/\lambda) \not\in \Lambda(A - \lambda D^\star)$.
- $\star = \top$: If $1 \neq \lambda \in \Lambda(A - \lambda D^\top)$, then $(1/\lambda) \not\in \Lambda(A - \lambda D^\top)$, and $m_1(A - \lambda D^\top) \leq 1$.

$S \subseteq \mathbb{C} \cup \{\infty\}$ is

- reciprocal free if $\lambda \neq \mu^{-1}$ for all $\lambda, \mu \in S$
- \star-reciprocal free if $\lambda \neq (\mu)^{-1}$ for all $\lambda, \mu \in S$
Theorem (Uniqueness of solution for \star-Sylvester) [Byers-Kressner’06, Kressner-Schröder-Watkins’09]

$AX + X^* D = E$ has unique solution if and only if $A - \lambda D^*$ is regular and:
- $\star = \star$: $\Lambda(A - \lambda D^*)$ is \star-reciprocal free.
- $\star = \top$: $\Lambda(A - \lambda D^\top) \setminus \{1\}$ is reciprocal free, and $m_1(A - \lambda D^\top) \leq 1$.

$S \subseteq \mathbb{C} \cup \{\infty\}$ is
- reciprocal free if $\lambda \neq \mu^{-1}$ for all $\lambda, \mu \in S$
- \star-reciprocal free if $\lambda \neq (\mu)^{-1}$ for all $\lambda, \mu \in S$
Characterization of uniqueness of solution

Theorem *(Uniqueness for generalized \(\star \)-Sylvester)*

\[AXB + CX^*D = E \] has a **unique solution** if and only if the pencil

\[
P(\lambda) := \begin{bmatrix} \lambda D^* & B^* \\ A & \lambda C \end{bmatrix}
\]

is **regular** and:

- \(\star = \star \): \(\Lambda(P) \) is \(\star \)-reciprocal free.
- \(\star = \top \): \(\Lambda(P) \setminus \{\pm 1\} \) is reciprocal free and \(m_1(P) = m_{-1}(P) \leq 1 \).

Remark: \(m_{\lambda}(P) = m_{-\lambda}(P) \)
The main result

Characterization of uniqueness of solution

Theorem (Uniqueness for generalized \ast-Sylvester)

\[AXB + CX^*D = E \] has a **unique solution** if and only if the pencil

\[P(\lambda) := \begin{bmatrix} \lambda D^* & B^* \\ A & \lambda C \end{bmatrix} \]

is **regular** and:

- $\ast = \ast^*: \Lambda(P)$ is \ast-reciprocal free.
- $\ast = \top: \Lambda(P) \setminus \{\pm 1\}$ is reciprocal free and $m_1(P) = m_{-1}(P) \leq 1$.

Remark: $m_\lambda(P) = m_{-\lambda}(P)$
The main result

Proof of the main result

\[AXB + CX^*D = E \]

has unique sol. \iff \[P(\lambda) := \begin{bmatrix} \lambda D^* & B^* \\ A & \lambda C \end{bmatrix} \text{ regular and } \begin{cases} \star = \star : \Lambda(P) \text{-rec, free} \\
\star = \top : \Lambda(P) \setminus \{\pm 1\} \text{ rec. free, } m_{\pm 1}(P) \leq 1 \end{cases} \]

Proof:

- **A** invertible: \[\det P(\lambda) = \pm \det(A) \det(B^* - \lambda^2 D^* A^{-1} C) \]
 \[
 \begin{bmatrix} 0 & I \\ I & -\lambda D^* A^{-1} \end{bmatrix} \begin{bmatrix} \lambda D^* & B^* \\ A & \lambda C \end{bmatrix} = \begin{bmatrix} A & \lambda C \\ 0 & B^* - \lambda^2 D^* A^{-1} C \end{bmatrix}.
 \]

- **C** invertible: \[\det P(\lambda) = \pm \det(C) \det(B^* C^{-1} A - \lambda^2 D^*) \]
Proof of the main result

\[AXB + CX^*D = E \]

has unique sol. \iff \[P(\lambda) := \begin{bmatrix} \lambda D^* & B^* \\ A & \lambda C \end{bmatrix} \] is regular and

\[\Lambda(P) \text{ regular, free, } \star = * \] \quad \text{and} \quad \Lambda(P) \setminus \{\pm 1\} \text{ regular, free, } m_{\pm 1}(P) \leq 1

Proof:

- A invertible: \(\det P(\lambda) = \pm \det(A) \det(B^* - \lambda^2 D^* A^{-1} C) \)
- C invertible: \(\det P(\lambda) = \pm \det(C) \det(B^* C^{-1} A - \lambda^2 D^*) \)

\[
\begin{bmatrix}
\lambda I & -\lambda B^* C^{-1} \\
0 & I
\end{bmatrix} \cdot \begin{bmatrix}
\lambda D^* & B^* \\
A & \lambda C
\end{bmatrix} = \begin{bmatrix}
\lambda^2 D^* - B^* C^{-1} A & 0 \\
A & \lambda C
\end{bmatrix}.
\]

\[\Box \]
Proof of the main result

\(AXB + CX^*D = E \) has unique sol. \(\iff \) \(P(\lambda) := \begin{bmatrix} \lambda D^* & B^* \\ A & \lambda C \end{bmatrix} \) regular and \(\Lambda(P) \) *-rec, free and \(\Lambda(P) \) \{±1\} rec. free, \(m_{±1}(P) \leq 1 \)

Proof:

- **A** invertible: \(\det P(\lambda) = \pm \det(A) \det(B^* - \lambda^2 D^* A^{-1} C) \)
- **C** invertible: \(\det P(\lambda) = \pm \det(C) \det(B^* C^{-1} A - \lambda^2 D^*) \)
Proof of the main result

Proof:

- **A invertible:** \(\det P(\lambda) = \pm \det(A) \det(B^* - \lambda^2 D^* A^{-1} C) \)
- **C invertible:** \(\det P(\lambda) = \pm \det(C) \det(B^* C^{-1} A - \lambda^2 D^*) \)

Recall:

AXB + CX^*D = 0 has a unique solution iff

(a) **A is invertible** and \(D^* A^{-1} CY + Y^* B = 0 \) has a unique solution, or

(b) **C is invertible** and \(B^* C^{-1} AY + Y^* D = 0 \) has a unique solution.

AX + X^*D = E has unique solution iff **A** is regular and:

- \(\star = \star \): \(\Lambda(A - \lambda D^*) \) is \(*\)-reciprocal free.
- \(\star = \top \): \(\Lambda(A - \lambda D^\top) \setminus \{1\} \) is reciprocal free, and \(m_{1}(A - \lambda D^\top) \leq 1 \).
The periodic Schur decomposition

Theorem [Bojanczyk-Golub-Van Dooren’92]

There are U_1, U_2, V_1, V_2 unitary such that

\[
U_1 AV_1 = T_A, \quad U_1 CV_2 = T_C, \\
U_2 B^* V_1 = T_B^*, \quad U_2 D^* V_2 = T_D^*,
\]

with T_A, T_B^*, T_C, T_D^* upper triangular.
The periodic Schur decomposition

Theorem [Bojanczyk-Golub-Van Dooren’92]

There are U_1, U_2, V_1, V_2 unitary such that

$$U_1 AV_1 = T_A, \quad U_1 CV_2 = T_C,$$

$$U_2 B^* V_1 = T_B^*, \quad U_2 D^* V_2 = T_D^*,$$

with T_A, T_B^*, T_C, T_D^* upper triangular.

Connection with the pencil $P(\lambda)$:

$$\begin{bmatrix} U_2 & U_1 \end{bmatrix} \begin{bmatrix} \lambda D^* & B^* \\ A & \lambda C \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} \lambda T_D^* & T_B^* \\ T_A & \lambda T_C \end{bmatrix}$$
An $O(n^3)$ algorithm

(Based on the algorithm in [D-Dopico’11] for $AX + X^\top D = E$, outlined in [Chiang-Chu-Lin’12])

\[T_A \cdot X \cdot T_B + T_C \cdot X^\top \cdot T_D = E \]
An \(O(n^3) \) algorithm

(Based on the algorithm in [D-Dopico’11] for \(AX + X^\top D = E \), outlined in [Chiang-Chu-Lin’12])

\[T_A \cdot X \cdot T_B + T_C \cdot X^\top \cdot T_D = E \]

\[
\begin{array}{cccc}
X_{11} & \ldots & X_{1,k-1} & X_{1k} \\
& \ddots & \ddots & \vdots \\
X_{k-1,1} & \ldots & X_{k-1,k-1} & X_{k-1,k} \\
X_{k1} & \ldots & X_{k,k-1} & X_{kk} \\
\end{array}
\]
An $O(n^3)$ algorithm

(Based on the algorithm in [D-Dopico’11] for $AX + X^T D = E$, outlined in [Chiang-Chu-Lin’12])
An $O(n^3)$ algorithm

(Based on the algorithm in [D-Dopico’11] for $AX + X^\top D = E$, outlined in [Chiang-Chu-Lin’12])
An $O(n^3)$ algorithm

(Based on the algorithm in [D-Dopico’11] for $AX + X^\top D = E$, outlined in [Chiang-Chu-Lin’12])
An $O(n^3)$ algorithm

(Based on the algorithm in [D-Dopico’11] for $AX + X^T D = E$, outlined in [Chiang-Chu-Lin’12])

$$TA \cdot X \cdot TB + TC \cdot X^T \cdot TD = E$$
An $O(n^3)$ algorithm

(Based on the algorithm in [D-Dopico’11] for $AX + X^T D = E$, outlined in [Chiang-Chu-Lin’12])
An $O(n^3)$ algorithm

(Based on the algorithm in [D-Dopico’11] for $AX + X^\top D = E$, outlined in [Chiang-Chu-Lin’12])
An $O(n^3)$ algorithm

(Based on the algorithm in [D-Dopico’11] for $AX + X^\top D = E$, outlined in [Chiang-Chu-Lin’12])
Goal 1:
Obtain necessary and sufficient conditions for uniqueness of solution of systems of equations of the form $AXB + CX^*D = E$ (with both $X = Y$ or $X \neq Y$) and $\star = 1, \top, \ast$.

Goal 2:
Write an algorithm to compute the unique solution.
Goal 1:
Obtain necessary and sufficient conditions for uniqueness of solution of systems of equations of the form $AXB + CX^*D = E$ (with both $X = Y$ or $X \neq Y$) and $\star = 1, \top, \ast$.

Goal 2:
Write an algorithm to compute the unique solution.

(Ongoing work with B. Iannazzo, F. Poloni, and L. Robol)
Goal 1:

Obtain **necessary and sufficient conditions** for **uniqueness of solution** of systems of equations of the form $AXB + CX^*D = E$ (with both $X = Y$ or $X \neq Y$) and $\star = 1, \top, \ast$.

Goal 2:

Write an **algorithm** to compute the unique solution.

(Ongoing work with B. Iannazzo, F. Poloni, and L. Robol)

More on this at the forthcoming **ILAS2016 Conference in Leuven**

C.-Y. CHIANG, K.-W. E. CHU, W.-W. LIN, *On the *\(-\)Sylvester equation* $AX \pm X^*B = C$, AMC 218 (2012)*

F. DE TÉRÁN, F. M. DOPICO, *Consistency and efficient solution of the Sylvester equation for *\(-\)-congruence*, ELA 22 (2011)

D. KRESSNER, C. SCHRODER, D. S. WATKINS, *Implicit QR algorithms for palindromic and even eigenvalue problems*, NA 51(2) (2009)
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Journal/Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>F. De Terán, B. Iannazzo</td>
<td>Uniqueness of solution of a generalized \star-Sylvester matrix equation</td>
<td>LAA 493 (2016)</td>
</tr>
<tr>
<td>R. Byers, D. Kressner</td>
<td>Structured condition numbers for invariant subspaces</td>
<td>SIMAX 28 (2) (2006)</td>
</tr>
<tr>
<td>C.-Y. Chiang, K.-W. E. Chu, W.-W. Lin</td>
<td>On the \star-Sylvester equation $AX \pm X^\star B = C$</td>
<td>AMC 218 (2012)</td>
</tr>
<tr>
<td>F. De Terán, F. M. Dopico</td>
<td>Consistency and efficient solution of the Sylvester equation for \star-congruence</td>
<td>ELA 22 (2011)</td>
</tr>
<tr>
<td>F. De Terán, F. M. Dopico, N. Guillery, D. Montealegre, N. Z. Reyes</td>
<td>The solution of the equation $AX + X^\star B = 0$</td>
<td>LAA 438 (2011)</td>
</tr>
<tr>
<td>D. Kressner, C. Schröder, D. S. Watkins</td>
<td>Implicit QR algorithms for palindromic and even eigenvalue problems</td>
<td>NA 51(2) (2009)</td>
</tr>
</tbody>
</table>

THANKS FOR YOUR ATTENTION !!!!!