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Abstract

Let A(λ) be a complex regular matrix polynomial of degree ` with g elementary divisors
corresponding to the finite eigenvalue λ0. We show that for most complex matrix polynomials
B(λ) with degree at most ` satisfying rank B(λ0) < g the perturbed polynomial (A + B)(λ)
has exactly g − rank B(λ0) elementary divisors corresponding to λ0, and we determine their
degrees. If rank B(λ0) + rank (B(λ) − B(λ0)) does not exceed the number of λ0-elementary
divisors of A(λ) with degree greater than 1, then the λ0-elementary divisors of (A+B)(λ) are
the g−rank B(λ0)−rank (B(λ)−B(λ0)) elementary divisors of A(λ) corresponding to λ0 with
smallest degree, together with rank (B(λ)−B(λ0)) linear λ0-elementary divisors. Otherwise,
the degree of all the λ0-elementary divisors of (A + B)(λ) is one. This behavior happens
for any matrix polynomial B(λ) except those in a proper algebraic submanifold in the set of
matrix polynomials of degree at most `. If A(λ) has an infinite eigenvalue, the corresponding
result follows from considering the zero eigenvalue of the perturbed dual polynomial.

Key words. Regular matrix polynomials, elementary divisors, low rank perturbations, matrix
spectral perturbation theory
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1 Introduction

It is well known that a matrix polynomial of degree `, A(λ) = A0 + λA1 + . . . + λ`A` with
A0, . . . , A` ∈ Cn×n and A` 6= 0, can be transformed by equivalence into diagonal form

P (λ)A(λ)Q(λ) = diag(h1(λ), . . . , hr(λ), 0, . . . , 0) , (1)

where P (λ) and Q(λ) are unimodular matrix polynomials, i.e., matrix polynomials with nonzero
constant determinants, and h1(λ), . . . , hr(λ) are polynomials with complex coefficients satisfying
the divisibility chain hr(λ)|hr−1(λ)| . . . |h1(λ). As usual, hr(λ)|hr−1(λ) means that hr(λ) divides
hr−1(λ). The diagonal form (1) is known as the Smith normal form of A(λ) [4, Chapter VI].
The polynomials h1(λ), . . . , hr(λ) are called the invariant factors of A(λ). If, for λ0 ∈ C, we
factorize each invariant factor hk(λ) = (λ − λ0)dk h̃k(λ), where h̃k(λ) is a polynomial such that
h̃k(λ0) 6= 0, k = 1, . . . , r, the polynomials (λ−λ0)d1 , . . . , (λ−λ0)dr that are different from one are
the elementary divisors of A(λ) associated with λ0. In this work, the matrix polynomial A(λ) will
be regular, i.e., det A(λ) is nonzero as a polynomial in λ. In this case r = n and a finite eigenvalue
of A(λ) is a complex number λ0 such that det A(λ0) = 0. If λ0 is a finite eigenvalue of A(λ),
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there is at least one elementary divisor of A(λ) associated with λ0. We will assume throughout
this paper that A(λ) has exactly g λ0-elementary divisors with degrees 0 < dg ≤ dg−1 ≤ . . . ≤ d1.
These degrees are known as the partial multiplicities of A(λ) at λ0 [5]. Note that g is the geometric
multiplicity of λ0, i.e., g = dimkerA(λ0), where ker denotes the null space, and that d1 + . . . + dg

is the algebraic multiplicity of λ0 in det A(λ). 1

If the regular matrix polynomial A(λ) is perturbed by another polynomial B(λ) to obtain
(A + B)(λ), then, for most perturbations B(λ), (A + B)(λ) is regular, and all its eigenvalues are
different from those of A(λ). However, if rank B(λ0) is small enough then λ0 is still an eigenvalue
of (A + B)(λ), because the well-known inequality

rank(A(λ0) + B(λ0)) ≤ rankA(λ0) + rank B(λ0),

gives rise to
g − rankB(λ0) ≤ dim ker(A(λ0) + B(λ0)). (2)

Therefore, whenever
rankB(λ0) < g, (3)

the eigenvalue λ0 of A(λ) stays as an eigenvalue of the perturbed polynomial

(A + B)(λ). (4)

As a consequence, by “low” rank perturbation we will mean in what follows that B(λ) satisfies
(3), a condition which depends on the particular eigenvalue λ0 we are considering. Assuming that
(4) is still regular, equation (2) implies that the perturbation B(λ) can destroy at most rank B(λ0)
elementary divisors of A(λ) associated with λ0. This does not fix the number and degrees of the
elementary divisors of (A + B)(λ) associated with λ0, and to describe these elementary divisors in
terms of the λ0-elementary divisors of A(λ) for generic low rank perturbations B(λ) is the goal of
this work.

The result we present depends on two quantities for each eigenvalue λ0, namely

ρ0 = rank B(λ0) and ρ1 = rank(B(λ)−B(λ0)).

Note that the first quantity is the usual rank of a constant matrix, whereas the second one is the
rank of a matrix polynomial, i.e., the dimension of its largest non-identically zero minor considered
as a polynomial in λ [4, Chapter VI]. Assuming that condition (3) holds, we will prove that for
generic matrix polynomials B(λ) there are precisely g − ρ0 elementary divisors of (A + B)(λ)
associated with λ0. Moreover, if ρ0 + ρ1 is less than or equal to the number of nonlinear λ0-
elementary divisors of A(λ), then the λ0-elementary divisors of (A+B)(λ) are the g−ρ0−ρ1 lowest
degree λ0-elementary divisors of A(λ), together with ρ1 linear λ0-elementary divisors. Otherwise,
the degree of all the λ0-elementary divisors of (A + B)(λ) is one.

We often use the word generic in this work, so it is convenient to establish its precise meaning.
The set of complex n× n matrix polynomials of degree at most ` is isomorphic to C(`+1)n2

. Thus,
given two nonnegative integers ρ0 (< g) and ρ1 (≤ n), the set of matrix polynomials B(λ) =∑`

j=0 Bjλ
j satisfying rankB(λ0) ≤ ρ0 and rank(B(λ) − B(λ0)) ≤ ρ1 is an algebraic manifold

C ⊂ C(`+1)n2
, i.e., it is the set of common zeros of some multivariate polynomials in the entries of

B0, . . . , B`. The algebraic manifold C is the set of allowable perturbations we will consider. We
will prove that the behavior described in the previous paragraph happens for any perturbation
in C except those in a proper algebraic submanifold M of C. This fact allows us to call this
behavior generic, and to term the perturbations in C for which it occurs as generic. The algebraic
submanifold M includes, among others, all polynomials such that rank B(λ0) < ρ0.

1A matrix polynomial A(λ) with degree ` may also have an infinite eigenvalue. This is the case when the
dual polynomial A](λ) ≡ λ`A(1/λ) has a zero eigenvalue. The partial multiplicities of the infinite eigenvalue of
A(λ) are precisely the partial multiplicities of the zero eigenvalue in A](λ). In this paper we will deal with finite
eigenvalues, but results for the infinite eigenvalue can be easily obtained by considering the zero eigenvalue of the
dual polynomials.

2



Note that in our notion of genericity, we are considering that the degree of the perturbation
polynomial B(λ) is less than or equal to the degree of the unperturbed polynomial A(λ), i.e., `.
This is the relevant case in applications, because if, for instance, we are dealing with a vibrational
problem related to a quadratic matrix polynomial A(λ) = A0 + λA1 + λ2A2, then perturbations
in the parameters of the problem cannot lead to polynomials with higher degree. However, from a
mathematical point of view, one can think in perturbations with degree less than or equal to a fixed
number s > `. The genericity results we present remain valid in this case simply by considering
A(λ) as a formal polynomial of degree s by defining the coefficients A`+1 = · · · = As = 0.

The generic behavior under low rank perturbations of canonical forms, and so of elementary
divisors, of matrices and matrix pencils has received considerable attention in the last years [2, 3,
6, 9, 10, 11, 12], but the problem for polynomials remained open. The results presented in this
work include, as particular cases, previous results for matrices and regular pencils. In fact, the
first two results we present for matrix polynomials, Lemma 1 and Theorem 2, correspond to results
proved in [3] only for matrix pencils by using essentially the same procedure.

On the other hand, this paper is connected to classical results on the change of the invariant
factors of matrix polynomials under perturbations of low rank, and the related modifications of
row and/or columns prolongations [8, 13, 14]. This interesting line of research has been continued
is several works, see for instance [1, 7, 15]. In particular, we will take the main result in [14] as
our starting point. However, this type of results shows important differences with respect to the
ones we present: in [8, 13, 14] all the possible changes are described, but nothing is said about the
generic change; in addition, the low rank condition is on the whole polynomial perturbation B(λ),
and not on the polynomial evaluated on an specific eigenvalue λ0 of the unperturbed polynomial,
as it happens in (3).

The paper is organized as follows: in Section 2 we briefly outline the main result in [14], and
prove, as a direct consequence, Lemma 1 that is used in the next section. Section 3 includes the
main results, summarized in Theorem 3.

2 Thompson’s Result and consequences

As a consequence of results in [13], the following result is presented in [14].

Theorem 1 [14, Theorem 1] Let L(λ) be an n × n matrix polynomial with invariant factors
hn(L)|hn−1(L)| . . . |h1(L), Z(λ) be another matrix polynomial with rankZ(λ) ≤ 1, and M(λ) =
L(λ) + Z(λ). Then the achievable invariant factors hn(M)|hn−1(M)| . . . |h1(M) of M(λ) as Z(λ)
ranges over all matrix polynomials with rankZ(λ) ≤ 1 are precisely those polynomials that satisfy

hn(L)|hn−1(M)|hn−2(L)|hn−3(M)| . . .
hn(M)|hn−1(L)|hn−2(M)|hn−3(L)| . . .

Thompson proved this result in the more general setting of matrices with entries in an arbitrary
principal ideal domain. As a corollary of Theorem 1 we obtain Lemma 1.

Lemma 1 Let A(λ) be a complex regular matrix polynomial and B(λ) be another complex polyno-
mial of the same dimension with rank at most r. Let λ0 be an eigenvalue of A(λ) with g associated
elementary divisors of degrees d1 ≥ . . . ≥ dg > 0. If (A+B)(λ) is also a regular matrix polynomial
and r ≤ g then the polynomial (A + B)(λ) has at least g − r elementary divisors associated with
λ0 of degrees βr+1 ≥ . . . ≥ βg, such that βi ≥ di for r + 1 ≤ i ≤ g.

Proof. First, let us assume that the rank of B(λ) is exactly r. Then, by using (1), we can write
down B(λ) as the sum of r singular matrix polynomials of rank one:

B(λ) = B1(λ) + . . . + Br(λ),

where rank Bi(λ) = 1 for 1 ≤ i ≤ r. Now, consider the sequence of polynomials A(λ), A(λ) +
B1(λ), A(λ)+B1(λ)+B2(λ), . . . , A(λ)+B(λ), and note that each of them is a rank one perturbation
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of the preceding one. Applying Theorem 1 on this sequence leads to

(λ− λ0)dr+1 |hr+1(A)|hr(A + B1)| . . . |h1(A + B),
(λ− λ0)dr+2 |hr+2(A)|hr+1(A + B1)| . . . |h2(A + B),

...
...

...
...

(λ− λ0)dg |hg(A)|hg−1(A + B1)| . . . |hg−r(A + B),

where h1(A+B) 6= 0 because the polynomial (A+B)(λ) is regular. These divisibility chains mean
that the polynomial (A+B)(λ) has, at least, g−r elementary divisors associated with λ0 of degrees
βr+1 ≥ . . . ≥ βg such that di ≤ βi for r + 1 ≤ i ≤ g.

If the rank of B(λ) is r1 < r, the result we have just proved can be applied to show that the
perturbed polynomial (A + B)(λ) has at least g − r1 > g − r elementary divisors associated with
λ0 whose degrees satisfy βi ≥ di, i = r1 + 1, . . . , g, and the result follows. ¤

3 Generic change of elementary divisors under low rank
perturbations

Throughout this section we denote by
aL(λ)(λ0) (5)

the algebraic multiplicity of the eigenvalue λ0 in the regular matrix polynomial L(λ). Our aim is
to determine the generic degrees of the elementary divisors of the matrix polynomial (A + B)(λ)
associated with λ0 in terms of the degrees of the elementary divisors of the unperturbed polynomial
A(λ). In the first result, Theorem 2, we obtain a lower bound on the algebraic multiplicity of λ0

in (A + B)(λ), and, more important, we show that this lower bound is attained if and only if the
degrees of the λ0-elementary divisors of (A + B)(λ) are the ones corresponding to the behavior
described in the Introduction.

Theorem 2 Let λ0 be a finite eigenvalue of the complex regular matrix polynomial A(λ), and
d1 ≥ . . . ≥ dg > 0 be the degrees of its elementary divisors associated with λ0. Let B(λ) be any
complex polynomial such that (A + B)(λ) is regular and g ≥ rankB(λ0). Set ρ0 = rank B(λ0),
ρ1 = rank (B(λ)−B(λ0)), ρ = ρ0 + ρ1 and dm = 1 for any m = g + 1, . . . , ρ. Then

a(A+B)(λ)(λ0) ≥ aA(λ)(λ0) + ρ1 − d1 − . . .− dρ, (6)

where the notation in (5) is used. Moreover, equality in this inequality holds if and only if the
degrees of the elementary divisors of (A + B)(λ) associated with λ0 are obtained by removing the
first ρ members in the list d1, . . . , dg, 1, . . . , 1︸ ︷︷ ︸

ρ1

.

Proof. Notice that

rankB(λ) = rank(B(λ0) + B(λ)−B(λ0)) ≤ rankB(λ0) + rank(B(λ)−B(λ0)) = ρ.

So, in the case ρ < g, Lemma 1 guarantees the existence of g−ρ elementary divisors of (A+B)(λ)
associated with λ0 with degrees βρ+1 ≥ . . . ≥ βg , such that βρ+1 ≥ dρ+1, . . . , βg ≥ dg. Moreover,
the left hand side in the inequality (2) implies that there are at least ρ1 additional elementary
divisors of degrees α1 ≥ 1, . . . , αρ1 ≥ 1 associated with λ0. Thus,

a(A+B)(λ)(λ0) ≥ βρ+1 + . . . + βg + α1 + . . . + αρ1 ≥ dρ+1 + . . . + dg + ρ1.

Obviously, this inequality is (6). If g ≤ ρ, inequality (6) becomes a(A+B)(λ)(λ0) ≥ g − rankB(λ0).
This is true because of inequality (2) and the inequality

a(A+B)(λ)(λ0) ≥ dim ker (A(λ0) + B(λ0)),
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that is satisfied because (A+B)(λ) is regular. Finally, notice that the previous inequalities become
equalities if and only if the degrees of the elementary divisors of (A+B)(λ) associated with λ0 are
those appearing in the statement of Theorem 2. ¤

Remark 1 Note that in Theorem 2 the results are independent of ρ1 whenever ρ is greater than
or equal to the number e0 of nonlinear elementary divisors of A(λ) associated with λ0: the lower
bound in (6), i.e., the right hand side, is simply g − rankB(λ0), and the equality in (6) holds if
and only if (A + B)(λ) has g − rankB(λ0) linear elementary divisors associated with λ0. As a
consequence, note that the lower bound aA(λ)(λ0) + ρ1 − d1 − . . . − dρ increases as ρ0 decreases,
increases as ρ1 decreases when ρ ≤ e0, and remains constant as ρ1 decreases when ρ > e0.

In the rest of this section, we will prove that equality in (6) and the corresponding degrees
of the λ0-elementary divisors are generic in the precise sense explained in this paragraph. Let us
assume that ` is the degree of the n × n polynomial A(λ) in Theorem 2, and that a couple of
nonnegative integers ρ0 and ρ1, such that ρ0 < g and ρ1 ≤ n, are given. Let us define

ã = aA(λ)(λ0) + ρ1 − d1 − . . .− dρ,

where ρ = ρ0 + ρ1, i.e., the right hand side in (6). Then, for every perturbation B(λ) of A(λ) in
the set

C = {B(λ) : degree(B(λ)) ≤ `, rankB(λ0) ≤ ρ0, rank(B(λ)−B(λ0)) ≤ ρ1} , (7)

Theorem 2 implies that
det (A + B)(λ) = (λ− λ0)ã q(λ), (8)

where q(λ) is a polynomial. Therefore, if (A+B)(λ) is regular, q(λ0) 6= 0 if and only if the algebraic
multiplicity of λ0 in this polynomial is exactly ã. This may happen only for elements of C such that
rankB(λ0) = ρ0 (see Remark 1) and rank(B(λ) − B(λ0)) = ρ1 when ρ ≤ e0, while rank(B(λ) −
B(λ0)) may be smaller than ρ1 when ρ > e0. Anyway, according to Theorem 2, the algebraic
multiplicity of λ0 is ã if and only if the degrees of the λ0-elementary divisors of (A+B)(λ) are the
ones obtained by removing the first ρ members in the list d1, . . . , dg, 1, . . . , 1, where the number
of 1s is ρ1. Clearly, once A(λ) and λ0 are fixed, q(λ0) is a multivariate polynomial in the entries
of the coefficient matrices of B(λ), and q(λ0) = 0 defines an algebraic submanifold of C(`+1)n2

whose intersection with C is the algebraic submanifold M⊆ C for which the behavior described in
the Introduction does not happen. Now, it remains to show that the algebraic submanifold M is
proper or, in other words, that q(λ0) 6= 0 for some perturbations B(λ) ∈ C. This is proved in the
next Lemma.

Lemma 2 Let λ0 be a finite eigenvalue of A(λ), a complex n × n regular matrix polynomial of
degree ` ≥ 1, and d1 ≥ . . . ≥ dg > 0 be the degrees of the elementary divisors of A(λ) associated
with λ0. Let ρ0 and ρ1 be two nonnegative integers such that ρ0 ≤ g and ρ1 ≤ n. Then, there
exists a complex matrix polynomial B(λ) with degree at most `,

rankB(λ0) ≤ ρ0 , rank(B(λ)−B(λ0)) ≤ ρ1 ,

such that (A + B)(λ) is regular, and the algebraic multiplicity of λ0 in the polynomial (A + B)(λ)
is exactly aA(λ)(λ0) + ρ1 − d1 − . . .− dρ , where ρ = ρ0 + ρ1 and dm = 1 for m = g + 1, . . . , ρ.

Proof. We will prove that there exists a linear matrix polynomial B(λ) = B0 +λB1, i.e., a pencil,
satisfying the conditions of the statement. Note that in this linear case the rank conditions are:

rank (B0 + λ0B1) ≤ ρ0 , rank B1 ≤ ρ1 . (9)

For simplicity, we set, as previously, ã = aA(λ)(λ0) + ρ1 − d1 − . . .− dρ. We will reduce the proof
to find the required perturbation pencil in the following two cases: Case 1: ρ0 = 1 , ρ1 = 0 ; and,
Case 2: ρ0 = 0 , ρ1 = 1. Note that, for nonzero perturbations, B(λ) in Case 1 is just a constant
rank one matrix, whereas in Case 2 the pencil is of the type (λ− λ0)B1 with rank B1 = 1.
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Once the result is proved in these two simple cases, we can find the perturbation pencil B(λ)
for arbitrary nonnegative integers ρ0 and ρ1, such that ρ0 ≤ g and ρ1 ≤ n, by applying iteratively
ρ0 times the case 1, and ρ1 times the case 2. To be more precise, the perturbation pencil will be
of the type

B(λ) = R1 + · · ·+ Rρ0 + (λ− λ0)(S1 + · · ·+ Sρ1), (10)

where R1, . . . , Rρ0 are rank one constant matrices corresponding to the ρ0 cases of type 1, and
S1, . . . , Sρ1 are rank one constant matrices corresponding to the ρ1 cases of type 2. Note that we are
applying iteratively the cases 1 and 2 to the unperturbed polynomials A(λ), A(λ)+R1, . . . , A(λ)+
R1 + · · · + Rρ0 , A(λ) + R1 + · · · + Rρ0 + (λ − λ0)S1, . . . , A(λ) + R1 + · · · + Rρ0 + (λ − λ0)S1 +
· · · + (λ − λ0)Sρ1 . Notice that the perturbation pencil B(λ) given by (10) satisfies the required
conditions in the statement. So, let us prove the cases 1 and 2.

Case 1: We must find a rank one constant matrix B such that

det(A(λ) + B) = (λ− λ0)ãq(λ),

where q(λ) is a polynomial with q(λ0) 6= 0, and ã = d2 + . . . + dg. Taking into account the Smith
normal form of A(λ) given by (1), we have, for some nonzero constant c, that: 1) det A(λ) =
c · h1(λ) · · ·hn(λ) = (λ− λ0)d1+ãqA(λ), with qA(λ0) 6= 0; and, 2) h2(λ) · · ·hn(λ) = (λ− λ0)ãq̃(λ),
with q̃(λ0) 6= 0. Note that every function of λ appearing in the previous equations is a polynomial.
Now, recall that the product h2(λ) · · ·hn(λ) is the greatest common divisor of all (n− 1)× (n− 1)
minors of A(λ) [4, Chapter VI]. Then there exists at least one (n − 1) × (n − 1) minor of A(λ),
M̃ij(λ) (complementary of the (i, j) entry, aij(λ), of A(λ)), such that

M̃ij(λ) = (λ− λ0)ãqij(λ) ,

with qij(λ0) 6= 0. If we denote the cofactors of A(λ) as Mik(λ) ≡ (−1)i+kM̃ik(λ), the Laplace
expansion of det A(λ) by the ith row gives rise to

detA(λ) = ai1(λ)Mi1(λ) + . . . + aij(λ)Mij(λ) + . . . + ain(λ)Min(λ) . (11)

Let us write2 aik(λ) = aik+O(λ−λ0), where aik ∈ C, and Mik(λ) = mik(λ−λ0)ã+O((λ−λ0)ã+1),
with mik ∈ C, for k = 1, . . . , n, and mij 6= 0. Then

detA(λ) = (ai1mi1 + . . . + ainmin)(λ− λ0)ã + O((λ− λ0)ã+1) ,

where ai1mi1 + . . . + ainmin = 0, because det A(λ) = (λ− λ0)d1+ãqA(λ). Since mij 6= 0, we have
that for every nonzero number ε

ai1mi1 + . . . + (aij + ε)mij + . . . + ainmin 6= 0 .

Choose one particular ε and let B = (bkl)n
k,l=1 be the rank one matrix defined by

bkl =
{

0 if (k, l) 6= (i, j)
ε if (k, l) = (i, j) .

Then

det(A(λ) + B) = ai1(λ)Mi1(λ) + . . . + (aij(λ) + ε)Mij(λ) + . . . + ain(λ)Min(λ) =

= (ai1mi1 + . . . + (aij + ε)mij + . . . + ainmin)(λ− λ0)ã + O((λ− λ0)ã+1) ,

with ai1mi1 + . . . + (aij + ε)mij + . . . + ainmin 6= 0 , so B is the required perturbation.
Case 2: We must find a perturbation pencil of the type B(λ) = (λ − λ0)B1, where B1 is a

rank one constant matrix, such that

det(A + B)(λ) = (λ− λ0)ãq(λ),
2In this proof big-O expressions of the type O((λ− λ0)k) are in fact polynomials of degree greater than or equal

to k in (λ− λ0).
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with q(λ0) 6= 0 and, in this case, ã = d2 + . . . + dg + 1. Arguments similar to those in Case
1 show that: 1) det A(λ) = (λ − λ0)d1+···+dg qA(λ), with qA(λ0) 6= 0; and 2) h2(λ) · · ·hn(λ) =
(λ − λ0)d2+···+dg q̃(λ), with q̃(λ0) 6= 0. Then there exists an entry aij(λ) of A(λ) such that the
complementary (n− 1)× (n− 1) cofactor Mij(λ) of A(λ) can be written as

Mij(λ) = (λ− λ0)d2+...+dgqij(λ) = (λ− λ0)d2+...+dg (mij + O(λ− λ0)) ,

with qij(λ0) = mij 6= 0. Let us write aik(λ) = aik +a1
ik (λ−λ0)+O((λ−λ0)2), where aik, a1

ik ∈ C,
for k = 1, . . . , n. Let us expand det A(λ) by the ith row as in (11), to get

detA(λ) = (ai1mi1 + . . . + ainmin)(λ− λ0)ã−1 + (a1
ijmij + y) (λ− λ0)ã + O((λ− λ0)ã+1) ,

where y is independent of a1
ij . As in Case 1 (ai1mi1 + . . .+ ainmin) = 0. Since mij 6= 0, if ε is any

nonzero number such that ε 6= −(y + a1
ijmij)/mij then

(a1
ij + ε)mij + y 6= 0 .

Let B(λ) = (bkl(λ))n
k,l=1 be the rank one matrix pencil defined as

bkl(λ) =
{

0 if (k, l) 6= (i, j)
ε(λ− λ0) if (k, l) = (i, j) .

Then

det(A + B)(λ) = ai1(λ)Mi1(λ) + . . . + (aij(λ) + ε(λ− λ0)) Mij(λ) + . . . + ain(λ)Min(λ) =

= ((a1
ij + ε)mij + y)(λ− λ0)ã + O((λ− λ0)ã+1) ,

where (a1
ij + ε)mij + y 6= 0. So B(λ) is the required perturbation. ¤

Remark 2 Note that the proof we have presented of Lemma 2 allows us to guarantee that the
polynomial B(λ) can always be chosen with degree less than or equal to one, whatever the degree
of A(λ) is.

As a consequence of the results proved in this section, we can state Theorem 3 on the generic
behavior of elementary divisors under low rank perturbations.

Theorem 3 Let λ0 be a finite eigenvalue of A(λ), a complex n × n regular matrix polynomial of
degree ` ≥ 1, and d1 ≥ . . . ≥ dg > 0 be the degrees of the elementary divisors of A(λ) associated
with λ0. Let ρ0 and ρ1 be two nonnegative integers such that ρ0 ≤ g and ρ1 ≤ n, ρ = ρ0 + ρ1, and
let us define the algebraic manifold of n× n matrix polynomials

C = {B(λ) : degree(B(λ)) ≤ `, rankB(λ0) ≤ ρ0 , rank(B(λ)−B(λ0)) ≤ ρ1}.

Then, for every polynomial B(λ) in C, except those in a proper algebraic submanifold of C, the
polynomial (A + B)(λ) is regular, λ0 is an eigenvalue of (A + B)(λ), and the degrees of its el-
ementary divisors associated with λ0 are obtained by removing the first ρ members in the list
d1, . . . , dg, 1, . . . , 1︸ ︷︷ ︸

ρ1

. Note that this means, in particular, that (A + B)(λ) has g − ρ0 elementary

divisors associated with λ0.

It should be noticed that if rank B(λ0) < ρ0 then (2) implies that the number of elementary
divisors of (A + B)(λ) associated with λ0 is greater than g − ρ0, so all the polynomials in C for
which the generic behavior happens satisfy rank B(λ0) = ρ0.
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