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What is this talk about?

MS1: Matrix equations: analysis and algorithms.

In this talk: No algorithms at all!

� Theoretical characterization for the uniqueness of solution of generalized
Sylvester equations explicitly in terms of their coefficients.

U Just basic linear algebra techniques.

Fernando de Terán (UC3M) Unique solution of generalized Sylvester equations ETNA25 2 / 19



What is this talk about?

MS1: Matrix equations: analysis and algorithms.

In this talk: No algorithms at all!

� Theoretical characterization for the uniqueness of solution of generalized
Sylvester equations explicitly in terms of their coefficients.

U Just basic linear algebra techniques.

Fernando de Terán (UC3M) Unique solution of generalized Sylvester equations ETNA25 2 / 19



What is this talk about?

MS1: Matrix equations: analysis and algorithms.

In this talk: No algorithms at all!

� Theoretical characterization for the uniqueness of solution of generalized
Sylvester equations

explicitly in terms of their coefficients.

U Just basic linear algebra techniques.

Fernando de Terán (UC3M) Unique solution of generalized Sylvester equations ETNA25 2 / 19



What is this talk about?

MS1: Matrix equations: analysis and algorithms.

In this talk: No algorithms at all!

� Theoretical characterization for the uniqueness of solution of generalized
Sylvester equations explicitly in terms of their coefficients.

U Just basic linear algebra techniques.

Fernando de Terán (UC3M) Unique solution of generalized Sylvester equations ETNA25 2 / 19



What is this talk about?

MS1: Matrix equations: analysis and algorithms.

In this talk: No algorithms at all!

� Theoretical characterization for the uniqueness of solution of generalized
Sylvester equations explicitly in terms of their coefficients.

U Just basic linear algebra techniques.

Fernando de Terán (UC3M) Unique solution of generalized Sylvester equations ETNA25 2 / 19



Generalized Sylvester equations

(GS) AXB + CXD = E  Generalized Sylvester equation.

(GS?) AXB + CX ?D = E  Generalized ?-Sylvester equation (? =>,∗).

X ∈ Cm×n (unknown) A,B,C,D,E complex matrices with appropriate size.

(GS) is linear over C.

(GS>) is linear over C.

(GS∗) is linear over R.
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The vec approach

You can use (for ? =>):

vec(AXB−CX>D) = vec(E)⇔M vec(X ) = vec(E)

with
M = B>⊗A + (D>⊗C)Π

(Π is a permutation matrix associated with the transposition).

D You’ll need to keep track of the entries of A,B,C,D in M.

We will not follow this approach.
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Existence and uniqueness of solution

(Eq) AXB + CX σ D = E (σ = 1,>,∗)

Solvability (S) (Eq) has a solution,
for some given A,B,C,D,E .

Unique solvability (US) (Eq) has a unique solution,
for given A,B,C,D,E .

Solvability for
any right-hand side (SR) (Eq) has a solution for any E ,

and given A,B,C,D
At most one solution,

for any right-hand side (OR) (Eq) has at most one solution,
for any E , and given A,B,C,D

Exactly one solution,
for any right-hand side (UR) (Eq) has unique solution,

for any E , and given A,B,C,D

⇔ The operator X 7→ AXB + CX ?D is invertible.
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Some history

Characterization for S, US, SR, OR, UR, in terms of A,B,C,D,E :

AXB + CXD = E AXB + CX ?D = E
square

coefficients
general

coefficients
square

coefficients
general

coefficients
S [DK, 2016] [DK, 2016], [Košir, 1992] [DK, 2016] [DK, 2016]

US [Chu, 1987] [Košir, 1992] [DI, 2016] open
SR same as US [DIPR, 2018] (after [Košir, 1992]) same as US open
OR same as US [Košir, 1996] same as US open
UR same as US [DIPR, 2018] (after [Košir, 1992]) same as US [DIPR, 2018]

[DI, 2016]=[D-Iannazzo, 2016]

[DIPR, 2018]=[D-Iannazzo-Poloni-Robol, 2018]

[DK, 2016]=[Dmytryshyn-Kågström, 2016]

[Byers-Kressner, 2006]: US, UR AX + X>D = E (A,D,X ∈ Cn×n).
[Kressner-Schröder-Watkins, 2009]: US, UR AX + X ∗D = E (A,D,X ∈ Cn×n).
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Some basic notions

A matrix pencil X + λY (X ,Y ∈ Cm×n) is regular if m = n and det(X + λY ) 6≡ 0.

Definition: If X + λY is regular:

(1) Λ(X + λY ) := {µ ∈ C : det(X + µY ) = 0}∪{∞} (Spectrum of X + λY )

(∞ ∈ Λ(X + λY )⇔ rankY < n).

(2) If µ ∈ C, then mµ (X + λY ) := algebraic multiplicity of µ

(as a root of det(X + λY )).

(3) m∞(X + λY ) := m0(Y + λX ).

Definition: S ⊆ C∪{∞}. Then S is
(a) reciprocal free if λ 6= µ−1, for all λ ,µ ∈S ;
(b) ∗-reciprocal free if λ 6= (µ)−1, for all λ ,µ ∈S .

Fernando de Terán (UC3M) Unique solution of generalized Sylvester equations ETNA25 7 / 19



Some basic notions

A matrix pencil X + λY (X ,Y ∈ Cm×n) is regular if m = n and det(X + λY ) 6≡ 0.

Definition: If X + λY is regular:

(1) Λ(X + λY ) := {µ ∈ C : det(X + µY ) = 0}∪{∞} (Spectrum of X + λY )

(∞ ∈ Λ(X + λY )⇔ rankY < n).

(2) If µ ∈ C, then mµ (X + λY ) := algebraic multiplicity of µ

(as a root of det(X + λY )).

(3) m∞(X + λY ) := m0(Y + λX ).

Definition: S ⊆ C∪{∞}. Then S is
(a) reciprocal free if λ 6= µ−1, for all λ ,µ ∈S ;
(b) ∗-reciprocal free if λ 6= (µ)−1, for all λ ,µ ∈S .

Fernando de Terán (UC3M) Unique solution of generalized Sylvester equations ETNA25 7 / 19



Some basic notions

A matrix pencil X + λY (X ,Y ∈ Cm×n) is regular if m = n and det(X + λY ) 6≡ 0.

Definition: If X + λY is regular:

(1) Λ(X + λY ) := {µ ∈ C : det(X + µY ) = 0}∪{∞} (Spectrum of X + λY )

(∞ ∈ Λ(X + λY )⇔ rankY < n).

(2) If µ ∈ C, then mµ (X + λY ) := algebraic multiplicity of µ

(as a root of det(X + λY )).

(3) m∞(X + λY ) := m0(Y + λX ).

Definition: S ⊆ C∪{∞}. Then S is
(a) reciprocal free if λ 6= µ−1, for all λ ,µ ∈S ;
(b) ∗-reciprocal free if λ 6= (µ)−1, for all λ ,µ ∈S .

Fernando de Terán (UC3M) Unique solution of generalized Sylvester equations ETNA25 7 / 19



Previous results: Sylvester equations

X ∈ Cm×n

Characterization for UR:

Equation Conditions Sizes Ref.

AX + XD = E Λ(A)∩Λ(−D) = /0
A ∈ Cm×m

D ∈ Cn×n

M ∈ Cmn×mn

[Sylvester’1884]

AX + X ∗D = E
Λ(A−λD∗) is ∗-reciprocal free

A ∈ Cm×n

D ∈ Cn×m

M ∈ Cn2×mn

[Kressner-Schröder-
Watkins’09]

AX + X>D = E Λ(A−λD>)\{1} is reciprocal free,
m1(A−λD>)≤ 1

A ∈ Cm×n

D ∈ Cn×m

M ∈ Cn2×mn
[Byers-Kressner’06]

⇒m = n.
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Previous results: generalized Sylvester equations

X ∈ Cm×n

Characterization for UR:

Equation Conditions Sizes Ref.

A,C ∈ Cm×m

B,D ∈ Cn×n

M ∈ Cmn×mn

[Chu’87]

[
λD∗ B∗

A λC

]
is regular,

Λ

([
λD∗ B∗

A λC

])
is ∗-reciprocal free

A ∈ Cn×n

D ∈ Cn×n

M ∈ Cn2×n2

(m = n)

[D-Iannazzo’16]

Λ

([
λD> B>

A λC

])
\{±1} is reciprocal free,

m±1(A−λD>)≤ 1

A ∈ Cn×n

D ∈ Cn×n

M ∈ Cn2×n2

(m = n)

[D-Iannazzo’16]

What happens for A,B,C,D,E rectangular?
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Conditions on the eigenvalues are not enough
The characterization for UR in the “square" case depends on the eigenvalues

of
[

λD> B>

A λC

]
(provided it’s regular).

� However, for “rectangular" coefficients this is not enough:[
1 0
0 1

][
x
y

][
0
]

+

[
1
0

][
x y

][1
0

]
= 0⇔ x = 0 Not US (1)[

0 0
0 1

][
x
y

][
1
]

+

[
1
0

][
x y

][1
0

]
= 0⇔ x = y = 0 US (2)
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x
y
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1
]

+

[
1
0

][
x y

][1
0

]
= 0⇔ x = y = 0 US (2)

The associated pencils are:

Q1(λ ) =

 λ 0 0
1 0 λ

0 1 0

 , Q2(λ ) =

 λ 0 1
0 0 λ

0 1 0

 .
which are regular and with the same eigenstructure.
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The main result: previous considerations
A ∈ Cp×m,B ∈ Cn×q ,C ∈ Cp×n,D ∈ Cm×q .

Set Q(λ ) :=

[
λD? B?

A λC

]
∈ C(q+p)×(m+n)

If p = m,q = n, then m∞(Q)≥ |m−n|:

n

m
m n

or
n

m

m n

If p = n,q = m, then m0(Q)≥ |m−n|:

m

n

m n

or
m

n
m n
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If p = m,q = n, then m∞(Q)≥ |m−n|:

n

m
m n

or
n

m

m n

If p = n,q = m, then m0(Q)≥ |m−n|:

m

n

m n

or
m

n
m n

Fernando de Terán (UC3M) Unique solution of generalized Sylvester equations ETNA25 11 / 19



Removing the ”dimension induced" 0/∞ e-vals

If p = m,q = n, set:

Λ̂(Q) :=

{
Λ(Q), if m∞(Q) > |m−n|,

Λ(Q)\{∞}, if m∞(Q) = |m−n|.

If p = n,q = m, set:

Λ̃(Q) :=

{
Λ(Q), if m0(Q) > |m−n|,

Λ(Q)\{0}, if m0(Q) = |m−n|.

Fernando de Terán (UC3M) Unique solution of generalized Sylvester equations ETNA25 12 / 19



Size constraints

p×m︷︸︸︷
A

m×n︷︸︸︷
X

n×q︷︸︸︷
B +

p×n︷︸︸︷
C

n×m︷︸︸︷
X ?

m×q︷︸︸︷
D =

p×q︷︸︸︷
E

⇒
{

pq equations
mn unknowns

UR⇒ pq = mn
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The main result: statement
A ∈ Cp×m,B ∈ Cn×q ,C ∈ Cp×n, and D ∈ Cm×q , Q(λ ) :=

[
λD? B?

A λC

]
.

Theorem (UR for AXB+CX ?D = E) [D-Iannazzo-Poloni-Robol’18]

AXB + CX ?D = E has a unique solution, for any E , iff Q(λ ) is regular and one
of the following holds:

(i) p = m 6= n = q, either m < n and A is invertible or m > n and B is
invertible, and

If ? =>, Λ̂(Q)\{±1} is reciprocal free and m1(Q) = m−1(Q)≤ 1.
If ? = ∗, Λ̂(Q) is ∗-reciprocal free.

(ii) p = n 6= m = q, either m > n and C is invertible or m < n and D is
invertible, and

If ? =>, Λ̃(Q)\{±1} is reciprocal free and m1(Q) = m−1(Q)≤ 1.
If ? = ∗, Λ̃(Q) is ∗-reciprocal free.

(iii) p = m = n = q, and
If ? =>, Λ(Q)\{±1} is reciprocal free and m1(Q) = m−1(Q)≤ 1.
If ? = ∗, Λ(Q) is ∗-reciprocal free.
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Proof: some ideas

1 p < min{m,n}. ∃u,v 6= 0 such that Au = 0 = Cv (because of the
dimensions of A,C). Then X = uv? is a nonzero solution of
AXB + CX ?D = 0.

2 If p > max{m,n}: mn = pq⇒ q < min{m,n}⇒ ∃u,v 6= 0 such that
v?B = 0 = u?D, and X = uv? is a nonzero solution of AXB + CX ?D = 0.

3 m < p < n and mn = pq ⇒m < q < n⇒m < min{p,q}⇒ ∃u,v 6= 0 such
that u>A = v>D> = 0.
For ? =>:

AXB + CX>D = 0⇔M vec(X ) = 0, M = B>⊗A + (D>⊗C)Π.

Then, (v>⊗u>)M = 0, so M is singular and AXB + CX>D = 0 has a
nonzero solution.

4 n < p < m. By setting Y = X>, AXB + CX>D = 0⇔ CYD + AY>B = 0, so
we use the previous result.

5 The case mn = pq and p ∈ {m,n}, with m 6= n is more involved.
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The equation AXB−CXD = E

Theorem [D-Iannazzo-Poloni-Robol’18]

AXB−CXD = E has exactly one solution, for all E , iff:

A−λC and D>−λB> are regular and Λ(A−λC)∩Λ(D>−λB>) = /0, or

there is some s ∈ Z+ such that KCF(A−λC) =
⊕

Ls and
KCF(B>−λD>) =

⊕
L>s or viceversa.

(KCF: Kronecker canonical form, Ls =

 λ 1
. . .

. . .

λ 1


s×(s+1)

).
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Some observation on the ?= ∗ case

Lemma
AXB + CX ∗D = 0 has a unique solution iff

AXB + CYD = 0,
D∗XC∗+ B∗YA∗ = 0,

has a unique solution.
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Summary

We have provided necessary and sufficient conditions for
AXB + CX ?D = E (with ? = ∗,>) to have a unique solution, for all E , and
allowing A,B,C,D,E to be rectangular In terms of properties of[

λD? B?

A λC

]
.

Interesting differences with the case of A,B,C,D,E being square:
Spectral information is not enough.

Some invertibility conditions on A,B,C,D arise.

We have also provided conditions for AXB−CXD = E to have a unique
solution, for all E  Depend on the KCF of A−λC and B>−λD>.
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