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Abstract. Let A0 + λA1 be a regular matrix pencil, and let λ0 be one of its finite eigenvalues
having g elementary Jordan blocks in the Weierstrass canonical form. We show that for most matrices
B0 and B1 with rank (B0 +λ0B1) < g there are g−rank (B0 +λ0B1) Jordan blocks corresponding to
the eigenvalue λ0 in the Weierstrass form of the perturbed pencil A0+B0+λ(A1+B1). If rank (B0+
λ0B1)+rank (B1) does not exceed the number of λ0-Jordan blocks in A0 +λA1 of dimension greater
than one, then the λ0-Jordan blocks of the perturbed pencil are the g−rank (B0 +λ0B1)−rank (B1)
smallest λ0-Jordan blocks of A0 +λA1, together with rank (B1) blocks of dimension one. Otherwise,
all g−rank (B0+λ0B1) λ0-Jordan blocks of the perturbed pencil are of dimension one. This happens
for any pair of matrices B0 and B1 except those in a proper algebraic submanifold in the set of matrix
pairs. If A0 + λA1 has an infinite eigenvalue, then the corresponding result follows from considering
the zero eigenvalue of the dual pencils A1 + λA0 and A1 + B1 + λ(A0 + B0).
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1. Introduction. The change of the Jordan structure of a matrix A under per-
turbations B of low rank has been recently studied by several authors [5, 7, 8, 9, 10].
It is known that if λ0 is one of the eigenvalues of A having g elementary Jordan blocks
in the Jordan canonical form of A, then for most matrices B satisfying rank (B) < g,
the Jordan blocks of A + B with eigenvalue λ0 are just the g − rank (B) smallest
Jordan blocks of A with eigenvalue λ0. As far as we know, this generic behavior was
first proved in [5] and again in [7] and [8, 9, 10]. The proof in [7] uses only elementary
linear algebra results, and allows us to explicitly characterize the set of perturbation
matrices B for which this generic behavior does not happen. This is done through a
scalar determinantal equation involving B and some of the λ0-eigenvectors of A. Thus,
this behavior can be properly termed as generic, since it happens for any perturbation
matrix B except those belonging to a proper algebraic submanifold in the set of n×n
matrices of given rank. It is interesting to note that the result in [5] remains valid for
infinite dimensional compact linear operators in Banach spaces.

The purpose of this paper is to study which is the generic change of the Weierstrass
canonical form [4] of a regular n × n pencil of matrices A0 + λA1 under a low rank
perturbation B0 + λB1. We will see that this change is rather different from the
change described above for matrices. The regular matrix pencil A0+λA1 may have an
infinite eigenvalue, whose Jordan blocks in the Weiertrass canonical form are precisely
the Jordan blocks associated with the zero eigenvalue in the Weierstrass form of the
dual pencil A1 + λA0. Therefore, we may focus on finite eigenvalues of A0 + λA1.
The perturbation results for the infinite eigenvalue follow from results for the zero
eigenvalue of the dual pencil.

∗Received by the editors June 3, 2005; accepted for publication (in revised form) by B. T.
K̊agström January 3, 2008; published electronically May 16, 2008. This research was partially
supported by the Ministerio de Educación y Ciencia of Spain through grant BFM 2003-00223.

http://www.siam.org/journals/simax/30-2/63302.html
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Let λ0 be a finite eigenvalue with geometric multiplicity g of the regular n × n
matrix pencil A0 + λA1. Recall that a pencil is regular if the polynomial det(A0 +
λA1) in λ is not identically zero, and that the geometric multiplicity of λ0 is g =
dim ker(A0 + λ0A1), where ker denotes the null space. The elementary inequalities
rank(C + D) ≤ rank(C) + rank(D) and rank(C) ≤ rank(C + D) + rank(D), valid for
any pair of matrices C and D, lead to

rank(A0 + λ0A1 + B0 + λ0B1) ≤ rank(A0 + λ0A1) + rank(B0 + λ0B1),

rank(A0 + λ0A1) ≤ rank(A0 + λ0A1 + B0 + λ0B1) + rank(B0 + λ0B1).

Combining both inequalities, one gets

(1.1) g−rank(B0+λ0B1) ≤ dim ker(A0+λ0A1+B0+λ0B1) ≤ g+rank(B0+λ0B1).

Therefore, whenever

(1.2) rank(B0 + λ0B1) < g,

the eigenvalue λ0 of A0 + λA1 stays as an eigenvalue of the perturbed pencil

(1.3) A0 + B0 + λ(A1 + B1).

As a consequence, by “low” rank perturbation we will mean in what follows that
B0 and B1 satisfy (1.2), a condition which depends on the particular eigenvalue λ0

we are considering. It is well known that for a regular pencil L0 + λL1 the number
of Jordan blocks associated with λ0 in its Weierstrass canonical form is equal to
dim ker(L0 + λ0L1). Therefore, assuming that (1.3) is still regular, (1.1) implies that
the perturbation B0 + λB1 can destroy at most rank(B0 + λ0B1) Jordan blocks of
A0 + λA1, and can create at most rank(B0 + λ0B1) new Jordan blocks associated
with the finite eigenvalue λ0 of A0 + λA1. This allows many different choices for
the number and dimensions of the Jordan blocks appearing in the Weierstrass form
of A0 + B0 + λ(A1 + B1). The goal of this work is to find out which is the generic
behavior in this respect.1

The result we present depends on two quantities for each eigenvalue λ0, namely

ρ0 = rank(B0 + λ0B1) and ρ1 = rank(B1).

Assuming that condition (1.2) holds, we will prove that for generic matrices B0 and B1

there are precisely g−ρ0 Jordan blocks associated with λ0 in the Weierstrass canonical
form of the perturbed pencil (1.3). Moreover, if we denote by d0 the number of Jordan
blocks in A0 + λA1 with eigenvalue λ0 of dimension greater than one, we will prove
that whenever ρ0 + ρ1 ≤ d0, the largest ρ0 Jordan blocks of A0 +λA1 associated with
λ0 disappear, and the second-largest ρ1 blocks of λ0 turn into 1× 1 blocks, while the
rest of the Jordan blocks of λ0 in A0 +λA1 remain as Jordan blocks in the perturbed
pencil (1.3). If ρ0+ρ1 > d0, then there will be only 1×1 blocks corresponding to λ0 in
the Weierstrass form of (1.3). This generic behavior coincides with the one previously
described for low rank perturbations of the Jordan canonical form of matrices in the
case B1 = 0, while it is rather different when B1 �= 0. Describing this behavior and
proving that it is generic is our major contribution.

1The assumption that A0 +B0 + λ(A1 +B1) is a regular pencil holds except for very particular
choices of B0 and B1.
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Inequality (1.1) makes clear that B0 + λ0B1 is bound to play a relevant role
in the perturbation of the Weierstrass structure, since it determines the geometric
multiplicity of λ0 in (1.3). To understand why B1 plays a separate role on its own,
recall that a Jordan chain of A0 + λA1 of length s associated with λ0 satisfies the
equations (A0 + λ0A1)v1 = 0 and (A0 + λ0A1)vk = A1vk−1 for 2 ≤ k ≤ s. Therefore,
it is expected that perturbing A1 affects to the length of the Jordan chains. In plain
words, the generic behavior described above corresponds to a cooperation between
B0 +λ0B1 and B1 to destroy some of the blocks, and to decrease the dimension of as
many of the largest Jordan blocks as possible, while still fulfilling the constraint (1.1)
on the geometric multiplicity.

The results obtained in the present paper, as those in [7], are valid for perturba-
tions of any size satisfying the low rank condition (1.2), i.e., they are not first-order
perturbation results. Notice also that we are not paying attention to the perturbation
of the eigenvalues corresponding to the destroyed Jordan blocks. First order pertur-
bation results for this problem are enumerated in [6] for general matrix polynomials,
and, more recently, in [2]. In [13] first order multiparametric perturbations have been
considered for multiple semisimple eigenvalues. Several perturbation bounds, valid for
perturbations of finite size, appear in [11], but they do not apply to multiple defective
eigenvalues, except in the case of some Gerschgorin-like inclusion regions.

Now, we summarize the Weierstrass canonical form of a regular pencil [4], and
introduce some notation to be used throughout the paper. For any regular n × n
complex matrix pencil A0 + λA1 having λ0 as one of its eigenvalues, there exist
nonsingular n× n matrices P and Q, independent of λ, such that

(1.4) Q(A0 + λA1)P = diag(Jn1
(−λ0), . . . , Jng

(−λ0), J̃ , I∞) + λ diag(I1, I2, N),

where diag(C,E) denotes a block diagonal matrix with square diagonal blocks C and
E; Jni(−λ0) stands for a Jordan block of dimension ni with −λ0 on the main diagonal;

J̃ is a matrix in Jordan canonical form corresponding to the other finite eigenvalues
of the pencil; and N is a matrix in Jordan canonical form whose eigenvalues are
all equal to zero. N contains the spectral structure of the infinite eigenvalue of the
pencil. Finally, I1, I2 and I∞ are identity matrices of matching dimensions to those
of diag(Jn1

(−λ0), . . . , Jng
(−λ0)), J̃ and N , respectively. The right-hand side of (1.4)

is the Weierstrass canonical form of the pencil A0 + λA1, and it is unique up to
permutation of the diagonal Jordan blocks. The Weierstrass canonical form displays
all of the spectral information of the regular pencil A0 + λA1. From (1.4), one can
easily see that the geometric multiplicity of λ0 is g and its algebraic multiplicity is

(1.5) aA0+λA1
(λ0) = n1 + · · · + ng.

Without loss of generality, we assume the dimensions ni to be ordered decreasingly,
i.e.,

(1.6) n1 ≥ n2 ≥ · · · ≥ ng.

The paper is organized as follows: Section 2 contains one of the main results
(Theorem 2.2) concerning the change of the Weierstrass structure. It gives a lower
bound on the algebraic multiplicity associated with each eigenvalue in the perturbed
pencil, and suggests that the generic behavior for the Jordan blocks of the perturbed
pencil is the one happening when this lower bound is attained. In section 3, we prove
that this behavior is indeed generic by showing that it holds for all perturbations
except those in a proper algebraic submanifold in the set of matrix pencils. Finally,
Theorem 3.3 summarizes the results obtained throughout this paper.
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2. Lower bounds on the algebraic multiplicities and the dimensions of
Jordan blocks in the perturbed pencil. Throughout this section we follow a
notation consistent with (1.5), and denote by

(2.1) aR(λ)(λ0)

the algebraic multiplicity of the eigenvalue λ0 in the regular matrix pencil R(λ). Our
aim is to determine the generic Weierstrass structure of λ0 in a perturbed matrix
pencil A0 + B0 + λ(A1 + B1), starting from the structure of this eigenvalue in the
unperturbed pencil A0 + λA1. For this, we need to know aA0+B0+λ(A1+B1)(λ0), as
well as how this algebraic multiplicity is distributed among the Jordan blocks of
λ0. At least two approaches are possible to solve this problem. First, one can start
with Jordan chains of A0 + λA1 associated with λ0, and then explicitly build new
Jordan chains for λ0 in A0 + B0 + λ(A1 + B1), exhausting the algebraic multiplicity
aA0+B0+λ(A1+B1)(λ0). This approach was used in [7, 8, 9] for the standard eigenvalue
problem A − λI. It has the advantage of providing the new Jordan chains, and the
drawback of being rather intricate in the case of pencils. In this paper we use a simpler
approach: First, we determine lower bounds on the number and the dimensions of
the Jordan blocks associated with λ0 in the perturbed pencil. This method, based
on a result by Thompson [12], involves the use of the invariant factors of the pencils.
Then, we prove that the generic behavior corresponds to the case when these lower
bounds are attained.

We begin by recalling that the rank of an arbitrary matrix pencil, regular or
singular, T (λ) = T0 + λT1 is r if all of the minors of T (λ) of dimension greater
than r are identically equal to zero, but T (λ) has minors of dimension r which are
polynomials in λ not identically equal to zero. As a consequence, the rank of a regular
n× n matrix pencil is equal to n.

The next auxiliary lemma is a consequence of [12, Theorem 1]. It establishes
lower bounds on the number and dimensions of the Jordan blocks in the Weierstrass
form of a regular matrix pencil (R+T )(λ), where R(λ) is a regular matrix pencil and
T (λ) is any pencil of rank r.

Lemma 2.1. Let R(λ) = R0 + λR1 be a complex regular square pencil, and
T (λ) = T0 + λT1 be another complex pencil of the same dimension with rank at most
r. Let λ0 be an eigenvalue of R(λ) with g associated Jordan blocks of dimensions
d1 ≥ · · · ≥ dg in the Weierstrass form of R(λ). If (R + T )(λ) is also a regular
pencil and r ≤ g, then in the Weierstrass form of (R + T )(λ) there are at least g − r
Jordan blocks associated with λ0 of dimensions βr+1 ≥ · · · ≥ βg such that βi ≥ di for
r + 1 ≤ i ≤ g.

Proof. First, let us assume that the rank of T (λ) is exactly r. We begin by proving
that any pencil T (λ) of rank r is the sum of r singular pencils of rank 1. This can be
seen by using the Kronecker canonical form of singular pencils [4, Chapter XII]. Let
K0 + λK1 be the Kronecker canonical form of T (λ) = T0 + λT1, and write K0 + λK1

as the sum of the following matrices:

1. For any singular block Lk of dimension k × (k + 1) appearing in K0 + λK1

[4, p. 39], we have that Lk = L
(1)
k + · · · + L

(k)
k , where the jth row of L

(j)
k is equal to

the jth row of Lk, and the rest of the rows of L
(j)
k are zero. Therefore Lk is the sum

of k singular pencils with rank 1.
2. An analogous expression holds for any singular block LT

p of dimension (p +
1) × p appearing in K0 + λK1.
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3. Finally, for the m×m regular part F (λ) = F0 + λF1 of K0 + λK1, we have
again that F (λ) = F (1) + · · ·+F (m), where F (j) has the jth row equal to the jth row
of F (λ) and the rest of the rows of F (j) are zero. Therefore F (λ) is the sum of m
singular pencils with rank 1.

The pencil K0 + λK1 can be expressed as the sum of r singular pencils of rank
1 just by combining the previous expansions of its singular blocks and of its regular
part. The same holds for T (λ) because it is strictly equivalent to K0 + λK1. Let this
decomposition be

T (λ) = T1(λ) + · · · + Tr(λ),

where rankTi(λ) = 1 for 1 ≤ i ≤ r.
For any n× n regular pencil P (λ) = P0 + λP1, we denote by

hn(P )|hn−1(P )| · · · |h1(P )

its invariant polynomials [3, Chapter VI], also called invariant factors. As usual,
hn(P )|hn−1(P ) means that hn(P ) divides hn−1(P ). Notice also that h1(P ) �= 0
because the pencil is regular.

Let

(λ− λ0)
dg |(λ− λ0)

dg−1 | · · · |(λ− λ0)
d1

be the elementary divisors [3, Chapter VI] of R(λ) associated with λ0. Each elemen-
tary divisor (λ − λ0)

di corresponds to a Jordan block of λ0 of dimension di in the
Weierstrass form of R(λ). It is well known that

(λ− λ0)
d1 |h1(R)

(λ− λ0)
d2 |h2(R)

...
...

...

(λ− λ0)
dg |hg(R).

Now, consider the sequence of pencils R(λ), R(λ)+T1(λ), R(λ)+T1(λ)+T2(λ), . . . ,
R(λ) + T (λ), and note that each of them is a rank 1 perturbation of the preceding
one. Applying [12, Theorem 1]2 to this sequence leads to

(λ− λ0)
dr+1 |hr+1(R)|hr(R + T1)| . . . |h1(R + T ),

(λ− λ0)
dr+2 |hr+2(R)|hr+1(R + T1)| . . . |h2(R + T ),

...
...

...
...

(λ− λ0)
dg |hg(R)|hg−1(R + T1)| . . . |hg−r(R + T ),

where h1(R+T ) �= 0 because the pencil (R+T )(λ) is regular. These divisibility chains
mean that the pencil (R+T )(λ) has at least g−r elementary divisors associated with
λ0:

(λ− λ0)
βg |(λ− λ0)

βg−1 | · · · |(λ− λ0)
βr+1 ,

2Theorem 1 in [12] states that if P (λ) and Q(λ) are n × n matrix polynomials with in-
variant polynomials hn(P )|hn−1(P )| · · · |h1(P ) and hn(Q)|hn−1(Q)| · · · |h1(Q), respectively, and
if the rank of P (λ) − Q(λ) is equal to one, then hn(P )|hn−1(Q)|hn−2(P )|hn−3(Q)| · · · and
hn(Q)|hn−1(P )|hn−2(Q)|hn−3(P )| · · · .
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with di ≤ βi for r + 1 ≤ i ≤ g. Each of these elementary divisors corresponds to a
βi × βi Jordan block associated with λ0 in the Weierstrass form of (R + T )(λ).

If the rank of T (λ) is r1 < r, then the result we have just proved can be applied
to show that the Weierstrass form of (R + T )(λ) has at least g − r1 > g − r Jordan
blocks associated with λ0 of dimensions βi ≥ di, i = r1 + 1, . . . , g, and the result
follows.

The previous lemma allows us to obtain the main result in the first part of the
present paper.

Theorem 2.2. Let λ0 be an eigenvalue of the complex regular matrix pencil
A0 + λA1, and n1 ≥ · · · ≥ ng be the dimensions of the Jordan blocks associated
with λ0 in its Weierstrass canonical form. Let B0 + λB1 be any complex pencil
such that the perturbed pencil A0 + B0 + λ(A1 + B1) is also regular. Assume that
g ≥ rank (B0 +λ0B1). Set ρ = rank (B0 +λ0B1)+rank B1 and nm = 1 for any m =
g + 1, . . . , ρ. Then the algebraic multiplicities of λ0 in the perturbed and unperturbed
pencils satisfy

(2.2) aA0+B0+λ(A1+B1)(λ0) ≥ aA0+λA1(λ0) + rank B1 − n1 − · · · − nρ,

using the notation in (2.1). Moreover, if the equality in this inequality holds, then
the dimensions of the Jordan blocks for λ0 in the Weierstrass canonical form of
A0 + B0 + λ(A1 + B1) are obtained by removing the first ρ members in the list
n1, . . . , ng, 1, . . . , 1︸ ︷︷ ︸

rank B1

.

Proof. Notice that

rank(B0 +λB1) = rank(B0 +λ0B1 +(λ−λ0)B1) ≤ rank(B0 +λ0B1)+ rank(B1) = ρ.

So, in the case ρ < g, Lemma 2.1 guarantees the existence of g − ρ Jordan blocks as-
sociated with λ0 of dimensions βρ+1 ≥ nρ+1, . . . , βg ≥ ng in the Weierstrass canonical
form of the perturbed pencil A0 + B0 + λ(A1 + B1). Moreover, the left side in the
inequality (1.1) implies that there are at least ρ1 = rank B1 additional Jordan blocks
of sizes α1 ≥ 1, . . . , αρ1

≥ 1 associated with λ0. Thus,

aA0+B0+λ(A1+B1
)(λ0) ≥ βρ+1 + · · · + βg + α1 + · · · + αρ1 ≥ nρ+1 + · · · + ng + ρ1.

Obviously, this inequality is equivalent to (2.2). If g ≤ ρ, then inequality (2.2) becomes

aA0+B0+λ(A1+B1)(λ0) ≥ g − rank (B0 + λ0B1).

This fact is trivial because of inequality (1.1) and the evident spectral inequality

aA0+B0+λ(A1+B1)(λ0) ≥ dim ker (A0 + λ0A1 + B0 + λ0B1).

Finally, notice that the previous inequalities become equalities if and only if the
number and dimensions of the Jordan blocks associated with λ0 in the Weierstrass
form of A0 + B0 + λ(A1 + B1) are those appearing in the statement of Theorem
2.2.

Remark 1. Notice that the unnatural definition nm = 1 for m = g + 1, . . . , ρ
allows us to express inequality (2.2) in a unified way for both cases ρ < g and
ρ ≥ g. The reader is invited to check that the number and dimensions of the Jordan
blocks of the perturbed pencil associated with λ0 in the case of equality in (2.2) are
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precisely those appearing in the generic behavior described in the abstract and the
introduction.

Theorem 2.2 gives us all the sizes of the Jordan blocks associated with λ0 in the
perturbed pencil A0 +B0 +λ(A1 +B1) when the inequality in (2.2) is an equality. As
we will see in the following section, this is the case for most perturbations B0 + λB1.

3. The generic behavior. The quantity

ã = aA0+λA1(λ0) + rank B1 − n1 − · · · − nρ

in (2.2), where ρ = rank (B0 + λ0B1) + rank B1 as in the statement of Theorem 2.2,
is a lower bound on the algebraic multiplicity of λ0 as an eigenvalue of the perturbed
pencil A0 + B0 + λ(A1 + B1). This means that for each perturbation B0 + λB1 of
A0 + λA1 such that g ≥ rank(B0 + λ0B1),

(3.1) det (A0 + B0 + λ(A1 + B1)) = (λ− λ0)
ãq(λ− λ0)

for some polynomial q(λ− λ0). Therefore, if the perturbed pencil is regular the alge-
braic multiplicity of λ0 in the perturbed pencil is exactly ã if and only if the coefficient
q(0) of (λ− λ0)

ã in (3.1) is not equal to zero. Clearly, once A0 and A1 are fixed, this
coefficient is a multivariate polynomial in the entries of B0 and B1. Therefore, if this
coefficient is not identically zero for all B0 and B1 such that rank(B0+λ0B1) = ρ0 ≤ g
and rank(B1) = ρ1, for fixed integers ρ0 and ρ1, the equation q(0) = 0 defines an al-
gebraic submanifold in the set of pairs (B0, B1) with rank(B0 + λ0B1) = ρ0 ≤ g and
rank(B1) = ρ1 that characterizes the set of perturbation pencils for which the generic
behavior described in the introduction does not happen. The only goal of this section
is to show that this algebraic submanifold is proper or, in other words, that the coeffi-
cient q(0) is not zero for all perturbations B0+λB1 such that rank(B0+λ0B1) = ρ0 ≤ g
and rank(B1) = ρ1. This is done in Lemma 3.2. This will allow us to say that the
change in the dimensions of the Jordan blocks described in Theorem 2.2, when the
equality in (2.2) holds, is generic. The reader is referred to [1] for a detailed de-
scription of the algebraic submanifold q(0) = 0 in terms of a determinantal equation
involving the entries of B0 and B1.

The simple Lemma 3.1 studies some specific perturbations of the blocks appearing
in the Weierstrass canonical form (1.4). It will be used in the proof of Lemma 3.2.

Lemma 3.1. Let Jk(α) be a k × k Jordan block with α on the main diagonal,
Ek(β) be a k × k matrix that is everywhere zero except for β in the (k, 1) entry, and
Dk(λ) = (λ − λ0) diag(s1, . . . , sk), where si = 0 or 1 for all i. Note that Dk(λ) may
be the zero matrix. Then,

1. λ0 is an eigenvalue of λI + Jk(−λ0) + Ek(λ − λ0) + Dk(λ) with algebraic
multiplicity 1,

2. λ0 is not an eigenvalue of λI + Jk(−λ0) + Ek(1) + Dk(λ),
3. λ0 is not an eigenvalue of λI + Jk(−λ1) + Dk(λ) if λ1 �= λ0,
4. λ0 is not an eigenvalue of λJk(0) + I + Dk(λ).

Proof. Check that
1.

det(λI + Jk(−λ0) + Ek(λ− λ0) + Dk(λ))

= (λ− λ0)

[
(λ− λ0)

k−1

(
k∏

i=1

(1 + si)

)
+ (−1)k+1

]
,
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2.

det(λI + Jk(−λ0) + Ek(1) + Dk(λ)) = (λ− λ0)
k

(
k∏

i=1

(1 + si)

)
+ (−1)k+1,

3.

det(λI + Jk(−λ1) + Dk(λ)) =

k∏
i=1

[(λ− λ1) + si(λ− λ0)] ,

4.

det(λJk(0) + I + Dk(λ)) =

k∏
i=1

[1 + si(λ− λ0)] .

Lemma 3.2. Let λ0 be an eigenvalue of the complex n× n regular matrix pencil
A0 + λA1, and n1 ≥ · · · ≥ ng be the dimensions of the Jordan blocks associated with
λ0 in its Weierstrass canonical form. Let ρ0 and ρ1 be two nonnegative integers, with
ρ0 ≤ g and ρ1 ≤ n. Then, there exists a complex matrix pencil B0 + λB1 such that

ρ0 = rank(B0 + λ0B1), ρ1 = rank(B1),

and the algebraic multiplicity of λ0 in the perturbed pencil A0 + B0 + λ(A1 + B1)
is exactly aA0+λA1(λ0) + ρ1 − n1 − · · · − nρ , where ρ := ρ0 + ρ1 and nm = 1 for
m = g + 1, . . . , ρ.

Proof. It suffices to prove the result when A0+λA1 is in Weierstrass canonical form
because, otherwise, we can consider the strict equivalence (1.4), apply the result to
the matrix pencil in Weierstrass canonical form in the right-hand side (with B0 +λB1

as the perturbation pencil), and take Q−1(B0 + λB1)P
−1.

So, assume that A0+λA1 is in Weierstrass canonical form given by the right-hand
side of (1.4). We consider separately the following two cases.

(i) Case ρ < g . Define the matrices

B0 = diag(En1
(1), . . . , Enρ0

(1), Enρ0+1
(−λ0), . . . , Enρ0+ρ1

(−λ0), 0, . . . , 0)

and

B1 = diag(

ρ0 blocks︷ ︸︸ ︷
0, . . . , 0, Enρ0+1(1), . . . , Enρ0+ρ1

(1), 0, . . . , 0),

where zeros denote matrices, and the partition in diagonal blocks is conformal
to the one of the Weierstrass form (1.4). It can be checked that the pencil
B0 + λB1 verifies the conditions mentioned in the statement, by using the
first two items in Lemma 3.1 with Dk(λ) = 0.

(ii) Case ρ ≥ g . Now, we define

B̂0 = diag(En1(1), . . . , Enρ0
(1), Enρ0+1(−λ0), . . . , Eg(−λ0), 0, . . . , 0)

and

B̂1 = diag(

ρ0 blocks︷ ︸︸ ︷
0, . . . , 0, Enρ0+1(1), . . . , Eng (1), 0, . . . , 0),
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where the partition is again conformal to the one in the Weierstrass canonical
form (1.4). Notice that rank(B̂1) = g − ρ0 ≤ ρ1, and that by appropriate

choices of {s1, . . . , sn}, si = 0 or 1 for all i, rank(B̂1 + diag(s1, . . . , sn))
may take any value between g − ρ0 and n. Let {s̃1, . . . , s̃n} be such that

rank(B̂1 + diag(s̃1, . . . , s̃n)) = ρ1, and define the pencil D(λ) = D0 + λD1 =

(λ − λ0) diag(s̃1, . . . , s̃n). Then the pencil B0 + λB1 ≡ B̂0 + λB̂1 + D(λ)
verifies the conditions mentioned in the statement, because rank(B1) = ρ1,

rank(B0 + λ0B1) = rank(B̂0 + λ0B̂1) = ρ0,

and Lemma 3.1 implies that the algebraic multiplicity of λ0 in A0 + B0 +
λ(A1 +B1) is g−ρ0, which is exactly aA0+λA1(λ0)+ρ1 −n1 −· · ·−nρ .

Theorem 2.2 and Lemma 3.2 allow us to give a complete answer to the problem
originally posed in the introduction: Given a regular pencil A0 +λA1 with eigenvalue
λ0, perturbed by a pencil B0 + λB1, determine the generic Weierstrass structure
associated with λ0 as an eigenvalue of the perturbed pencil (1.3) when the low rank
condition (1.2) holds for the perturbation. Notice that if B0 + λB1 is in the set
consisting of perturbation pencils for which q(0) �= 0 (with q(λ) as in (3.1)), then the
perturbed pencil A0 +B0 + λ(A1 +B1) is regular. With this observation in mind we
can state the main theorem of this paper in the following way.

Theorem 3.3. Let λ0 be an eigenvalue of the complex regular n×n matrix pencil
A0+λA1 with Weierstrass canonical form (1.4), and let g be the geometric multiplicity
of λ0 in A0 + λA1. Let B0 + λB1 be any n× n pencil, and set

ρ0 := rank(B0 + λ0B1), ρ1 := rank(B1), ρ := ρ0 + ρ1.

If ρ0 < g, then λ0 is an eigenvalue of the perturbed pencil

(3.2) A0 + B0 + λ(A1 + B1),

and, generically, the pencil A0 + B0 + λ(A1 + B1) is regular and the dimensions of
the Jordan blocks for λ0 in the Weierstrass canonical form of A0 + B0 + λ(A1 + B1)
are obtained by removing the first ρ members in the sequence n1, . . . , ng, 1, . . . , 1︸ ︷︷ ︸

ρ1

.

Remark 2. 1. An analogous result holds for the infinite eigenvalue of A0 + λA1,
by applying the previous theorem to the zero eigenvalue of the dual pencils A1 +λA0

and A1 + B1 + λ(A0 + B0).
2. Theorem 3.3 describes in a concise way the generic behavior presented in the

introduction of this paper.
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