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LOW RANK PERTURBATION OF KRONECKER STRUCTURES
WITHOUT FULL RANK∗

FERNANDO DE TERÁN† AND FROILÁN M. DOPICO†

Abstract. Let P (λ) = A0 + λA1 be a singular m × n matrix pencil without full rank whose
Kronecker canonical form (KCF) is given. Let ρ be a positive integer such that ρ ≤ min{m,n} −
rank(P ) and ρ ≤ rank(P ). We study the change of the KCF of P (λ) due to perturbation pencils
Q(λ) with rank(Q) = ρ. We focus on the generic behavior of the KCF of (P + Q)(λ), i.e., the
behavior appearing for perturbations Q(λ) in a dense open subset of the pencils with rank ρ. The
most remarkable generic properties of the KCF of the perturbed pencil (P + Q)(λ) are (i) if λ0

is an eigenvalue of P (λ), finite or infinite, then λ0 is an eigenvalue of (P + Q)(λ); (ii) if λ0 is an
eigenvalue of P (λ), then the number of Jordan blocks associated with λ0 in the KCF of (P + Q)(λ)
is equal to or greater than the number of Jordan blocks associated with λ0 in the KCF of P (λ);
(iii) if λ0 is an eigenvalue of P (λ), then the dimensions of the Jordan blocks associated with λ0 in
(P + Q)(λ) are equal to or greater than the dimensions of the Jordan blocks associated with λ0 in
P (λ); (iv) the row (column) minimal indices of (P + Q)(λ) are equal to or greater than the largest
row (column) minimal indices of P (λ). Moreover, if the sum of the row (column) minimal indices
of the perturbations Q(λ) is known, apart from their rank, then the whole set of the row (column)
minimal indices of (P +Q)(λ) is generically obtained, and in the case ρ < min{m,n} − rank(P ) the
whole KCF of (P + Q)(λ) is generically determined.
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1. Introduction. Matrix spectral canonical forms are very important both in
theory and in applications like the behavior of dynamical systems near bifurcations.
Spectral canonical forms are mathematical structures that are very fragile under per-
turbations. For instance, it is well known that, although the Jordan canonical form of
a matrix A has blocks of dimension larger than one, all the blocks in the Jordan form
of the perturbed matrix A + E have dimension one and correspond to eigenvalues
different from those of A, for almost all perturbations E. The same can be said on
the behavior of the Weierstrass canonical form of a regular matrix pencil A0 + λA1,
and on the Kronecker canonical form (KCF) of singular matrix pencils. In this latter
case, in fact, the perturbed pencil has full rank for almost all perturbations. How-
ever, there are perturbations that allow us to guarantee that some part of the spectral
canonical form of the original pencil is also a part of the spectral canonical form of the
perturbed pencil. One example of perturbations of this kind is low rank perturbations,
i.e., perturbations with a fixed rank that is small in some way specified by a property
of the unperturbed matrix or pencil.

Low rank perturbations of spectral canonical forms have received attention since
the 1980s. At least two kinds of contributions can be considered in this area. Given an
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†Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911

Leganés, Spain (fteran@math.uc3m.es, dopico@math.uc3m.es).

496



LOW RANK PERTURBATION OF KRONECKER STRUCTURES 497

m×n pencil (or matrix) P (λ) and perturbations Q(λ) with fixed rank, the first class
of works tries to classify all the spectral canonical forms of (P + Q)(λ) compatible
with the canonical form of P (λ) and the rank of the perturbations Q(λ). As far as
we know, this has only been done for rank one perturbations; see [1] and [18] in this
context. A second class of papers in this area characterizes generic properties of the
spectral canonical form of (P + Q)(λ), i.e., properties that hold for perturbations in
a dense open subset of the matrices or pencils with a fixed rank; for this problem,
see the references [4, 10, 13, 16, 17]. Generic properties have been considered only
for the Jordan canonical form of matrices and for the Weierstrass canonical form of
regular matrix pencils, and the study of explicit necessary and sufficient conditions for
the generic behaviors to hold has been performed only in [4, 13]. The purpose of this
paper is to determine generic properties of the KCF of singular matrix pencils without
full rank under certain low rank perturbations, and to provide sufficient conditions
for these properties to hold.

Throughout this work the term generic will frequently be used. This word appears
in many mathematical works, but it is not a well-defined technical term, and its precise
meaning is not always the same in the literature. In this paper, we use generic in
the following sense: a property is said to be generic in a set C if it holds in a dense
open subset of C. In our context, C will be the set of allowable perturbations, and we
identify the set of m × n complex matrix pencils, A0 + λA1, with C

2mn, where the
usual topology is considered. Therefore every subset C of pencils can be seen as a
subset of C

2mn. In this setting, we have that a set G ⊂ C is dense in C if and only if
every element in C is the limit of a sequence of elements in G, and we will say that G
is open in C if G is the intersection of C with an open subset of C

2mn; i.e., we consider
in C the subspace topology induced by the usual topology of C

2mn. To finish these
comments on the term generic, let us remark that it will not be used in the statement
of most theorems, where precise assumptions will be included. Discussions on the
genericity of these assumptions will be separately addressed.

We will consider as unperturbed pencil a singular m × n matrix pencil P (λ)
without full rank, i.e., rank(P ) < min{m,n}. Given an integer number ρ such that

0 < ρ ≤ min{m,n} − rank(P ),(1)

and ρ ≤ rank(P ), the set of perturbations is restricted to pencils Q(λ) with rank(Q) =
ρ. Notice that (1) and ρ ≤ rank(P ) are both low rank conditions imposed on the
perturbations. Here, the rank has to be understood as the rank of matrix polynomials,
which is also known as the normal rank of a pencil.

For the set of perturbations defined in the previous paragraph the first problem
we deal with is to get information on the generic regular part of the perturbed pencil
(P +Q)(λ). This is addressed in section 4, where it is proved that, generically, if λ0 is
an eigenvalue of P (λ), finite or infinite, then λ0 is also an eigenvalue of (P+Q)(λ) with
partial multiplicities greater than or equal to the corresponding partial multiplicities
of λ0 relative to P (λ). These results are consequences of Theorem 4.4, which is our
first major contribution. The second problem we deal with is to get information on
the generic minimal indices of (P + Q)(λ). For the sake of brevity, let us summarize
the results only for the column or right minimal indices. Similar results hold for
the row minimal indices. It is known that the number of column minimal indices
of P (λ) is n − rank(P ). The initial result we present is that, generically, P + Q
has n − rank(P ) − ρ column minimal indices. This implies, in particular, that if
ρ = n− rank(P ), then P + Q has no column minimal indices; i.e., it has full column
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rank. These results follow from Theorem 3.1 and its direct consequence, Corollary
3.2. The case ρ < n− rank(P ) is much more difficult, and it is addressed in Theorem
5.8, where all the column minimal indices of P + Q are generically determined if,
apart from the rank, the sum of the column minimal indices of the perturbations
Q(λ) is known. As a corollary, Theorem 5.10 presents generic partial information
on the column minimal indices of P + Q when ρ = rank(Q) is the only property
known on the perturbations. Loosely speaking, one can say that the generic column
minimal indices of P + Q are equal to or greater than the n − rank(P ) − ρ largest
column minimal indices of P . Theorems 5.8 and 5.10 constitute our second major
contribution. All the results previously described remain valid in the limit case

ρ = min{m,n} − rank(P ).

If the strict inequality is assumed in (1), i.e., rank(P ) + rank(Q) < min{m,n}, it is
possible to fully determine the generic KCF of (P + Q)(λ) in terms of the sums of
the column and row minimal indices and of the regular part of the KCF of Q(λ).
In the case that rank(Q) is the only information available on the perturbations, the
generic KCF of (P + Q)(λ) can only be partially determined. These results appear
in Theorems 6.2 and 6.3, which are our last major contribution. It should be stressed
that all the generic results on the KCF of (P +Q)(λ) that we present are very easy to
describe, although to prove that they occur under certain generic sufficient conditions
is a hard task that requires techniques very different from those used in [4, 13].

The class of low rank perturbations considered in this work includes very interest-
ing problems. To cite one of them: the study of the generic variation of the minimal
indices of a square pencil (m = n) under low rank perturbations requires necessarily
the assumptions rank(P ) < n (because otherwise P (λ) has no minimal indices) and
rank(P ) + rank(Q) < n (because otherwise generically rank(P + Q) = n and P + Q
has no minimal indices). However, this class of perturbations does not cover all the
relevant situations. There are still open problems in the area of generic low rank
perturbations of spectral canonical forms. Some of them will be discussed in section
7, where we will explain why the results obtained in this paper are, apart from being
relevant by themselves, an essential step towards the solution of new open problems.

The perturbations considered in this work are not of small norm. The change of
KCF of matrix pencils under small normwise perturbations was studied in [14], where
the set of Kronecker structures nearby to a given one was characterized in terms of
some majorization conditions on the sequences of column and row minimal indices
and on the regular structure. Further results of this kind were obtained in [2] and [5].

Low rank perturbations of spectral properties have appeared in several applied
problems. For instance, in the area of structural modifications of dynamical systems,
it is of particular relevance to study how a system must be modified in order to fix
certain eigenvalues in the new system. This is known generically as the “pole-zero
assignment” problem [15]. In [7], low rank perturbations of the damping matrices of
vibrating systems are considered in order to obtain defective systems.

The paper is organized as follows. In section 2 the notation and some prelim-
inary results are introduced. In section 3 the meaning and genericity of the low
rank assumptions used in different sections of this work are discussed, and, as a con-
sequence, the generic number of row and column minimal indices of the perturbed
pencil is determined. In section 4 generic properties of the regular structure of the
perturbed pencil (P +Q)(λ) are established. Section 5 deals with the minimal indices
of (P + Q)(λ). Section 6 describes the whole generic KCF of (P + Q)(λ), assuming
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that the strict inequality ρ < min{m,n} − rank(P ) holds. Finally, in section 7 the
conclusions and some open profblems are presented.

2. Notation, definitions, and preliminary results. Several basic definitions
and results are presented in this section. Some of them are well known and are stated
just to establish the notation used throughout the paper. In addition, some other
definitions and elementary results are presented.

2.1. Kronecker canonical form and rank of a pencil. We begin by intro-
ducing the concepts of singular pencil, rank or normal rank of a pencil, and eigenvalue
of a pencil.

Definition 2.1 (see [8, Chapter XII]). Let A0, A1 ∈ C
m×n be two complex m×n

matrices. The matrix pencil

P (λ) = A0 + λA1(2)

is called singular if one of the following conditions hold: m �= n, or m = n and
det(P (λ)) is the zero polynomial in the variable λ. Otherwise the pencil is called
regular.

Definition 2.2. The rank of the pencil P (λ) is the dimension of its largest minor
that is not equal to the zero polynomial in λ. For the sake of simplicity, we will simply
denote the rank of P (λ) by rank(P ), omitting the variable λ.

The rank of a pencil is also called its normal rank [2, 5]. However, we prefer the
classical name rank, because this concept corresponds to the usual rank of matrices
whose entries are rational functions of λ.

Definition 2.3. A complex number μ is a finite eigenvalue of the pencil P (λ) if
the rank of the constant matrix P (μ) is less than rank(P ). The pencil P (λ) = A0+λA1

has an infinite eigenvalue if zero is an eigenvalue of the dual pencil A1 + λA0.
For every pencil P (λ) there exist two nonsingular matrices R ∈ C

m×m and S ∈
C

n×n such that RP (λ)S = KP (λ) is the KCF of P (λ) (see [8, Chapter XII]). The
KCF is a block diagonal matrix and is unique up to permutations of the diagonal
blocks. To be more precise,

KP (λ) = diag(Lε1 , . . . , Lεp , L
T
η1
, . . . , LT

ηq
,JP ),(3)

where Lεi is the εi × (εi + 1) matrix pencil

Lεi =

⎡⎢⎢⎢⎣
λ 1

λ 1
. . .

. . .

λ 1

⎤⎥⎥⎥⎦ ,

the superscript T means transposition, and JP is a square pencil that constitutes the
regular structure of the KCF of P (λ). The matrix pencil JP contains the spectral
information on the eigenvalues of P (λ). This means that JP is a direct sum of Jordan
blocks

Jk(λi) =

⎡⎢⎢⎢⎢⎣
λ− λi 1

λ− λi
. . .

. . . 1
λ− λi

⎤⎥⎥⎥⎥⎦
k×k

,
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associated with certain finite eigenvalues λi ∈ C of P (λ), and, eventually, of Jordan
blocks associated with the infinite eigenvalue

Jk(∞) =

⎡⎢⎢⎢⎢⎣
1 λ

1
. . .

. . . λ
1

⎤⎥⎥⎥⎥⎦
k×k

.

The numbers ε1, . . . , εp are called the column (or right) minimal indices of P (λ),
and η1, . . . , ηq are called the row (or left) minimal indices of P (λ) [8, Chapter XII].
Notice that the row minimal indices of P (λ) are the column minimal indices of P (λ)T

and vice versa. We will assume that they are indexed in nondecreasing order, i.e.,

0 ≤ ε1 ≤ ε2 ≤ · · · ≤ εp and 0 ≤ η1 ≤ η2 ≤ · · · ≤ ηq.

Analogously the matrix pencils Lεi (LT
ηj

) are called the column or right (row or left)
singular blocks of the KCF of P (λ). These blocks reveal the singular structure of
P (λ).

Observe that, if the KCF of P (λ) is given by (3), then

rank(P ) = n− p = m− q;(4)

i.e., the rank of a pencil is related to the number of column and row singular blocks
in its KCF. Notice also that if JP is a j × j pencil, then

rank(P ) = j + ε1 + · · · + εp + η1 + · · · + ηq.(5)

2.2. The vector space of n-tuples of rational functions. Minimal bases.
The entries of an m × n pencil P (λ) = A0 + λA1 are polynomials of degree one
over C. Moreover, it is well known that the column (row) minimal indices of P (λ)
are related to the degrees of certain polynomial solutions of (A0 + λA1)x(λ) = 0
((A0 + λA1)

T y(λ) = 0) [8, Chapter XII], where x(λ) (y(λ)) is an n-tuple (m-tuple)
whose entries are polynomials. The vector x(λ) will be called a vector polynomial.
Previous comments make clear that vector polynomials can naturally arise in dealing
with singular pencils. The set of polynomials with complex coefficients is a ring but
not a field. This means that to extend many elementary ideas of linear algebra to
vector polynomials one has to consider the field of all rational functions with complex
coefficients. For instance, let v1 = [1 + λ, 1 + λ]T and v2 = [1 + λ2, 1 + λ2]T be
two vector polynomials. The determinant of the matrix [v1|v2] is obviously zero,
but a rational function has to be necessarily used as a coefficient to express v2 as a

linear combination of v1: v2 = 1+λ2

1+λ v1. The field of rational functions with complex
coefficients will be denoted by C(λ), and the vector space over C(λ) of the n-tuples of
rational functions will be denoted by C

n(λ).
The following definitions are taken from [6] (see also [11]). The degree, deg(x),

of a vector polynomial x(λ) is the greatest degree of its components. Every vector
subspace V of C

n(λ) always has a basis consisting of vector polynomials. It can be
obtained from a general basis simply by multiplying each vector by the denominators
of its entries. The order of such a polynomial basis is defined as the sum of the degrees
of its vectors. A minimal basis of V is a polynomial basis of V that has least order
among all polynomial bases of V.



LOW RANK PERTURBATION OF KRONECKER STRUCTURES 501

Let us introduce some additional concepts that we will use very often. Given
an m × n matrix pencil P (λ) = A0 + λA1, the right (left) null space of P (λ) is the
subspace of C

n(λ) (Cm(λ)), N (P ) = {x(λ) ∈ C
n(λ) : P (λ)x(λ) = 0} (N (PT ) =

{y(λ) ∈ C
m(λ) : PT (λ)y(λ) = 0}). A right (left) null space vector of P (λ) is a

vector polynomial contained in N (P ) (N (PT )). A right ordered minimal basis of P (λ)
(ROMB) is a minimal basis, {x1(λ), . . . , xp(λ)}, of N (P ) with deg(x1)≤ deg(x2)≤
· · · ≤ deg(xp). A left ordered minimal basis of P (λ) (LOMB) is a minimal basis,
{y1(λ), . . . , yq(λ)}, of N (PT ) with deg(y1)≤ deg(y2)≤ · · · ≤ deg(yq).

Lemma 2.4 shows that the degrees of the vectors in an ROMB (LOMB) of P (λ)
are equal to the column (row) minimal indices of P (λ).

Lemma 2.4. Let ε1 ≤ · · · ≤ εp and η1 ≤ · · · ≤ ηq be, respectively, the column and
row minimal indices of the pencil P (λ). Let {x1(λ), . . . , xp(λ)} and { y1(λ), . . . , yq(λ)}
be, respectively, an ROMB and an LOMB of P (λ). Then deg(xi) = εi, for i = 1, . . . , p,
and deg(yj)= ηj, for j = 1, . . . , q.

Proof. We prove the result for the column minimal indices. For the row minimal
indices simply use PT (λ) and invoke the result for column minimal indices. Let us
recall [8, Chapter XII, p. 38] the relationship between the column minimal indices
of P (λ) and the polynomial solutions of P (λ)x(λ) = 0. Among all the polynomial
solutions of this system of equations we choose a nonzero solution z1(λ) of least degree.
This degree is ε1. Among all the polynomial solutions that are linearly independent
of z1(λ) we take a solution z2(λ) of least degree. This degree is ε2. We continue
this process until we get a fundamental series of solutions {z1(λ), . . . , zp(λ)}, i.e.,
p = dimN (P ) linearly independent polynomial solutions of P (λ)x(λ) = 0 of degrees
ε1 ≤ · · · ≤ εp. A fundamental series of solutions is not uniquely determined, but the
degrees of its vectors are, and, as we prove in the next paragraph, every fundamental
series of solutions is an ROMB and vice versa.

Let us assume that there exists some index j such that deg(xj) < εj . Let j0 be
the least of these indices, i.e., deg(xj0) < εj0 and deg(xk) ≥ εk for k = 1, . . . , j0 − 1.
Obviously j0 > 1. Therefore, εj0−1 ≤ deg(xj0−1) ≤ deg(xj0) < εj0 . The definition of
the minimal indices implies that the linearly independent vectors {x1(λ), . . . , xj0(λ)}
are linear combinations of {z1(λ), . . . , zj0−1(λ)}. This is impossible. Then deg(xj) ≥
εj for all j = 1, . . . , p, and, in fact, deg(xj) = εj for all j, because {x1(λ), . . . , xp(λ)}
is an ROMB.

We will also use the following related lemma.

Lemma 2.5. Let P (λ) be a pencil with KCF given by (3), and {x1(λ), . . . , xp(λ)}
be an ROMB of P (λ). Then every right null space vector of P (λ) of degree at most εi
is a linear combination of {x1(λ), . . . , xj(λ)} with polynomial coefficients, where j is
the largest index such that deg(xj) ≤ εi. In particular, every right null space vector
of P (λ) is a linear combination of {x1(λ), . . . , xp(λ)} with polynomial coefficients. A
similar result holds for left null space vectors and an LOMB.

Proof. The fact that every right null space vector is a linear combination of
the mentioned vectors is a straightforward consequence of the definition of minimal
indices. The fact that the coefficients are polynomials follows from [6, Main Theorem,
p. 495].

We will need to ascertain the linear independence of some sets of vector polyno-
mials of C

n(λ). In some situations, this problem can be solved through a standard
linear independence problem in C

n. This is shown by Lemma 2.6.

Lemma 2.6. Let {v1(λ), . . . , vr(λ)} be a set of vector polynomials of C
n(λ). Let
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us express these vectors as

vi(λ) = vi0 + λ vi1 + · · · + λdi vidi for 1 ≤ i ≤ r,

where vij ∈ C
n for all i, j, and di = deg(vi(λ)).

1. If {v10, . . . , vr0} is a linearly independent set in C
n, then {v1(λ), . . . , vr(λ)}

is a linearly independent set in C
n(λ).

2. If {v1d1 , . . . , vrdr} is a linearly independent set in C
n, then {v1(λ), . . . , vr(λ)}

is a linearly independent set in C
n(λ).

Proof. To prove the first item, the linear combination

α1(λ) v1(λ) + · · · + αr(λ)vr(λ) = 0(6)

is considered, where αi(λ), 1 ≤ i ≤ r, can be chosen to be polynomials, because if
they were rational functions, one could multiply by their denominators. Let us express
these polynomials as

αi(λ) = αi0 + λαi1 + · · · + λti αiti for 1 ≤ i ≤ r,

where αij ∈ C for all i, j. Therefore, the coefficient vector of the term of degree zero
in (6) is

r∑
i=1

αi0vi0 = 0.

If {v10, . . . , vr0} is a linearly independent set in C
n, then α10 = α20 = · · · = αr0 = 0.

Thus, the coefficient vector of the term of degree one in (6) is
∑r

i=1 αi1vi0 = 0; this
implies α11 = α21 = · · · = αr1 = 0. A simple inductive argument completes the proof
of the first item. To prove the second item one simply begins with the coefficient of
the term with greatest degree, and performs downward the inductive step.

We finish this section with another technical result on the linear independence of
vector polynomials.

Lemma 2.7. Let {z1(λ), . . . , zk(λ)}, k < n, be a linearly independent set of vector
polynomials in C

n(λ) and {z′1(λ), . . . , z′l(λ)} be another set of vector polynomials in
C

n(λ) such that k + l ≤ n and rank[z1(λ)| . . . |zk(λ)|z′1(λ)| . . . |z′l(λ)] = k. Let us
denote by {u1, . . . , un} the canonical basis of C

n; i.e., the entries of these vectors
are (ui)j = δij. Then there exist l vectors of the canonical basis, uj1 , . . . , ujl , such
that {z1(λ), . . . , zk(λ), z′1(λ) + α1uj1 , . . . , z

′
l(λ) + αlujl} is a linearly independent set

in C
n(λ) for all nonzero complex numbers α1, . . . , αl.
Proof. There exists at least one uj1 such that {z1(λ), . . . , zk(λ), uj1} is linearly

independent because, otherwise, all the vectors in {u1, . . . , un} would be linear combi-
nations of {z1(λ), . . . , zk(λ)}. This is impossible because {u1, . . . , un} is also a basis of
C

n(λ) and k < n. This argument can be successively applied to prove that there exist
uj1 , . . . , ujl vectors of the canonical basis such that {z1(λ), . . . , zk(λ), uj1 , . . . , ujl}
is linearly independent. Thus {z1(λ), . . . , zk(λ), α1uj1 , . . . , αlujl} is linearly inde-
pendent for all nonzero complex numbers α1, . . . , αl. Notice that the assumption
rank[z1(λ)| . . . |zk(λ)|z′1(λ)| . . . |z′l(λ)] = k implies that the vectors z′i(λ) are linear com-
binations of {z1(λ), . . . , zk(λ)} with coefficients in C(λ). Therefore, elementary col-
umn operations can be used to transform the matrix [z1(λ)| . . . |zk(λ)|α1uj1 | . . . |αlujl ]
into [z1(λ)| . . . |zk(λ)|z′1(λ) + α1uj1 | . . . |z′l(λ) + αlujl ]. This does not change the rank
of the matrix, which proves the result.
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2.3. Expansion of a pencil as sum of rank-one pencils. The expansion
presented in Lemma 2.8 will play a key role in this paper.

Lemma 2.8. Let Q(λ) be an m × n matrix pencil with rank ρ, and let ε̃ be the
sum of its column (or right) minimal indices. Then Q(λ) can be expressed in the form

Q(λ) = v1(λ)w1(λ)T + · · · + vρ(λ)wρ(λ)T ,(7)

where
(i) {v1(λ), . . . , vρ(λ)} is a linearly independent set of vector polynomials in

C
m(λ) with degrees at most one;

(ii) {w1(λ), . . . , wρ(λ)} is a linearly independent set of vector polynomials in
C

n(λ) with degrees at most one;
(iii) each summand vi(λ)wi(λ)T , 1 ≤ i ≤ ρ, is an m× n matrix pencil with rank

equal to one, i.e., vi(λ) and wi(λ) have both degree zero, or if one has degree one, the
other has degree zero;

(iv) there are ε̃ vectors among w1(λ), . . . , wρ(λ) with degree exactly one, and the
remaining vectors wi(λ) are of degree zero.

A decomposition (7) satisfying these conditions will be called a right decomposition
of Q(λ). Any other decomposition of Q(λ) as a sum of ρ rank-one matrix pencils
contains at least ε̃ vectors among w1(λ), . . . , wρ(λ) with degree exactly one.

Proof. The result is a direct consequence of the KCF. Let the KCF of Q be

KQ(λ) = diag(Lε̃1 , . . . , Lε̃h , L
T
η̃1
, . . . , LT

η̃l
,JQ),

where JQ is the regular structure of Q(λ) and there exist two nonsingular matrices, X
and Y , such that Q(λ) = XKQ(λ)Y . Now, notice that a block Lε̃i can be expanded
as a sum of ε̃i rank-one pencils,⎡⎢⎢⎢⎣

λ 1
λ 1

. . .
. . .

λ 1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1
0
...
0

⎤⎥⎥⎥⎦ [
λ 1 . . . 0

]
+ · · · +

⎡⎢⎢⎢⎣
0
0
...
1

⎤⎥⎥⎥⎦ [
0 . . . λ 1

]
,

where the row (column) vectors have degree equal to one (zero). An expansion for a
block LT

η̃j
is obtained by transposition, but now the column (row) vectors have degree

equal to one (zero). For the Jordan blocks in JQ, corresponding to finite or infinite
eigenvalues, similar expansions with row vectors of degree zero are possible. All these
expansions can be combined with Q(λ) = XKQ(λ)Y to prove straightforwardly the
four items of the lemma.

Let us prove now the fact that any other decomposition of Q(λ) as a sum of
ρ rank-one matrix pencils contains at least ε̃ vectors among w1(λ), . . . , wρ(λ) with
degree exactly one. Notice that the set of solutions of Q(λ)x(λ) = 0 is equal to the set
of solutions of [w1(λ), . . . , wρ(λ)]Tx(λ) = 0, and therefore the column minimal indices
of the pencils Q(λ) and D0 + λD1 ≡ [w1(λ), . . . , wρ(λ)]T are equal. If there were less
than ε̃ vectors among w1(λ), . . . , wρ(λ) with degree exactly one, then rank (D1) < ε̃.
This implies that the matrix coefficient of λ in the KCF of [w1(λ), . . . , wρ(λ)]T has
also rank smaller than ε̃. This is in contradiction with ε̃ being the sum of its column
minimal indices.

Remark 1. A result similar to that in Lemma 2.8 can be obtained by considering
the sum of the row (or left) minimal indices, η̃ , of Q(λ) and choosing the column
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vectors of the expansions of the Jordan blocks in JQ to be of degree zero. In this
case, we will consider a left decomposition of Q(λ):

Q(λ) = v̂1(λ)ŵ1(λ)T + · · · + v̂ρ(λ)ŵρ(λ)T ,(8)

where the vectors {v̂1(λ), . . . , v̂ρ(λ)} and {ŵ1(λ), . . . , ŵρ(λ)} have the properties ap-
pearing in items (i), (ii), and (iii) of Lemma 2.8, but (iv) is replaced by “there are η̃
vectors among {v̂i(λ), . . . , v̂ρ(λ)} with degree exactly one, and the remaining vectors
are of degree zero.” Notice that left and right decompositions are not unique. Besides,
a left decomposition of Q(λ) may not be simultaneously a right decomposition.

Example 1. Let us show right and left decompositions of a pencil with ε̃ = 1, η̃ =
0, and ρ = 2:⎡⎣ λ 1 0

0 0 0
0 0 λ

⎤⎦ =

⎡⎣ 1
0
0

⎤⎦ [
λ 1 0

]
+

⎡⎣ 0
0
λ

⎤⎦ [
0 0 1

]
,

⎡⎣ λ 1 0
0 0 0
0 0 λ

⎤⎦ =

⎡⎣ 1
0
0

⎤⎦ [
λ 1 0

]
+

⎡⎣ 0
0
1

⎤⎦ [
0 0 λ

]
.

2.4. Jordan blocks, invariant polynomials, elementary divisors, and
dual pencils. Given an arbitrary m × n complex matrix pencil P (λ) with rank
r, there exist two matrix polynomials U(λ) and V (λ) with dimensions m × m and
n× n, respectively, and nonzero constant determinants, such that

U(λ)P (λ)V (λ) = diag(h1(P ), . . . , hr(P ), 0, . . . , 0),(9)

where hi(P ) are nonzero monic polynomials in λ satisfying hi(P )|hi+1(P ); i.e., hi(P )
divides hi+1(P ) for i = 1, . . . , r− 1 [8, Chapter VI]. These polynomials are called the
invariant polynomials (or factors) of P (λ), and the diagonal matrix in the right-hand
side of (9) is called the Smith canonical form of P (λ). This form is unique and, in
fact, exists for general matrix polynomials and not only for pencils. If each

hi(P ) = (λ− λ1)
νi1 · · · · · (λ− λd)

νid for i = 1, . . . , r(10)

is decomposed in powers of different irreducible factors, then those factors among
(λ−λ1)

ν11 , . . . , (λ−λd)
ν1d , . . . , (λ−λ1)

νr1 , . . . , (λ−λd)
νrd with νij > 0 are called the

elementary divisors of P (λ). There exists a close relationship between the elementary
divisors and the dimensions of the Jordan blocks associated with the finite eigenvalues
in the regular structure of the KCF of the pencil P (λ). This is revealed by the following
result. It is a simple consequence of the theory developed in [8, Chapter VI].

Lemma 2.9. Let P (λ) be an m× n complex matrix pencil. For each elementary
divisor (λ−λj)

νij of P (λ) there exists a Jordan block of dimension νij associated with
a finite eigenvalue λj in the regular structure of the KCF of P (λ). Conversely, each
Jordan block of dimension νij associated with a finite eigenvalue λj in the KCF form
of P (λ) gives an elementary divisor (λ− λj)

νij .
The reader should notice that Lemma 2.9 gives no information for the infinite

eigenvalue of the pencil P (λ). This information can be obtained from the zero eigen-
value of the dual pencil through Lemma 2.10, whose trivial proof is omitted.
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Lemma 2.10. Let A and B be two complex m× n matrices. The pencils A+ λB
and B+λA have the same column and row minimal indices. Besides, the number and
dimensions of the Jordan blocks corresponding to the infinite eigenvalue in the KCF
of A+λB are equal to the number and dimensions of the Jordan blocks corresponding
to the zero eigenvalue in the KCF of B + λA, and vice versa.

Given an eigenvalue λj of the pencil P (λ), the exponents 0 ≤ ν1j ≤ ν2j ≤ · · · ≤ νrj
in (10) are called the partial multiplicities of λj relative to P , and if a number μ is
not an eigenvalue of P (λ), then all its partial multiplicities relative to P are defined
as zero [9, p. 331]. Anyway, for any number λ0 its partial multiplicities relative
to P coincide with the dimensions of the Jordan blocks associated with λ0 in the
regular structure of the KCF of P (λ), whenever Jordan blocks of zero dimension
are admitted as nonexisting blocks. This also holds for the infinite eigenvalue. The
partial multiplicities of an eigenvalue λ0, finite or infinite, of P (λ) with g associated
Jordan blocks in the KCF are usually arranged in an infinite sequence called Segre
characteristic of λ0 relative to P (λ). This sequence is

SP (λ0) = (ng(λ0), ng−1(λ0), . . . , n1(λ0), 0, . . .),

where ng(λ0) ≥ ng−1(λ0) ≥ · · · ≥ n1(λ0) are the dimensions of the Jordan blocks
associated with λ0 in the KCF of P (λ). Notice that in the case when λ0 is not an
eigenvalue of P (λ), all the terms in SP (λ0) are equal to zero.

The concepts of partial multiplicities and Segre characteristics are also valid for
general matrix polynomials. The eigenvalues of a matrix polynomial can be defined as
the roots of its invariant polynomials. Given two matrix polynomials P (λ) and Q(λ),
we write

SP (λ0) ≥ SQ(λ0) if (SP (λ0))i ≥ (SQ(λ0))i for all i > 0;

i.e., the inequality holds for each entry in the Segre characteristics.

The Smith canonical form (9) allows us to express every matrix polynomial P (λ)
of rank r as

P (λ) = h1(P ) a1(λ)zT1 (λ) + · · · + hr(P ) ar(λ)zTr (λ),(11)

where h1(P ), . . . , hr(P ) are its invariant polynomials and ai(λ) and zi(λ) are vector
polynomials. Besides, according to (9), the vectors ai(λ) and zi(λ) are, respectively,
the columns of U−1(λ) and V −T (λ). This implies that neither ai(λ) nor zi(λ) can
be written as the product of a scalar polynomial of degree greater than zero times a
vector polynomial, because the matrices U−1(λ) and V −T (λ) are matrix polynomials
with constant nonzero determinants. Notice that in the case when P (λ) is a pencil the
expansion (11) is not an expansion of the type (7), in general, because the summands
hi(P ) ai(λ)zTi (λ) have, in general, degree larger than one.

The KCF of the direct sum, P (λ) ⊕ Q(λ), of two pencils P (λ) and Q(λ) is the
direct sum of the KCFs of P (λ) and Q(λ), up to some permutations of the diagonal
blocks. Therefore, the Segre characteristic of λ0 relative to P (λ) ⊕ Q(λ) is obtained
simply by putting together the Segre characteristics of λ0 relative to P (λ) and to
Q(λ), and then reordering the resulting sequence. The same holds in the case when
P (λ)and Q(λ) are general matrix polynomials. This follows from [8, Chapter VI,
Theorem 5].
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3. Low rank assumptions: Meaning and genericity. Throughout this work
we will deal with three m×n complex pencils: the fixed unperturbed pencil P (λ), the
perturbation pencil Q(λ), and the perturbed pencil (P +Q)(λ). The pencil P (λ) does
not have full rank, and its KCF will always be assumed to be known; it will be denoted
by (3). We will frequently omit the variable λ when there is no risk of confusion.

As announced in the Introduction, the set of perturbations we considered is the
set of pencils

C = {Q(λ) : rank(Q) = ρ} ,(12)

where ρ > 0 is an integer such that

rank(P ) + ρ ≤ min{m,n}(13)

and ρ ≤ rank(P ). These are the two low rank conditions imposed on the set of
perturbations. Notice also that ρ > 0, and (13) implies that rank(P ) < min{m,n},
i.e., that P (λ) does not have full rank.

A key result in this work is that the property

rank(P + Q) = rank(P ) + rank(Q)(14)

is generic in the set C. This is rigorously proved in Theorem 3.1 below. By combining
this result with the identity (4), one can say that, for perturbations in the set C, the
perturbed pencils (P +Q)(λ) have generically n−rank(P )−ρ column minimal indices
and m− rank(P ) − ρ row minimal indices. See Corollary 3.2 below on this point.

Notice that, taking into account that P +Q is an m×n pencil, the condition (14)
implies rank(P ) + rank(Q) ≤ min{m,n}, i.e., the assumption (13), and that P (λ)
does not have full rank for Q(λ) �= 0, i.e., for nontrivial perturbations. These facts
and the genericity of (14) in C lead us to impose rank(P +Q) = rank(P )+rank(Q) in
most of the lemmas and theorems we prove, without explicitly mentioning the initial
low rank condition (13).

Section 5 is devoted to studying the generic column minimal indices of (P+Q)(λ).
In section 5

rank(P + Q) = rank(P ) + rank(Q) < n(15)

is assumed as a hypothesis in most of the results. Notice that (15) is implied by (14)
only if min{m,n} = m < n; otherwise (15) is an additional assumption. The reason
for assuming (15) in section 5 is that, according to (4), the number of column minimal
indices of P +Q is n− rank(P +Q), which is zero if rank(P +Q) = n. Therefore the
study of the generic column minimal indices of P +Q makes sense only if (15) holds.
In the case of the row minimal indices, m instead of n has to be used in (15).

Finally, let us comment on the additional low rank assumption,

ρ = rank(Q) ≤ rank(P ).

This assumption is very natural for considering Q(λ) as a low rank perturbation of
P (λ), and it is essential to guarantee that other hypotheses used in the study of the
minimal indices of P +Q are really generic. This will be discussed in subsection 5.5.
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3.1. Genericity of the assumption rank(P + Q) = rank(P ) + rank(Q).
Number of minimal indices of P +Q. The purpose of this section is to present a
rigorous proof of the genericity of the most pervasive and crucial assumption in this
work. This assumption determines the generic number of row and column minimal
indices of the perturbed pencil (P + Q)(λ).

Theorem 3.1. Let P (λ) be an m× n complex matrix pencil and ρ be a positive
integer such that rank(P ) + ρ ≤ min{m,n}. Then the set of m × n complex matrix
pencils

G = {Q(λ) m× n pencil : rank(Q) = ρ and rank(P + Q) = rank(P ) + rank(Q)}

is dense and open in the set of m× n complex matrix pencils with rank ρ.
Proof. First, let us prove that G is dense in the set of pencils with rank ρ. Notice

that rank(P + E) ≤ rank(P ) + rank(E) for every pencil E(λ). Therefore, we have to
prove that for every pencil E(λ) with rank ρ and rank(P + E) < rank(P ) + rank(E)
there exists a sequence {Q(t)(λ)}∞t=1 ⊂ G whose limit is E(λ). Let r ≡ rank(P ).
According to (7), we can write

P (λ) = v1(λ)w1(λ)T + · · · + vr(λ)wr(λ)T ,

E(λ) = a1(λ)b1(λ)T + · · · + aρ(λ)bρ(λ)T ,

and

(P + E)(λ) = [v1| . . . |vr|a1| . . . |aρ] [w1| . . . |wr|b1| . . . |bρ]T ,

where we have omitted some λ’s for simplicity. Elementary arguments show that
rank(P + E) < rank(P ) + rank(E) = r + ρ if and only if rank [v1| . . . |vr|a1| . . . |aρ] <
r + ρ or rank [w1| . . . |wr|b1| . . . |bρ] < r + ρ. Suppose that rank [v1| . . . |vr|a1| . . . |aρ] <
r + ρ. This implies, due to the fact that the set {v1, . . . , vr} is linearly independent,
that

(i) rank [v1| . . . |vr|a1| . . . |aρ] = r + ρ̂ with 0 ≤ ρ̂ < ρ; and
(ii) the vectors a1, . . . , aρ can be reordered as ai1 , . . . , aiρ̂ , ak1

, . . . , akρ−ρ̂
, where

{v1, . . . , vr, ai1 , . . . , aiρ̂} is a linearly independent set.
Now, Lemma 2.7 is used to show that there exist ρ− ρ̂ vectors, uj1 , . . . , ujρ−ρ̂

, of
the canonical bases of C

m such that, for every t = 1, 2, . . . ,

rank

[
v1| . . . |vr|ai1 | . . . |aiρ̂ |ak1 +

1

t
uj1 | . . . |akρ−ρ̂

+
1

t
ujρ−ρ̂

]
= r + ρ.

Let {a(t)
1 , . . . , a

(t)
ρ } be the set of vectors that is obtained from {a1, . . . , aρ} by replacing

ak1 , . . . , akρ−ρ̂
by ak1 + 1

tuj1 , . . . , akρ−ρ̂
+ 1

tujρ−ρ̂
. If rank [w1| . . . |wr|b1| . . . |bρ] < r+ρ,

we proceed in a similar way to produce a set of vectors {b(t)1 , . . . , b
(t)
ρ }. Finally, let us

define the sequence of pencils

Q(t)(λ) = a
(t)
1 (λ)(b

(t)
1 (λ))T + · · · + a(t)

ρ (λ)(b(t)ρ (λ))T , t = 1, 2, . . . .

It is trivial to check that (i) limt→∞ Q(t)(λ) = E(λ); (ii) rank(Q(t)) = ρ for all t; and
(iii) rank(P + Q(t)) = rank(P ) + rank(Q(t)) for all t. This proves that G is dense.

Now, we will prove that G is open in the set of matrix pencils with rank ρ. To this
purpose, let us proceed as follows: as explained in the Introduction, the set of m× n
complex matrix pencils is identified with C

2mn, and the set of matrix pencils with
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rank ρ is a subset C of C
2mn. Thus G ⊂ C ⊂ C

2mn. We consider in C the subspace
topology induced by the usual topology of C

2mn, as we explained in the Introduction.
Therefore, for proving that G is open in C, it is sufficient to prove that every Q(λ) ∈ G
is included in an open subset XQ of C

2mn such that

rank(P + E) ≥ rank(P + Q) = rank(P ) + rank(Q) for all E ∈ XQ.

The reason is that in this case the following hold:
1. XQ ∩ C is open in C; and
2. the fact that rank(P ) + rank(Q) ≤ rank(P +E) ≤ rank(P ) + rank(E) for all

E ∈ XQ implies that rank(P + E) = rank(P ) + rank(E) for all E ∈ XQ ∩ C. This
means that XQ ∩ C ⊂ G and that Q is an interior point of G.

Let us see how XQ ⊂ C
2mn is constructed. Given Q ∈ G, the equation rank(P +

Q) = rank(P )+ρ ≡ r+ρ implies that the pencil (P+Q)(λ) has a (r+ρ)×(r+ρ) minor
that is a polynomial in λ with at least one nonzero coefficient. Let det(P +Q)(α, β) be
this minor, where the sets α ⊆ {1, . . . ,m} and β ⊆ {1, . . . , n} denote, respectively, the
rows and columns that define the minor. By identifying every pencil E(λ) = E0+λE1

with an element of C
2mn, the coefficients of det(P + E)(α, β) define a continuous

function f(E), f : C
2mn −→ C

r+ρ+1, because these coefficients are polynomials in
the entries of the complex matrices E0 and E1. Taking into account that f(Q) �= 0,
there exists an open ball, B, in C

r+ρ+1 whose center is f(Q) and such that 0 /∈ B.
Then we can take XQ = f−1(B), because it is open, f(E) �= 0 for all E ∈ XQ, and,
therefore, rank(P + E) ≥ r + ρ for all E ∈ XQ.

As a consequence of Theorem 3.1 and (4) the generic number of row and column
minimal indices of P + Q is determined.

Corollary 3.2. Let P (λ) be an m × n complex matrix pencil with p column
minimal indices and q row minimal indices, and ρ be a positive integer such that
rank(P ) + ρ ≤ min{m,n}. Then the set of perturbations Q(λ) with rank(Q) = ρ and
such that P + Q has p− ρ column minimal indices and q − ρ row minimal indices is
dense and open in the set of m× n complex matrix pencils with rank ρ.

4. The regular structure of the perturbed pencil. In this section we get
information on the regular structure of the KCF of the perturbed pencil (P + Q)(λ)
in terms of the regular structures of P (λ) and Q(λ), i.e., JP and JQ. With only the
hypothesis rank(P + Q) = rank(P ) + rank(Q), we prove that for every eigenvalue of
P or Q, the regular structure of P +Q has as least as many blocks as JP ⊕JQ, with
dimensions larger than or equal to the dimensions of the blocks in JP ⊕JQ. Besides,
other blocks may be present. This is presented in Theorem 4.4, and it is our first
major contribution. In section 6, we will see that the generic regular structure of
P + Q is precisely JP ⊕ JQ if rank(P + Q) = rank(P ) + rank(Q) < min{m,n}.

In this section, the auxiliary lemma, Lemma 4.1, will be used. It appears without
proof in [12]. The proof is elementary.

Lemma 4.1 (see [12, p. 799]). If D = diag(z1, . . . , zk) and G is an arbitrary k×k
matrix, then

det (D + G) = detG +
∑

zν1
. . . zνj

· det Ğ(ν1, . . . , νj) ,

where the sum runs over all j ∈ {1, . . . , k} and all ν1, . . . , νj such that 1 ≤ ν1 < · · · <
νj ≤ k , and Ğ(ν1, . . . , νj) denotes the matrix obtained from G by deleting the rows

and columns with indices ν1, . . . , νj, with det Ğ(1, . . . , k) ≡ 1.
Lemma 4.2 extends [18, Theorem 1] under more stringent assumptions.
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Lemma 4.2. Let L(λ) be an m× n matrix polynomial with rank equal to r, and
e1 ≤ · · · ≤ er be the partial multiplicities of λ0 relative to L(λ). Let M(λ) be a
rank-one matrix polynomial, and e be the partial multiplicity of λ0 relative to M(λ).
Let us assume that rank(L + M) = rank(L) + rank(M), and that ei < e ≤ ei+1 , for
some i ∈ {0, 1, . . . , r} , where we define e0 ≡ −1 and er+1 ≡ ∞ . Then, the partial
multiplicities f1 ≤ · · · ≤ fr+1 of λ0 relative to (L + M)(λ) satisfy

f1 = e1 , . . . , fi = ei, e ≤ fi+1, ei+1 ≤ fi+2 , . . . , er ≤ fr+1.

Remark 2. Notice that in Lemma 4.2 it is possible that e1 = · · · = er = 0 or that
e = 0; i.e., λ0 may not be an eigenvalue of L(λ) or of M(λ).

Proof of Lemma 4.2. Theorem 1 in [18] implies that

e1 ≤ f2 , e2 ≤ f3 , . . . , er ≤ fr+1.

So, we only need to prove that f1 = e1 , . . . , fi = ei , e ≤ fi+1. Let U(λ) and
V (λ) be the matrix polynomials, with nonzero constant determinants, that transform
L into its Smith normal form, i.e., U(λ)L(λ)V (λ) = diag((λ − λ0)

e1p1(λ), . . . , (λ −
λ0)

erpr(λ), 0, . . . , 0) , with the polynomials p1(λ), . . . , pr(λ) such that pj(λ0) �= 0 , for
j = 1, . . . , r. Invariant polynomials and partial multiplicities remain unchanged under
multiplication by U(λ) and V (λ); therefore we can focus on the partial multiplicities
of the matrix polynomial:

U(λ)(L + M)(λ)V (λ) = diag((λ− λ0)
e1p1(λ), . . . , (λ− λ0)

erpr(λ), 0, . . . , 0)(16)

+ (λ− λ0)
ex(λ)y(λ)T ,

where the second term of the right-hand side is U(λ)M(λ)V (λ) (see (11)).
In the case e0 < e ≤ e1, i.e., i = 0, the exponent of the factor (λ − λ0) of the

greatest common divisor of all 1× 1 minors in (16) is greater than or equal to e; thus
e ≤ f1 by the definition of invariant polynomials [8, Chapter VI, section 3], and the
result is proven. Let us assume from now on that i ≥ 1. In the rest of the proof, we
will prove that if ck, k = 1, . . . , r + 1, denotes the exponent of the factor (λ− λ0) of
the greatest common divisor of all k × k minors in (16), then

c1 = e1, c2 = e1 + e2 , . . . , ci = e1 + · · · + ei, ci+1 ≥ e1 + · · · + ei + e.(17)

This and the definition of invariant polynomials imply f1 = e1 , . . . , fi = ei , e ≤ fi+1.
The lowest power of (λ − λ0) in a 1 × 1 minor of (16) is easily seen to be e1, so

c1 = e1. For k ≥ 2, let us notice that all the nonzero k×k minors of (16) must contain
at least k− 1 of the (1, 1), . . . , (r, r) diagonal entries. Then, a nonzero k× k minor of
(16) must be of one of these two types:

(i)

det
(
diag( (λ− λ0)

ei1pi1(λ), . . . , 0, . . . , (λ− λ0)
eik−1pik−1

(λ) )

+ (λ− λ0)
e[x(λ)y(λ)T ]k

)
,

(ii)

det
(
diag((λ− λ0)

ei1pi1(λ), . . . , (λ− λ0)
eik pik(λ)) + (λ− λ0)

e[x(λ)y(λ)T ]k
)
,(18)

where [x(λ)y(λ)T ]k is some k× k submatrix of x(λ)y(λ)T . If we apply Lemma 4.1 to
these minors, we see that
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(i) every minor of type (i) may be written as

(λ− λ0)
e1+···+ek−1+e q(λ),(19)

where q(λ) is a polynomial;
(ii) every minor of type (ii) may be written as

(λ− λ0)
e1+···+ek−1+min{e,ek} t(λ),(20)

where t(λ) is a polynomial.
In the case k = i+ 1, these results directly imply that ci+1 ≥ e1 + · · ·+ ei + e. In

the case k ≤ i, (19) and (20) imply ck ≥ e1 + · · ·+ ek. Moreover, the equality follows
by taking i1 = 1, i2 = 2, . . . , ik = k, in (18) and applying Lemma 4.1.

Next we prove a corollary of Lemma 4.2.
Corollary 4.3. Let L(λ) and M(λ) be two m × n matrix polynomials such

that rank(M) = 1 and rank(L + M) = rank(L) + rank(M). Let h(M) be the unique
invariant polynomial of M(λ). Then

SL+M(λ0) ≥ SL⊕h(M)(λ0) = SL⊕M(λ0) for any complex number λ0.

Proof. Let us use the notation in Lemma 4.2 for the partial multiplicities of
λ0. The partial multiplicities of λ0 relative to L ⊕ h(M) are e1 ≤ · · · ≤ ei < e ≤
ei+1 ≤ · · · ≤ er, by Theorem 5 in [8, Chapter VI, p. 142]. These are also the partial
multiplicities of λ0 relative to L⊕M, by the same argument. Lemma 4.2 implies the
inequality SL+M(λ0) ≥ SL⊕h(M)(λ0).

Now we prove the main theorem in this section.
Theorem 4.4. Let P (λ) and Q(λ) be two m×n complex matrix pencils such that

rank(P +Q) = rank(P )+rank(Q). Then, for every complex number λ0, including the
infinite, SP+Q(λ0) ≥ SP⊕Q(λ0). This means, in particular, that if λ0 is an eigenvalue
of P (λ) or if λ0 is an eigenvalue of Q(λ), then λ0 is an eigenvalue of (P + Q)(λ).

Proof. We consider only finite numbers λ0. The result for the infinite eigenvalue
follows from considering the zero eigenvalue in the dual pencils of P (λ) and Q(λ).
According to (11), Q(λ) can be expressed as

Q(λ) = h1(Q) b1(λ)cT1 (λ) + · · · + hρ(Q) bρ(λ)cTρ (λ),

where ρ ≡ rank(Q) and where h1(Q), . . . , hρ(Q) are the invariant polynomials of Q(λ).
The property rank(P + Q) = rank(P ) + rank(Q) implies that

rank(P + h1(Q) b1c
T
1 + · · · + hk(Q) bkc

T
k )(21)

= rank(P + h1(Q) b1c
T
1 + · · · + hk−1(Q) bk−1c

T
k−1) + rank(hk(Q) bkc

T
k ),

for k = 1, . . . , ρ. We have omitted the variable λ for the sake of simplicity. Therefore,
Corollary 4.3 can be applied ρ times to prove

SP+Q(λ0) ≥ S(P+h1(Q)b1cT1 +···+hρ−1(Q)bρ−1cTρ−1)⊕hρ(Q)(λ0) ≥ · · ·
≥ SP⊕h1(Q)⊕···⊕hρ(Q)(λ0),

where we have used (A + B) ⊕ C = (A ⊕ C) + (B ⊕ 0). Finally, Theorem 5 in [8,
Chapter VI, p. 142] implies SP⊕h1(Q)⊕···⊕hρ(Q)(λ0) = SP⊕Q(λ0).
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5. The minimal indices of the perturbed pencil. The purpose of this sec-
tion is to determine the minimal indices of the perturbed pencil (P +Q)(λ) in terms of
data of P (λ) and Q(λ). For the sake of brevity, we will develop the results only for the
column minimal indices. A set of counterpart results for the row minimal indices can
be obtained just by considering the column minimal indices of the transpose pencil
(P + Q)T (λ).

The main result in this section is Theorem 5.8, where the whole set of column
minimal indices of P +Q is found for most perturbations Q having a given rank and a
given sum of its column minimal indices. The genericity of the hypotheses of Theorem
5.8 is discussed in subsection 5.5. Theorem 5.10 presents some generic information
on the column minimal indices of P + Q when only the rank of the perturbation is
available.

According to Lemma 2.4, determining the column minimal indices of P + Q is
equivalent to finding the degrees of an ROMB of P + Q. This ROMB will not be
explicitly constructed, but the degrees of its vectors will be precisely determined.
Lemma 5.1 is the key result for this task. It allows us to delimit the search for this
basis.

Lemma 5.1. Let P (λ) and Q(λ) be two complex matrix pencils such that rank(P+
Q) = rank(P ) + rank(Q). Then x(λ) is a right null space vector of P + Q if and
only if x(λ) is, simultaneously, a right null space vector of P (λ) and Q(λ), i.e.,
N (P + Q) = N (P ) ∩N (Q).

Proof. Let col(P ) be the column space of P (λ) in C
m(λ). Then,

dim(col(P+Q)) ≤ dim(col [P Q]) = dim(col(P ))+dim(col(Q))−dim(col(P )∩col(Q)).

The assumption rank(P +Q) = rank(P )+rank(Q) implies that col(P )∩col(Q) = {0}.
If x(λ) is a right null space vector of P +Q, then P (λ)x(λ) = −Q(λ)x(λ). Notice that
the vector z(λ) ≡ P (λ)x(λ) = −Q(λ)x(λ) is a vector in col(P ) ∩ col(Q), and thus
z(λ) = 0 and P (λ)x(λ) = Q(λ)x(λ) = 0. The converse is trivial.

We have already remarked in section 3 that if rank(P+Q) = rank(P )+rank(Q) =
n, then the pencil (P + Q)(λ) does not have column minimal indices. Therefore, in
the rest of this section, it will be assumed rank(P + Q) = rank(P ) + rank(Q) < n.
This implies that rank(Q) < p, where p is the number of column minimal indices of
P .

5.1. Connection polynomials and associated mosaic Toeplitz matrices.
From Lemma 5.1, it is possible to obtain a more specific characterization of the right
null space vectors of P + Q.

Lemma 5.2. Let P (λ) and Q(λ) be two complex m × n matrix pencils such
that rank(P + Q) = rank(P ) + rank(Q) < n, ε̃ be the sum of the column minimal
indices of Q(λ), and {x1(λ), . . . , xp(λ)} be an ROMB of P (λ). Let us consider a right
decomposition of Q(λ) given by (7), where the first ε̃ vectors in {w1(λ), . . . , wρ(λ)}
are assumed to be of degree one without loss of generality. Then, every right null
space vector of (P + Q)(λ) is a linear combination of the vectors {x1(λ), . . . , xp(λ)}
with polynomial coefficients. Moreover,

x(λ) = α1(λ)x1(λ) + · · · + αp(λ)xp(λ)(22)
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is a right null space vector of (P+Q)(λ) if and only if the polynomials α1(λ), . . . , αp(λ)
satisfy the system of linear equations in C

p(λ),

a11(λ)α1(λ) + · · · + a1p(λ)αp(λ) = 0
...

...
...

aρ1(λ)α1(λ) + · · · + aρp(λ)αp(λ) = 0,

(23)

where

aij(λ) = wi(λ)Txj(λ), i = 1, . . . , ρ, j = 1, . . . , p.(24)

Proof. A vector polynomial, x(λ), is a right null space vector of P +Q if and only
if it is a right null space vector of P and Q, by Lemma 5.1. P (λ)x(λ) = 0 is equivalent
to the fact that x(λ) is a linear combination of {x1(λ), . . . , xp(λ)} with polynomial
coefficients, by Lemma 2.5. Q(λ)x(λ) = 0 is equivalent, taking into account (7), to
w1(λ)Tx(λ) = · · · = wρ(λ)Tx(λ) = 0, and this is the system of equations (23).

The system of equations (23) is of capital importance in this work, because the
set of its solutions allows us to obtain the right null space of P +Q through (22), and
we are looking for the degrees of an ROMB of N (P +Q). Thus, the coefficients aij(λ)
of the system (23) play an essential role. They are polynomials in λ and link the
pencils P and Q. They are used so often that we introduce the following definition.

Definition 5.3. A set of polynomials {aij(λ) : i = 1, . . . , ρ , j = 1, . . . , p} like
those appearing in (24) will be called a complete set of right connection polynomials
of P (λ) and Q(λ).

Since neither an ROMB of P nor a right decomposition (7) of Q is unique, a
complete set of right connection polynomials of P and Q is not necessarily unique.

Remark 3. A left decomposition (8) of Q(λ) and an LOMB {y1(λ), . . . , yq(λ)}
of P (λ) can be considered to define a complete set of left connection polynomials of
P (λ) and Q(λ). These are the polynomials

bij(λ) = v̂i(λ)T yj(λ), i = 1, . . . , ρ , j = 1, . . . , q.

These polynomials are needed to obtain the row minimal indices of (P + Q)(λ).
Let us denote by ε1 ≤ · · · ≤ εp the column minimal indices of the unperturbed

pencil P (λ), and by ε̃ the sum of the column minimal indices of the perturbation
pencil Q(λ), as in section 2. Then the degrees of the right connection polynomials of
P and Q are bounded as follows:

deg(aij(λ)) ≤
{

εj + 1, i = 1, . . . , ε̃,
εj , i = ε̃ + 1, . . . , ρ.

(25)

For most perturbations Q(λ) these inequalities are, in fact, equalities, but this will not
be assumed in the subsequent developments. Nevertheless, the generic behavior for
the minimal indices of the perturbed pencil P +Q holds under certain conditions that
limit the number of right connection polynomials with degrees strictly less than the
right-hand side of (25). These generic conditions involve some of the mosaic Toeplitz
matrices appearing in the following definition.

Definition 5.4. Let ε1 ≤ · · · ≤ εp be the column minimal indices of the pencil
P (λ), ε̃ be the sum of the column minimal indices of the pencil Q(λ), and {aij(λ) :
i = 1, . . . , ρ , j = 1, . . . , p} be a complete set of right connection polynomials of P and
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Q. Let us express these polynomials as follows:1

aij(λ) = a0
ij + λa1

ij + · · · + λεija
εij
ij , where εij =

{
εj + 1, i = 1, . . . , ε̃,
εj , i = ε̃ + 1, . . . , ρ.

Let k and d be nonnegative integer numbers such that 1 ≤ k ≤ p and d ≥ εk − 1.
The kth mosaic Toeplitz matrix of degree d associated with the connection polynomials
aij(λ) is denoted by Ak(d) and is a matrix partitioned into ρ rows and k columns of
blocks whose (s, t)-block, s = 1, . . . , ρ , t = 1, . . . , k, is the Toeplitz matrix

(Ak(d))st =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0
st
...

. . .

aεstst

. . .

. . . a0
st

. . .
...

aεstst

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

d− εt + 1

,

with d− εt + 1 columns and therefore a number of rows equal to

εst + 1 + d− εt =

{
d + 2, s = 1, . . . , ε̃,
d + 1, s = ε̃ + 1, . . . , ρ.

Remark 4. Notice that in the case d = εk − 1 the kth column of blocks of Ak(d)
is formed by matrices having a “number of columns equal to zero,” i.e., by empty
matrices. This also happens for those columns whose index j satisfies d = εj − 1. We
understand in this case that Ak(d) has less than k columns of blocks. This convention
will simplify the notation and the statements of our results.

The importance of the family of mosaic Toeplitz matrices Ak(d) is made clear
by the next lemma, Lemma 5.5. This result extends and complements Lemma 5.2,
characterizing right null space vectors of P + Q of a given degree through systems of
constant linear equations, i.e., systems of equations in C

n and not in C
n(λ) as (23).

Degrees are the fundamental quantities in this section, because our goal is to get the
degrees of the vectors of an ROMB of P + Q, i.e., the column minimal indices of
P +Q. According to Lemma 5.2 all the right null space vectors, x(λ), of P +Q are of
the form (22), and they have deg(x) = max1≤i≤p {εi + deg(αi) : αi(λ) �= 0} [6, Main
Theorem, p. 495]. This implies that if j is the largest index such that αj(λ) �= 0,
then deg(x) ≥ εj . To look for smaller degrees, one has to consider necessarily linear
combinations x(λ) = α1(λ)x1(λ)+ · · ·+αk(λ)xk(λ), with k < j. See also Lemma 2.5.

Lemma 5.5. Let P (λ) and Q(λ) be two complex m× n matrix pencils such that
rank(P + Q) = rank(P ) + rank(Q) < n, {x1(λ), . . . , xp(λ)} be an ROMB of P , and
ε1 ≤ · · · ≤ εp be the column minimal indices of P , i.e., deg(xi) = εi. Then the
following hold:

1. Every right null space vector, x(λ), of (P +Q)(λ) of degree d can be expressed
in the form x(λ) = α1(λ)x1(λ) + · · · + αk(λ)xk(λ) for the largest number k such that
1 ≤ k ≤ p and d ≥ εk, and a unique set of polynomials {α1(λ), . . . , αk(λ)}.

1The reader should notice that the superscript notation akij does not mean aij to the kth power.
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2. Moreover,

x(λ) = α1(λ)x1(λ) + · · · + αk(λ)xk(λ)(26)

is a right null space vector of (P+Q)(λ) of degree d ≥ εk if and only if the polynomials
α1(λ), . . . , αk(λ) satisfy the following two conditions:

(i) The polynomials αi(λ) can be expressed as

αi(λ) = αi0 + λαi1 + · · · + λd−εi αi,d−εi(27)

for all i = 1, . . . , k, with αj,d−εj �= 0 for at least one index j.
(ii) If Ak(d) is the kth mosaic Toeplitz matrix of degree d associated with a com-

plete set of right connection polynomials of P and Q defined with {x1(λ), . . . , xp(λ)},
the coefficients αil satisfy the system of constant linear equations

Ak(d)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α10

...
α1,d−ε1

...

...
αk0

...
αk,d−εk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0.(28)

Notice that, if all the solutions of the system (28) are such that α1,d−ε1 = · · · =
αk,d−εk = 0, then all nonzero right null space vectors of P + Q of the form (26) are
of degree less than d.

Proof. The proof of the first item is a direct consequence of Lemma 5.2 and the
fact that in (22) deg(x) = max1≤i≤p {εi + deg(αi) : αi(λ) �= 0} according to [6, Main
Theorem, p. 495]. Once the index k is chosen, the uniqueness of {α1(λ), . . . , αk(λ)}
follows from the linear independence of {x1(λ), . . . , xk(λ)}.

The second item follows from (22) and (23) by setting αk+1(λ) = · · · = αp(λ) = 0.
Notice that (27) simply states that there are no indices i, 1 ≤ i ≤ k, such that
deg(αi) > d − εi, because this would imply deg(x) > d. The condition αj,d−εj �= 0
for at least one index j guarantees that deg(x) = d. On the other hand, the linear
system (28) is the system obtained from (23) by expanding products and sums of
polynomials and equating the coefficients to zero. With these remarks in mind, the
proof is trivial.

5.2. Properties of mosaic Toeplitz matrices. Lemma 5.6 gathers the prop-
erties of mosaic Toeplitz matrices that we will use to deduce the generic minimal
indices of the pencil P + Q.

Lemma 5.6. Let T = {Ak(d) : 1 ≤ k ≤ p , d ≥ εk − 1} be the set of mosaic
Toeplitz matrices defined in Definition 5.4. Then the following hold:

1. The number of rows of Ak(d) is equal to ρ(d + 1) + ε̃.

2. The number of columns of Ak(d) is equal to k(d + 1) −
∑k

j=1 εj.
3. Ak(d) has more columns than rows if and only if

k > ρ and d >

∑k
i=1 εi + ε̃

k − ρ
− 1.
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4. If the columns of Ak(d) are linearly independent, i.e., Ak(d) has full column
rank, then every matrix Ak′(d′) in T with k′ ≤ k and d′ ≤ d has full column rank.

5. If the rows of Ak(d) are linearly independent, i.e., Ak(d) has full row rank,
then every matrix Ak′(d′) in T with k′ ≥ k and d′ ≥ d has full row rank.

6. If the rows of Ak(d) are linearly independent, then

rank

⎡⎢⎣ a11(λ) a12(λ) . . . a1j(λ)
...

...
...

aρ1(λ) aρ2(λ) . . . aρj(λ)

⎤⎥⎦ = ρ for j ≥ k.(29)

Proof. The first three items are direct consequences of the number of rows and
columns of the blocks appearing in Definition 5.4.

Item 4. Notice that Ak−1(d) is obtained from Ak(d) just by erasing the last
column of blocks. As a consequence, the columns of Ak−1(d) are a subset of the
columns of Ak(d). Then, Ak−1(d) has full column rank if Ak(d) has full column rank,
and, by induction, Ak′(d) has full column rank whenever k′ ≤ k.

If d−1 ≥ εk−1, then Ak(d−1) is an element of T , and it is obtained from Ak(d)
by erasing the last column of each block of Ak(d) to get a certain matrix A′

k(d) and,
after that, erasing the last row of each block of A′

k(d) to get Ak(d − 1). However,
notice that A′

k(d) is of full column rank, and that the last rows of the blocks of A′
k(d)

are zero rows; then Ak(d− 1) also has full column rank.
If d− 1 < εk − 1, then Ak(d− 1) is not in T . Let k′ < k be the largest index such

that d− 1 ≥ εk′ − 1. Then Ak′(d− 1) is an element of T , and Ak′(d) has full column
rank. The argument in the paragraph above is applied to prove that Ak′(d − 1) has
full column rank.

Finally, the results above can be combined inductively to prove item 4.
Item 5. Let k′ ≥ k. Then the submatrix of Ak′(d) that lies in the first k(d +

1) −
∑k

j=1 εj columns is precisely Ak(d). Therefore, if Ak(d) has full row rank, then
Ak′(d) also has full row rank. To complete the proof, let us prove that Ak(d + t) has
full row rank for any integer t > 0 whenever Ak(d) has full row rank. It is enough to
prove this statement for t = 1 and then to apply an inductive argument. Notice that
the submatrix of Ak(d) that contains the last row of each of the row blocks of Ak(d)
has linearly independent rows. This means that for the matrix

B ≡

⎡⎢⎣ aε1111 . . . aε1k1k
...

...
a
ερ1

ρ1 . . . a
ερk
ρk

⎤⎥⎦ ,

rank(B) = ρ. Observe that the matrix B is also the ρ × k submatrix of Ak(d + 1)
that lies in the last rows and columns of the blocks of Ak(d+ 1). If the last rows and
columns of the blocks of Ak(d+ 1) are moved down and back by permutations to the
last positions, the rank does not change, and the matrix we get has the structure[

Ak(d) ∗
0 B

]
.

The rank of this matrix is clearly rank(Ak(d)) + ρ = ρ(d + 2) + ε̃, i.e., the number of
rows of Ak(d + 1). Therefore Ak(d + 1) has full row rank.

Item 6. It is enough to prove this property for j = k. If the rows of Ak(d) are
linearly independent, then the submatrix of Ak(d) that contains the first row of each
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of the row blocks of Ak(d) has linearly independent rows. This means that

rank

⎡⎢⎣ a0
11 . . . a0

1k
...

...
a0
ρ1 . . . a0

ρk

⎤⎥⎦ = ρ.

The result follows by applying Lemma 2.6.1 to the rows of the matrix (29) for
j = k.

According to [8, Chapter XII, p. 38] (see also the proof of Lemma 2.4 in this
paper), the smallest column minimal index of P + Q is the least degree among the
degrees of nonzero right null space vectors of P+Q. Taking into account Lemma 5.5.2,
this smallest minimal index corresponds to the smallest d for which a linear system
of the family (28) (1 ≤ k ≤ p) has nonzero solutions with αj,d−εj �= 0 for at least one
index j. Our intuition here is that solutions of this kind do not exist, generically, if
Ak(d) has a number of rows larger than or equal to the number of columns, and they
do exist, generically, in the opposite case. This intuition is based on the idea that if
the coefficients of the connection polynomials are random for random perturbations
pencils Q, then the columns of Ak(d) should be linearly independent if Ak(d) has
more rows than columns or the same number of rows and columns. Based on this
intuition, one can tentatively think that the most likely value of the smallest minimal
index of P + Q for random perturbations Q is the smallest d such that some of the
Ak(d) has more columns than rows. Of course, these naive arguments have to be
supported with rigorous assumptions, but they, together with Lemma 5.6.3, make it
natural to consider the following sequence of integer numbers:

dk =

⌊∑k
i=1 εi + ε̃

k − ρ

⌋
for k = ρ + 1, . . . , p,

where �x� denotes the floor function of x, i.e., the largest integer that is less than or
equal to x. Notice that Ak(dk) exists only if dk ≥ εk − 1; in this case Lemma 5.6.3
guarantees that Ak(dk) has more columns than rows. However, it is not difficult to
devise examples for which dk < εk − 1 for some k. The natural candidate for the
smallest column minimal index of P + Q is minρ+1≤k≤p dk. To prove that this is
the case under certain generic assumptions, and also to find the rest of the column
minimal indices, it is necessary to study the properties of the sequence {dk}.

Lemma 5.7. Let 0 ≤ ε1 ≤ · · · ≤ εp be p integer numbers, and ρ and ε̃ be integer
numbers such that 0 < ρ < p and 0 ≤ ε̃ ≤ ρ. Let us consider the sequence of integer
numbers

dk =

⌊∑k
i=1 εi + ε̃

k − ρ

⌋
for k = ρ + 1, . . . , p.(30)

Then we have the following:
1. dρ+1 ≥ ερ+1 ≥ · · · ≥ ε1.
2. If dk < dk−1, then dk ≥ εk ≥ · · · ≥ ε1.
3. If dk < dk+1, then dk < dk+1 ≤ dk+2 ≤ · · · ≤ dp.
4. If dk < dk+1, then di < εi for all i ≥ (k + 1).
5. Let

dmin ≡ min
ρ+1≤k≤p

dk.
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Then all the indices j such that dj = dmin are consecutive; i.e., if dj = dmin holds for
more than one index, then there exist two indices j1 < j2 such that

dj = dmin if j1 ≤ j ≤ j2 and dj > dmin if j < j1 or j2 < j.

In addition, dj1 ≥ εj1 .
6. Let s be the largest index such that ds = dmin and ds ≥ εs. Then

εk > dk ≥ ds for all k > s.

7. Let s be the index defined in the previous item, and As(dmin) and As(dmin−1)
be mosaic Toeplitz matrices introduced in Definition 5.4. Then

(i) As(dmin) has more columns than rows and has s columns of blocks;
(ii) As(dmin − 1) has a number of rows larger than or equal to the number of

columns, or it is the empty matrix;
(iii) for any k > s, Ak(dmin) is not defined or Ak(dmin) = As(dmin).
Before proving this lemma, we would like to point out that the index s appearing

in item 6 will play an essential role in determining the generic column minimal indices
of P + Q.

Proof of Lemma 5.7. The first item is trivial.
Item 2. Let us consider the integer divisions

k∑
i=1

εi + ε̃ = (k − ρ)dk + rk, where 0 ≤ rk < k − ρ,(31)

k−1∑
i=1

εi + ε̃ = (k − 1 − ρ)dk−1 + rk−1, where 0 ≤ rk−1 < k − 1 − ρ.(32)

Let us subtract (32) from (31) to get

εk = (k− ρ− 1)(dk − dk−1)+ dk + rk − rk−1 ≤ (k− ρ− 1)(dk − dk−1)+ dk + k− ρ− 1.

Thus, εk ≤ (k − ρ − 1)(dk − dk−1 + 1) + dk ≤ dk. The last step is a consequence of
(dk − dk−1 + 1) ≤ 0 and (k − 1) > ρ.

Item 3. Let us consider the integer division

k+1∑
i=1

εi + ε̃ = (k + 1 − ρ)dk+1 + rk+1, where 0 ≤ rk+1 < k + 1 − ρ.(33)

Let us subtract (31) from (33) to get

εk+1 = (k − ρ)(dk+1 − dk) + dk+1 + rk+1 − rk ≥ (k − ρ) + dk+1 + rk+1 − rk > dk+1,

where we have used that rk+1 − rk > −(k − ρ). Therefore, we have proved that

dk < dk+1 implies εk+1 > dk+1.(34)

Let us consider now an index l such that l ≥ (k + 2), and the integer division

l∑
i=1

εi + ε̃ = (l − ρ)dl + rl, where 0 ≤ rl < l − ρ.(35)
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Let us subtract (33) from (35) to get

εl + εl−1 + · · · + εk+2 = (dl − dk+1)(l − ρ) + dk+1(l − (k + 1)) + rl − rk+1,

and then,

(εl − dk+1) + (εl−1 − dk+1) + · · · + (εk+2 − dk+1) = (dl − dk+1)(l − ρ) + rl − rk+1.

The inequality (34) implies (dl − dk+1)(l − ρ) + rl − rk+1 > 0, and therefore (dl −
dk+1 + 1)(l − ρ) > 0. Thus, we have proven that

dk < dk+1 implies dl ≥ dk+1 for all l ≥ (k + 2).(36)

This result allows us to prove the more general result appearing in item 3. Let us
proceed by contradiction. Assume that dk+1 ≤ dk+2 ≤ · · · ≤ dp is false. This means
that there exists an index l ≥ (k + 2) such that dk+1 ≤ dk+2 ≤ · · · ≤ dl−1 > dl. Let
j be the smallest integer such that (k + 1) ≤ j ≤ (l − 1) and dj = dj+1 = · · · = dl−1.
Notice that this integer is at least k + 1, because dk < dl−1 by (36). Then dj−1 < dj ,
and (36) can be applied with k = j − 1 to see that dj ≤ dl; on the other hand,
dj = dl−1 > dl. This is absurd.

Item 4. Let us prove the result by induction. In (34), we have already proven
the base case of the induction: dk+1 < εk+1. Let us assume that di < εi for some
i ≥ (k + 1). On the other hand, di ≤ di+1 due to the result in item 3. If di < di+1,
one can apply (34) with k = i to see that di+1 < εi+1. Otherwise, di = di+1 and
di+1 < εi ≤ εi+1.

Item 5. The fact that the indices are consecutive is a direct consequence of item
3. The fact that dj1 ≥ εj1 is a consequence of items 1 and 2.

Item 6. If there is only one index s such that ds = dmin, the result is a simple
consequence of items 4 and 5. Otherwise, let j1 and j2 be the two indices appearing
in item 5. If s = j2 ≤ p, the result follows again from item 4. If s < j2, then, by
definition, ds = ds+1 < εs+1 ≤ · · · ≤ εj2 . Therefore, dk < εk for s + 1 ≤ k ≤ j2. Also,
by definition, dj2 < dj2+1, and item 4 implies dk < εk for k ≥ (j2 + 1).

Item 7. The assertions on the number of rows and columns of As(dmin) and
As(dmin − 1) follow from Lemma 5.6.3. Let us remember that the jth column of
blocks of As(dmin) has dmin − εj + 1 columns; therefore, dmin ≥ εs guarantees that all
the blocks of As(dmin) have at least one column. Notice that dmin ≥ εs also implies
that dmin−1 ≥ εs−1; thus As(dmin−1) is defined, but some (or all) of its blocks may
be empty. Finally, for j > s we know that εj > dmin, i.e., εj − 1 ≥ dmin. This means
that Ak(dmin), with k > s, is not defined unless εj − 1 = dmin for s + 1 ≤ j ≤ k, but
in this case the jth blocks (Ak(dmin))ij are empty matrices.

5.3. Generic column minimal indices of P + Q. Now we are in position
to find out which are the generic column minimal indices of the perturbed pencil
(P + Q)(λ), assuming that, apart from the rank, the sum of the column minimal
indices of the perturbation is known. This is done in Theorem 5.8, our second major
contribution.

Theorem 5.8. Let P (λ) and Q(λ) be two m × n complex matrix pencils such
that rank(P + Q) = rank(P ) + rank(Q) < n and ρ ≡ rank(Q). Let ε1 ≤ · · · ≤ εp be
the column minimal indices of P , ε̃ be the sum of the column minimal indices of Q,
{dρ+1, . . . , dp} be the sequence of numbers defined in (30), dmin be the minimum of
this sequence, and s be the largest index such that ds = dmin and ds ≥ εs. Finally,
let As(dmin − 1) and As(dmin) be the sth mosaic Toeplitz matrices of degrees dmin − 1
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and dmin, respectively, associated with a complete set of right connection polynomials
of P and Q. If

As(dmin − 1) has full column rank or is the empty matrix, and(37)

As(dmin) has full row rank,(38)

then (P + Q)(λ) has the following p− ρ column minimal indices:

dmin = · · · = dmin︸ ︷︷ ︸
s− ρ− γs

< (dmin + 1) = · · · = (dmin + 1)︸ ︷︷ ︸
γs

≤ εs+1 ≤ · · · ≤ εp,(39)

where γs is the remainder in the integer division of
∑s

i=1 εi + ε̃ by s− ρ.
Proof. In the first place, let us notice that the ordering appearing in (39) is

a consequence of Lemma 5.7.6. Also notice that the number of column minimal
indices of P + Q is p − ρ; this is a simple consequence of (4) and rank(P + Q) =
rank(P )+ rank(Q). For the rest of the proof, it is convenient to bear in mind Lemma
2.4 applied to P + Q, and the way ROMBs of P + Q are constructed (see the first
paragraph in the proof of Lemma 2.4).

Let us begin by proving that there are no column minimal indices of P + Q
smaller than dmin. Lemma 5.5.1 and Lemma 5.7.6 guarantee that every right null
space vector of P + Q with degree d < dmin is a linear combination of the type
x(λ) = α1(λ)x1(λ) + · · · + αk(λ)xk(λ) for some k ≤ s. In this situation, the matrix
Ak(d) appearing in (28) has full column rank in the case As(dmin −1) has full column
rank, by Lemma 5.6.4. The system (28) has only the zero solution and x(λ) = 0.
In the case As(dmin − 1) is the empty matrix dmin = εk whenever 1 ≤ k ≤ s, and
there are no nonzero linear combinations of {x1(λ), . . . , xp(λ)} of degree smaller than
ε1 = dmin, because otherwise the smallest column minimal index of P would be less
than ε1.

Our next step is to prove that dmin is a column minimal index of P + Q. The
system (28) with coefficient matrix As(dmin) necessarily has nonzero solutions because
As(dmin) has more columns than rows by Lemma 5.7.7. Besides, there are no nonzero
solutions with α1,dmin−ε1 = · · · = αs,dmin−εs = 0, because otherwise the solutions of
(28) correspond to right null space vectors of P +Q of degree less than dmin, and we
already know that they do not exist. This proves that dmin is the smallest column
minimal index of P + Q.

To see that there are precisely s− ρ− γs column minimal indices of P +Q equal
to dmin, we need to find s − ρ − γs linearly independent right null space vectors of
P +Q of degree dmin, and to prove that there are no more. Again, Lemma 5.5.1 and
Lemma 5.7.6 guarantee that every right null space vector of P + Q with degree dmin

is a linear combination of the type

x(λ) = α1(λ)x1(λ) + · · · + αs(λ)xs(λ).(40)

Notice that the set of solutions of (28) with As(dmin) as coefficient matrix can be
described in terms of a number of free parameters equal to the difference between the
number of columns and the number of rows of As(dmin), i.e.,

s(dmin + 1) −
s∑

i=1

εi − ρ(dmin + 1) − ε̃ = s− ρ− γs,

where Lemma 5.6.1 and Lemma 5.6.2 have been used. This means that the system of
linear equations (28) with As(dmin) has s−ρ−γs linearly independent solutions, and,
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by Lemma 5.5, that they correspond to s − ρ − γs right null space vectors of P + Q
of the form (40) of degree dmin. Let us denote these vectors by

{z1(λ), z2(λ), . . . , zβs(λ)}, with βs ≡ s− ρ− γs.(41)

It is clear that any other solution of (28) corresponds to right null space vectors of
degree dmin that are linear combinations of (41) with constant coefficients; however,
we still need to prove that the vectors {z1(λ), z2(λ), . . . , zβs(λ)} can be chosen to be
linearly independent in C

n(λ). To see this, notice that the βs free parameters of (28)
with As(dmin) may be taken among the α1,dmin−ε1 , . . . , αs,dmin−εs variables, because
the columns of As(dmin) that do not correspond to these variables are linearly inde-
pendent, as we have already seen in the paragraph proving that dmin is the smallest
minimal index of P + Q. By setting the lth of these βs variables equal to 1 and the
rest equal to 0, and repeating this process for l = 1, . . . , βs, a set S of βs linearly
independent solutions of (28) may be obtained. Let us denote by

al = [αl
1,dmin−ε1 , . . . , α

l
s,dmin−εs ]

T , l = 1, . . . , βs,(42)

a vector containing the shown entries of the lth solution of (28) in S. The vectors
{a1, . . . , aβs} are obviously linearly independent. If (27) and (40) are recalled, the
coefficients of the highest degree terms of the vectors (41) corresponding to the βs

solutions of (28) in S are

zl,dmin = αl
1,dmin−ε1x1,ε1 + · · · + αl

s,dmin−εsxs,εs , for l = 1, . . . , βs,(43)

where xi,εi is the highest degree coefficient of xi(λ). The vectors {x1,ε1 , . . . , xs,εs} are
linearly independent in C

n, because x1(λ), . . . , xs(λ) are part of an ROMB and [6,
Main Theorem, Item 2, p. 495] can be applied. Therefore, {z1,dmin

, . . . , zβs,dmin} is a
linearly independent set, because [z1,dmin , . . . , zβs,dmin ] = [x1,ε1 , . . . , xs,εs ][a1, . . . , aβs

]
and the two matrices in the right-hand side have full column rank. Finally, Lemma
2.6.2 implies that {z1(λ), z2(λ), . . . , zβs(λ)} are linearly independent, and that there
are precisely βs ≡ s− ρ− γs column minimal indices of P + Q equal to dmin.

In this paragraph, we prove that there are γs column minimal indices of P + Q
equal to dmin + 1. At present, we have found a set C1 = {z1(λ), z2(λ), . . . , zβs(λ)}
of s− ρ− γs linearly independent right null space vectors of P + Q of the form (40)
and degree dmin. However, the fact that As(dmin) has full row rank, Lemma 5.6.6
with j = s, and Lemma 5.2 imply that a maximal linearly independent set of right
null space vectors of P + Q of the form (40) has s − ρ vectors. We will prove that
the remaining γs vectors can be chosen to be of degree dmin + 1. Let us consider the
system (28) with coefficient matrix As(dmin + 1). The matrix As(dmin + 1) has full
row rank because As(dmin) has full row rank, and Lemma 5.6.5 can be applied. This
means that rank(As(dmin+1)) = rank(As(dmin))+ρ. Remember that As(dmin+1) can
be obtained from As(dmin) by adding one row and one column in the last positions
of each block. Therefore, among the s columns of As(dmin + 1) that are in the
last positions of the column blocks, s − ρ are linear combinations of the remaining
columns of As(dmin + 1). Thus, the corresponding variables in the system (28) with
As(dmin + 1) can be taken as some of the free parameters to solve this system.2 This

2The reader should notice that the difference between the number of columns and rows of
As(dmin + 1) is 2(s− ρ)− γs. Therefore, the system (28) with matrix As(dmin + 1) has 2(s− ρ)− γs
linearly independent solutions, while there are only s−ρ linearly independent right null space vectors
of the form (40). This means that linearly independent solutions of (28) do not always correspond
to linearly independent right null space vectors (26).
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implies that s−ρ free parameters to solve (28) with As(dmin +1) may be taken among
the α1,(dmin+1)−ε1 , . . . , αs,(dmin+1)−εs variables. If we proceed with these parameters
as in the previous paragraph (arguments around (41)–(43)), we can find a set C2 of
(s−ρ) linearly independent right null space vectors of P+Q of degree exactly dmin+1,
and of the form (40). Therefore, we can join the set C1 of s− ρ− γs vectors of degree
dmin with some γs vectors of C2, to get a maximal linearly independent set of right
null space vectors of P + Q of the form (40). This proves that there exist γs column
minimal indices of P + Q equal to dmin + 1.

Our last task in proving Theorem 5.8 is to show that the remaining column
minimal indices of P + Q are εs+1 ≤ · · · ≤ εp. The right null space vectors of P + Q
that we have already found, corresponding to minimal indices equal to dmin and to
dmin + 1, constitute a maximal linearly independent set of right null space vectors of
P + Q of the form (40). This fact implies that any right null space vector x(λ) of
P + Q corresponding to the next smallest minimal index has to be necessarily of the
form (22) with at least one of the coefficients αs+1(λ), . . . , αp(λ) different from zero.
Otherwise, it would depend linearly on the right null space vectors corresponding to
the minimal indices dmin and dmin +1. Thus, according to [6, Main Theorem, p. 495],
deg(x) = max1≤i≤p {εi + deg(αi) : αi(λ) �= 0} ≥ εs+1 ≥ dmin + 1, where the last
inequality is a consequence of Lemma 5.7.6. Then, the least candidate to the next
minimal index is εs+1. To show that, in fact, εs+1 is the next column minimal index,
we will prove that there is a right null space vector of P + Q of the form

x(λ) = α1(λ)x1(λ) + · · · + αs+1(λ)xs+1(λ),(44)

with αs+1(λ) �= 0 and deg(x) = εs+1, i.e., with αs+1(λ) a nonzero constant. This is
equivalent to proving that the linear system (28) with coefficient matrix As+1(εs+1)
has solutions with the last entry different from zero. Notice that As+1(εs+1) has
full row rank because As(dmin) has full row rank, εs+1 > dmin by Lemma 5.7.6, and
Lemma 5.6.5 can be applied. Besides, the matrices in the last columns of blocks of
As+1(εs+1) have only one column. Therefore, if the last column of As+1(εs+1) is
removed, then As(εs+1) is obtained. However,

number of rows of As+1(εs+1) = number of rows of As(εs+1),(45)

and As(εs+1) has also full row rank by the same argument; then

rank(As+1(εs+1)) = rank(As(εs+1)).(46)

This implies that the last column of As+1(εs+1) is a linear combination of its remaining
columns. As a consequence the last variable in the linear system (28) with coefficient
matrix As+1(εs+1) may be considered as free parameter, and therefore it may be
different from zero. This proves that the εs+1 is the next minimal index.

Notice that assumption (38) and Lemma 5.6.6 imply that a maximal linearly
independent set of right null space vectors of P + Q of the form (44) has s + 1 − ρ
vectors. Therefore, a maximal linearly independent set of this type has already been
found in the previous paragraphs. With this remark in mind, the proof that εs+2

is the next smallest column minimal index follows step-by-step the proof presented
in the previous paragraph for εs+1 with the corresponding changes of indices. The
same holds for proving that εs+3, . . . , εp are the remaining column minimal indices of
P + Q.
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5.4. Application of Theorem 5.8 to an example. Let us show with an
example how to apply Theorem 5.8. Let P (λ) be the 5 × 5 matrix pencil

P (λ) = diag(L0, L1, L1, L
T
0 , L

T
0 , L

T
0 ) =

⎡⎢⎢⎢⎢⎣
0 λ 1 0 0
0 0 0 λ 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦ ,

with ε1 = 0, ε2 = ε3 = 1. An ROMB of P is given by

x1 =

⎡⎢⎢⎢⎢⎣
1
0
0
0
0

⎤⎥⎥⎥⎥⎦ , x2 =

⎡⎢⎢⎢⎢⎣
0
1
−λ
0
0

⎤⎥⎥⎥⎥⎦ , x3 =

⎡⎢⎢⎢⎢⎣
0
0
0
1
−λ

⎤⎥⎥⎥⎥⎦ .

Consider an arbitrary perturbation Q of P with ρ = 2 and ε̃ = 1. This means that a
right decomposition of Q (see (7)) is of the form

Q(λ) = v1w
T
1 + v2w

T
2 ,

where

w1 =

⎡⎢⎢⎢⎢⎣
b1 + λc1
b2 + λc2
b3 + λc3
b4 + λc4
b5 + λc5

⎤⎥⎥⎥⎥⎦ , w2 =

⎡⎢⎢⎢⎢⎣
d1

d2

d3

d4

d5

⎤⎥⎥⎥⎥⎦ ,

and bi, ci, di ∈ C for i = 1, . . . , 5. In addition, deg(v1) = 0 and deg(v2) ≤ 1. Notice
that in this example p − ρ = 3 − 2 = 1, and so the sequence {dρ+1, . . . , dp} has only
the element d3. This means that in the conditions of Theorem 5.8 the pencil P + Q
has only one column minimal index, which is precisely

dmin = d3 =

⌊
0 + 1 + 1 + 1

3 − 2

⌋
= 3.

The matrices As(dmin−1) and As(dmin) are in this case A3(2) and A3(3), respectively.
The right connection polynomials associated with the previous data are given by

a11(λ) = w1(λ)Tx1 = b1 + λc1, a21(λ) = wT
2 x1 = d1,

a12(λ) = w1(λ)Tx2 = b2 + λ(c2 − b3) − λ2c3, a22(λ) = wT
2 x2 = d2 − λd3,

a13(λ) = w1(λ)Tx3 = b4 + λ(c4 − b5) − λ2c5, a23(λ) = wT
2 x3 = d4 − λd5,

and then the mosaic Toeplitz matrix A3(3) is the 9 × 10 matrix

A3(3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 0 0 0 b2 0 0 b4 0 0
c1 b1 0 0 c2 − b3 b2 0 c4 − b5 b4 0
0 c1 b1 0 −c3 c2 − b3 b2 −c5 c4 − b5 b4
0 0 c1 b1 0 −c3 c2 − b3 0 −c5 c4 − b5
0 0 0 c1 0 0 −c3 0 0 −c5
d1 0 0 0 d2 0 0 d4 0 0
0 d1 0 0 −d3 d2 0 −d5 d4 0
0 0 d1 0 0 −d3 d2 0 −d5 d4

0 0 0 d1 0 0 −d3 0 0 −d5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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It can be numerically checked using MATLAB that this matrix has full row rank for
random values of bi, ci, and di. The 7 × 7 matrix A3(2) is constructed in a similar
way, and it can be numerically checked that A3(2) has full column rank.

5.5. On the genericity of the assumptions of Theorem 5.8. The relevance
of Theorem 5.8 depends on the genericity of its hypotheses, i.e., whether they are
satisfied in a dense open subset of the considered set of perturbations. The meaning
and genericity of the condition rank(P+Q) = rank(P )+rank(Q) < n was discussed in
depth in section 3. The other two essential hypotheses in Theorem 5.8 are (37)–(38).
We have checked numerically with MATLAB on a sample of more than 50000 mosaic
Toeplitz matrices (Definition 5.4), constructed on random polynomials, that these
matrices have full rank. We have run experiments with matrices with more rows than
columns, and vice versa. Then to see that (37)–(38) are indeed generic assumptions
that hold for almost all perturbations, it remains only to justify that the connection
polynomials of P and Q are random for random perturbations Q. In this process the
natural assumption

rank(Q) ≤ rank(P ),(47)

noted in section 3, plays a relevant role. Let us remember Definition 5.3. We can
assume in the following argument, without loss of generality, that P is given in KCF.
Taking into account that the right null space vector of a column singular block Lε can
be chosen to be [1,−λ, λ2, . . . , (−λ)ε]T , the vectors {x1(λ), . . . , xp(λ)} of the ROMB
of P can be chosen with the following property: if (xj(λ))k �= 0 for some j, then
(xj′(λ))k = 0 for j′ �= j; i.e., the nonzero entries of every vector correspond to zero
entries of the remaining vectors. With this in mind, it seems at a first glance that the
coefficients of the connection polynomials (24) are random, because Q being a random
perturbation, the vectors {w1(λ), . . . , wρ(λ)} should be also random. But, according
to (7), the vectors wi(λ) are of degree at most one. This means that, putting together
the zero and first order coefficients of each wi(λ), we get a set W with ρ+ ε̃ vectors of
C

n. Notice that rank(P +Q) = rank(P ) + rank(Q) ≤ min{m,n} and (47) imply that
ρ + ε̃ ≤ n, and then the vectors in W are linearly independent for almost all Q, and
the coefficients of the connection polynomials are really random. But, if ρ + ε̃ > n,
then the set W is linearly dependent, and some linear dependence may appear among
the coefficients of the connection polynomials.3

5.6. When the only information available on the perturbation is its
rank. Theorem 5.8 determines the generic whole set of column minimal indices of
the perturbed pencil (P + Q)(λ). This set depends on ε̃, i.e., the sum of the column
minimal indices of the perturbation Q(λ). The reason for this dependence can be
traced back to the expansion (7), because the properties of (7) depend on ε̃. This fact
is related to a deeper mathematical result: the set of singular matrix pencils of rank
ρ has exactly ρ + 1 maximal irreducible components, each of them corresponding to
a value of ε̃, for ε̃ = 0, . . . , ρ [3]. However, one may want to get some partial informa-
tion if only the rank of the perturbation Q(λ) is known. This partial information is
presented in Theorem 5.10. To prove this theorem the following lemma is needed.

Lemma 5.9. Let 0 ≤ ε1 ≤ · · · ≤ εp be p integer numbers, and ρ and ε̃ be integer
numbers such that 0 < ρ < p and 0 ≤ ε̃ ≤ ρ. Let us consider for each value of ε̃ the

3Notice that the argument of this paragraph holds if the assumption (47) is replaced by ρ+ ε̃ ≤ n,
which is fulfilled by a wider set of perturbations. However, this condition is not natural and requires
knowing ε̃ apart from the rank of the perturbation.
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sequence of integer numbers

dk(ε̃) =

⌊∑k
i=1 εi + ε̃

k − ρ

⌋
for k = ρ + 1, . . . , p.(48)

Let dmin(ε̃) ≡ minρ+1≤k≤p dk(ε̃), and let s(ε̃) be the largest index such that ds(ε̃)(ε̃) =
dmin(ε̃) and ds(ε̃)(ε̃) ≥ εs(ε̃). Then

dmin(ρ) ≥ dmin(ρ− 1) ≥ · · · ≥ dmin(0) and s(ρ) ≥ s(ρ− 1) ≥ · · · ≥ s(0).

Proof. Let us prove that dmin(ε̃′) ≥ dmin(ε̃) and s(ε̃′) ≥ s(ε̃), whenever ε̃′ >
ε̃. Notice that dk(ε̃

′) ≥ dk(ε̃) for k = ρ + 1, . . . , p. Therefore dmin(ε̃′) ≥ dmin(ε̃).
According to Lemma 5.7.6, εs(ε̃′)+1 > ds(ε̃′)(ε̃

′) ≥ ds(ε̃)(ε̃) ≥ εs(ε̃). This means that
s(ε̃′) + 1 > s(ε̃).

By combining Theorem 5.8 and Lemma 5.9, we can state the generic theorem,
Theorem 5.10. We name Theorem 5.10 as generic, because the precise assumptions
needed in the theorem are (37)–(38), and they depend on the sum of the column
minimal indices of the perturbation Q, information that is not available. The only
requirement for proving Theorem 5.10 is to notice that if ρ is the rank of Q and ε̃ is
the sum of the column minimal indices of Q, then 0 ≤ ε̃ ≤ ρ.

Theorem 5.10. Let P (λ) and Q(λ) be two m × n complex matrix pencils such
that rank(P + Q) = rank(P ) + rank(Q) < n and rank(Q) ≤ rank(P ). Let us define
ρ ≡ rank(Q). Let ε1 ≤ · · · ≤ εp be the column minimal indices of P , and

d′k =

⌊∑k
i=1 εi + ρ

k − ρ

⌋
for k = ρ + 1, . . . , p.(49)

Let d′min be the minimum of the sequence {d′k}, and s′ be the largest index such that
d′s′ = d′min and d′s′ ≥ εs′ . Then, for generic pencils Q(λ) with rank ρ, (P +Q)(λ) has
exactly p− ρ column minimal indices and

1. the p− s′ largest column minimal indices of (P +Q)(λ) are εs′+1 ≤ · · · ≤ εp;
2. the s′ − ρ smallest column minimal indices of (P + Q)(λ), ε̂1 ≤ · · · ≤ ε̂s′−ρ,

satisfy ερ+j ≤ ε̂j for j = 1, . . . , s′ − ρ and ε̂1 ≤ d′min.

6. The Kronecker canonical form of perturbed pencils without full
rank. The results presented so far remain valid whenever rank(P + Q) = rank(P ) +
rank(Q) ≤ min{m,n}. This assumption includes the limit case rank(P + Q) =
rank(P ) + rank(Q) = min{m,n}, i.e., the case of perturbed pencils (P + Q)(λ)
with full rank. In this full rank case P + Q does not have row minimal indices if
rank(P+Q) = m, and P+Q does not have column minimal indices if rank(P+Q) = n,
according to (4). If rank(P + Q) = m < n, the generic column minimal indices of
P + Q are described by Theorem 5.8, and if rank(P + Q) = n < m, the generic row
minimal indices of P +Q are described by Theorem 5.8 applied on (P +Q)T . Theorem
4.4 also holds in the full rank case and gives partial information on the regular part
of P + Q.

The purpose of this section is to show that complete information on the generic
KCF of P + Q can be obtained for perturbed pencils without full rank, i.e.,

rank(P + Q) = rank(P ) + rank(Q) < min{m,n}.

We will gather the information obtained in Theorems 4.4 and 5.8, together with the
counterpart version of Theorem 5.8 for row minimal indices, to fully describe the
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generic KCF of (P + Q)(λ), in terms of the sums of the row and column minimal
indices and of the regular structure of the perturbation Q(λ). This KCF will be
presented in Theorem 6.2. In addition, Theorem 6.3 presents some generic partial
information on the KCF of P +Q when rank(Q) is the only information available on
the perturbation.

Lemma 6.1 will allow us to avoid certain redundancy in the hypotheses.
Lemma 6.1. Let P (λ) and Q(λ) be two m×n matrix pencils such that rank(P )+

rank(Q) < min{m,n}. Let As(dmin) be the mosaic Toeplitz matrix associated with
a complete set of right connection polynomials of P and Q appearing in Theorem
5.8, and Bt(hmin) be the corresponding matrix associated with a complete set of left
connection polynomials, i.e., the matrix in Theorem 5.8 if it is applied to PT and QT .
If As(dmin) and Bt(hmin) have full row rank, then rank(P +Q) = rank(P )+ rank(Q).

Proof. From elementary linear algebra we know rank(P+Q) ≤ rank(P )+rank(Q).
Let us consider right decompositions of P and Q of the kind appearing in (7):

P (λ) = v′1(λ)w′
1(λ)T + · · · + v′r(λ)w′

r(λ)T ,

Q(λ) = v1(λ)w1(λ)T + · · · + vρ(λ)wρ(λ)T ,

where r ≡ rank(P ) and ρ ≡ rank(Q). Therefore

P + Q = [v′1, . . . , v
′
r, v1, . . . , vρ] [w

′
1, . . . , w

′
r, w1, . . . , wρ]

T ,

where the dependence on λ has been omitted. This means that P +Q is the product
of an m × (r + ρ) matrix times an (r + ρ) × n matrix, with (r + ρ) < min{m,n}.
Therefore rank(P + Q) = rank(P ) + rank(Q) if and only if

rank[v′1, . . . , v
′
r, v1, . . . , vρ] = r + ρ and rank[w′

1, . . . , w
′
r, w1, . . . , wρ] = r + ρ.

Let us prove that if As(dmin) has full row rank, then rank[w′
1, . . . , w

′
r, w1, . . . , wρ] =

r + ρ. If rank[w′
1, . . . , w

′
r, w1, . . . , wρ] < r + ρ, there exists an index i such that wi(λ)

is a linear combination of {w′
1(λ), . . . , w′

r(λ), w1(λ), . . . , wi−1(λ)} in C
n(λ), i.e.,

wi(λ) = β′
1(λ)w′

1(λ) + · · · + β′
r(λ)w′

r(λ) + β1(λ)w1(λ) + · · · + βi−1(λ)wi−1(λ),

for some rational functions β′
1(λ), . . . , βi−1(λ). Let us recall (24) and P (λ)xj(λ) = 0,

i.e., w′
k(λ)Txj(λ) = 0 for all k. Then the right connection polynomials of P and Q

satisfy

aij(λ) = β1(λ)a1j(λ) + · · · + βi−1(λ)ai−1,j(λ) for j = 1, . . . , p,

and the matrix [akl(λ)]1≤l≤p
1≤k≤ρ does not have full row rank. But the fact that As(dmin)

has full row rank implies that rank[akl(λ)]1≤l≤p
1≤k≤ρ = ρ, by Lemma 5.6.6.

An analogous argument shows that if Bt(hmin) has full row rank, then
rank[v′1, . . . , v

′
r, v1, . . . , vρ] = r + ρ.

We do not explicitly impose rank(P + Q) = rank(P ) + rank(Q) in Theorem 6.2
because of Lemma 6.1.

Theorem 6.2. Let P (λ) and Q(λ) be two m × n complex matrix pencils such
that rank(P ) + rank(Q) < min{m,n} and ρ ≡ rank(Q). Let ε1 ≤ · · · ≤ εp and
η1 ≤ · · · ≤ ηq be, respectively, the column and row minimal indices of P , and JP be
the regular structure of the KCF of P . Let ε̃ and η̃ be, respectively, the sum of the
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column minimal indices and the sum of the row minimal indices of Q, and JQ be the
regular structure of the KCF of Q. Let us consider the sequences

dk =

⌊∑k
i=1 εi + ε̃

k − ρ

⌋
for k = ρ + 1, . . . , p and

hl =

⌊∑l
i=1 ηi + η̃

l − ρ

⌋
for l = ρ + 1, . . . , q.

Let dmin = minρ+1≤k≤p{dk}, and s be the largest index such that ds = dmin and
ds ≥ εs. Let hmin = minρ+1≤l≤q{hl}, and t be the largest index such that ht = hmin

and ht ≥ ηt. Finally, let As(dmin − 1) and As(dmin) (Bt(hmin − 1) and Bt(hmin)) be
the sth (tth) mosaic Toeplitz matrices of degrees dmin−1 and dmin (hmin−1 and hmin),
respectively, associated with a complete set of right (left) connection polynomials of P
and Q. If

As(dmin − 1) and Bt(hmin − 1) have full column rank or are empty matrices, and

As(dmin) and Bt(hmin) have full row rank,

then
1. (P + Q)(λ) has exactly p− ρ column minimal indices that are

dmin = · · · = dmin︸ ︷︷ ︸
s− ρ− γs

< (dmin + 1) = · · · = (dmin + 1)︸ ︷︷ ︸
γs

≤ εs+1 ≤ · · · ≤ εp,(50)

where γs is the remainder in the integer division of
∑s

i=1 εi + ε̃ by s− ρ;
2. (P + Q)(λ) has exactly q − ρ row minimal indices that are

hmin = · · · = hmin︸ ︷︷ ︸
t− ρ− μt

< (hmin + 1) = · · · = (hmin + 1)︸ ︷︷ ︸
μt

≤ ηt+1 ≤ · · · ≤ ηq,(51)

where μt is the remainder in the integer division of
∑t

i=1 ηi + η̃ by t− ρ; and
3. JP ⊕ JQ is the regular structure of the KCF of (P + Q)(λ).

This fully determines the KCF of (P + Q)(λ).
Remark 5. We noted in subsection 5.5 that the additional assumption rank(Q) ≤

rank(P ) is sufficient for considering that the KCF of (P + Q)(λ) found in Theorem
6.2 is generic.

Proof of Theorem 6.2. Theorem 5.8 applied to P and Q proves (50) and applied
to PT and QT proves (51). Theorem 4.4 proves that for every complex number λ0,
including the infinite, SP+Q(λ0) ≥ SP⊕Q(λ0). To prove that, in fact, SP+Q(λ0) =
SP⊕Q(λ0), we will simply show that the direct sum of JP ⊕JQ plus the column and
row singular blocks corresponding to (50) and to (51) is an m× n pencil. Let us call
this direct sum Z(λ).

Let the matrix JP be r1 × r1, and JQ be r2 × r2. Notice that, in this situation,
the following identities hold:

ε + η + q + r1 = m, ε + p + η + r1 = n, ε̃ + η̃ + r2 = ρ,

where ε (η) is the sum of the column (row) minimal indices of P . Thus, the number
of rows of Z(λ) is

[dmin(s− ρ− γs) + (dmin + 1)γs + εs+1 + · · · + εp]

+ [(hmin + 1)(t− ρ− μt) + (hmin + 2)μt + (ηt+1 + 1) + · · · + (ηq + 1)] + r1 + r2

= [ε + ε̃ ] + [η + q + η̃ − ρ ] + r1 + r2 = m + ε̃ + η̃ + r2 − ρ = m.
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An analogous computation shows that the number of columns of Z(λ) is n, and,
therefore, that Z(λ) is the KCF of (P + Q)(λ).

Example 2. Let us apply Theorem 6.2 to the pencil P (λ) of the example in
subsection 5.4. In that subsection, we considered a perturbation Q(λ) with ρ = 2 and
ε̃ = 1. Now, let us assume also that η̃ = 0 and that Q has a simple eigenvalue μ = 1.
The generic column minimal index of P +Q predicted by Theorem 6.2 was computed
in subsection 5.4 and is 3. Let us compute the generic row minimal indices of P +Q.
In this example η1 = η2 = η3 = 0. Thus, the number of row minimal indices of P +Q
is q − ρ = 3 − 2 = 1. Therefore, hmin = h3 = 0 is the generic row minimal index of
P + Q. The generic KCF of P + Q is⎡⎢⎢⎢⎢⎣

λ 1 0 0 0
0 λ 1 0 0
0 0 λ 1 0
0 0 0 0 0
0 0 0 0 λ− 1

⎤⎥⎥⎥⎥⎦ .

In the case that the only information available on the perturbation Q(λ) is its
rank, Theorem 4.4 can be combined with Theorem 5.10, and the corresponding coun-
terpart version for row minimal indices, to produce Theorem 6.3, that gives partial
information of the KCF of (P + Q)(λ).

Theorem 6.3. Let P (λ) and Q(λ) be two m×n complex matrix pencils such that
rank(P )+ rank(Q) < min{m,n} and rank(Q) ≤ rank(P ). Let us define ρ ≡ rank(Q).
Let ε1 ≤ · · · ≤ εp and η1 ≤ · · · ≤ ηq be, respectively, the column and row minimal
indices of P , and JP be the regular structure of the KCF of P . Let us consider the
sequences

d′k =

⌊∑k
i=1 εi + ρ

k − ρ

⌋
for k = ρ + 1, . . . , p and

h′
l =

⌊∑l
i=1 ηi + ρ

l − ρ

⌋
for l = ρ + 1, . . . , q.

Let d′min (h′
min) be the minimum of the sequence {d′k} ({h′

l}), and s′ (t′) be the largest
index such that d′s′ = d′min (h′

t′ = h′
min) and d′s′ ≥ εs′ (h′

t′ ≥ ηt′). Then, for generic
pencils Q(λ) with rank ρ, (P + Q)(λ) has exactly p − ρ column minimal indices and
q − ρ row minimal indices and the following hold:

1. The p−s′ largest column minimal indices of (P +Q)(λ) are εs′+1 ≤ · · · ≤ εp.
2. The s′ − ρ smallest column minimal indices of (P +Q)(λ), ε̂1 ≤ · · · ≤ ε̂s′−ρ,

satisfy ερ+j ≤ ε̂j for j = 1, . . . , s′ − ρ and ε̂1 ≤ d′min.
3. The q − t′ largest row minimal indices of (P + Q)(λ) are ηt′+1 ≤ · · · ≤ ηq.
4. The t′ − ρ smallest row minimal indices of (P + Q)(λ), η̂1 ≤ · · · ≤ η̂t′−ρ,

satisfy ηρ+j ≤ η̂j for j = 1, . . . , t′ − ρ and η̂1 ≤ h′
min.

5. The regular part of the KCF of (P + Q)(λ) contains JP .

7. Conclusions and open problems. The results presented in this paper are,
as far as we know, the first contribution in the area of generic low rank perturbations
of singular matrix pencils, but they do not solve all the problems of this kind.

A first interesting problem is to consider unperturbed pencils P (λ) with full rank,
i.e., rank(P ) = min{m,n}. The full rank square case, m = n, corresponds to unper-
turbed regular pencils. In this case the KCF of P (λ) does not have singular blocks,
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and it is called the Weierstrass canonical form. This problem has been solved in [4].
The full rank rectangular case, m �= n, is an open problem. In this case the KCF of
P (λ) has only one type of singular blocks: n −m column or right singular blocks if
m < n, and m − n row or left singular blocks if m > n. Generically the same holds
for the perturbed pencil (P + Q)(λ), but the dimensions of the singular blocks may
change. A first important task in this setting is to define the precise meaning of low
rank perturbation.

A second open problem is to consider unperturbed pencils P (λ) without full rank,
but perturbations whose rank does not satisfy (1). For instance, if P (λ) is a 100× 200
pencil with rank(P ) = 98 and the rank of the perturbations is ρ ≡ rank(Q) = 3, then
the perturbations Q(λ) are, intuitively, low rank perturbations of P (λ). The solution
of this kind of problem is naturally connected with the results presented in this work
and with the first open problem we have discussed in the previous paragraph. In
our specific example, the right decomposition of Q in (7) allows us to write Q(λ) =
Q1(λ)+Q2(λ), where rank(Q1) = 2 and rank(Q2) = 1. Thus, we can split the original
perturbation problem, P+Q = P+Q1+Q2, into two perturbation problems of smaller
rank, P +Q1 and (P +Q1)+Q2. The first one is of the type considered in this work,
and in the second one the unperturbed pencil P + Q1 has generically full rank.

A final open problem has to do with the fact that in some situations the informa-
tion given by the results presented in this paper for the limit case, i.e., rank(P +Q) =
rank(P ) + rank(Q) = min{m,n}, of square pencils is irrelevant. Notice that in the
rectangular case—let us assume m < n without loss of generality—our results say
that P +Q does not have row minimal indices, and Theorems 5.8 and 5.10 determine
the generic column minimal indices. Additionally, Theorem 4.4 gives information on
the regular part of P + Q. However, in the square case, although our results are
still true, they may produce irrelevant information. Let us illustrate this with two
examples. The first example is⎡⎣ λ 1 0

0 λ 1
0 0 0

⎤⎦
︸ ︷︷ ︸

P

+

⎡⎣ 0 0 0
0 0 1
0 0 λ

⎤⎦
︸ ︷︷ ︸

Q

=

⎡⎣ λ 1 0
0 λ 2
0 0 λ

⎤⎦
︸ ︷︷ ︸

P+Q

.(52)

Notice that P has rank(P ) = 2, minimal indices ε1 = 2 and η1 = 0, and no eigenvalues
because its rank is 2 for all the values of λ. The same holds for the dual pencil. Thus,
P has no regular part. The pencil Q has rank(Q) = 1, minimal indices ε1 = ε2 = 0
and η1 = 0, η2 = 1, and no eigenvalues. However, P + Q has rank(P + Q) = 3;
i.e., it is a regular pencil and does not have minimal indices, neither row nor column
minimal indices. This is predicted by our theory; see Corollary 3.2. In addition,
P +Q has μ = 0 as a triple eigenvalue with only one associated Jordan block. Notice
that the information given by Theorem 4.4 is true—SP+Q(0) = (3, 0, . . . ), while
SP⊕Q(0) = (0, 0, . . . )—but irrelevant, because there is not any relationship between
the (nonexistent) regular parts of P and Q and the regular part of P + Q. This first
example illustrates a type of perturbation that destroys all the singular information
of the unperturbed pencil and creates a regular part in P + Q that does not exist at
all in P . Therefore the regular part of P + Q is created from singular parts of P and
Q. Notice that this example is not particular, because once P is fixed and the rank of
the perturbations is fixed to be one, it is generic that rank(P +Q) = 3 (see Theorem
3.1), and P +Q has no minimal indices but only a regular part. The second example
is the following:
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λ− 1 0

0 0

]
︸ ︷︷ ︸

P

+

[
λ 1 + 2λ
2λ 2 + 4λ

]
︸ ︷︷ ︸

Q

=

[
2λ− 1 1 + 2λ

2λ 2 + 4λ

]
︸ ︷︷ ︸

P+Q

.(53)

In this example, the pencil P has rank(P ) = 1, minimal indices ε1 = 0 and η1 = 0,
and one simple eigenvalue equal to 1. The pencil Q has rank(Q) = 1, minimal indices
ε1 = 1 and η1 = 0, and no regular part. The pencil P +Q is regular with determinant
det(P + Q) = 2(1 + 2λ)(λ − 1); this means that P + Q has two simple eigenvalues
equal to −1/2 and 1. Notice that in this case, μ = 1 is an eigenvalue of P and also
of P + Q. This is guaranteed by Theorem 4.4, and it is not a coincidence. But the
new eigenvalue appearing in P +Q, i.e., −1/2, is not related to the regular structure
of P . In both examples, (52) and (53), it seems difficult to say something generic
on the regular part of P + Q beyond Theorem 4.4, except that the new eigenvalues
appearing in P + Q will be generically different from those of P . However, to find
precise conditions for this behavior to hold needs delicate algebraic work and still
remains as an open problem.
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