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Motivation. Basic definitions.

Notation

F a field.

F : algebraic closure of F.

F[λ]m×n: ring of m × n matrices whose entries are polynomials in λ with
coefficients over F (matrix polynomials).

P(λ) = λdPd + λd−1 + · · ·+ λP1 + P0 ∈ F[λ]
m×n: a given m × n matrix

polynomial of degree d (Pd , 0).

Reversal polynomial of P(λ): rev P := Pd + λPd−1 + · · ·+ λd−1P1 + λdP0
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Motivation. Basic definitions.

Why `-ifications?

(Companion) Linearizations have been quite useful in the Polynomial
Eigenvalue Problem (PEP) but...

They increase very much the size of the problem: n × n −→ (dn) × (dn)
(for all companion linearizations of square polynomials).

Imposible to preserve certain structures using companion linearizations
(for instance: T -palindromic for even degree polynomials).

� Look for another constructions{ `-ifications !!!

Fernando De Terán (UC3M) Constructing strong `-ifications Mattriad 2015 5 / 24



a t i

c a s

a t e

’

Motivation. Basic definitions.

Why `-ifications?

(Companion) Linearizations have been quite useful in the Polynomial
Eigenvalue Problem (PEP) but...

They increase very much the size of the problem: n × n −→ (dn) × (dn)
(for all companion linearizations of square polynomials).

Imposible to preserve certain structures using companion linearizations
(for instance: T -palindromic for even degree polynomials).

� Look for another constructions{ `-ifications !!!

Fernando De Terán (UC3M) Constructing strong `-ifications Mattriad 2015 5 / 24



a t i

c a s

a t e

’

Motivation. Basic definitions.

Why `-ifications?

(Companion) Linearizations have been quite useful in the Polynomial
Eigenvalue Problem (PEP) but...

They increase very much the size of the problem: n × n −→ (dn) × (dn)
(for all companion linearizations of square polynomials).

Imposible to preserve certain structures using companion linearizations
(for instance: T -palindromic for even degree polynomials).

� Look for another constructions{ `-ifications !!!

Fernando De Terán (UC3M) Constructing strong `-ifications Mattriad 2015 5 / 24



a t i

c a s

a t e

’

Motivation. Basic definitions.

Strong `-ifications

Definition
L(λ) a matrix polynomial of degree ` is an `-ification of P(λ) if

U(λ)

[
Is

L(λ)

]
V (λ) =

[
It

P(λ)

]
,

for some s, t ≥ 0 and U(λ),V (λ) unimodular matrix polynomials (constant
nonzero determinant).

If, in addition, rev L is an `-ification of rev P, then L(λ) is a strong `-ification.

�We are interested in the case ` < d .
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Motivation. Basic definitions.

Main features of strong `-ifications
U(λ)

[
Is

L(λ)

]
V (λ) =

[
It

P(λ)

]
(`-ification)

`-ifications preserve: finite partial multiplicities + number of left / right
minimal indices
Strong `-ifications also preserve the infinite partial multiplicities.
However, the minimal indices are not necessarily preserved (and this is
usually the case).
One of s, t can be always chosen to be zero.
The size of P(λ) can be larger than the size of L(λ) (only if P(λ) is
singular).
U(λ),V (λ) are essentially row and column elementary transformations.

Example:

P(λ) ∼

[
1

L(λ)

]
.
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Motivation. Basic definitions.

Companion `-ifications
P(d , m × n, F) = space of all m × n matrix polynomials of fixed degree d .

Definition (Companion `-ification)
A companion `-ification for matrix polynomials P(λ) in P(d , m × n, F) is of the
form CP(λ) =

∑`
i=0 λ

iXi , satisfying:
CP(λ) is a strong `-ification for P for every P ∈ P(d ,m × n,F).
Each entry of Xi is either a constant, or a constant multiple of just one
of the entries of P(λ).

Example [D., Dopico, Mackey, 2014]: If d = `k ,

C`
1(λ) :=


Bk (λ) Bk−1(λ) Bk−2(λ) · · · B1(λ)

−In λ`In 0 · · · 0

−In λ`In
. . .

.

.

.
. . .

. . . 0
−In λ`In

 and C`
2(λ) := C`

1(λ)
B

with :
B1(λ) := λ`P` + λ`−1P`−1 + · · ·+ λP1 + P0 ,

Bj (λ) := λ`P`j + λ`−1P`j−1 + · · ·+ λP`(j−1)+1 , for j = 2, . . . , k .
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Motivation. Basic definitions.

Minimal bases
N(λ) ∈ F[λ]m×n { Nh: highest row degree coefficient matrix.

Definition: N(λ) is row reduced if Nh is of full row rank.
(Similar definition of column reduced with the highest column degree
coefficient matrix).

Definition
The m × n matrix polynomial N(λ), with m ≤ n is a minimal basis if:
(a) N(λ) has full row rank for all λ ∈ F, and
(b) it is row reduced.

Remark: Similar definition with m ≥ n, full column rank, and column reduced.

Example:

N(λ) =

[
λ3 1 λ

λ 3λ2 + 2 λ+ 1

]
{ Nh =

[
1 0 0
0 3 0

]
.

N(λ) is a minimal basis.
Fernando De Terán (UC3M) Constructing strong `-ifications Mattriad 2015 9 / 24
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Motivation. Basic definitions.

Row/column degrees

An important feature of a minimal basis are its row/column degrees.

For instance, for minimal bases of the right (resp., left) nullspace of
P(λ) ∈ F[λ]m×n, Nr (P) (resp. N`(P)):

Nr (P) :=
{
x(λ) ∈ F(λ)n×1 : P(λ)x(λ) ≡ 0

}
,

N`(P) :=
{
y(λ)T ∈ F(λ)1×m : y(λ)T P(λ) ≡ 0T

}
,

they are the right (resp. left) minimal indices of P(λ).

Fernando De Terán (UC3M) Constructing strong `-ifications Mattriad 2015 10 / 24
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Motivation. Basic definitions.

Dual minimal bases and row degrees

Definition
N1(λ) ∈ F[λ]

m1×n, N2(λ) ∈ F[λ]
m2×n are dual minimal bases if N1(λ) and N2(λ)

are both minimal bases and:

m1 + m2 = n, and N1(λ)N2(λ)
T = 0.

Theorem (D., Dopico, Mackey, Van Dooren, 2015)

Let (η1, . . . , ηm1) and (ε1, . . . , εm2), with εi , ηj ≥ 0 and:

m1∑
j=1

ηj =
m2∑
i=1

εi .

Then there always exist N1(λ) ∈ F[λ]
m1×n and N2(λ) ∈ F[λ]

m2×n, with
n = m1 + m2, dual minimal bases whose row degrees are, respectively,
(η1, . . . , ηm1) and (ε1, . . . , εm2).

� They can be built up using zigzag matrices.
Fernando De Terán (UC3M) Constructing strong `-ifications Mattriad 2015 11 / 24
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New construction of strong `-ifications

Outline

1 Motivation. Basic definitions.

2 New construction of strong `-ifications

3 Minimal index recovery

4 The case where ` divides d
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New construction of strong `-ifications

Basic quantities

�We focus on the case k` = nd (i.e., ` divides nd).
(Similar construction for the case where ` divides md).

� Note that ` < d ⇒ k > n

Set:
d̂ := d − `, k := n̂ + n (d̂ , n̂ > 0)

Then:
(̂n + n)` = nd ⇔ n̂` = nd̂

� The `-ification is going to have size (̂n + m) × (̂n + n)
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New construction of strong `-ifications

Outline of construction

Step 1: Construct a pair of dual minimal bases L̂(λ) ∈ F[λ]̂n×(̂n+n) and
N̂(λ) ∈ F[λ]n×(̂n+n) such that:

(i) All row degrees of L̂(λ) are equal to `.

(ii) All row degrees of N̂(λ) are equal to d̂ (= d − `).

Step 2: Find a solution, L̃(λ) ∈ F[λ]m×(̂n+n), to

L̃(λ)N̂(λ)T = P(λ),

with deg L̃(λ) ≤ `.

IDEA:

L̂ N̂T = 0
L̃ N̂T = P

⇒
 L̂

L̃


unimodular︷           ︸︸           ︷[
ÑT N̂T

]
=

[
I 0
X P

]

⇒

[
I 0
−X I

]  L̂
L̃

 [ ÑT N̂T
]
=

[
I

P

]
(i)–(ii) guarantee that the `-ification is strong.
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New construction of strong `-ifications

Is it always possible to perform Step 1 and Step 2?

Step 1: n̂` = nd̂ ⇒ L̂(λ) ∈ F[λ]̂n×(̂n+n), N̂(λ) ∈ F[λ]n×(̂n+n) exist (by the inverse
row degree theorem for dual minimal bases).

� One way to construct them is using zigzag matrices (recall Froilán’s talk!).

Step 2: Set:
L̃(λ) = λ`L̃` + λ`−1L̃`−1 + · · ·+ λL̃1 + L̃0,

N̂(λ) = λd̂ N̂d̂ + λd̂−1N̂d̂−1 + · · ·+ λN̂1 + N̂0,

and write the convolution equation:
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N̂(λ) = λd̂ N̂d̂ + λd̂−1N̂d̂−1 + · · ·+ λN̂1 + N̂0,

and write the convolution equation:

[ L̃0 . . . L̃`−1 L̃` ]


N̂T

0 . . . N̂T
d̂

N̂T
0 . . . N̂T

d̂
. . .

. . .

N̂T
0 . . . N̂T

d̂

 = [ P0 . . . Pd−1 Pd ] .
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It is always possible to perform Step 1 and Step 2:
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
N̂T

0 . . . N̂T
d̂

N̂T
0 . . . N̂T

d̂
. . .

. . .

N̂T
0 . . . N̂T

d̂

 = [ P0 . . . Pd−1 Pd ] .

↖

(̂n + n)(`+ 1) × n(d + 1)
(̂n more rows than columns)
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New construction of strong `-ifications

It is always possible to perform Step 1 and Step 2:

Step 1: n̂` = nd̂ ⇒ L̂(λ) ∈ F[λ]̂n×(̂n+n), N̂(λ) ∈ F[λ]n×(̂n+n) exist (by the inverse
row degree theorem for dual minimal bases).

� One way to construct them is using zigzag matrices (recall Froilán’s talk!).
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L̃(λ) = λ`L̃` + λ`−1L̃`−1 + · · ·+ λL̃1 + L̃0,
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[ L̃0 . . . L̃`−1 L̃` ]


N̂T

0 . . . N̂T
d̂

N̂T
0 . . . N̂T

d̂
. . .

. . .

N̂T
0 . . . N̂T

d̂

 = [ P0 . . . Pd−1 Pd ] .

� It has infinitely many solutions.
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Step 1: n̂` = nd̂ ⇒ L̂(λ) ∈ F[λ]̂n×(̂n+n), N̂(λ) ∈ F[λ]n×(̂n+n) exist (by the inverse
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� One way to construct them is using zigzag matrices (recall Froilán’s talk!).

Step 2: Set:
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
N̂T

0 . . . N̂T
d̂

N̂T
0 . . . N̂T

d̂
. . .

. . .

N̂T
0 . . . N̂T

d̂

 = [ P0 . . . Pd−1 Pd ] .

� First solve: L̃`N̂T
d̂
= Pd (N̂T

d̂
has full column rank).
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Step 1: n̂` = nd̂ ⇒ L̂(λ) ∈ F[λ]̂n×(̂n+n), N̂(λ) ∈ F[λ]n×(̂n+n) exist (by the inverse
row degree theorem for dual minimal bases).

� One way to construct them is using zigzag matrices (recall Froilán’s talk!).

Step 2: Set:
L̃(λ) = λ`L̃` + λ`−1L̃`−1 + · · ·+ λL̃1 + L̃0,

N̂(λ) = λd̂ N̂d̂ + λd̂−1N̂d̂−1 + · · ·+ λN̂1 + N̂0,

and write the convolution equation:
(1)

[
L̃0 . . . L̃`−1

]


N̂T
0 . . . N̂T

d̂
N̂T

0 . . . N̂T
d̂

.
.
.

.
.
.

N̂T
0 . . . N̂T

d̂


=

[
P0 P1 . . . Pd−1

]
− L̃`

[
0 . . . 0 N̂T

0 . . . N̂T
d̂−1

]

� First solve: L̃`N̂T
d̂
= Pd (N̂T

d̂
has full column rank).

� Then solve (1).
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New construction of strong `-ifications

Example

P(λ) of size m × 2 and degree d = 3, and ` = 2.

� Following the zigzag construction for dual minimal bases L̂(λ), N̂(λ) in
Step 1, and with an appropriate choice of L̃2 in Step 2, we get the strong
quadratification:

L(λ) =
 L̂(λ)

L̃(λ)

 = λ2

[
1 0 0
0 P3e1 P3e2

]
+λ

[
0 −1 0

P1e1 − P0e2 P2e1 P2e2 − P3e1

]
+

[
0 0 1

P0e1 P0e2 P1e2 − P2e1

]
.
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New construction of strong `-ifications

Size

The size of the strong `-ifications we construct is:

(̂n + m) × (̂n + n) (if `|nd)

with

n̂ =
n(d − `)

`
,

or
(m̂ + m) × (m̂ + n) (if `|md)

with

m̂ =
m(d − `)

`
.

(Compare with the size of companion linearizations:

((d − 1)s + m) × ((d − 1)s + n),

where s = min{m,n}).
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Minimal index recovery

Outline
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3 Minimal index recovery

4 The case where ` divides d
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Minimal index recovery

Minimal indices of L(λ) and P(λ)

Theorem
When `|nd , the construction in Steps 1 and 2 always provides a strong
`-ification of m × n matrix polynomials of degree d . Moreover:

(i) If ε1, . . . , εp are the right minimal indices of P(λ), then the right minimal
indices of L(λ) are ε1 + (d − `), . . . , εp + (d − `).

(ii) If η1, . . . , ηq are the left minimal indices of P(λ), then the left minimal
indices of L(λ) are η1, . . . , ηq .

Remark: Similar result when `|md , replacing the roles of left/right minimal
indices.
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The case where ` divides d

Set d = k` . We can take:

L̂(λ) =



λ` −1

. . .
. . .

λ` −1


(k−1)×k

 ⊗ In, and N̂(λ)T =



1
λ`

λ2`

...

λ(k−1)`


⊗ In.

and
L̃` =

[
0 . . . 0 Pd

]
∈ Fm×nk ,

to get:

L(λ) =


λ`In −In

. . .
. . .

λ`In −In
D0(λ) . . . Dk−2(λ) Dk−1(λ)

 ,

where

Dj(λ) = Pj` + λPj`+1 + · · ·+ λ`−1P(j+1)`−1 (j = 0, . . . , k − 2),
Dk−1(λ) = P(k−1)` + λP(k−1)`+1 + · · ·+ λ`−1Pk`−1 + λ`Pk`.
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The case where ` divides d

Compare:

L(λ) =


λ`In −In

. . .
. . .

λ`In −In
D0(λ) . . . Dk−2(λ) Dk−1(λ)

 ,

Dj(λ) = Pj` + λPj`+1 + · · ·+ λ`−1P(j+1)`−1 (j = 0, . . . , k − 2),
Dk−1(λ) = P(k−1)` + λP(k−1)`+1 + · · ·+ λ`−1Pk`−1 + λ`Pk`

with

C`
1(λ) =



Bk (λ) Bk−1(λ) Bk−2(λ) · · · B1(λ)

−In λ`In 0 · · · 0

−In λ`In
. . .

...
. . .

. . . 0
−In λ`In


B1(λ) := λ`P` + λ`−1P`−1 + · · ·+ λP1 + P0 ,

Bj(λ) := λ`P`j + λ`−1P`j−1 + · · ·+ λP`(j−1)+1 (j = 2, . . . , k) .
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The case where ` divides d

Conclusions

We have provided a general construction of strong `-ifications, L(λ), of
m × n matrix polynomials of degree d , P(λ), valid for all `|md or `|nd .

If `|nd (resp. `|md) then:

The left (resp., right) minimal indices of L(λ) and P(λ) coincide.

The right (resp. left) minimal indices of L(λ) are the ones of P(λ) increased
by (d − `) (each).

When `|d we get companion `-ifications.
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