LOW RANK PERTURBATION OF WEIERSTRASS STRUCTURE*

FERNANDO DE TERÁN ${ }^{\dagger}$, FROILÁN M. DOPICO ${ }^{\dagger}$, AND JULIO MORO ${ }^{\dagger}$

Abstract

Let $A_{0}+\lambda A_{1}$ be a regular matrix pencil, and let λ_{0} be one of its finite eigenvalues having g elementary Jordan blocks in the Weierstrass canonical form. We show that for most matrices B_{0} and B_{1} with rank $\left(B_{0}+\lambda_{0} B_{1}\right)<g$ there are $g-\operatorname{rank}\left(B_{0}+\lambda_{0} B_{1}\right)$ Jordan blocks corresponding to the eigenvalue λ_{0} in the Weierstrass form of the perturbed pencil $A_{0}+B_{0}+\lambda\left(A_{1}+B_{1}\right)$. If rank $\left(B_{0}+\right.$ $\left.\lambda_{0} B_{1}\right)+\operatorname{rank}\left(B_{1}\right)$ does not exceed the number of λ_{0}-Jordan blocks in $A_{0}+\lambda A_{1}$ of dimension greater than one, then the λ_{0}-Jordan blocks of the perturbed pencil are the $g-\operatorname{rank}\left(B_{0}+\lambda_{0} B_{1}\right)-\operatorname{rank}\left(B_{1}\right)$ smallest λ_{0}-Jordan blocks of $A_{0}+\lambda A_{1}$, together with rank $\left(B_{1}\right)$ blocks of dimension one. Otherwise, all $g-\operatorname{rank}\left(B_{0}+\lambda_{0} B_{1}\right) \lambda_{0}$-Jordan blocks of the perturbed pencil are of dimension one. This happens for any pair of matrices B_{0} and B_{1} except those in a proper algebraic submanifold in the set of matrix pairs. If $A_{0}+\lambda A_{1}$ has an infinite eigenvalue, then the corresponding result follows from considering the zero eigenvalue of the dual pencils $A_{1}+\lambda A_{0}$ and $A_{1}+B_{1}+\lambda\left(A_{0}+B_{0}\right)$.

Key words. regular matrix pencils, Weierstrass canonical form, low rank perturbations, matrix spectral perturbation theory

AMS subject classifications. 15A22, 15A18, 15A21
DOI. 10.1137/050633020

1. Introduction. The change of the Jordan structure of a matrix A under perturbations B of low rank has been recently studied by several authors [5, 7, 8, 9, 10]. It is known that if λ_{0} is one of the eigenvalues of A having g elementary Jordan blocks in the Jordan canonical form of A, then for most matrices B satisfying rank $(B)<g$, the Jordan blocks of $A+B$ with eigenvalue λ_{0} are just the g - $\operatorname{rank}(B)$ smallest Jordan blocks of A with eigenvalue λ_{0}. As far as we know, this generic behavior was first proved in [5] and again in [7] and [8, 9, 10]. The proof in [7] uses only elementary linear algebra results, and allows us to explicitly characterize the set of perturbation matrices B for which this generic behavior does not happen. This is done through a scalar determinantal equation involving B and some of the λ_{0}-eigenvectors of A. Thus, this behavior can be properly termed as generic, since it happens for any perturbation matrix B except those belonging to a proper algebraic submanifold in the set of $n \times n$ matrices of given rank. It is interesting to note that the result in [5] remains valid for infinite dimensional compact linear operators in Banach spaces.

The purpose of this paper is to study which is the generic change of the Weierstrass canonical form [4] of a regular $n \times n$ pencil of matrices $A_{0}+\lambda A_{1}$ under a low rank perturbation $B_{0}+\lambda B_{1}$. We will see that this change is rather different from the change described above for matrices. The regular matrix pencil $A_{0}+\lambda A_{1}$ may have an infinite eigenvalue, whose Jordan blocks in the Weiertrass canonical form are precisely the Jordan blocks associated with the zero eigenvalue in the Weierstrass form of the dual pencil $A_{1}+\lambda A_{0}$. Therefore, we may focus on finite eigenvalues of $A_{0}+\lambda A_{1}$. The perturbation results for the infinite eigenvalue follow from results for the zero eigenvalue of the dual pencil.

[^0]Let λ_{0} be a finite eigenvalue with geometric multiplicity g of the regular $n \times n$ matrix pencil $A_{0}+\lambda A_{1}$. Recall that a pencil is regular if the polynomial $\operatorname{det}\left(A_{0}+\right.$ λA_{1}) in λ is not identically zero, and that the geometric multiplicity of λ_{0} is $g=$ $\operatorname{dim} \operatorname{ker}\left(A_{0}+\lambda_{0} A_{1}\right)$, where ker denotes the null space. The elementary inequalities $\operatorname{rank}(C+D) \leq \operatorname{rank}(C)+\operatorname{rank}(D)$ and $\operatorname{rank}(C) \leq \operatorname{rank}(C+D)+\operatorname{rank}(D)$, valid for any pair of matrices C and D, lead to

$$
\begin{aligned}
\operatorname{rank}\left(A_{0}+\lambda_{0} A_{1}+B_{0}+\lambda_{0} B_{1}\right) & \leq \operatorname{rank}\left(A_{0}+\lambda_{0} A_{1}\right)+\operatorname{rank}\left(B_{0}+\lambda_{0} B_{1}\right) \\
\operatorname{rank}\left(A_{0}+\lambda_{0} A_{1}\right) & \leq \operatorname{rank}\left(A_{0}+\lambda_{0} A_{1}+B_{0}+\lambda_{0} B_{1}\right)+\operatorname{rank}\left(B_{0}+\lambda_{0} B_{1}\right) .
\end{aligned}
$$

Combining both inequalities, one gets

$$
\begin{equation*}
g-\operatorname{rank}\left(B_{0}+\lambda_{0} B_{1}\right) \leq \operatorname{dim} \operatorname{ker}\left(A_{0}+\lambda_{0} A_{1}+B_{0}+\lambda_{0} B_{1}\right) \leq g+\operatorname{rank}\left(B_{0}+\lambda_{0} B_{1}\right) \tag{1.1}
\end{equation*}
$$

Therefore, whenever

$$
\begin{equation*}
\operatorname{rank}\left(B_{0}+\lambda_{0} B_{1}\right)<g \tag{1.2}
\end{equation*}
$$

the eigenvalue λ_{0} of $A_{0}+\lambda A_{1}$ stays as an eigenvalue of the perturbed pencil

$$
\begin{equation*}
A_{0}+B_{0}+\lambda\left(A_{1}+B_{1}\right) \tag{1.3}
\end{equation*}
$$

As a consequence, by "low" rank perturbation we will mean in what follows that B_{0} and B_{1} satisfy (1.2), a condition which depends on the particular eigenvalue λ_{0} we are considering. It is well known that for a regular pencil $L_{0}+\lambda L_{1}$ the number of Jordan blocks associated with λ_{0} in its Weierstrass canonical form is equal to dim $\operatorname{ker}\left(L_{0}+\lambda_{0} L_{1}\right)$. Therefore, assuming that (1.3) is still regular, (1.1) implies that the perturbation $B_{0}+\lambda B_{1}$ can destroy at most $\operatorname{rank}\left(B_{0}+\lambda_{0} B_{1}\right)$ Jordan blocks of $A_{0}+\lambda A_{1}$, and can create at most $\operatorname{rank}\left(B_{0}+\lambda_{0} B_{1}\right)$ new Jordan blocks associated with the finite eigenvalue λ_{0} of $A_{0}+\lambda A_{1}$. This allows many different choices for the number and dimensions of the Jordan blocks appearing in the Weierstrass form of $A_{0}+B_{0}+\lambda\left(A_{1}+B_{1}\right)$. The goal of this work is to find out which is the generic behavior in this respect. ${ }^{1}$

The result we present depends on two quantities for each eigenvalue λ_{0}, namely

$$
\rho_{0}=\operatorname{rank}\left(B_{0}+\lambda_{0} B_{1}\right) \quad \text { and } \quad \rho_{1}=\operatorname{rank}\left(B_{1}\right)
$$

Assuming that condition (1.2) holds, we will prove that for generic matrices B_{0} and B_{1} there are precisely $g-\rho_{0}$ Jordan blocks associated with λ_{0} in the Weierstrass canonical form of the perturbed pencil (1.3). Moreover, if we denote by d_{0} the number of Jordan blocks in $A_{0}+\lambda A_{1}$ with eigenvalue λ_{0} of dimension greater than one, we will prove that whenever $\rho_{0}+\rho_{1} \leq d_{0}$, the largest ρ_{0} Jordan blocks of $A_{0}+\lambda A_{1}$ associated with λ_{0} disappear, and the second-largest ρ_{1} blocks of λ_{0} turn into 1×1 blocks, while the rest of the Jordan blocks of λ_{0} in $A_{0}+\lambda A_{1}$ remain as Jordan blocks in the perturbed pencil (1.3). If $\rho_{0}+\rho_{1}>d_{0}$, then there will be only 1×1 blocks corresponding to λ_{0} in the Weierstrass form of (1.3). This generic behavior coincides with the one previously described for low rank perturbations of the Jordan canonical form of matrices in the case $B_{1}=0$, while it is rather different when $B_{1} \neq 0$. Describing this behavior and proving that it is generic is our major contribution.

[^1]Inequality (1.1) makes clear that $B_{0}+\lambda_{0} B_{1}$ is bound to play a relevant role in the perturbation of the Weierstrass structure, since it determines the geometric multiplicity of λ_{0} in (1.3). To understand why B_{1} plays a separate role on its own, recall that a Jordan chain of $A_{0}+\lambda A_{1}$ of length s associated with λ_{0} satisfies the equations $\left(A_{0}+\lambda_{0} A_{1}\right) v_{1}=0$ and $\left(A_{0}+\lambda_{0} A_{1}\right) v_{k}=A_{1} v_{k-1}$ for $2 \leq k \leq s$. Therefore, it is expected that perturbing A_{1} affects to the length of the Jordan chains. In plain words, the generic behavior described above corresponds to a cooperation between $B_{0}+\lambda_{0} B_{1}$ and B_{1} to destroy some of the blocks, and to decrease the dimension of as many of the largest Jordan blocks as possible, while still fulfilling the constraint (1.1) on the geometric multiplicity.

The results obtained in the present paper, as those in [7], are valid for perturbations of any size satisfying the low rank condition (1.2), i.e., they are not first-order perturbation results. Notice also that we are not paying attention to the perturbation of the eigenvalues corresponding to the destroyed Jordan blocks. First order perturbation results for this problem are enumerated in [6] for general matrix polynomials, and, more recently, in [2]. In [13] first order multiparametric perturbations have been considered for multiple semisimple eigenvalues. Several perturbation bounds, valid for perturbations of finite size, appear in [11], but they do not apply to multiple defective eigenvalues, except in the case of some Gerschgorin-like inclusion regions.

Now, we summarize the Weierstrass canonical form of a regular pencil [4], and introduce some notation to be used throughout the paper. For any regular $n \times n$ complex matrix pencil $A_{0}+\lambda A_{1}$ having λ_{0} as one of its eigenvalues, there exist nonsingular $n \times n$ matrices P and Q, independent of λ, such that

$$
\begin{equation*}
Q\left(A_{0}+\lambda A_{1}\right) P=\operatorname{diag}\left(J_{n_{1}}\left(-\lambda_{0}\right), \ldots, J_{n_{g}}\left(-\lambda_{0}\right), \widetilde{J}, I_{\infty}\right)+\lambda \operatorname{diag}\left(I_{1}, I_{2}, N\right) \tag{1.4}
\end{equation*}
$$

where $\operatorname{diag}(C, E)$ denotes a block diagonal matrix with square diagonal blocks C and $E ; J_{n_{i}}\left(-\lambda_{0}\right)$ stands for a Jordan block of dimension n_{i} with $-\lambda_{0}$ on the main diagonal; \widetilde{J} is a matrix in Jordan canonical form corresponding to the other finite eigenvalues of the pencil; and N is a matrix in Jordan canonical form whose eigenvalues are all equal to zero. N contains the spectral structure of the infinite eigenvalue of the pencil. Finally, I_{1}, I_{2} and I_{∞} are identity matrices of matching dimensions to those of $\operatorname{diag}\left(J_{n_{1}}\left(-\lambda_{0}\right), \ldots, J_{n_{g}}\left(-\lambda_{0}\right)\right), \widetilde{J}$ and N, respectively. The right-hand side of (1.4) is the Weierstrass canonical form of the pencil $A_{0}+\lambda A_{1}$, and it is unique up to permutation of the diagonal Jordan blocks. The Weierstrass canonical form displays all of the spectral information of the regular pencil $A_{0}+\lambda A_{1}$. From (1.4), one can easily see that the geometric multiplicity of λ_{0} is g and its algebraic multiplicity is

$$
\begin{equation*}
a_{A_{0}+\lambda A_{1}}\left(\lambda_{0}\right)=n_{1}+\cdots+n_{g} \tag{1.5}
\end{equation*}
$$

Without loss of generality, we assume the dimensions n_{i} to be ordered decreasingly, i.e.,

$$
\begin{equation*}
n_{1} \geq n_{2} \geq \cdots \geq n_{g} \tag{1.6}
\end{equation*}
$$

The paper is organized as follows: Section 2 contains one of the main results (Theorem 2.2) concerning the change of the Weierstrass structure. It gives a lower bound on the algebraic multiplicity associated with each eigenvalue in the perturbed pencil, and suggests that the generic behavior for the Jordan blocks of the perturbed pencil is the one happening when this lower bound is attained. In section 3, we prove that this behavior is indeed generic by showing that it holds for all perturbations except those in a proper algebraic submanifold in the set of matrix pencils. Finally, Theorem 3.3 summarizes the results obtained throughout this paper.
2. Lower bounds on the algebraic multiplicities and the dimensions of Jordan blocks in the perturbed pencil. Throughout this section we follow a notation consistent with (1.5), and denote by

$$
\begin{equation*}
a_{R(\lambda)}\left(\lambda_{0}\right) \tag{2.1}
\end{equation*}
$$

the algebraic multiplicity of the eigenvalue λ_{0} in the regular matrix pencil $R(\lambda)$. Our aim is to determine the generic Weierstrass structure of λ_{0} in a perturbed matrix pencil $A_{0}+B_{0}+\lambda\left(A_{1}+B_{1}\right)$, starting from the structure of this eigenvalue in the unperturbed pencil $A_{0}+\lambda A_{1}$. For this, we need to know $a_{A_{0}+B_{0}+\lambda\left(A_{1}+B_{1}\right)}\left(\lambda_{0}\right)$, as well as how this algebraic multiplicity is distributed among the Jordan blocks of λ_{0}. At least two approaches are possible to solve this problem. First, one can start with Jordan chains of $A_{0}+\lambda A_{1}$ associated with λ_{0}, and then explicitly build new Jordan chains for λ_{0} in $A_{0}+B_{0}+\lambda\left(A_{1}+B_{1}\right)$, exhausting the algebraic multiplicity $a_{A_{0}+B_{0}+\lambda\left(A_{1}+B_{1}\right)}\left(\lambda_{0}\right)$. This approach was used in [7, 8, 9] for the standard eigenvalue problem $A-\lambda I$. It has the advantage of providing the new Jordan chains, and the drawback of being rather intricate in the case of pencils. In this paper we use a simpler approach: First, we determine lower bounds on the number and the dimensions of the Jordan blocks associated with λ_{0} in the perturbed pencil. This method, based on a result by Thompson [12], involves the use of the invariant factors of the pencils. Then, we prove that the generic behavior corresponds to the case when these lower bounds are attained.

We begin by recalling that the rank of an arbitrary matrix pencil, regular or singular, $T(\lambda)=T_{0}+\lambda T_{1}$ is r if all of the minors of $T(\lambda)$ of dimension greater than r are identically equal to zero, but $T(\lambda)$ has minors of dimension r which are polynomials in λ not identically equal to zero. As a consequence, the rank of a regular $n \times n$ matrix pencil is equal to n.

The next auxiliary lemma is a consequence of [12, Theorem 1]. It establishes lower bounds on the number and dimensions of the Jordan blocks in the Weierstrass form of a regular matrix pencil $(R+T)(\lambda)$, where $R(\lambda)$ is a regular matrix pencil and $T(\lambda)$ is any pencil of rank r.

Lemma 2.1. Let $R(\lambda)=R_{0}+\lambda R_{1}$ be a complex regular square pencil, and $T(\lambda)=T_{0}+\lambda T_{1}$ be another complex pencil of the same dimension with rank at most r. Let λ_{0} be an eigenvalue of $R(\lambda)$ with g associated Jordan blocks of dimensions $d_{1} \geq \cdots \geq d_{g}$ in the Weierstrass form of $R(\lambda)$. If $(R+T)(\lambda)$ is also a regular pencil and $r \leq g$, then in the Weierstrass form of $(R+T)(\lambda)$ there are at least $g-r$ Jordan blocks associated with λ_{0} of dimensions $\beta_{r+1} \geq \cdots \geq \beta_{g}$ such that $\beta_{i} \geq d_{i}$ for $r+1 \leq i \leq g$.

Proof. First, let us assume that the rank of $T(\lambda)$ is exactly r. We begin by proving that any pencil $T(\lambda)$ of rank r is the sum of r singular pencils of rank 1 . This can be seen by using the Kronecker canonical form of singular pencils [4, Chapter XII]. Let $K_{0}+\lambda K_{1}$ be the Kronecker canonical form of $T(\lambda)=T_{0}+\lambda T_{1}$, and write $K_{0}+\lambda K_{1}$ as the sum of the following matrices:

1. For any singular block L_{k} of dimension $k \times(k+1)$ appearing in $K_{0}+\lambda K_{1}$ [4, p. 39], we have that $L_{k}=L_{k}^{(1)}+\cdots+L_{k}^{(k)}$, where the j th row of $L_{k}^{(j)}$ is equal to the j th row of L_{k}, and the rest of the rows of $L_{k}^{(j)}$ are zero. Therefore L_{k} is the sum of k singular pencils with rank 1 .
2. An analogous expression holds for any singular block L_{p}^{T} of dimension $(p+$ 1) $\times p$ appearing in $K_{0}+\lambda K_{1}$.
3. Finally, for the $m \times m$ regular part $F(\lambda)=F_{0}+\lambda F_{1}$ of $K_{0}+\lambda K_{1}$, we have again that $F(\lambda)=F^{(1)}+\cdots+F^{(m)}$, where $F^{(j)}$ has the j th row equal to the j th row of $F(\lambda)$ and the rest of the rows of $F^{(j)}$ are zero. Therefore $F(\lambda)$ is the sum of m singular pencils with rank 1.

The pencil $K_{0}+\lambda K_{1}$ can be expressed as the sum of r singular pencils of rank 1 just by combining the previous expansions of its singular blocks and of its regular part. The same holds for $T(\lambda)$ because it is strictly equivalent to $K_{0}+\lambda K_{1}$. Let this decomposition be

$$
T(\lambda)=T_{1}(\lambda)+\cdots+T_{r}(\lambda)
$$

where $\operatorname{rank} T_{i}(\lambda)=1$ for $1 \leq i \leq r$.
For any $n \times n$ regular pencil $P(\lambda)=P_{0}+\lambda P_{1}$, we denote by

$$
h_{n}(P)\left|h_{n-1}(P)\right| \cdots \mid h_{1}(P)
$$

its invariant polynomials [3, Chapter VI], also called invariant factors. As usual, $h_{n}(P) \mid h_{n-1}(P)$ means that $h_{n}(P)$ divides $h_{n-1}(P)$. Notice also that $h_{1}(P) \neq 0$ because the pencil is regular.

Let

$$
\left(\lambda-\lambda_{0}\right)^{d_{g}}\left|\left(\lambda-\lambda_{0}\right)^{d_{g-1}}\right| \cdots \mid\left(\lambda-\lambda_{0}\right)^{d_{1}}
$$

be the elementary divisors [3, Chapter VI] of $R(\lambda)$ associated with λ_{0}. Each elementary divisor $\left(\lambda-\lambda_{0}\right)^{d_{i}}$ corresponds to a Jordan block of λ_{0} of dimension d_{i} in the Weierstrass form of $R(\lambda)$. It is well known that

$$
\begin{gathered}
\left(\lambda-\lambda_{0}\right)^{d_{1}} \mid h_{1}(R) \\
\left(\lambda-\lambda_{0}\right)^{d_{2}} \mid h_{2}(R) \\
\vdots \quad \vdots \\
\left(\lambda-\lambda_{0}\right)^{d_{g}} \mid h_{g}(R) .
\end{gathered}
$$

Now, consider the sequence of pencils $R(\lambda), R(\lambda)+T_{1}(\lambda), R(\lambda)+T_{1}(\lambda)+T_{2}(\lambda), \ldots$, $R(\lambda)+T(\lambda)$, and note that each of them is a rank 1 perturbation of the preceding one. Applying [12, Theorem 1] ${ }^{2}$ to this sequence leads to

$$
\begin{gathered}
\left(\lambda-\lambda_{0}\right)^{d_{r+1}}\left|h_{r+1}(R)\right| h_{r}\left(R+T_{1}\right)|\ldots| h_{1}(R+T) \\
\left(\lambda-\lambda_{0}\right)^{d_{r+2}}\left|h_{r+2}(R)\right| h_{r+1}\left(R+T_{1}\right)|\ldots| h_{2}(R+T), \\
\vdots \\
\vdots \\
\left(\lambda-\lambda_{0}\right)^{d_{g}}\left|h_{g}(R)\right| h_{g-1}\left(R+T_{1}\right)|\ldots| h_{g-r}(R+T)
\end{gathered}
$$

where $h_{1}(R+T) \neq 0$ because the pencil $(R+T)(\lambda)$ is regular. These divisibility chains mean that the pencil $(R+T)(\lambda)$ has at least $g-r$ elementary divisors associated with λ_{0} :

$$
\left(\lambda-\lambda_{0}\right)^{\beta_{g}}\left|\left(\lambda-\lambda_{0}\right)^{\beta_{g-1}}\right| \cdots \mid\left(\lambda-\lambda_{0}\right)^{\beta_{r+1}}
$$

[^2]with $d_{i} \leq \beta_{i}$ for $r+1 \leq i \leq g$. Each of these elementary divisors corresponds to a $\beta_{i} \times \beta_{i}$ Jordan block associated with λ_{0} in the Weierstrass form of $(R+T)(\lambda)$.

If the rank of $T(\lambda)$ is $r_{1}<r$, then the result we have just proved can be applied to show that the Weierstrass form of $(R+T)(\lambda)$ has at least $g-r_{1}>g-r$ Jordan blocks associated with λ_{0} of dimensions $\beta_{i} \geq d_{i}, i=r_{1}+1, \ldots, g$, and the result follows.

The previous lemma allows us to obtain the main result in the first part of the present paper.

THEOREM 2.2. Let λ_{0} be an eigenvalue of the complex regular matrix pencil $A_{0}+\lambda A_{1}$, and $n_{1} \geq \cdots \geq n_{g}$ be the dimensions of the Jordan blocks associated with λ_{0} in its Weierstrass canonical form. Let $B_{0}+\lambda B_{1}$ be any complex pencil such that the perturbed pencil $A_{0}+B_{0}+\lambda\left(A_{1}+B_{1}\right)$ is also regular. Assume that $g \geq \operatorname{rank}\left(B_{0}+\lambda_{0} B_{1}\right)$. Set $\rho=\operatorname{rank}\left(B_{0}+\lambda_{0} B_{1}\right)+\operatorname{rank} B_{1}$ and $n_{m}=1$ for any $m=$ $g+1, \ldots, \rho$. Then the algebraic multiplicities of λ_{0} in the perturbed and unperturbed pencils satisfy

$$
\begin{equation*}
a_{A_{0}+B_{0}+\lambda\left(A_{1}+B_{1}\right)}\left(\lambda_{0}\right) \geq a_{A_{0}+\lambda A_{1}}\left(\lambda_{0}\right)+\operatorname{rank} B_{1}-n_{1}-\cdots-n_{\rho} \tag{2.2}
\end{equation*}
$$

using the notation in (2.1). Moreover, if the equality in this inequality holds, then the dimensions of the Jordan blocks for λ_{0} in the Weierstrass canonical form of $A_{0}+B_{0}+\lambda\left(A_{1}+B_{1}\right)$ are obtained by removing the first ρ members in the list $n_{1}, \ldots, n_{g}, \underbrace{1, \ldots, 1}_{\text {rank } B_{1}}$.

Proof. Notice that
$\operatorname{rank}\left(B_{0}+\lambda B_{1}\right)=\operatorname{rank}\left(B_{0}+\lambda_{0} B_{1}+\left(\lambda-\lambda_{0}\right) B_{1}\right) \leq \operatorname{rank}\left(B_{0}+\lambda_{0} B_{1}\right)+\operatorname{rank}\left(B_{1}\right)=\rho$.
So, in the case $\rho<g$, Lemma 2.1 guarantees the existence of $g-\rho$ Jordan blocks associated with λ_{0} of dimensions $\beta_{\rho+1} \geq n_{\rho+1}, \ldots, \beta_{g} \geq n_{g}$ in the Weierstrass canonical form of the perturbed pencil $A_{0}+B_{0}+\lambda\left(A_{1}+B_{1}\right)$. Moreover, the left side in the inequality (1.1) implies that there are at least $\rho_{1}=\operatorname{rank} B_{1}$ additional Jordan blocks of sizes $\alpha_{1} \geq 1, \ldots, \alpha_{\rho_{1}} \geq 1$ associated with λ_{0}. Thus,

$$
\left.a_{A_{0}+B_{0}+\lambda\left(A_{1}+B_{1}\right.}\right)\left(\lambda_{0}\right) \geq \beta_{\rho+1}+\cdots+\beta_{g}+\alpha_{1}+\cdots+\alpha_{\rho_{1}} \geq n_{\rho+1}+\cdots+n_{g}+\rho_{1}
$$

Obviously, this inequality is equivalent to (2.2). If $g \leq \rho$, then inequality (2.2) becomes

$$
a_{A_{0}+B_{0}+\lambda\left(A_{1}+B_{1}\right)}\left(\lambda_{0}\right) \geq g-\operatorname{rank}\left(B_{0}+\lambda_{0} B_{1}\right)
$$

This fact is trivial because of inequality (1.1) and the evident spectral inequality

$$
a_{A_{0}+B_{0}+\lambda\left(A_{1}+B_{1}\right)}\left(\lambda_{0}\right) \geq \operatorname{dim} \operatorname{ker}\left(A_{0}+\lambda_{0} A_{1}+B_{0}+\lambda_{0} B_{1}\right)
$$

Finally, notice that the previous inequalities become equalities if and only if the number and dimensions of the Jordan blocks associated with λ_{0} in the Weierstrass form of $A_{0}+B_{0}+\lambda\left(A_{1}+B_{1}\right)$ are those appearing in the statement of Theorem 2.2 .

Remark 1. Notice that the unnatural definition $n_{m}=1$ for $m=g+1, \ldots, \rho$ allows us to express inequality (2.2) in a unified way for both cases $\rho<g$ and $\rho \geq g$. The reader is invited to check that the number and dimensions of the Jordan blocks of the perturbed pencil associated with λ_{0} in the case of equality in (2.2) are
precisely those appearing in the generic behavior described in the abstract and the introduction.

Theorem 2.2 gives us all the sizes of the Jordan blocks associated with λ_{0} in the perturbed pencil $A_{0}+B_{0}+\lambda\left(A_{1}+B_{1}\right)$ when the inequality in (2.2) is an equality. As we will see in the following section, this is the case for most perturbations $B_{0}+\lambda B_{1}$.
3. The generic behavior. The quantity

$$
\widetilde{a}=a_{A_{0}+\lambda A_{1}}\left(\lambda_{0}\right)+\operatorname{rank} B_{1}-n_{1}-\cdots-n_{\rho}
$$

in (2.2), where $\rho=\operatorname{rank}\left(B_{0}+\lambda_{0} B_{1}\right)+\operatorname{rank} B_{1}$ as in the statement of Theorem 2.2, is a lower bound on the algebraic multiplicity of λ_{0} as an eigenvalue of the perturbed pencil $A_{0}+B_{0}+\lambda\left(A_{1}+B_{1}\right)$. This means that for each perturbation $B_{0}+\lambda B_{1}$ of $A_{0}+\lambda A_{1}$ such that $g \geq \operatorname{rank}\left(B_{0}+\lambda_{0} B_{1}\right)$,

$$
\begin{equation*}
\operatorname{det}\left(A_{0}+B_{0}+\lambda\left(A_{1}+B_{1}\right)\right)=\left(\lambda-\lambda_{0}\right)^{\tilde{a}} q\left(\lambda-\lambda_{0}\right) \tag{3.1}
\end{equation*}
$$

for some polynomial $q\left(\lambda-\lambda_{0}\right)$. Therefore, if the perturbed pencil is regular the algebraic multiplicity of λ_{0} in the perturbed pencil is exactly \widetilde{a} if and only if the coefficient $q(0)$ of $\left(\lambda-\lambda_{0}\right)^{\tilde{a}}$ in (3.1) is not equal to zero. Clearly, once A_{0} and A_{1} are fixed, this coefficient is a multivariate polynomial in the entries of B_{0} and B_{1}. Therefore, if this coefficient is not identically zero for all B_{0} and B_{1} such that $\operatorname{rank}\left(B_{0}+\lambda_{0} B_{1}\right)=\rho_{0} \leq g$ and $\operatorname{rank}\left(B_{1}\right)=\rho_{1}$, for fixed integers ρ_{0} and ρ_{1}, the equation $q(0)=0$ defines an algebraic submanifold in the set of pairs $\left(B_{0}, B_{1}\right)$ with $\operatorname{rank}\left(B_{0}+\lambda_{0} B_{1}\right)=\rho_{0} \leq g$ and $\operatorname{rank}\left(B_{1}\right)=\rho_{1}$ that characterizes the set of perturbation pencils for which the generic behavior described in the introduction does not happen. The only goal of this section is to show that this algebraic submanifold is proper or, in other words, that the coefficient $q(0)$ is not zero for all perturbations $B_{0}+\lambda B_{1}$ such that $\operatorname{rank}\left(B_{0}+\lambda_{0} B_{1}\right)=\rho_{0} \leq g$ and $\operatorname{rank}\left(B_{1}\right)=\rho_{1}$. This is done in Lemma 3.2. This will allow us to say that the change in the dimensions of the Jordan blocks described in Theorem 2.2, when the equality in (2.2) holds, is generic. The reader is referred to [1] for a detailed description of the algebraic submanifold $q(0)=0$ in terms of a determinantal equation involving the entries of B_{0} and B_{1}.

The simple Lemma 3.1 studies some specific perturbations of the blocks appearing in the Weierstrass canonical form (1.4). It will be used in the proof of Lemma 3.2.

Lemma 3.1. Let $J_{k}(\alpha)$ be a $k \times k$ Jordan block with α on the main diagonal, $E_{k}(\beta)$ be a $k \times k$ matrix that is everywhere zero except for β in the $(k, 1)$ entry, and $D_{k}(\lambda)=\left(\lambda-\lambda_{0}\right) \operatorname{diag}\left(s_{1}, \ldots, s_{k}\right)$, where $s_{i}=0$ or 1 for all i. Note that $D_{k}(\lambda)$ may be the zero matrix. Then,

1. λ_{0} is an eigenvalue of $\lambda I+J_{k}\left(-\lambda_{0}\right)+E_{k}\left(\lambda-\lambda_{0}\right)+D_{k}(\lambda)$ with algebraic multiplicity 1 ,
2. λ_{0} is not an eigenvalue of $\lambda I+J_{k}\left(-\lambda_{0}\right)+E_{k}(1)+D_{k}(\lambda)$,
3. λ_{0} is not an eigenvalue of $\lambda I+J_{k}\left(-\lambda_{1}\right)+D_{k}(\lambda)$ if $\lambda_{1} \neq \lambda_{0}$,
4. λ_{0} is not an eigenvalue of $\lambda J_{k}(0)+I+D_{k}(\lambda)$.

Proof. Check that
1.

$$
\begin{aligned}
& \operatorname{det}\left(\lambda I+J_{k}\left(-\lambda_{0}\right)+E_{k}\left(\lambda-\lambda_{0}\right)+D_{k}(\lambda)\right) \\
& \quad=\left(\lambda-\lambda_{0}\right)\left[\left(\lambda-\lambda_{0}\right)^{k-1}\left(\prod_{i=1}^{k}\left(1+s_{i}\right)\right)+(-1)^{k+1}\right]
\end{aligned}
$$

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
2.
$\operatorname{det}\left(\lambda I+J_{k}\left(-\lambda_{0}\right)+E_{k}(1)+D_{k}(\lambda)\right)=\left(\lambda-\lambda_{0}\right)^{k}\left(\prod_{i=1}^{k}\left(1+s_{i}\right)\right)+(-1)^{k+1}$,
3.

$$
\operatorname{det}\left(\lambda I+J_{k}\left(-\lambda_{1}\right)+D_{k}(\lambda)\right)=\prod_{i=1}^{k}\left[\left(\lambda-\lambda_{1}\right)+s_{i}\left(\lambda-\lambda_{0}\right)\right]
$$

4.

$$
\operatorname{det}\left(\lambda J_{k}(0)+I+D_{k}(\lambda)\right)=\prod_{i=1}^{k}\left[1+s_{i}\left(\lambda-\lambda_{0}\right)\right]
$$

Lemma 3.2. Let λ_{0} be an eigenvalue of the complex $n \times n$ regular matrix pencil $A_{0}+\lambda A_{1}$, and $n_{1} \geq \cdots \geq n_{g}$ be the dimensions of the Jordan blocks associated with λ_{0} in its Weierstrass canonical form. Let ρ_{0} and ρ_{1} be two nonnegative integers, with $\rho_{0} \leq g$ and $\rho_{1} \leq n$. Then, there exists a complex matrix pencil $B_{0}+\lambda B_{1}$ such that

$$
\rho_{0}=\operatorname{rank}\left(B_{0}+\lambda_{0} B_{1}\right), \quad \rho_{1}=\operatorname{rank}\left(B_{1}\right)
$$

and the algebraic multiplicity of λ_{0} in the perturbed pencil $A_{0}+B_{0}+\lambda\left(A_{1}+B_{1}\right)$ is exactly $a_{A_{0}+\lambda A_{1}}\left(\lambda_{0}\right)+\rho_{1}-n_{1}-\cdots-n_{\rho}$, where $\rho:=\rho_{0}+\rho_{1}$ and $n_{m}=1$ for $m=g+1, \ldots, \rho$.

Proof. It suffices to prove the result when $A_{0}+\lambda A_{1}$ is in Weierstrass canonical form because, otherwise, we can consider the strict equivalence (1.4), apply the result to the matrix pencil in Weierstrass canonical form in the right-hand side (with $B_{0}+\lambda B_{1}$ as the perturbation pencil), and take $Q^{-1}\left(B_{0}+\lambda B_{1}\right) P^{-1}$.

So, assume that $A_{0}+\lambda A_{1}$ is in Weierstrass canonical form given by the right-hand side of (1.4). We consider separately the following two cases.
(i) Case $\rho<g$. Define the matrices

$$
B_{0}=\operatorname{diag}\left(E_{n_{1}}(1), \ldots, E_{n_{\rho_{0}}}(1), E_{n_{\rho_{0}+1}}\left(-\lambda_{0}\right), \ldots, E_{n_{\rho_{0}+\rho_{1}}}\left(-\lambda_{0}\right), 0, \ldots, 0\right)
$$

and

$$
B_{1}=\operatorname{diag}(\overbrace{0, \ldots, 0}^{\rho_{0} \text { blocks }}, E_{n_{\rho_{0}+1}}(1), \ldots, E_{n_{\rho_{0}+\rho_{1}}}(1), 0, \ldots, 0),
$$

where zeros denote matrices, and the partition in diagonal blocks is conformal to the one of the Weierstrass form (1.4). It can be checked that the pencil $B_{0}+\lambda B_{1}$ verifies the conditions mentioned in the statement, by using the first two items in Lemma 3.1 with $D_{k}(\lambda)=0$.
(ii) Case $\rho \geq g$. Now, we define

$$
\widehat{B}_{0}=\operatorname{diag}\left(E_{n_{1}}(1), \ldots, E_{n_{\rho_{0}}}(1), E_{n_{\rho_{0}+1}}\left(-\lambda_{0}\right), \ldots, E_{g}\left(-\lambda_{0}\right), 0, \ldots, 0\right)
$$

and

$$
\widehat{B}_{1}=\operatorname{diag}(\overbrace{0, \ldots, 0}^{\rho_{0} \text { blocks }}, E_{n_{\rho_{0}+1}}(1), \ldots, E_{n_{g}}(1), 0, \ldots, 0)
$$

where the partition is again conformal to the one in the Weierstrass canonical form (1.4). Notice that $\operatorname{rank}\left(\widehat{B}_{1}\right)=g-\rho_{0} \leq \rho_{1}$, and that by appropriate choices of $\left\{s_{1}, \ldots, s_{n}\right\}, s_{i}=0$ or 1 for all $i, \operatorname{rank}\left(\widehat{B}_{1}+\operatorname{diag}\left(s_{1}, \ldots, s_{n}\right)\right)$ may take any value between $g-\rho_{0}$ and n. Let $\left\{\tilde{s}_{1}, \ldots, \tilde{s}_{n}\right\}$ be such that $\operatorname{rank}\left(\widehat{B}_{1}+\operatorname{diag}\left(\tilde{s}_{1}, \ldots, \tilde{s}_{n}\right)\right)=\rho_{1}$, and define the pencil $D(\lambda)=D_{0}+\lambda D_{1}=$ $\left(\lambda-\lambda_{0}\right) \operatorname{diag}\left(\tilde{s}_{1}, \ldots, \tilde{s}_{n}\right)$. Then the pencil $B_{0}+\lambda B_{1} \equiv \widehat{B}_{0}+\lambda \widehat{B}_{1}+D(\lambda)$ verifies the conditions mentioned in the statement, because $\operatorname{rank}\left(B_{1}\right)=\rho_{1}$,

$$
\operatorname{rank}\left(B_{0}+\lambda_{0} B_{1}\right)=\operatorname{rank}\left(\widehat{B}_{0}+\lambda_{0} \widehat{B}_{1}\right)=\rho_{0}
$$

and Lemma 3.1 implies that the algebraic multiplicity of λ_{0} in $A_{0}+B_{0}+$ $\lambda\left(A_{1}+B_{1}\right)$ is $g-\rho_{0}$, which is exactly $a_{A_{0}+\lambda A_{1}}\left(\lambda_{0}\right)+\rho_{1}-n_{1}-\cdots-n_{\rho}$.
Theorem 2.2 and Lemma 3.2 allow us to give a complete answer to the problem originally posed in the introduction: Given a regular pencil $A_{0}+\lambda A_{1}$ with eigenvalue λ_{0}, perturbed by a pencil $B_{0}+\lambda B_{1}$, determine the generic Weierstrass structure associated with λ_{0} as an eigenvalue of the perturbed pencil (1.3) when the low rank condition (1.2) holds for the perturbation. Notice that if $B_{0}+\lambda B_{1}$ is in the set consisting of perturbation pencils for which $q(0) \neq 0$ (with $q(\lambda)$ as in (3.1)), then the perturbed pencil $A_{0}+B_{0}+\lambda\left(A_{1}+B_{1}\right)$ is regular. With this observation in mind we can state the main theorem of this paper in the following way.

ThEOREM 3.3. Let λ_{0} be an eigenvalue of the complex regular $n \times n$ matrix pencil $A_{0}+\lambda A_{1}$ with Weierstrass canonical form (1.4), and let g be the geometric multiplicity of λ_{0} in $A_{0}+\lambda A_{1}$. Let $B_{0}+\lambda B_{1}$ be any $n \times n$ pencil, and set

$$
\rho_{0}:=\operatorname{rank}\left(B_{0}+\lambda_{0} B_{1}\right), \quad \rho_{1}:=\operatorname{rank}\left(B_{1}\right), \quad \rho:=\rho_{0}+\rho_{1}
$$

If $\rho_{0}<g$, then λ_{0} is an eigenvalue of the perturbed pencil

$$
\begin{equation*}
A_{0}+B_{0}+\lambda\left(A_{1}+B_{1}\right) \tag{3.2}
\end{equation*}
$$

and, generically, the pencil $A_{0}+B_{0}+\lambda\left(A_{1}+B_{1}\right)$ is regular and the dimensions of the Jordan blocks for λ_{0} in the Weierstrass canonical form of $A_{0}+B_{0}+\lambda\left(A_{1}+B_{1}\right)$ are obtained by removing the first ρ members in the sequence $n_{1}, \ldots, n_{g}, \underbrace{1, \ldots, 1}$.

Remark 2. 1. An analogous result holds for the infinite eigenvalue of $A_{0}^{\rho_{1}}+\lambda A_{1}$, by applying the previous theorem to the zero eigenvalue of the dual pencils $A_{1}+\lambda A_{0}$ and $A_{1}+B_{1}+\lambda\left(A_{0}+B_{0}\right)$.
2. Theorem 3.3 describes in a concise way the generic behavior presented in the introduction of this paper.

Acknowledgments. The third author thanks Prof. Sergey Savchenko for bringing to his attention Theorem 1 in [12] and the reference [5]. The authors are also indebted to an anonymous referee for valuable comments which very much improved the original manuscript.

REFERENCES

[1] F. De Terán, Problemas de perturbación de objetos espectrales discontinuos en haces matriciales, Ph.D. Dissertation, Universidad Carlos III de Madrid, Madrid, Spain, 2007 (in Spanish, available upon request to the author).
[2] F. De Terán, F. M. Dopico, and J. Moro, First order spectral perturbation theory of square singular matrix pencils, Linear Algebra Appl., submitted.
[3] F. R. Gantmacher, The Theory of Matrices, Vol. I, Chelsea Publishing Co., New York, 1959.
[4] F. R. Gantmacher, The Theory of Matrices, Vol. II, Chelsea Publishing Co., New York, 1959.
[5] L. Hörmander and A. Melin, A remark on perturbations of compact operators, Math. Scand., 75 (1994), pp. 255-262.
[6] H. Langer and B. Najman, Remarks on the perturbation of analytic matrix functions, III, Integral Equations Operator Theory, 15 (1992), pp. 796-806.
[7] J. Moro and F. M. Dopico, Low rank perturbation of Jordan structure, SIAM J. Matrix Anal. Appl., 25 (2003), pp. 495-506.
[8] S. V. Savchenko, On the typical change of the spectral properties under a rank-one perturbation, Mat. Zametki, 74 (2003), pp. 590-602 (in Russian).
[9] S. V. SavChenko, On the change in the spectral properties of a matrix under perturbations of sufficiently low rank, Funkts. Anal. Prilozh., 38 (2004), pp. 85-88 (in Russian). Translation in Funct. Anal. Appl., 38 (2004), pp. 69-71.
[10] S. V. Savchenko, Laurent expansion for the determinant of the matrix of scalar resolvents, Mat. Sb., 196 (2005), pp. 121-144 (in Russian). Translation in Sb. Math., 196 (2005), pp. 743-764.
[11] G. W. Stewart and J. G. Sun, Matrix Perturbation Theory, Academic Press, Boston, 1990.
[12] R. C. Thompson, Invariant factors under rank one perturbations, Canad. J. Math., 32 (1980), pp. 240-245.
[13] H. Xie and H. Dai, On the sensitivity of multiple eigenvalues of nonsymmetric matrix pencils, Linear Algebra Appl., 374 (2003), pp. 143-158.

[^0]: *Received by the editors June 3, 2005; accepted for publication (in revised form) by B. T. Kågström January 3, 2008; published electronically May 16, 2008. This research was partially supported by the Ministerio de Educación y Ciencia of Spain through grant BFM 2003-00223.
 http://www.siam.org/journals/simax/30-2/63302.html
 ${ }^{\dagger}$ Departamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911-Leganés, Madrid, Spain (fteran@math.uc3m.es, dopico@math.uc3m.es, jmoro@math.uc3m. es).

[^1]: ${ }^{1}$ The assumption that $A_{0}+B_{0}+\lambda\left(A_{1}+B_{1}\right)$ is a regular pencil holds except for very particular choices of B_{0} and B_{1}.

[^2]: ${ }^{2}$ Theorem 1 in [12] states that if $P(\lambda)$ and $Q(\lambda)$ are $n \times n$ matrix polynomials with invariant polynomials $h_{n}(P)\left|h_{n-1}(P)\right| \cdots \mid h_{1}(P)$ and $h_{n}(Q)\left|h_{n-1}(Q)\right| \cdots \mid h_{1}(Q)$, respectively, and if the rank of $P(\lambda)-Q(\lambda)$ is equal to one, then $h_{n}(P)\left|h_{n-1}(Q)\right| h_{n-2}(P)\left|h_{n-3}(Q)\right| \cdots$ and $h_{n}(Q)\left|h_{n-1}(P)\right| h_{n-2}(Q)\left|h_{n-3}(P)\right| \cdots$.

