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Abstract In this paper, we introduce a new notion of generalized companion pencils for scalar polyno-
mials over an arbitrary field expressed in the monomial basis. Our definition is quite general and extends
the notions of companion pencil in [F. De Terán, F. M. Dopico, D. S. Mackey. Linear Algebra Appl. 459
(2014) 264-333], generalized companion matrix in [C. Garnett, B. L. Shader, C. L. Shader, P. van den
Driessche. Linear Algebra Appl. 498 (2016) 360-365], and Ma-Zhan companion matrices in [C. Ma, X.
Zhan. Linear Algebra Appl. 438 (2013) 621-625], as well as the class of quasi-sparse companion pencils
introduced in [F. De Terán, C. Hernando. INdAM Series 157-179, Springer 2019]. We analyze some al-
gebraic properties of generalized companion pencils. We determine their Smith canonical form and we
prove that they are all nonderogatory. In the last part of the work we will pay attention to the sparsity
of these constructions. In particular, by imposing some natural conditions on its entries, we determine
the smallest number of nonzero entries of a generalized companion pencil.
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polynomial · arbitrary field · digraph · composite cycle · extension field · ring of polynomials · field of
fractions.
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1 Introduction

Companion matrices have been widely used to compute the roots of a monic scalar polynomial q̃(λ) =

λk +
∑k−1
i=0 λ

iai (see, for instance, [2,3] and the references therein). Companion matrices are symbolic
constructions of matrices that depend on the coefficients of the polynomial q̃(λ), namely a0, . . . , ak−1,
and whose characteristic polynomial is equal to q̃(λ). In this way, the eigenvalues of the companion
matrix are the roots of q̃(λ), so numerical spectral methods on the companion matrix can be used to
compute the roots of q̃(λ).

This work has been partially supported by the Ministerio de Economı́a y Competitividad of Spain through grants MTM2017-
90682-REDT and MTM2015-65798-P.

An earlier version of this paper was presented at the Conference “Linear Algebra, Matrix Analysis and Applications.
ALAMA2018”, held in Sant Joan d’Alacant on May/June 2018.

Fernando De Terán
Departamento de Matemáticas
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After many years of research in this context, a fast and backward stable method for computing the
roots of monic polynomials has been recently obtained in [2]. Any scalar polynomial q(λ) =

∑k
i=0 λ

iai
(not necessarily monic) can be taken to a monic polynomial q̃(λ) having exactly the same roots as q(λ)
just dividing q(λ) by its leading coefficient, ak (namely, q̃(λ) = (1/ak)q(λ)). However, this operation may
affect the accuracy of the numerical method used to compute the roots of the polynomial. For instance, the
classical method for computing the spectral information of matrix polynomials [39] guarantees backward
stability when the polynomial is scaled in such a way that its norm is equal to 1 (see [39, p. 576]). In order
to get such a polynomial with norm equal to 1, we could divide our starting polynomial by its norm.
However, this can turn a monic polynomial into a non-monic one, so this strategy is not useful if we
use a numerical method which is only suitable for monic polynomials. Hence, from the numerical point
of view, it may be desirable to work with non-monic polynomials (see also [3, §1]). This motivates the
introduction of companion pencils for general (not necessarily monic) polynomials of degree k expressed
in the monomial basis,

q(λ) =

k∑
i=0

λiai, ai ∈ F, i = 0, 1, . . . , k, ak 6= 0, (1)

(with F being an arbitrary field). These companion pencils are k×k matrix pencils, λX+Y , whose entries
depend on the coefficients of the polynomial, a0, . . . , ak, and whose determinant is equal to q(λ) (up to a
nonzero constant factor), so the roots of q(λ) can be computed as the eigenvalues of the companion pencil.
In the context of polynomial root-finding, the more recent reference [3] presents an adapted version of
the algorithm in [2] for general polynomials (not necessarily monic) that uses a companion pencil (and
this algorithm has been extended in [4] to matrix polynomials). The reader can also find in that reference
a backward error analysis of the algorithm, together with a comparison with the algorithm that works
on the companion matrix for monic polynomials.

We want to warn the reader that, despite one of the main motivations to deal with companion pencils
comes from their connection to the polynomial root-finding problem, as explained above, the present work
is of theoretical nature and does not consider the polynomial root-finding.

Besides the classical Frobenius companion matrices (see (2)), there is a large body of knowledge
on companion matrices, mainly within the framework of the polynomial root-finding. In particular,
some companion matrices for polynomials expressed in other bases than the monomial one have been
introduced and used over the years [5,6,8,18,33,36,37,41]. In order to distinguish them from the classical
companion matrices, some other names like “comrade”, “colleague”, “confederate”, or “non-standard
companion” have been used. The name “generalized companion matrix” (or “pencil”) has been also used
in many other references, with a very different meaning than the one we use in the present work, like, for
instance, in [7,16,17,29,41]. However, in all these cases this notion refers to specific constructions that
generalize the Frobenius companion matrix (or pencil).

Companion matrices are particular cases of companion pencils λX + Y , where X = I (and Y = −A,
with A being the companion matrix). Companion pencils, however, allow for much more flexibility in
the leading term, and, as a consequence, provide richer constructions. For instance, a companion pencil
for polynomials (1) with k = 5 within the family of generalized Fiedler pencils [1,13] is

0 0 0 λ λa1 + a0
0 0 1 0 −λ
0 λ λa3 + a2 −1 0
1 0 −λ 0 0

λa5 + a4 −1 0 0 0

 ,
a construction which can not be achieved with the notion of companion matrix. Note that not only the
entries equal to λ are placed in non-diagonal positions, but also that some of the coefficients, besides
the leading coefficient a5, appear multiplied by λ (that is, they belong to the leading term of the pencil,
which we have denoted by X).

In the monomial basis, Fiedler introduced, less than 20 years ago [28], a family of companion matrices
that generalizes the Frobenius companion matrices. This family was extended to pencils, and to regular
matrix polynomials, in [1], and was named in [20]. Other families of Fiedler-like pencils have been intro-
duced in recent years, including, but not limited to, the ones in [10,11,12,13,14,21,40]. All these families
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are valid not just for scalar, but for matrix polynomials. The recent family of block-Kronecker companion
pencils [25] includes all these families. Despite the efforts devoted to introduce new families of companion
pencils, a comprehensive study of the structural properties of general companion pencils is still missing.
Some progress in this direction has been carried out in [26,27,30,35] for companion matrices. These
references have analyzed interesting structural features of companion matrices (for scalar polynomials),
using tools mainly from graph theory (by considering the digraph associated to the companion matrix),
as well as some results and techniques from field theory.

If one looks for the most general notion of companion pencil, then it is natural to consider pencils
λX + Y whose entries are certain functions of a0, . . . , ak, such that det(λX + Y ) = αq(λ), with q(λ) as
in (1) and 0 6= α ∈ F, without any further requirement (this desideratum is, for instance, rephrased in
[31] for companion matrices of polynomials expressed in any basis). The set of functions of a0, . . . , ak
containing the entries of the pencil can be as wide as desired but, in order to make the constructions
practical and valid for all polynomials (1), it is natural to restrict oneself to the set of polynomials in
a0, . . . , ak. This is, precisely, the notion of generalized companion pencil we introduce in Definition 22,
which is an extension, to matrix pencils, of the notion of generalized companion matrix in [30]. We use
the term “generalized” because it is the one used in [30], and also in order to be consistent with previous
work of the authors [19, Def. 2.2], where companion pencil is used for a more restrictive notion. In [35],
a slightly more general notion of companion matrices is introduced, allowing the entries to be rational
functions in the coefficients of the polynomial q̃(λ), namely a0, . . . , ak−1. However, that notion includes
constructions which are not valid for all coefficients a0, . . . , ak−1 (namely, when the denominators of
some of the rational functions vanish) except precisely in the case where all entries are just polynomials
in these coefficients. A related notion of companion matrix has been also introduced in [15], but that
notion is more restrictive than ours.

In [19,26,35], special attention has been paid to the notion of sparsity, namely the property of having
the smallest possible number of nonzero entries. In particular, it has been proved in [35] that the smallest
number of nonzero entries in a companion matrix for scalar polynomials of degree k is 2k−1, and, in [26], a
canonical expression (up to permutation similarity) has been presented for the so-called sparse companion
patterns. Up to our knowledge, the only reference containing a study on similar issues for companion
pencils is the recent work [19]. In that reference, a canonical expression (up to permutation equivalence)
is also presented for a general class of so-called quasi-sparse companion pencils, which resembles the class
of companion patterns in [26]. Using this canonical expression, the number of different sparse companion
pencils in that class has been also determined.

The present work is a complement to [19]. In particular, we deal not only with companion pencils
(including those in the family introduced in [19]), but also with generalized companion pencils (see
Definitions 21 and 22), where we allow the non-constant entries of the pencil to be not just the coefficients,
ai, of the polynomial (1), but polynomials in these coefficients. We are also interested in the sparsity of
these constructions, namely in determining the smallest possible number of nonzero entries (these issues
are addressed in Section 5). This may seem to be, a priori, a problem easy to solve once the solution
for companion matrices is known. However, in the case of companion matrices, λI −A, the leading term
(the identity) is fixed, so one can disregard this term and just look for nonzero entries in the trailing
coefficient A. By contrast, for companion pencils, λX + Y , none of X and Y are fixed, so the nonzero
terms of λX + Y come from nonzero terms in either X, or Y , or both. This is the main reason why the
arguments for the case of companion matrices cannot be extended to generalized companion pencils in
a straightforward way.

In Section 4 we impose the condition that each coefficient ai appears only once in the generalized
companion pencil, and we determine the structure of the nonzero entries of the pencil in this case. This
condition will be imposed again in Section 5 to obtain sparse generalized companion pencils (see Theorem
53). To impose this condition is very natural, since, if we look for the generalized companion pencil to
include the smallest amount of information, it is natural to avoid repetitions of the coefficients.

In Section 3, we characterize the set of generalized companion pencils by using the Smith canonical
form. More precisely, we show that all generalized companion pencils of the polynomial (1) have the
same Smith form over the field of rational functions in a0, . . . , ak, namely diag (Ik−1,

1
ak
q(λ)) (Theorem

31). We also prove that all generalized companion pencils are nonderogatory (Theorem 32).
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2 Basic definitions

Let F be an arbitrary field and let z0, . . . , zk be distinct indeterminates. We denote by F[z0, . . . , zk] the
ring of polynomials in z0, . . . , zk over F, and by F(z0, . . . , zk) the field of rational functions of z0, . . . , zk
over F, namely

F(z0, . . . , zk) :=

{
f

g
: f, g ∈ F[z0, . . . , zk], g 6= 0

}
.

The notion of companion pencil for matrix polynomials recently introduced in [19, Def. 2.2] (see also
[23, p. 296]) imposes a severe restriction on the nonzero blocks to be either the identity matrix or one
of the coefficients of the polynomial (multiplied by some constant in F). This restriction was motivated
for practical purposes, and also because most of the families of companion pencils introduced at that
time in the literature (including the Fiedler-like families) enjoyed that property. Even though we are not
going to work with this notion, we include here, for the sake of completeness, its particularization for
scalar polynomials.

Definition 21 A companion pencil for polynomials (1) of degree k is a k×k matrix pencil L(λ) = λX+Y
such that:

(i) each nonzero entry of X and Y is either a scalar (i.e., an element in F) or a scalar multiplied by
ai, for some i = 0, . . . , k, and

(ii) detL(λ) = αq(λ), for some 0 6= α ∈ F.

However, when looking for the most general notion of companion pencil, it is natural to consider
pencils as in Definition 22. It should be noted that this notion is motivated by the definition of Ma-
Zhan companion matrices in [35] (see [30], where this name was introduced), which are companion
matrices for monic polynomials whose entries belong to F(a0, . . . , ak−1). In this work, however, we are
interested in practical constructions, valid for all polynomials, so we restrict ourselves to entries in the
ring F[a0, . . . , ak].

Definition 22 A generalized companion pencil for polynomials (1) of degree k is a k × k matrix pencil
L(λ) = λX + Y such that:

(i) each nonzero entry of X and Y belongs to F[a0, . . . , ak], and
(ii) detL(λ) = αq(λ), for some 0 6= α ∈ F.

Definition 22 arises when looking for more general constructions than the ones in Definition 21, allow-
ing for the nonzero entries to be in the most general set that includes the coefficients of the polynomial
and is valid for all polynomials (1), namely the ring of polynomials in a0, . . . , ak. In particular, Definition
22 extends Definition 21, together with the class of generalized companion matrices in [30], and the
class of Ma-Zhan matrices in [35]. The notions of generalized companion matrix in [30] and of Ma-Zhan
matrix in [35] are only introduced for monic scalar polynomials. In the generalized companion matrices
in [30], the nonzero entries are placed in some specific part of the matrix (namely, they are on or below
the superdiagonal), and some of them are prescribed (namely, all entries in the superdiagonal are equal
to 1). Also, in the class of Ma-Zhan matrices, the number of nonzero entries is restricted to be 2k − 1
(note, however, that if we look at companion matrices as particular cases of companion pencils, we need
to add another k nonzero entries coming from λIk, see below). By contrast, our definition of generalized
companion pencil does not specify any single entry, nor imposes any condition on the number of nonzero
entries. However, in Section 5, we are interested in sparse generalized companion pencils, namely, those
having the smallest number of nonzero entries.

The following example shows one companion pencil and one generalized companion pencil which is
not companion, according to (i) in Definition 21.

Example 21 Let q(λ) =
∑3
i=0 λ

iai be a polynomial of degree 3. Let us consider the following matrix
pencils L1(λ) and L2(λ):

L1(λ) =

λa3 + a2 −1 0
0 λ −1

λa1 + a0 0 λ

 and L2(λ) =

λa1a2 + a0 −a1a2 λ
λ −1 0

λa2 + a1 λa3 −1

 .
In both cases, detL1(λ) = detL2(λ) = α

∑3
i=0 λ

iai, with α = 1 (condition (ii) in Definitions 21 and 22),
so L1(λ) is a companion pencil and L2(λ) is a generalized companion pencil for q(λ).
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We note that condition (ii) in both Definitions 21 and 22 is the natural extension of the identity

det(λIk − A) = q̃(λ) for a companion matrix A, with q̃(λ) = λk +
∑k−1
i=0 λ

iai. Therefore, companion
matrices are particular cases of (generalized) companion pencils (namely, when L(λ) = λIk −A).

3 Some properties of generalized companion pencils

Matrix pencils (and, in particular, companion pencils) are particular cases of matrix polynomials, that is,
matrices with polynomial entries. One of the standard transformations acting on matrix polynomials is
the unimodular equivalence transformation. More precisely, given a field K, two matrices A(λ) and B(λ)
with entries in K[λ] are said to be unimodularly equivalent over K if there exist two unimodular matrices
U(λ) and V (λ) such that B(λ) = U(λ)A(λ)V (λ). We recall that M(λ) ∈ K[λ]m×m is unimodular if
detM(λ) is a nonzero constant in K. The canonical form for matrix polynomials under unimodular
transformations is the Smith form, that we recall here for the sake of completeness (see, for instance, [32,
Chapter S1]).

Definition 31 (Smith form). Let Q(λ) be an m×m matrix polynomial over an arbitrary field K. Then
there exist two m×m unimodular matrix polynomials U(λ) and V (λ) over K such that

U(λ)Q(λ)V (λ) = diag(d1(λ), . . . , dm(λ)) =: D(λ),

where di(λ) ∈ K[λ], for i = 1, . . . ,m, are monic polynomials and they form a divisibility chain, that is,
dj(λ) is a divisor of dj+1(λ) (denoted by dj(λ)|dj+1(λ)), for j = 1, . . . ,m−1. The m×m diagonal matrix
D(λ) is unique and is called the Smith form of Q(λ) over K.

For generalized companion pencils over a field F, the field K above is the field of rational functions
F(a0, . . . , ak). All (generalized) companion pencils λX+Y introduced in [1,12,13,25] are linearizations of
q(λ), which means that they are unimodularly equivalent to diag (Ik−1, q(λ)). Moreover, the unimodular
transformations leading to diag (Ik−1, q(λ)) can be chosen in such a way that their determinant belongs to
the base field F (i.e., it is independent of the coefficients a0, . . . , ak). In other words, the Smith canonical
form over F of all these pencils is diag (Ik−1,

1
ak
q(λ)) (notice that, in the Smith canonical form, all nonzero

entries are monic polynomials). The key for doing this is the presence of k− 1 entries equal to 1 (though
some nonzero entries in the field F would be enough), placed in some specific positions which allow one to
find some unimodular transformations that take λX+Y into diag (Ik−1, q(λ)). As a consequence, for each
particular value of the coefficients a0, . . . , ak, all these companion pencils are unimodularly equivalent
over F to both the first and second Frobenius companion pencils, F1(λ) = λ diag (ak, Ik−1) − C1 and
F2(λ) = λ diag (ak, Ik−1)− C2, with

C1 =



−ak−1 −ak−2 · · · −a1 −a0
1 0 · · · · · · 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 · · · 0 1 0

 and C2 = CT1 . (2)

In other words, these companion pencils can be taken to F1(λ) and F2(λ) by means of unimodular
transformations over F(a0, . . . , ak) whose determinant does not depend on a0, . . . , ak. We are going
to see that every generalized companion pencil is also unimodularly equivalent over F(a0, . . . , ak) to
diag (Ik−1, q(λ)). This is a strong result, since the only condition we impose on generalized companion
pencils is that their determinant is equal to q(λ) (up to a nonzero constant factor). However, the proof,
as we will see, is quite elementary, and it is based on the following lemma, which is a straightforward
generalization of Lemma 2 in [35] from monic polynomials to general (not necessarily monic) polynomials.

Lemma 31 Let F be a field and let a0, . . . , ak be distinct indeterminates. Then, the polynomial
q(a0, . . . , ak;λ) =

∑k
i=0 λ

iai is irreducible over F(a0, . . . , ak).
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Proof For brevity, we write q(λ) := q(a0, . . . , ak;λ). Let us assume, by contradiction, that

q(λ) = q1(λ)q2(λ), (3)

with deg(q1), deg(q2) ≥ 1.
If, for a given polynomial q(a0, . . . , ak;λ), we define the monic polynomial q̃(λ) := q(a0, . . . , ak−1, 1;λ),

then:
q̃(λ) = q̃1(λ)q̃2(λ), (4)

where q̃1(λ), q̃2(λ) ∈ F(a0, . . . , ak−1).
Note that Eq. (4) is obtained from (3) after replacing ak = 1 in q(λ), q1(λ), and q2(λ). Now, we prove

that q̃(λ) is reducible. For this, it suffices to prove that both q̃1(λ) and q̃2(λ) have degree, at least, 1
in λ. Since deg(q̃1) + deg(q̃2) = k, if deg(q̃1) = 0 (respectively, deg(q̃2) = 0) it would be deg(q̃2) = k
(respectively, deg(q̃1) = k), but this is a contradiction with the fact that

deg(q̃1) ≤ deg(q1) ≤ k − 1, and deg(q̃2) ≤ deg(q2) ≤ k − 1.

Therefore, (4) implies that q̃(λ) = λk + ak−1λ
k−1 + · · · + a1λ + a0 is reducible over F(a0, . . . , ak−1), in

contradiction with Lemma 2 in [35]. ut

Theorem 31 Let q(λ) be a polynomial (1) of degree k with a0, . . . , ak being distinct indeterminates. Let
L(λ) = λX + Y be a generalized companion matrix pencil of q(λ). Then, the Smith form of L(λ) over
F(a0, . . . , ak) is diag (Ik−1,

1
ak
q(λ)).

Proof Let L(λ) be a generalized companion matrix pencil of q(λ) (so detL(λ) = αq(λ), for some 0 6=
α ∈ F), and let D(λ) be the Smith form of L(λ) over F(a0, . . . , ak) (see Definition 31). Then,

U(λ)L(λ)V (λ) =

d1(λ)
. . .

dk(λ)

 =: D(λ),

where di(λ), for i = 1, . . . , k, are monic polynomials, and d1(λ)|d2(λ)| · · · |dk(λ) over F(a0, . . . , ak).
Taking determinants in the previous identity, we obtain that

βq(λ) = d1(λ) · · · dk(λ),

with 0 6= β := α detU(λ) detV (λ) ∈ F(a0, . . . , ak).
By Lemma 31, q(λ) is irreducible over F(a0, . . . , ak). This implies, by the divisibility conditions in

the polynomials di, together with the fact that they are all monic, that d1(λ) = · · · = dk−1(λ) = 1 and
dk(λ) = 1

ak
q(λ), as wanted. ut

Note, however, that the determinant of the unimodular transformations U(λ) and V (λ) in the proof
of Theorem 31 taking λX + Y to its Smith form belongs to the field F(a0, . . . , ak) so, in principle, the
transformations could not be defined for some values of the coefficients a0, . . . , ak.

Another relevant feature of all companion matrices (or pencils) for polynomials given in the monomial
basis known so far is the property of being nonderogatory (that is, all their eigenvalues have geometric
multiplicity equal to 1). This property also holds for companion matrices of polynomials expressed in other
bases introduced in the literature (see, for instance, [6, p. 279] and [15, Th. 4.1]). For companion pencils
(and matrices) in the monomial basis, the property is an immediate consequence of the fact that they are
unimodularly equivalent over F[a0, . . . , ak] to the first (and the second) Frobenius companion pencil (or
matrix), and to the presence of the k−1 entries equal to 1 in the Frobenius companion matrices C1 and C2

(2). Here it is important to emphasize that the unimodular equivalence can be performed using matrices
with entries in the ring F[a0, . . . , ak] and whose determinant is a constant in F, which guarantees that
they are well defined and preserve the rank, regardless of the values of a0, . . . , ak. However, for arbitrary
generalized companion pencils this cannot be guaranteed since, as mentioned before, the unimodular
transformations could not be defined for some values of these coefficients. However, the following result
shows that this property of being nonderogatory holds for any generalized companion pencil of scalar
polynomials over any infinite field.
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Theorem 32 Let F be an infinite field, and let q(λ) be a polynomial (1) of degree k, with a0, . . . , ak
being distinct indeterminates. Let L(λ) = λX + Y be a generalized companion matrix pencil of q(λ).
Then, for all a0, . . . , ak ∈ F, L(λ) is nonderogatory.

Proof In order to emphasize that both the polynomial q(λ) and the generalized companion pencil L(λ)
in the statement depend on the coefficients of the polynomial, we write them as q(a0, . . . , ak;λ) and
L(a0, . . . , ak;λ), respectively, throughout this proof. We are going to prove that rankL(a0, . . . , ak;λ0) ≥
k − 1, for all λ0 ∈ F and all (a0, . . . , ak) ∈ Fk+1.

If q(a0, . . . , ak;λ0) =
∑k
i=0 λ

i
0ai 6= 0, then rankL(a0, . . . , ak;λ0) = k, since detL(a0, . . . , ak;λ0) 6= 0.

Now, let λ0 ∈ F be such that q(a0, . . . , ak;λ0) = 0, for some (a0, . . . , ak) ∈ Fk+1. Let us write:

L(a0, . . . , ak;λ0) = q(a0, . . . , ak;λ0)L0(a0, . . . , ak) + L1(a1, . . . , ak), (5)

where L1(a1, . . . , ak) does not depend on a0. Such an expression is always possible after writing

a0 = q(a0, . . . , ak;λ0) + (a0 − q(a0, . . . , ak;λ0)) = q(a0, . . . , ak;λ0) + h(a0, . . . , ak;λ0),

where h(a0, . . . , ak;λ0) :=
∑k
i=1 λ

i
0ai does not depend on a0. If rankL1(a1, . . . , ak) ≥ k − 1, for all

(a1, . . . , ak), then we are done, since for those (a0, . . . , ak) such that q(a0, . . . , ak;λ0) = 0 we have

rankL(a0, . . . , ak;λ0) = rankL1(a1, . . . , ak). Suppose, by contradiction, that there is some (a
(0)
0 , . . . , a

(0)
k )

such that q(a
(0)
0 , . . . , a

(0)
k ;λ0) = 0 and rankL1(a

(0)
1 , . . . , a

(0)
k ) < k−1. Set q̂(a0) := q(a0, a

(0)
1 , . . . , a

(0)
k ;λ0),

which is a polynomial in a0 with coefficients in F. Now, for all a0 ∈ F, we have

q̂(a0) = α detL(a0, a
(0)
1 , . . . , a

(0)
k ;λ0)

= α det
(
q̂(a0)L0(a0, a

(0)
1 , . . . , a

(0)
k ) + L1(a

(0)
1 , . . . , a

(0)
k )
)

= α q̂(a0)2 · p(a0),

(6)

where p(a0) is a polynomial in a0 with coefficients in F (and 0 6= α ∈ F). To see the last identity in (6),

set L1 := L1(a
(0)
1 , . . . , a

(0)
k ) ∈ Fk×k. Since rankL1 < k − 1, all (k − 1) × (k − 1) minors of L1 are zero.

Now, the formula for the determinant of a sum of two matrices in [38, Th. 4.1] allows us to conclude

that det
(
q̂(a0)L0(a0, a

(0)
1 , . . . , a

(0)
k ) + L1(a

(0)
1 , . . . , a

(0)
k

)
is a multiple of q̂(a0)2 (the compound matrices

Ck(L1) = detL1 and Ck−1(L1) in that formula are zero). Then, (6) implies that q̂(a0)(q̂(a0)p(a0) − 1),
which is a non-identically zero polynomial in a0, vanishes over F. Since F is an infinite field, this is
impossible. ut

Theorem 32 is, again, a quite strong result, since the only condition imposed to a pencil with entries
in F[a0, . . . , ak] for being a generalized companion pencil of q(λ) is that its determinant coincides, up to
a nonzero constant factor, with the given polynomial q(λ).

During the refereeing process of this manuscript we have been informed by K. N. Vander Meulen on
the recent reference [24], that deals with companion matrices for real monic polynomials, and where it is
proved ([24, Theorem 3.1]) that they are nonderogatory. However, we want to emphasize that the notion
of companion matrix used in that reference imposes the restriction that each coefficient ai appears just
once in the matrix, and that the remaining entries are constant.

4 Generalized companion pencils where each coefficient appears only once

In [19], we looked for companion pencils (as in Definition 21) with a small number of nonzero entries.
There, however, only nonzero entries of the form ai, λai+1 or λai+1 + ai (up to scalar constants) were
considered, and this led to the class of quasi-sparse pencils with at most 3k− 2 nonzero entries, denoted
by Rn,k (see [19, Def. 2.3]).

Proposition 41 shows that the nonzero entries mentioned in the precedent paragraph are, up to
constants, the nonzero entries in a generalized companion pencil when we impose the restriction that
each coefficient ai, for i = 0, . . . , k, of the polynomial (1) appears in just one entry.
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Proposition 41 Let L(λ) = λX + Y be a generalized companion pencil for polynomials (1) of degree k
such that each coefficient ai, for i = 0, . . . , k, appears in just one entry of L(λ). Then the entry containing
ai is either of the form

λ(β1ai+1 + β2) + α1ai + α2, for 0 ≤ i ≤ k − 1, (7)

with α1, α2, β1, β2 ∈ F, and α1 6= 0, or

λ(β1ai + β2) + α1ai−1 + α2, for 0 ≤ i ≤ k − 1, (8)

with α1, α2, β1, β2 ∈ F, and β1 6= 0.

Proof Since L(λ) is a generalized companion pencil for q(λ), its (s, t) entry is of the form `st(λ) =
λxst + yst, for s, t = 1, . . . , k, with xst, yst ∈ F[a0, . . . , ak]. By hypothesis, ai, for 0 ≤ i ≤ k, can be either
in xst or yst for just one (s, t). Now, we claim that:

1. If ai is in xst, then: (a) ai does not appear in yst. (b) There is no other aj in xst. (c) The only possible
aj appearing in yst is ai−1. (d) xst must be equal to β1ai + β2, for some β1, β2 ∈ F, with β1 6= 0. (e)
yst is of the form α1ai−1 + α2, for some α1, α2 ∈ F.

2. Similarly, if ai is in yst, then: (a’) ai does not appear in xst. (b’) There is no other aj in yst. (c’) The
only possible aj appearing in xst is ai+1. (d’) yst must be equal to α1ai + α2, for some α1, α2 ∈ F,
with α1 6= 0. (e’) xst is of the form β1ai+1 + β2, for some β1, β2 ∈ F.

Note that case 1 above corresponds to (8), whereas case 2 corresponds to (7). Then, it remains to prove
(a)-(e) and (a’)–(e’). We assume that ai is in xst. Condition (ii) in Definition 22 implies detL(λ) = αq(λ),
with 0 6= α ∈ F, and q(λ) as in (1). Spanning the determinant either across the sth row or the tth column,
we get detL(λ) = `stCst + qst(λ), where `st is the (s, t) entry of L(λ), Cst is the cofactor of the entry
containing `st, and qst(λ) does not contain ai. Then, setting `st = λxst + yst, we have

detL(λ) = (λxst + yst)Cst + qst(λ), (9)

and Cst is of the form Cst = λi−1ci−1 + · · · + λi−rci−r, for some r ≥ 1, and where ci−1, . . . , ci−r are
polynomials in the coefficients aj , for j 6= i, and ci−r 6= 0. Note that, since ai is in xst, ci−1 is always
a nonzero polynomial as well. Note also that the degree of all possible appearances of ai in `st must be
equal to 1. If, on the contrary, there is a term asi , with s > 1, in `st, by (9) and taking into account that
ai does not appear in either Cst and qst(λ), this term asi would appear in detL(λ), a contradiction with
the fact that detL(λ) = αq(λ), with 0 6= α ∈ F.

We consider two cases, depending on whether ai is in yst or not.

– If ai is only in xst, then Cst = γλi−1, for some γ ∈ F \ {0}, since otherwise there would be another
term containing ai in detL(λ), besides λiai (recall that ai does not appear in either Cst and qst(λ)).
Hence, no other coefficient aj than ai−1 may appear in `st since, otherwise, there would be a nonzero
term of the form λi−1aj or λiaj in detL(λ) (recall, again, that aj does not appear in either Cst and
qst(λ)). Moreover, following similar arguments as those for ai, the coefficient ai−1 must appear in yst,
also with degree 1, and cannot appear in xst. Thus, we have proved claims (a)–(c). For claims (d) and
(e) just note that, by the previous considerations, xst and yst are linear polynomials in, respectively,
ai and ai−1 over F. Therefore, they are as claimed in (d) and (e), respectively.

– If ai appears in both xst and yst, then `st = λβ1ai + α1ai + ˜̀st, for some α1, β1 ∈ F \ {0}, where ai
does not appear in ˜̀st, and we would have, from (9),

detL(λ) = (λβ1ai + α1ai + ˜̀st)(λi−1ci−1 + · · ·+ λi−rci−r) + qst(λ) =

= ai(λ
iβ1ci−1 + λi−rα1ci−r) + q̂st(λ),

(10)

where q̂st(λ) is another polynomial in λ with coefficients in F[a0, . . . , ak]. The relevant property of
q̂st(λ) is that the terms in this polynomial containing ai (if any) are of degree larger than i− r and
smaller than i in λ, so the first term in the second line of the right-hand side of (10) necessarily
appears in detL(λ) (note that this also holds if r = 1). In other words, there is a term of degree i− r
in λ containing ai, in contradiction with the fact that detL(λ) = αq(λ), with 0 6= α ∈ F.

This proves (a)-(e), and claims (a’)-(e’) can be proved in a similar way. ut
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5 Sparse generalized companion pencils

In this section, we are interested in generalized companion pencils having the smallest number of nonzero
entries. By a nonzero entry we mean an entry of the form λx+y, where x, y are polynomials in a0, . . . , ak
and at least one of them is non-identically zero (that is, it has, at least, one nonzero coefficient). In
Theorem 51 we get a lower bound on the number of nonzero entries in the coefficients, X and Y , of a
generalized companion pencil L(λ) := λX + Y . There, the total number of nonzero entries is obtained
after adding up the nonzero entries of X with those of Y . However, some of these nonzero entries can be
placed in the same position in both X and Y , so the number of nonzero entries of L(λ) can be smaller
than this lower bound. By imposing some additional restrictions on X and Y we can get a sharper bound,
in Theorems 52 and 53, for the number of nonzero entries in L(λ). We want to emphasize that these
particular conditions are very natural, since they are satisfied by all sparse pencils in the most relevant
families of companion linearizations (in the monomial basis) introduced so far (namely, the Fiedler-like
families [1,10,13,20,22,28,40] and the block-Kronecker linearizations [25]).

We follow the developments in [35, p. 624]. We first recall the following notions: Let trd(E/F) be the
transcendence degree of E over F, with F ⊆ E being a field extension. Since {a0, . . . , ak} is a transcendence
basis of F(a0, . . . , ak) over F [34, p. 317], then trd(F(a0, . . . , ak)/F) = k+ 1. Instead, given e1, . . . , e` ∈ E
and denoting by F(e1, . . . , e`) the subfield of E defined by

F(e1, . . . , e`) =

{
f(e1, . . . , e`)

g(e1, . . . , e`)
: f, g ∈ F[a0, . . . , a`], g(e1, . . . , e`) 6= 0

}
,

then trd(F(e1, . . . , e`)/F) ≤ `.
In the proof of Theorems 51 and 53, we use some basic notions of graph theory. Given a pencil

L(λ) = [`st], for s, t = 1, . . . , k, we denote by D(L) the digraph of L(λ). The vertex set of D(L) is the
k-set V = {v1, v2, . . . , vk} and there is an edge (s, t) from the vertex vs to the vertex vt if and only if
`st 6= 0, for 1 ≤ s, t ≤ k.

Theorem 51 Let L(λ) = λX + Y be a generalized companion pencil for polynomials (1) of degree k.
Then X and Y altogether have, at least, 3k − 1 nonzero entries.

Proof Since detL(λ) = αq(λ), with 0 6= α ∈ F, and the entries of L(λ) have degree at most 1 in λ,
there must be, at least, k entries of degree 1 in L(λ) placed in different rows and columns. Let them
be λxi + yi, with xi 6= 0, for i = 1, . . . , k. By row and column permutation, we can take them to the
diagonal positions:

L̃(λ) = λX̃ + Ỹ := P1 · L(λ) · P2 =

λx1 + y1 ∗
. . .

∗ λxk + yk

 ,
with P1 and P2 being permutation matrices and X̃, Ỹ ∈ F[a0, . . . , ak]k×k. The previous pencil is strictly
equivalent to:

L̂(λ) = λX̂ + Ŷ :=

1/x1 0
. . .

0 1/xk

 L̃(λ) =

λ+ y1/x1 ∗
. . .

∗ λ+ yk/xk

 .
with X̂, Ŷ ∈ F(a0, . . . , ak)k×k. Note that, since q(λ) is irreducible over F(a0, . . . , ak) (Lemma 31), then

L̂(λ) is irreducible as well.

Since L̂(λ) is irreducible, by [9, Theorem 3.2.1], D(L̂) is strongly connected. Furthermore, by [35,

Lemma 3], D(L̂) has a spanning branching and, by [35, Lemma 4], there exists a nonsingular diagonal
matrix D ∈Mk(F(a0, . . . , ak)) such that

Ľ(λ) = λX̌ + Y̌ := D · L̂(λ) ·D−1 (11)

has k − 1 entries equal to 1 in different positions between X̌ and Y̌ . Furthermore, from the proof of
Lemma 4 in [35], these k − 1 entries are not in the main diagonal.
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Note that these 1’s correspond either to entries in X̌ or in Y̌ , and that we are not claiming that the
full entry in Ľ(λ) is equal to 1. It may be either λ+ y or λx+ 1, for some x, y ∈ F(a0, . . . , ak).

Note also that the similarity transformation (11) does not affect the diagonal entries of L̂(λ), so Ľ(λ)
has {

· k diagonal entries of X̌ equal to 1
· k − 1 nondiagonal entries (of either X̌ or Y̌ ) equal to 1.

(12)

Now, det Ľ(λ) = β detL(λ) = β(α
∑k
i=0 λ

iai), for some β ∈ F(a0, . . . , ak). Note also that Ľ(λ) and L(λ)
have the same number of nonzero entries. Let e1, . . . , es be the other nonzero entries of Ľ(λ) than the
ones in (12) (namely, the remaining nonzero entries in X̌ and Y̌ , which belong to F(a0, . . . , ak), counted
separately).

Moreover, ai ∈ F
(

1
β·α , e1, . . . , es

)
, because

∑k
i=0 λ

iai = 1
β·α det Ľ(λ), and det Ľ(λ) is a polynomial

in λ whose coefficients belong to F(e1, . . . , es). Therefore,

F(a0, . . . , ak) ⊆ F
(

1

β · α
, e1, . . . , es

)
. (13)

On the other hand, we have

F
(

1

β · α
, e1, . . . , es

)
⊆ F(a0, . . . , ak). (14)

As a consequence of (13) and (14), we get that

F(a0, . . . , ak) = F
(

1

β · α
, e1, . . . , es

)
.

But

k + 1 = trd(F(a0, . . . , ak)/F) = trd

(
F
(

1

β · α
, e1, . . . , es

)
/F
)
≤ s+ 1,

so s ≥ k. Therefore,
s+ 2k − 1 ≥ k + 2k − 1 = 3k − 1.

In other words, X and Y altogether have, at least, 3k − 1 nonzero entries. ut

Some of the nonzero entries of X and Y in Theorem 51 can be placed in the same position. In
the Fiedler pencils, for instance, there are only two coincident entries, namely ak−1 and ak, so that
any Fiedler pencil has exactly 3k − 2 nonzero entries (see [1,20]). This includes the classical Frobenius
companion pencils, F1(λ) and F2(λ), mentioned right before Eq. (2).

Regarding the pencils in the family of quasi-sparse pencils R1,k introduced in [19], they can have
less than 3k − 2 nonzero entries if the coefficients of the polynomial are grouped in pairs of the form
λai+1 + ai, as in Proposition 41. This gives a total amount of 2k− 1 +

⌊
k
2

⌋
nonzero entries, which is the

smallest number of nonzero entries in the conditions of the statement of Theorems 52 and 53.

Theorem 52 Let L(λ) = λX + Y be a generalized companion pencil for polynomials (1) of degree k. If
we assume that L(λ) has, at least, 2k − 2 nonzero entries with coefficients in F (namely λxij + yij such
that xij , yij ∈ F, with at least one of xij or yij nonzero), then L(λ) has, at least, 2k − 1 +

⌊
k
2

⌋
nonzero

entries.

Proof We essentially follow the proof of Theorem 1 in [35]. The basic idea of the proof is that, to the
2k − 2 nonzero entries of λX + Y with coefficients in F which are mentioned in the statement, we need
to add the k + 1 coefficients a0, . . . , ak, which, in order to minimize the number of nonzero entries, can
be grouped in pairs in the same entry (one coefficient in X and the other one in Y ). Adding up, we
will get the total number of nonzero entries claimed in the statement. To formalize these reasonings, we
use some arguments from abstract algebra that involve field extensions. In particular, even though the
entries of X and Y belong to the ring F[a0, . . . , ak], we will consider its field of fractions, F(a0, . . . , ak),
in the proof. Suppose that L(λ) has precisely m nonzero entries, counting those of X and Y separately.
Let these entries be e1, . . . , em. By the hypothesis in the statement, there are s nonzero entries ei that
are coefficients in F, with 2k−2 ≤ s ≤ 4k−4 (though this bound will not be relevant in the proof). That
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is, {e1, . . . , em} = {e1, e2, . . . , em−s} ∪ {α1, . . . , αs}, with αi ∈ F (where these sets may include repeated
elements).

Note that, by definition of companion pencil, ej ∈ F[a0, . . . , ak] ⊆ F(a0, . . . , ak), for j = 1, . . . ,m −
s, and then F(e1, . . . , em) = F(e1, . . . , em−s) ⊆ F(a0, . . . , ak). On the other hand, since each of the
coefficients a0, . . . , ak of the polynomial q(λ) is the value of a polynomial over F in the entries of L(λ)
(that is, detL(λ) = αq(λ), with 0 6= α ∈ F), we have ai ∈ F(e1, . . . , em) = F(e1, . . . , em−s), for all
i = 0, . . . , k, i.e., F(a0, . . . , ak) ⊆ F(e1, . . . , em−s).

Therefore F(e1, . . . , em−s) = F(a0, . . . , ak). Finally, from

k + 1 = trd(F(a0, . . . , ak)/F) = trd(F(e1, . . . , em−s)/F) ≤ m− s

we obtain m ≥ k + s+ 1.
Since we are looking for a lower bound on the nonzero entries of L(λ), let m = k+s+1. Now, in order

to minimize the number of nonzero entries in L(λ), the nonzero entries e1, . . . , em−s can be grouped in
pairs (that is, one entry in the matrix X and the other one in the matrix Y , both in the same position)
resulting a total amount of

⌈
m−s
2

⌉
=
⌈
k+s+1−s

2

⌉
=
⌈
k+1
2

⌉
nonzero entries in L(λ). Besides these ones,

there are another 2k − 2 nonzero entries in F, namely the ones mentioned in the statement, which come
from α1, . . . , αs. Adding up, we get, at least, 2k − 2 +

⌈
k+1
2

⌉
= 2k − 1 +

⌊
k
2

⌋
nonzero entries. ut

We want to emphasize that all pencils in the Fiedler-like families of companion linearizations for ma-
trix polynomials (namely Fiedler pencils [1,20,22,28], generalized Fiedler pencils [1,13], and generalized
Fiedler pencils with repetition [10,40]), as well as the block-Kronecker linearizations in [25], satisfy the
conditions of Theorem 52. In particular, the 2k − 2 nonzero entries are of the form: k − 1 entries equal
to 1 and another k − 1 entries equal to λ (up to scalar constants).

Finally, we have obtained a similar result to Theorem 52 but imposing the restriction that each
coefficient ai, for i = 0, . . . , k, of the polynomial (1) appears in just one entry in the generalized companion
pencil. In this situation, Proposition 41 provides an explicit description of the nonzero entries, and it is
key to prove the result.

Theorem 53 Let L(λ) = λX + Y be a generalized companion pencil for polynomials (1) of degree k. If
we assume that each coefficient ai, for i = 0, . . . , k, appears in just one entry of L(λ), then L(λ) has, at
least, 2k − 1 +

⌊
k
2

⌋
nonzero entries.

Proof Throughout the proof, a set of k nonzero entries in L(λ) located in different rows and columns
is referred to as a composite k-cycle (of the digraph D(L)), following the nomenclature in [26, p. 258].
The label of the edge is the nonzero entry of L(λ) corresponding to this edge. We will say that an edge
“contains” a coefficient ai if the label contains the coefficient ai. For brevity, we will also say that a cycle
“contains” a coefficient ai if the entry containing this coefficient is an edge of the cycle.

We are going to prove first that, in the conditions of the statement, for a given 0 ≤ j ≤ k, there is,
at least, one composite k-cycle with an edge containing aj , and such that the remaining edges do not
contain any other coefficient ai. For this, let zjaj + wj be the entry containing aj , where zj and wj are
polynomials of degree at most 1 in λ, like in Proposition 41. Then, spanning across the row containing
zjaj + wj we get

detL(λ) = ±(zjaj + wj) detLj(λ) + qj(λ),

where qj(λ) is a polynomial not containing aj , and Lj(λ) is the subpencil of L(λ) obtained after removing
the row and column containing zjaj + wj . Now, let 0 ≤ i ≤ k with i 6= j, and let us consider the entry
ziai + wi containing ai, where zi, wi are, again, polynomials of degree at most 1 in λ, as in Proposition
41. If the edge corresponding to this entry is part of a composite k-cycle including the edge of zjaj +wj ,
then ziai + wi is in Lj(λ), and spanning the determinant of this pencil across the row containing this
entry, we get

detL(λ) = ±(zjaj + wj) (±(ziai + wi) detLij(λ) + qij(λ)) + qj(λ), (15)

where qij(λ) is a polynomial in λ not containing ai, and Lij(λ) is the subpencil of Lj(λ) obtained after
removing the row and column containing ziai + wi. Since the product aiaj only appears in the first
summand of the product (zjaj + wj)(ziai + wi) detLij(λ) in (15), and L(λ) is a generalized companion
pencil, it must be detLij(λ) ≡ 0. As a consequence, all cycles containing the edges corresponding to
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zjaj +wj and ziai +wi cancel out. This means that the term λjaj in detL(λ) must come from, at least,
another composite k-cycle not containing any other coefficient ai, for i 6= j, in a different edge.

Now, among the composite k-cycles containing ak and not containing any other coefficients ai in
other edges, we choose one and denote it by Ck. We are going to see that, if all composite k-cycles
containing a0 and not containing ak have a common edge with Ck, then L(λ) would not be a generalized
companion pencil. For this, we assume, by contradiction, that all composite k-cycles containing a0 and
not containing ak contain the common edge labelled as λβ + α in Ck. Let α0a0 + w0 and λβkak + wk,
with α0, βk ∈ F \ {0}, be the entries containing a0 and ak, respectively. Note that, by Proposition 41, ak
can only appear multiplied by λ (and a0 must appear without the factor λ instead). Then

detL(λ) = (λβ + α) ((α0a0 + w0)q0(λ) + (λβkak + wk)qk(λ)) + r(λ),

where q0(λ), qk(λ), and r(λ) are polynomials in λ, with r(λ) containing neither a0 nor ak, qk(λ) does not
contain a0, and has degree at most k− 2. As a consequence, it must be β 6= 0, since, otherwise, the term
containing ak in detL(λ) would not have degree k. But, then, detL(λ) would contain a term of the form
λβa0, so L(λ) would not be a generalized companion pencil.

Now, let C0 be a composite k-cycle containing a0 and no other ai in a different edge (entry), and let us
assume that this cycle contains d common edges with Ck. Then, there must be another d additional edges
to replace these ones, and none of these edges (entries) contain any other ai, except, maybe, the entry
containing a0. In order to see this, let us assume that the common d edges correspond to the first diagonal
positions of L(λ) (otherwise, we can take them to these positions by row and column permutation). These
edges correspond to d loops, `1, . . . , `d, in vertices v1, . . . , vd of D(L). Since none of these loops can be
in all k-cycles containing a0 and not containing ak (since, as we have seen in the previous paragraph,

otherwise L(λ) would not be a generalized companion pencil), there must be a composite k-cycle, C(i)0 ,
containing a0 and not containing `i, for each 1 ≤ i ≤ d (and not containing either any other aj in a
different edge). Therefore, for each vertex vi, with 1 ≤ i ≤ d, there must be another two edges, one inner
edge, and one outer edge. The minimum number of edges that we need to add in order to fulfill these
requirements can be obtained with a d-cycle involving all vertices v1, . . . , vd (that is, a cycle of the form
(v1, v2), (v2, v3), . . . , (vd−1, vd), (vd, v1)), which gives a total amount of d new edges. Therefore, we need,
at least, d additional edges to replace these d loops. Adding up to the remaining k− d edges of C0, there
must be another k entries, other than those in Ck, corresponding to composite k-cycles containing a0
and not containing ak.

So far, we have proved that L(λ) contains, at least, 2k nonzero entries. One of these entries contains
a0 and another one contains ak, but the remaining ones do not contain any other coefficient ai. These
other coefficients, however, must be in L(λ). The smallest number of additional entries that we can add
to these 2k entries in order to incorporate these coefficients is dk−3

2 e. This can be done by adding a1 to
the entry containing a0 and ak−1 to the entry containing ak, and grouping in pairs the remaining k − 3
coefficients, as in (7)–(8). The identity dk−3

2 e = bk2 c − 1 concludes the proof. ut

In the following example, we show a sparse companion pencil, L1(λ), in the family R1,k introduced in
[19], and another companion pencil, L2(λ), where each coefficient of the polynomial appears only once,
which is not sparse (and not in R1,k either). This pencil L2(λ) has the additional property that the only
composite k-cycle of degree k containing ak has a common edge with a composite k-cycle containing a0.

Example 51 Let q(λ) =
∑4
i=0 λ

iai be a polynomial of degree 4. Let us consider the following matrix
pencils L1(λ) and L2(λ):

L1(λ) =


λ −1 0 0
0 λ −1 0
0 0 λ −1

λa1 + a0 λa2 0 λa4 + a3

 and L2(λ) =


λ λa1 + a0 1 −1
0 λ 0 1
λ λ λ+ 1 λ
1 −λ+ 2− a2 1 λa4 + a3

 .
The coefficients a0, . . . , a4 appear only once in both L1(λ) and L2(λ). Moreover, both pencils are

generalized companion because detL1(λ) = detL2(λ) =
∑4
i=0 λ

iai. However, only the pencil L1(λ) is
sparse, having 2 ·4−1+b 42c = 9 nonzero entries. Note that, in L1(λ), there is only one composite 4-cycle
containing each coefficient ai, for 1 ≤ i ≤ 4. In L2(λ), the only composite 4-cycle of degree 4 containing
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a4 is (1, 1), (2, 2), (3, 3), (4, 4), which has the edge (3, 3) in common with the following composite 4-cycle
containing a0: (1, 2)− (2, 4)− (4, 1), (3, 3). However, there are other composite 4-cycles containing either
a0 or a4.

6 Conclusions and open questions

In this note, we have introduced the notion of generalized companion pencil, L(λ) = λX + Y , for scalar
polynomials as in (1), which extends the notion of companion matrix A of monic scalar polynomials
(with X = I and Y = −A), and the notion of companion pencil by allowing the coefficients X and
Y to contain entries in the ring of polynomials in the coefficients a0, . . . , ak. We have proved that all
generalized companion pencils of a given polynomial q(λ) as in (1) have the same Smith canonical form
over F(a0, . . . , ak), namely diag(Ik−1,

1
ak
q(λ)), and that they are all nonderogatory.

We have seen that, if we impose the condition that each coefficient ai of the polynomial (1) appears
only once in L(λ), then the entries of L(λ) have a very specific form, and we have also seen that, under
this condition, the smallest number of nonzero entries of L(λ) is 2k − 1 + bk2 c (Theorem 53). This is
also the smallest number of nonzero entries of L(λ) if it contains k − 1 entries equal to 1 and another
k − 1 entries equal to λ (up to nonzero constant factors, see Theorem 52), as it happens in most of
the families of companion pencils introduced so far in the literature. For generalized companion pencils
without restrictions, we have proved that the number of nonzero entries in X and Y , altogether, is at
least 3k − 1. However, some of these nonzero entries may be in the same position in L(λ).

As an open question, it remains to determine the smallest possible number of nonzero entries in an
arbitrary generalized companion pencil for polynomials of degree k. We conjecture that this number is
2k − 1 + bk2 c.

Acknowledgements. We are very much indebted to an anonymous referee for a very careful reading
of the manuscript and for many helpful suggestions that allowed us to improve significantly the original
version. We also thank a second referee for suggesting the inclusion of several references on companion
matrices for polynomials expressed in other bases than the monomial basis, like [5,8,33,36,37].

References

1. E. N. Antoniou, S. Vologiannidis. A new family of companion forms for polynomial matrices. Electron. J. Linear
Algebra, 11 (2004) 78–87.

2. J. Aurentz, T. Mach, R. Vandebril, D. S. Watkins. Fast and backward stable computation of roots of polynomials.
SIAM J. Matrix Anal. Appl. 36 (2015) 942–973.

3. J. Aurentz, T. Mach, L. Robol, R. Vandebril, D. S. Watkins. Fast and backward stable computation of roots of
polynomials, part II: backward error analysis; companion matrix and companion pencil. SIAM J. Matrix Anal. Appl.
39 (2018) 1245–1269.

4. J. Aurentz, T. Mach, L. Robol, R. Vandebril, D. S. Watkins. Fast and backward stable computation of the eigenvalues
of matrix polynomials. Math. Comp. 88 (2019) 313–347.

5. S. Barnett. A companion matrix analogue for orthogonal polynomials. Linear Algebra Appl. 12 (1975) 197–208.
6. S. Barnett. Congenial matrices. Linear Algebra Appl. 41 (1981) 277–298.
7. D. Bini, L. Gemignani, V. Pan. Fast and stable QR eigenvalue algorithms for generalized companion matrices and

secular equations. Numer. Math., 100 (2005) 373–408.
8. J. P. Boyd. Finding the zeros of a univariate equation: Proxy rootfinders, Chebyshev interpolation, and the companion

matrix. SIAM Rev. 55 (2013) 375–396.
9. R. Brualdi, H. Ryser. Combinatorial Matrix Theory. Cambridge University Press, Cambridge, 1991.

10. M. I. Bueno, K. Curlett, S. Furtado. Structured strong linearizations from Fiedler pencils with repetition I. Linear
Algebra Appl. 460 (2014) 51-80.

11. M. I. Bueno, K. Curlett, S. Furtado. Structured linearizations from Fiedler pencils with repetition II. Linear Algebra
Appl. 463 (2014) 282–321.

12. M. I. Bueno, F. De Terán. Eigenvectors and minimal bases for some families of Fiedler-like linearizations. Lin. Multilin.
Algebra, 62 (2014) 39–62.

13. M. I. Bueno, F. De Terán, F. M. Dopico. Recovery of eigenvectors and minimal bases of matrix polynomials from
generalized Fiedler linearizations. SIAM J. Matrix Anal. Appl. 32 (2011) 463–483.
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