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We give a complete solution of the matrix equation AX +BX? = 0, where A,B ∈ Cm×n are two given
matrices, X ∈ Cn×n is an unknown matrix, and ? denotes the transpose or the conjugate transpose. We
provide a closed formula for the dimension of the solution space of the equation in terms of the Kronecker
canonical form of the matrix pencil A+ λB, and we provide also an expression for the solution X in terms
of this canonical form, together with two invertible matrices leading A+λB to the canonical form by strict
equivalence.
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1. Introduction

Matrix equations involving both the unknown X and its transpose XT or its conjugate
transpose X∗ have appeared in the literature since the 1950’s [11]. Particular cases of
these equations are the Sylvester-like equations, whose interest has increased notably in
the recent years, mostly because of their applications [1–5, 12, 16, 17]. In particular,
the generalized ?-Sylvester equation, AXB + CX?D = E (where ? denotes both the
transpose and the conjugate transpose), has been addressed in several recent references
[10, 13, 15–17, 19], most of them devoted to provide numerical methods to find particular
solutions for the general or special cases of the equation, or for systems of equations.
The term “generalized" here stands for the fact that this equation is an extension of the
so-called ?-Sylvester equation AX + X?B = C. This equation naturally arises when
trying to reduce a block anti-triangular matrix to a block anti-diagonal one by using ?-
congruence transformations, a reduction which is of interest, for instance, in palindromic
generalized eigenvalue problems [1, 12].

Some of the main goals when dealing with (linear) equations are to obtain: (i) nec-
essary and sufficient conditions for the existence of solutions; (ii) formulas for the di-
mension of the solution space; (iii) expressions for the solution; (iv) necessary and suf-
ficient conditions for the existence of a unique solution; and (v) (efficient) algorithms to
find the solution, when unique. All these problems have been addressed (and, essentially,
solved) by different authors for the general ?-Sylvester equation or the homogeneous case
AX +X?B = 0 of this equation [1, 2, 6, 7, 12, 14, 18].

The subject of the present paper is the matrix equation

AX +BX? = 0, (1)
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where A,B ∈ Cm×n. This equation look like very much to the homogeneous ?-Sylvester
equation, and it is also another particular case of the generalized ?-Sylvester equation. By
contrast with the situation for the ?-Sylvester equation, none of the goals mentioned in
the precedent paragraph have been addressed so far for equation (1). The present paper
considers some of these questions and our contribution in this context is threefold. In the
first place, we provide an explicit formula for the dimension of the solution space; in the
second place, we give a complete description of the solution; and, in the third place, we
give necessary and sufficient conditions for the existence of a unique solution.

Apart from their appearance, there are relevant similarities between equation (1) and
the homogeneous ?-Sylvester equation AX + X?B = 0. This way, both the results and
techniques contained in the present paper look like very much to the ones in [7], where
the homogeneous ?-Sylvester equation is solved. Let us mention one interesting similarity
between both equations, which is in the basis of the procedure followed to solve them. On
the one hand, the solutions of AX + X?B = 0 are in one-to-one linear correspondence
with the solutions of ÃX+X?B̃ = 0, where Ã+λB̃? is a matrix pencil strictly equivalent
to A + λB? [7, Theorem 1]. Hence, the solution of AX + X?B = 0 depends only
on the Kronecker canonical form (KCF) of A + λB?, and on two nonsingular matrices
leading A + λB? to its KCF. Similarly, the solutions of equation (1) are in one-to-one
correspondence with the solutions of ÃX + B̃X? = 0, where Ã+ λB̃ is a matrix pencil
strictly equivalent to A + λB. Moreover, this one-to-one correspondence is given by a
congruence transformation (see Theorem 2.1). As a consequence, the solution of AX +
BX? = 0 depends only on the KCF of A+ λB, and on two nonsingular matrices leading
A + λB to its KCF. In particular, the dimension of the solution space of equation (1)
depends only on the KCF of A+ λB.

There are, however, striking differences between equation (1) andAX+X?B = 0. For
instance, in the second equation the unknown X may be rectangular, whereas in the first
equation X must be square. Another difference arises when replacing X? with X . In the
second equation we get the Sylvester equation AX + XB = 0, whose solution depends
on the Jordan canonical form of A and B [9, Ch. VIII, §1], whereas for the first equation
we get (A+B)X = 0, which is a standard linear system, whose solution depends on the
column space of A+B.

We want to mention also that equation (1) is equivalent to the system of equations
AX + BY = 0, Y = X?, which can be seen as an extension of the system AX =
0, X = X?, the one considered in [8] (with ? = T ). However, the solution has nothing
to do with the one of this last system (actually, the dimension of the solution space of this
last system depends only on the rank and the size of A).

The paper is organized as follows: In Section 2 we show how to reduce the problem of
solving (1) by decoupling it into smaller equations and systems of matrix equations, taking
advantage of the KCF of the pencil A+λB. In Section 3 we display the dimension of the
solution space of (1) in terms of this KCF. In Section 4 we prove the results from Section
3 by obtaining the dimension of all the equations and systems of equations obtained in
the decoupling procedure explained in Section 2. In these proofs we have also obtained
an expression for the solution of the corresponding equations, which gives in turn an
expression for the solution of (1), provided that the nonsingular matrices leading A+ λB
to its KCF are known. Section 5 contains necessary and sufficient conditions for (1) to
have a unique (trivial) solution, and also for AX +BX? = C to have a solution for every
right-hand side matrix C. In Section 6 we review the main contributions of the paper and
present some related open problems.
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1.1. Notation

Throughout the paper we will use the following notation: M = M1 ⊕M2 ⊕ · · · ⊕Md

denotes a direct sum of blocks M1, . . . ,Md or, in other words, a block-diagonal matrix
or matrix pencil M , whose diagonal blocks are M1, . . . ,Md. Also, In will denote the
identity matrix with size n× n. Given a vector space V over C, we will denote by dimV
and dimR V the complex and the real dimension of V , respectively.

2. Reduction to KCF. Decoupling procedure

We show in this section that the solution of the equation (1) is in one-to-one linear corre-
spondence with the solution of ÃX + B̃X? = 0, where A+ λB and Ã+ λB̃ are strictly
equivalent pencils, that is, Ã + λB̃ = P (A + λB)Q, with P,Q nonsingular matrices.
Using this fact, we can solve this last equation, with Ã+λB̃ being the canonical form for
strict equivalence of A+ λB (namely, the KCF), and recover the original equation using
the one-to-one correspondence. The idea to solve the last equation is to take advantage of
the block-diagonal structure of the KCF. For this, we will use Lemma 2.3, which shows
us how equation (1) is decoupled when the coefficient matrices are block-diagonal.

2.1. Strict equivalence of pencils and the solution space

We start with Theorem 2.1, which is key in the procedure to solve (1).

Theorem 2.1 : Let A+ λB and Ã+ λB̃ be two strictly equivalent matrix pencils, with
Ã+λB̃ = P (A+λB)Q, and P,Q nonsingular. Then Y is a solution of ÃY + B̃Y ? = 0
if and only ifX = QY Q? is a solution ofAX+BX? = 0. As a consequence, the solution
spaces of both equations are isomorphic via Y 7→ QY Q? = X .

Proof : Let Y be a solution of ÃY + B̃Y ? = 0, with Ã and B̃ as in the statement. Then

PAQY + PBQY ? = 0⇔ PA(QY Q?) + PB(QY ?Q?) = 0⇔ AX +BX? = 0,

with X = QY Q? as in the statement. Since Q is invertible, Y 7→ X is an isomorphism,
and the result follows. �

As a consequence of Theorem 2.1, the solution of AX + BX? = 0 can be recovered
from the solution of ÃX + B̃X? = 0, where Ã + λB̃ = P (A + λB)Q, once we know
the nonsingular matrices P,Q. In particular, we may consider Ã + λB̃ to be the KCF
of A + λB. Since the KCF plays a fundamental role in the following, we include this
canonical form here, for the sake of completeness.

Theorem 2.2 : (Kronecker canonical form) Each complex matrix pencil A+λB, with
A,B ∈ Cm×n, is strictly equivalent to a direct sum of blocks of the following types:

(1) Right singular blocks:

Lε =


λ 1
λ 1
. . .

. . .

λ 1


ε×(ε+1)

.

(2) Left singular blocks: LTη , where Lη is a right singular block.
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(3) Finite blocks: Jk(µ) + λIk, where Jk(µ) is a Jordan block of size k × k associated
with µ ∈ C,

Jk(µ) :=


µ 1
µ 1
. . .

. . .

µ 1
µ


k×k

.

(4) Infinite blocks: Nu := Iu + λJu(0).

This pencil is uniquely determined, up to permutation of blocks, and is known as the
Kronecker canonical form (KCF) of A+ λB.

We will denote the coefficient matrices of the right singular blocks by Aε and Bε, that
is, Lε = Aε + λBε, where

Aε :=


0 1

0 1
. . .

. . .

0 1


ε×(ε+1)

and Bε :=


1 0

1 0
. . .

. . .

1 0


ε×(ε+1)

.

We will say that µ ∈ C is an eigenvalue ofA+λB if there is some block Jk(−µ)+λIk,
with k > 0, in the KCF of A+ λB.

2.2. Decoupling the equation

In order to take advantage of the block-diagonal structure of the KCF of A+λB, we state
the following result, which shows how (1) can be decoupled when A and B are block-
diagonal matrices conformally partitioned. We omit the proof, because it is straightfor-
ward.

Lemma 2.3: Let Ã = A1 ⊕ A2 ⊕ · · · ⊕ Ad and B̃ = B1 ⊕ B2 ⊕ · · · ⊕ Bd be two
block-diagonal matrices in Cm×n. Let X = [Xij ]

d
i,j=1 be partitioned conformally with

the partition ofA andB. Then the equation ÃX+B̃X? = 0 is equivalent to the following
system of matrix equations:

(i) d matrix equations:

AiXii +BiX
?
ii = 0, for i = 1, . . . , d, (2)

together with
(ii) d(d−1)2 systems of 2 matrix equations with 2 unknowns:

AiXij +BiX
?
ji = 0

AjXji +BjX
?
ij = 0

, for i, j = 1, . . . , d, i < j . (3)

Now, using theorems 2.1 and 2.2, and Lemma 2.3, we have the following procedure to
solve equation (1):

Procedure to solve AX +BX? = 0.
Given Ã+ λB̃ = P (A+ λB)Q, the KCF of A+ λB:

Step 1. Solve (2) and (3) for all blocks Ai + λBi, Aj + λBj in the KCF of A + λB
with i < j. This gives Xii, Xij , and Xji for i, j = 1, . . . , d and i < j.
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Step 2. Set X = [Xij ]
d
i,j=1 , where Xij are the solutions obtained in Step 1.

Step 3. Recover the solution of AX + BX? by means of the linear transformation
X 7→ QXQ?, where X is the matrix in Step 2.

3. Dimension of the solution space

The solution space of (1), with ? = T , is a vector space over C. It is, actually, a vector
subspace of Cn×n. By contrast, when we consider ? = ∗ instead, this is not necessar-
ily true. However, the solution space in this case is a vector space over the field of real
numbers R.

In the following, we are interested in the dimension of the solution space of (1), instead
of the explicit expression for the solution. In theorems 3.1 and 3.2, we give a closed for-
mula for, respectively, the complex dimension of AX+BXT = 0 and the real dimension
ofAX+BX∗ = 0. This formula comes from analyzing all the independent equations and
systems of equations that arise when decoupling the equation (1) with A+λB in KCF. In
the proof of the corresponding results, addressed in Section 4, we give an expression for
the solution of all equations and systems of equations, so that the solution of the original
equation (1) can be obtained following the procedure described at the end of Section 2.

Theorem 3.1 : (Breakdown of the dimension count for AX+BXT = 0) Let A,B ∈
Cm×n, and let the KCF of the pencil A+ λB be

Ã+ λB̃ = Lε1 ⊕ Lε2 ⊕ · · · ⊕ Lεp
⊕ LTη1 ⊕ L

T
η2 ⊕ · · · ⊕ L

T
ηq

⊕Nu1
⊕Nu2

⊕ · · · ⊕Nur

⊕ Jk1(µ1) + λIk1 ⊕ Jk2(µ2) + λIk2 ⊕ · · · ⊕ Jks(µs) + λIks .

Then the dimension of the solution space of the matrix equation

AX +BXT = 0

depends only on Ã+ λB̃. It can be computed as the sum

dTotal = dright+dfin+dright,right+dfin,fin+dright,left+dright,∞+dright,fin+d∞,fin,
(4)

whose summands are given by:

1. The dimension due to equation (2) corresponding to the right singular blocks:

dright =

p∑
i=1

(εi + 1).

2. The dimension due to equation (2) corresponding to the finite blocks:

dfin =
∑
i

bki/2c+
∑
j

dkj/2e,

where the first sum is taken over all blocks in Ã+ λB̃ of the form Jki(1) + λIki and the
second sum over all blocks of the form Jkj (−1) + λIkj .
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3. The dimension due to the systems of equations (3) involving a pair of right singular blocks:

dright,right =

p∑
i,j=1
i<j

(εi + εj + 2).

4. The dimension due to the systems of equations (3) involving a pair of finite blocks:

dfin,fin =
∑
i,j

min{ki, kj},

where the sum is taken over all pairs Jki(µi) +λIki , Jkj (µj) +λIkj of blocks in Ã+λB̃
such that i < j and µiµj = 1.

5. The dimension due to the systems of equations (3) involving a right singular block and a
left singular block:

dright,left =
∑
i,j

(ηj − εi − 1) ,

where the sum is taken over all pairs Lεi , L
T
ηj of blocks in Ã+ λB̃ such that ηj − εi > 1.

6. The dimension due to the systems of equations (3) involving a right singular block and an
infinite block:

dright,∞ = p

r∑
i=1

ui.

7. The dimension due to the systems of equations (3) involving a right singular block and a
finite block:

dright,fin = p

s∑
i=1

ki.

8. The dimension due to the systems of equations (3) involving an infinite block and a finite
block:

d∞,fin =
∑
i,j

min{ui, kj} ,

where the sum is taken over all pairs Nui , Jkj (µj) + λIkj of blocks in Ã + λB̃ with
µj = 0.

Theorem 3.2 : (Breakdown of the dimension count for AX +BX∗ = 0) Let A,B ∈
Cm×n be two complex matrices, and let the KCF of the pencil A+ λB be

Ã+ λB̃ = Lε1 ⊕ Lε2 ⊕ · · · ⊕ Lεp
⊕ LTη1 ⊕ L

T
η2 ⊕ · · · ⊕ L

T
ηq

⊕Nu1
⊕Nu2

⊕ · · · ⊕Nur

⊕ Jk1(µ1) + λIk1 ⊕ Jk2(µ2) + λIk2 ⊕ · · · ⊕ Jks(µs) + λIks .

Then the real dimension of the solution space of the matrix equation

AX +BX∗ = 0
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depends only on Ã+ λB̃. It can be computed as the sum

d∗Total = d∗right+d
∗
fin+d∗right,right+d

∗
fin,fin+d∗right,left+d

∗
right,∞+d∗right,fin+d∗∞,fin,

(5)
whose summands are given by:

1. The real dimension due to equation (2) corresponding to the right singular blocks:

d∗right = 2

p∑
i=1

(εi + 1).

2. The real dimension due to equation (2) corresponding to the finite blocks:

d∗fin =
∑
i

ki,

where the sum is taken over all blocks in Ã+ λB̃ of the form Jki(µ) + λIki with |µ| = 1.
3. The real dimension due to the systems of equations (3) involving a pair of right singular

blocks:

d∗right,right = 2

p∑
i,j=1
i<j

(εi + εj + 2).

4. The real dimension due to the systems of equations (3) involving a pair of finite blocks:

d∗fin,fin = 2
∑
i,j

min{ki, kj},

where the sum is taken over all pairs Jki(µi) +λIki , Jkj (µj) +λIkj of blocks in Ã+λB̃
such that i < j and µiµj = 1.

5. The real dimension due to the systems of equations (3) involving a right singular block
and a left singular block:

d∗right,left = 2
∑
i,j

(ηj − εi − 1) ,

where the sum is taken over all pairs Lεi , L
T
ηj of blocks in Ã+ λB̃ such that ηj − εi > 1.

6. The real dimension due to the systems of equations (3) involving a right singular block
and an infinite block:

d∗right,∞ = 2p

r∑
i=1

ui.

7. The real dimension due to the systems of equations (3) involving a right singular block
and a finite block:

d∗right,fin = 2p

s∑
i=1

ki.

8. The real dimension due to the systems of equations (3) involving an infinite block and a
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finite block:

d∗∞,fin = 2
∑
i,j

min{ui, kj},

where the sum is taken over all pairs Nui
, Jkj (µj) + λIkj of blocks in Ã + λB̃ with

µj = 0.

We want to notice that there are other interactions between canonical blocks in the KCF
of A+ λB that do not appear in the statement of theorems 3.1 and 3.2. As we will see in
Section 4, the dimension of the solution space of the equations and systems of equations
corresponding to these blocks is zero, so they do not contribute to the dimension of the
solution space of (1). For this reason, we have omitted them in the statements.

It is worth to compare theorems 3.1 and 3.2 with theorems 3 and 4 in [7]. In that case,
the dimension of the solution space for both AX + X?B = 0 depends on the KCF of
A + λB?, which may be different depending on whether ? = T or ? = ∗. However, the
dimension of the solution space of AX + BX? = 0 depends on the KCF of A + λB,
which is the same canonical form for both ? = T and ? = ∗.

4. Proof of the dimension count. Expression for the solution

In this section, we prove theorems 3.1 and 3.2. For this, we obtain the solution of all the
equations and systems of equations obtained when decoupling the equation ÃX+B̃X? =

0, with Ã+λB̃ being the KCF ofA+λB. We first consider in Section 4.1 the case ? = T
and then, in Section 4.2, the case ? = ∗.

Along this section, we will make use several times of the following result, which is true
for both the transpose and the conjugate transpose.

Lemma 4.1: Let X ∈ Cn×n be such that X + AX?B = 0, and A,B ∈ Cn×n be such
that A and B? commute and at least one of A and B is nilpotent. Then X = 0.

Proof : Since X + AX?B = 0, we have X? = −B?XA?, and replacing this in the
original identity we get X = AB?XA?B. Now, since A and B? commute and at least
one of A and B is nilpotent, we have that AB? is also nilpotent. Then the result is an
immediate consequence of Lemma 4 in [7]. �

4.1. The transpose case

Following [7], we will denote the (vector) space of solutions of the equation (1), with
? = T , by S(A+ λB), that is

S(A+ λB) :=
{
X ∈ Cn×n : AX +BXT = 0

}
.

Accordingly, we will denote the (vector) space of solutions of the system of equations (3),
with ? = T , by S(Ai + λBi, Aj + λBj), that is,

S(Ai+λBi, Aj+λBj) :=
{

(Xi, Xj) ∈ Cn×2n : AiXi +BiX
T
j = 0, AjXj +BjX

T
i = 0

}
.

For simplicity, we will use the notation X and Y for the unknowns, instead of Xi and
Xj .
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4.1.1. Dimension of the solution space for single blocks

We obtain in this section the dimension of the solution space of all equations (2) with
Ai + λBi being each of the four types of blocks in the KCF of A + λB. In the proof of
each of the results we also obtain an expression for the solution.

Lemma 4.2: (Right singular block) The dimension of the solution space of

AεX +BεX
T = 0 (6)

is

dim S(Lε) = ε+ 1.

Proof : Set X = [xij ]i,j=1,...,ε+1. Then (6) is equivalent to x21 . . . x2,ε+1
...

...
xε+1,1 . . . xε+1,ε+1

+

x11 . . . xε+1,1
...

...
x1ε . . . xε+1,ε

 = 0. (7)

This, in particular, implies xij + xj,i−1 = 0, for all i = 2, . . . , ε + 1, j = 1, . . . , ε + 1.
Iterating this identity we get xij = xi−1,j−1, for all i, j = 2, . . . , ε + 1, which means
that X is a Toeplitz matrix, and xj,1 = −x1,j−1, for all j = 2, . . . , ε + 1. Hence, X is
determined by its first row entries x11, . . . , x1,ε+1. On the other hand, since (7) consists
of ε · (ε+ 1) equations and X has (ε+ 1)2 entries, the variables x11, . . . , x1,ε+1 must be
free variables. Hence X is of the form:

X =


a1 a2 . . . aε+1

−a1 a1
. . .

...
...

. . .
. . . a2

−aε . . . −a1 a1

 ,

with a1, . . . , aε+1 arbitrary, and this is the general solution of (6). Then the result follows.
�

Lemma 4.3: (Left singular block) The dimension of the solution space of

ATηX +BT
η X

T = 0 (8)

is

dim S(LTη ) = 0.

Proof : Multiplying (8) on the left by Aη and using the identities

AηA
T
η = Iη, AηB

T
η = Jη(0), (9)

we get X + Jη(0)XT = 0. Now, Lemma 4.1 implies X = 0, and the result follows. �

Lemma 4.4: (Infinite block) The dimension of the solution space of

X + Ju(0)XT = 0
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is

dim S(Nu) = 0.

Proof : This is an immediate consequence of Lemma 4.1. �

The next result gives us the dimension of the solution space for single Jordan blocks.
The result is Lemma 9 in [7], and we include it here for completeness, though we omit
the proof.

Lemma 4.5: (Finite block) The dimension of the solution space of

Jk(µ)X +XT = 0

is

dim S(Jk(µ) + λIk) =

 0 , if µ 6= ±1,
bk/2c , if µ = 1,
dk/2e , if µ = −1.

4.1.2. Dimension of the solution space for pairs of blocks

In this section we obtain the dimension of the solution space of all systems of equations
(3) with Ai + λBi and Aj + λBj being a pair of blocks in the KCF of A + λB. In the
proof of each of the results we get also an expression for the solution.

Lemma 4.6: (Two right singular blocks) The dimension of the solution space of the
system of matrix equations

AεX +BεY
T = 0 (10)

AδY +BδX
T = 0, (11)

is

dim S(Lε, Lδ) = ε+ δ + 2.

Proof : Set X = [xij ], with i = 1, . . . , ε + 1; j = 1, . . . , δ + 1 and Y = [yij ], with
i = 1, . . . , δ + 1; j = 1, . . . , ε+ 1. Then (10) and (11) are equivalent to, respectively, x21 . . . x2,δ+1

...
...

xε+1,1 . . . xε+1,δ+1

+

y11 . . . yδ+1,1
...

...
y1ε . . . yδ+1,ε

 = 0 (12)

and  y21 . . . y2,ε+1
...

...
yδ+1,1 . . . yδ+1,ε+1

+

x11 . . . xε+1,1
...

...
x1δ . . . xε+1,δ

 = 0. (13)

We see, from (12), that each entry yij , with i = 1, . . . , δ+ 1 and j = 1, . . . , ε, depends on
an entry of X , and also, from (13), that each entry yi,ε+1, with i = 2, . . . , δ + 1, depends
on an entry of X . Hence, Y is completely determined by X , except for y1,ε+1.
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Now, (12) and (13) are equivalent to

xj+1,i = −yij , for i = 1, . . . , δ + 1; j = 1, . . . , ε, (14)

and

xij = −yj+1,i, for i = 1, . . . , ε+ 1; j = 1, . . . , δ. (15)

Let 1 ≤ i ≤ ε and 1 ≤ j ≤ δ. Then, by (15), xij = −yj+1,i and, by (14), −yj+1,i =
xi+1,j+1, so we conclude that xij = xi+1,j+1. Hence, X is a Toeplitz matrix. Then X is
of the form:

X =


a1 a2 . . . aδ+1

b1 a1
. . .

...
...
. . .

. . . a2
bε . . . b1 a1

 ,

for arbitrary complex numbers a1, . . . , aδ+1 and b1, . . . , bε. Also, Y is of the form

Y =


−b1 −b2 . . . −bε d
−a1 −b1 −b2 . . . −bε
...

. . .
. . .

. . .
...

−aδ−1 . . . −a1 −b1 −b2
−aδ . . . −a2 −a1 −b1

 ,

with d ∈ C arbitrary. Now, it is straightforward to check that every X and Y of the above
form give a solution of the system (10)–(11), so this is the general solution of this system
of equations. In particular, the dimension of the solution space is ε+ δ+ 2, as claimed. �

Lemma 4.7: (Two left singular blocks) The dimension of the solution space of the
system of matrix equations

ATηX +BT
η Y

T = 0 (16)

ATγ Y +BT
γ X

T = 0, (17)

is

dim S(LTη , L
T
γ ) = 0.

Proof : Multiplying (16) on the left by Aη and (17) by Aγ , and using (9) we get

X + Jη(0)Y T = 0 (18)

and

Y + Jγ(0)XT = 0. (19)

Now, from (18) we have XT = −Y Jη(0)T and, replacing this expression in (19) we
obtain Y = Jγ(0)Y Jη(0)T . From Lemma 4 in [7] we conclude Y = 0, hence X = 0,
and the result follows. �
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Lemma 4.8: (Two infinite blocks) The dimension of the solution space of the system of
matrix equations

X + Ju(0)Y T = 0 (20)

Y + Jt(0)XT = 0, (21)

is

dim S(Nu, Nt) = 0.

Proof : Note that (20) and (21) are the same (with different sizes) as (18) and (19), re-
spectively. Hence the result follows by using the same arguments as in the proof of Lemma
4.7. �

Next result is the same as Lemma 13 in [7], so we omit the proof.

Lemma 4.9: (Two finite blocks) The dimension of the solution space of the system of
matrix equations

Jk(µ)X + Y T = 0

J`(ν)Y +XT = 0,

is

dim S(Jk(µ) + λIk, J`(ν) + λI`) =

{
min{k, `}, if µν = 1,

0, otherwise.

Lemma 4.10: (Right singular and left singular blocks) The dimension of the solution
space of the system of matrix equations

AεX +BεY
T = 0 (22)

ATη Y +BT
η X

T = 0, (23)

is

dim S(Lε, L
T
η ) =

{
0, if η − ε ≤ 1,

η − ε− 1, if η − ε > 1.

Proof : Setting X = [xij ], for i = 1, . . . , ε + 1, j = 1, . . . , η, and Y = [yij ], for i =
1, . . . , η, j = 1, . . . , ε+ 1, equations (22) and (23) are equivalent to x21 . . . x2η

...
...

xε+1,1 . . . xε+1,η

+

y11 . . . yη1...
...

y1ε . . . yηε

 = 0

and 
0 . . . 0
y11 . . . y1,ε+1
...

...
yη1 . . . yη,ε+1

+


x11 . . . xε+1,1
...

...
x1η . . . xε+1,η

0 . . . 0

 = 0,
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which are, in turn, equivalent to

xi+1,j = −yji, for i = 1, . . . , ε; j = 1, . . . , η
x11 = · · · = xε+1,1 = 0,
yη1 = · · · = yη,ε+1 = 0,
xi,j+1 = −yji, for i = 1, . . . , ε+ 1; j = 1, . . . , η − 1.

(24)

From these equations we get

xi+1,j = xi,j+1, for i = 1, . . . , ε; j = 1, . . . , η − 1
x11 = · · · = xε+1,1 = 0
x2η = −yη,1 = 0, . . . , xε+1,η = −yη,ε = 0.

Hence, X is of the form

X =

 0 . . . 0 c1 . . . cη−ε−1
... . .

.
. .
.

. .
.

0 c1 . . . cη−ε−1 0 . . . 0

 . (25)

Then, if η − ε − 1 ≤ 0, we have X = 0, and also Y = 0. Otherwise, X depends on
η − ε − 1 parameters and it is of the form (25). We note that, by (22) and (23), Y is
completely determined by X .

It remains to show that (25) is the general solution for X in (22) and (23) when η >
ε + 1. For this, take an X of the form (25), with c1, . . . , cη−ε−1 arbitrary, and set Y
defined by (24), that is, yji = −xi+1,j , for i = 1, . . . , ε, j = 1, . . . , η, and y1,ε+1 =
−xε+1,2, . . . , yη−1,ε+1 = −xε+1,η, yη,ε+1 = 0, namely

Y =



0 . . . 0 −c1
... . .

.
. .
. ...

0 . .
.

−cη−ε−1

−c1 . .
.

0
... . .

.
. .
. ...

−cη−ε−1 0 . . . 0
0 0 . . . 0


. (26)

It is straightforward to check that (X,Y ), with X as in (25) and Y as in (26), is a solution
of (22) and (23). Then this is the general solution of the system and the result follows. �

Lemma 4.11: (Right singular and infinite blocks) The dimension of the solution space
of the system of matrix equations

AεX +BεY
T = 0 (27)

Y + Ju(0)XT = 0, (28)

is

dim S(Lε, Nu) = u.

Proof : By (28) we have Y T = −XJu(0)T and, replacing this expression in (27) we get
AεX = BεXJu(0)T . By setting X = [xij ], for i = 1, . . . , ε + 1, j = 1, . . . , u, this last
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equation can be written in coordinates as

 x21 . . . x2u
...

...
xε+1,1 . . . xε+1,u

 =

x12 . . . x1u 0
...

...
...

xε2 . . . xεu 0

 ,
which is equivalent to the system

x2u = · · · = xε+1,u = 0,
xij = xi−1,j+1, for i = 2, . . . , ε+ 1; j = 1, . . . , u− 1.

Hence, X is of the form

X =



c1 . . . cu
... . .

.

cu 0
0 . . . 0
...

...
0 . . . 0


, if ε+ 1 ≥ u, (29)

or

X =

 c1 . . . cε+1 . . . cu
... . .

.
. .
.

cε+1 . . . cu 0

 , if ε+ 1 < u. (30)

It is straightforward to check that if X is of the form (29) or (30) and Y = −Ju(0)XT

then (X,Y ) is a solution of (27) and (28), so (X,Y ), with X of the form (29) or (30) and
Y = −Ju(0)XT , is the general solution of (27) and (28). As a a consequence, the result
follows. �

Lemma 4.12: (Right singular and finite blocks) The dimension of the solution space
of the system of matrix equations

AεX +BεY
T = 0 (31)

Jk(µ)Y +XT = 0, (32)

is

dim S(Lε, Jk(µ) + λIk) = k.

Proof : By (32) we have X = −Y TJk(µ)T . Replacing this in (31) we conclude that the
system (31)-(32) is equivalent to

X = −Y TJk(µ)T , (33)

−Jk(µ)Y ATε + Y BT
ε = 0. (34)
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On the other hand, with similar arguments, the system (50)–(51) in [7] is equivalent to

Y = −XTATε , (35)

−Jk(µ)XTATε +XTBT
ε = 0. (36)

We want to point out, however, that Y in (35) is k×ε, whereas in (33)–(34) it is k×(ε+1)
(though X ∈ C(ε+1)×k in both cases). Since the only restriction on Y within (33)–(34) is
given by (34), and similarly for XT in (35) and (36), we conclude that Y is equal to XT

of Lemma 16 in [7]. Hence, Y = [xji], with xij given by (55) in [7]. From this expression
for Y we immediately get X using (33). In particular, the dimension of the solution space
of (31)–(32) is as claimed in the statement. �

Lemma 4.13: (Left singular and infinite blocks) The dimension of the solution space
of the system of matrix equations

ATηX +BT
η Y

T = 0 (37)

Y + Ju(0)XT = 0, (38)

is

dim S(LTη , Nu) = 0.

Proof : By (38) we have Y T = −XJu(0)T . Replacing this expression for Y T in (37),
multiplying this equation on the left by Aη, and using (9) we get

X = Jη(0)XJu(0)T .

Since Jη(0) and Ju(0)T are nilpotent, Lemma 4 in [7] implies X = 0, and this in turn
implies Y = 0. �

Lemma 4.14: (Left singular and finite blocks) The dimension of the solution space of
the system of matrix equations

ATηX +BT
η Y

T = 0 (39)

Jk(µ)Y +XT = 0, (40)

is

dim S(LTη , Jk(µ) + λIk) = 0.

Proof : By (40) we have X = −Y TJk(µ)T . Replacing this expression for X in (39),
multiplying this equation on the left by Bη, and using the identities

BηA
T
η = Jη(0)T , BηB

T
η = Iη,

we get

Y T = Jη(0)TY TJk(µ)T .

Since Jη(0)T is nilpotent, Lemma 4 in [7] implies Y T = 0, which in turn implies Y = 0
and X = 0. �
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Lemma 4.15: (Infinite and finite blocks) The dimension of the solution space of the
system of matrix equations

X + Ju(0)Y T = 0 (41)

Jk(µ)Y +XT = 0, (42)

is

dim S(Nu, Jk(µ) + λIk) =

{
min{u, k} , if µ = 0,

0 , if µ 6= 0.

Proof : From (42), X = −Y TJk(µ)T and, replacing this expression in (41) we get
Ju(0)Y T − Y TJk(µ)T = 0. This is a Sylvester equation, whose solution is [9, Ch. VIII,
§1]:

• If µ 6= 0, Y T = 0, so X = Y = 0.
• If µ = 0, then Y T = ∆R−1, where ∆ is an arbitrary regular upper triangular matrix

(see [9, p. 218]) and R is an invertible matrix such that R−1Jk(0)TR is in Jordan
canonical form. Hence, Y = R−T∆T , and X = −Ju(0)Y T .

The result now follows by counting the number of free variables in Y . �

4.2. The conjugate transpose case

In this subsection, and according to the notation used before, we will denote the vector
space of solutions of the equation (1), with ? = ∗, by S∗(A+ λB), that is

S∗(A+ λB) :=
{
X ∈ Cn×n : AX +BX∗ = 0

}
.

Accordingly, we will denote the (vector) space of solutions of the system of equations (3),
with ? = ∗, by S∗(Ai + λBi, Aj + λBj), that is,

S∗(Ai+λBi, Aj+λBj) :=
{

(Xi, Xj) ∈ Cn×2n : AiXi +BiX
∗
j = 0, AjXj +BjX

∗
i = 0

}
.

4.2.1. Dimension of the solution space for single blocks

This is the counterpart of Section 4.1.1 for equation (1) with ? = ∗. We solve all
equations (2) with ? = ∗ obtained when replacing Ai + λBi with a canonical block in the
KCF of A+ λB.

Lemma 4.16: (Right singular block) The real dimension of the solution space of

AεX +BεX
∗ = 0 (43)

is

dimR S∗(Lε) = 2(ε+ 1).

Proof : With similar arguments to the ones in the proof of Lemma 4.2, we can see that
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the solution, X , of (43) is also a Toeplitz matrix. Moreover, X is of the form:

X =


a1 a2 . . . aε+1

−a1 a1
. . .

...
...

. . .
. . . a2

−aε . . . −a1 a1

 ,

with a1, . . . , aε+1 arbitrary, and this is the general solution of (43). Since X depends on
ε+ 1 complex variables, the result follows. �

Lemma 4.17: (Left singular block) The real dimension of the solution space of

ATηX +BT
η X

∗ = 0

is

dimR S∗(LTη ) = 0.

Proof : The proof is similar to the one of Lemma 4.3. Notice that (9) are still true if we
replace T by ∗. �

Lemma 4.18: (Infinite block) The real dimension of the solution space of

X + Ju(0)X∗ = 0

is

dimR S
∗(Nu) = 0.

Proof : This is an immediate consequence of Lemma 4.1. �

The following result is the same as Lemma 24 in [7], so we include here, for the sake
of completeness, without proof.

Lemma 4.19: (Finite block) The real dimension of the solution space of

Jk(µ)X +X∗ = 0

is

dimR S∗(Jk(µ) + λIk) =

{
k, if |µ| = 1,
0, otherwise.

4.2.2. Dimension of the solution space for pairs of blocks

This subsection is the counterpart of Subsection 4.1.2 for the system of equations (3)
with ? = ∗, that is, we solve all systems of equations (3) with Ai + λBi and Aj + λBj
being a pair of canonical blocks in the KCF of A+ λB.

Lemma 4.20: (Two right singular blocks) The real dimension of the solution space of
the system of matrix equations

AεX +BεY
∗ = 0 (44)

AδY +BδX
∗ = 0, (45)
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is

dimR S∗(Lε, Lδ) = 2(ε+ δ + 2).

Proof : Similar arguments to the ones in the proof of Lemma 4.6 give

X =


a1 a2 . . . aδ+1

b1 a1
. . .

...
...
. . .

. . . a2
bε . . . b1 a1

 , Y =


−b1 −b2 . . . −bε d

−a1 −b1 −b2 . . . −bε
...

. . .
. . .

. . .
...

−aδ−1 . . . −a1 −b1 −b2
−aδ . . . −a2 −a1 −b1

 ,

and (X,Y ), with X,Y as above, is the general solution of the system (44)–(45). In par-
ticular, dimR S∗(Lε, Lδ) = 2(ε+ δ + 2), as claimed. �

The following two results are straightforward, using similar arguments to the ones in
the proof of Lemma 4.7.

Lemma 4.21: (Two left singular blocks) The real dimension of the solution space of
the system of matrix equations

ATηX +BT
η Y
∗ = 0

ATγ Y +BT
γ X

∗ = 0,

is

dimR S
∗(LTη , L

T
γ ) = 0.

Lemma 4.22: (Two infinite blocks) The real dimension of the solution space of the
system of matrix equations

X + Ju(0)Y ∗ = 0

Y + Jt(0)X∗ = 0,

is

dimR S
∗(Nu, Nt) = 0

The result corresponding to a pair of Jordan blocks is exactly the same as Lemma 28 in
[7], so we omit the proof.

Lemma 4.23: (Two finite blocks) The real dimension of the solution space of the system
of matrix equations

Jk(µ)X + Y ∗ = 0
J`(ν)Y +X∗ = 0,

is

dimR S
∗(Jk(µ) + λIk, J`(ν) + λI`) =

{
2 min{k, `}, if µν = 1,

0, otherwise.
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Lemma 4.24: (Right singular and left singular blocks) The real dimension of the
solution space of the system of matrix equations

AεX +BεY
∗ = 0 (46)

ATη Y +BT
η X

∗ = 0, (47)

is

dimR S
∗(Lε, L

T
η ) =

{
0, if η − ε ≤ 1,

2(η − ε− 1), if η − ε > 1.

Proof : With similar arguments to the ones in the proof of Lemma 4.10, we get

X =

 0 . . . 0 c1 . . . cη−ε−1
... . .

.
. .
.

. .
. ...

0 c1 . . . cη−ε−1 0 . . . 0

 , Y =



0 . . . 0 −c1
... . .

.
. .
. ...

0 . .
.

−cη−ε−1

−c1 . .
.

0
... . .

.
. .
. ...

−cη−ε−1 0 . . . 0
0 0 . . . 0


.

Again, a direct computation shows that (X,Y ), with X,Y as above, is a solution of the
system (46)-(47), so this is the general solution of this system. Hence, the result follows
by counting the number of (real) free variables in X . �

Lemma 4.25: (Right singular and infinite blocks) The real dimension of the solution
space of the system of matrix equations

AεX +BεY
∗ = 0 (48)

Y + Ju(0)X∗ = 0, (49)

is

dimR S
∗(Lε, Nu) = 2u.

Proof : We, have, as in the proof of Lemma 4.11, that X is of the form (29) or (30), and
Y = −Ju(0)X∗. Again, a direct computation shows that (X,Y ), with X and Y of this
form, is a solution of the system (48)–(49), so this is the general solution of the system.
The result follows by counting the number of (real) free variables in X . �

Lemma 4.26: (Right singular and finite blocks) The real dimension of the solution
space of the system of matrix equations

AεX +BεY
∗ = 0 (50)

Jk(µ)Y +X∗ = 0, (51)

is

dimR S
∗(Lε, Jk(µ) + λIk) = 2k.
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Proof : Reasoning as in the proof of Lemma 4.12, we conclude that the solution Y of
the system (50)–(51) coincides with X∗, where X is the solution of the system (77)–
(78) in [7]. Hence, Y = [xji], with xij given by (79) in [7]. From this, (51) gives X =
−Y ∗Jk(µ)∗, so we have the general solution of the system (50)–(51). Now the result
follows by counting the number of (real) free variables in Y . �

We omit the proof of the following two results, because they are similar to the ones of
Lemma 4.13 and Lemma 4.14, respectively.

Lemma 4.27: (Left singular and infinite blocks) The real dimension of the solution
space of the system of matrix equations

ATηX +BT
η Y
∗ = 0

Y + Ju(0)X∗ = 0,

is

dimR S∗(LTη , Nu) = 0.

Lemma 4.28: (Left singular and finite blocks) The real dimension of the solution
space of the system of matrix equations

ATηX +BT
η Y
∗ = 0

Jk(µ)Y +X∗ = 0,

is

dimR S∗(LTη , Jk(µ) + λIk) = 0.

Lemma 4.29: (Infinite and finite blocks) The real dimension of the solution space of
the system of matrix equations

X + Ju(0)Y ∗ = 0
Jk(µ)Y +X∗ = 0,

is

dimR S∗(Nu, Jk(µ) + λIk) =

{
2 min{u, k} , if µ = 0,

0 , if µ 6= 0.

Proof : With similar arguments to the ones in the proof of Lemma 4.15, we get:

• If µ 6= 0, then X = Y = 0.
• If µ = 0, then Y = R−1∆ and X = −Ju(0)Y ∗, where ∆ is an arbitrary regular upper

triangular matrix (see [9, p. 218]) and R is an invertible matrix such that R−1Jk(0)TR
is in Jordan canonical form.

The result follows again by counting the number of (real) free variables in Y . �

5. Uniqueness of solution

In the following two results we give necessary and sufficient conditions for equation (1)
to have a unique solution. We first consider in Theorem 5.1 the transpose case, and then
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in Theorem 5.2 the conjugate transpose case. The proof of the second result is similar to
the proof of the first one, and we omit it.

Theorem 5.1 : Let A,B ∈ Cm×n. Then the matrix equation AX +BXT = 0 has only
the trivial solution, X = 0, if and only if the following three conditions hold:

(a) The KCF of the matrix pencil A+ λB has no right singular blocks.
(b) If µ ∈ (C \ {−1})∪ {∞} is an eigenvalue of A+ λB then 1/µ is not an eigenvalue of

A+ λB.
(c) The algebraic multiplicity of the eigenvalue µ = −1 in A+ λB is at most one.

Notice, in particular, that it must be m ≥ n, and that µ = 1 can not be an eigenvalue of
A+ λB.

Proof : The equation AX + BXT = 0 has only the trivial solution if and only if the
dimension of the solution space is zero. Looking at Theorem 3.1, this happens if and only
if conditions (a–c) in the statement hold. �

Theorem 5.2 : Let A,B ∈ Cm×n. Then the matrix equation AX +BX∗ = 0 has only
the trivial solution, if and only if the following two conditions hold:

(a) The KCF of the matrix pencil A+ λB has no right singular blocks.
(b) If µ ∈ C ∪ {∞} is an eigenvalue of A+ λB then 1/µ is not an eigenvalue of A+ λB.

Note that, in particular, it must be m ≥ n, and that A+ λB can not contain eigenvalues
on the unit circle.

We want to point out that the equation AX + BX? = 0 may have a unique solution
with A+λB being singular. Though, by part (a) in both theorems 5.1 and 5.2, the KCF of
A+λB cannot contain right singular blocks, it may contain left singular blocks. Consider,
for instance, the equation AX +BX? = 0, with

A =

[
0
1

]
, B =

[
1
0

]
.

The equation has only the trivial solution X = 0, though the pencil A + λB is singular
(it consists of just one left singular block LT1 ). However, the operator X 7→ AX + BX?

is not invertible. Actually, this operator maps C to C2×1. In order for this operator to be
invertible, we need the dimension of both the original and the final vector spaces to be the
same. In general, this happens if and only if m = n. Then, part (a) in theorems 5.1 and
5.2 implies that A+ λB is regular. This leads to the following two results.

Theorem 5.3 : Let A,B ∈ Cm×n. Then the matrix equation AX + BXT = C has a
unique solution, for every right-hand side matrix C ∈ Cm×n, if and only if the following
three conditions hold:

(a) The matrix pencil A+ λB is regular.
(b) If µ ∈ (C \ {−1})∪ {∞} is an eigenvalue of A+ λB then 1/µ is not an eigenvalue of

A+ λB.
(c) The algebraic multiplicity of the eigenvalue µ = −1 in A+ λB is at most one.

Theorem 5.4 : Let A,B ∈ Cm×n. Then the matrix equation AX + BX∗ = C has a
unique solution, for every right-hand side matrix C ∈ Cm×n, if and only if the following
two conditions hold:

(a) The matrix pencil A+ λB is regular.
(b) If µ ∈ C ∪ {∞} is an eigenvalue of A+ λB then 1/µ is not an eigenvalue of A+ λB.
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6. Conclusions and open problems

We have presented a procedure to get an explicit solution of the equationAX+BX? = 0,
with A,B ∈ Cm×n. We have given an explicit formula for the dimension of the solution
space in terms of the Kronecker canonical form of the matrix pencil A+ λB, and also an
explicit description of the solution in terms of the Kronecker canonical form and of two
nonsingular matrices leadingA+λB to this form. It remains as an open problem to obtain
necessary and sufficient conditions for the existence of solutions for the non-homogeneous
equation AX + BX? = C, with C ∈ Cm×n. Another related problem is to address the
same questions for the solution of the more general equations AXB + CX?D = 0 and
AXB+CX?D = E. This last equation has been considered within the last few years by
several authors in different contexts, but providing a formula for the general solution of
the equation remains as a challenging open problem.
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