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Abstract

The development of new classes of linearizations of square matrix polynomials that generalize the classical
first and second Frobenius companion forms has attracted much attention in the last decade. Research in
this area has two main goals: finding linearizations that retain whatever structure the original polynomial
might possess, and improving properties that are essential for accurate numerical computation, such as
eigenvalue condition numbers and backward errors. However, all recent progress on linearizations has
been restricted to square matrix polynomials. Since rectangular polynomials arise in many applications, it
is natural to investigate if the new classes of linearizations can be extended to rectangular polynomials. In
this paper, the family of Fiedler linearizations is extended from square to rectangular matrix polynomials,
and it is shown that minimal indices and bases of polynomials can be recovered from those of any
linearization in this class via the same simple procedures developed previously for square polynomials.
Fiedler linearizations are one of the most important classes of linearizations introduced in recent years,
but their generalization to rectangular polynomials is nontrivial, and requires a completely different
approach to the one used in the square case. To the best of our knowledge, this is the first class of new
linearizations that has been generalized to rectangular polynomials.
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1. Introduction

We consider in this paper m× n matrix polynomials with degree k ≥ 2 of the form

P (λ) =
k∑

i=0

λiAi , A0, . . . , Ak ∈ Fm×n, Ak ̸= 0 , (1)

where F is an arbitrary field and λ is a scalar variable in F. Our main focus is on rectangular matrix
polynomials, i.e., with m ̸= n, although new results for square polynomials are also presented. A matrix
polynomial P (λ) is said to be singular either if it is rectangular, or it is square and detP (λ) is identically
zero, i.e., if all the coefficients of detP (λ) are zero; otherwise P (λ) is regular.

Matrix polynomials arise in many applications like systems of differential-algebraic equations, vibra-
tion analysis of structural systems, acoustics, fluid-structure interaction problems, computer graphics,
signal processing, control theory, and linear system theory [4, 18, 24, 25, 29, 30, 31, 32]. Rectangular
matrix polynomials appear mainly in control theory and linear system theory. The magnitudes that are
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usually relevant in the applications of regular matrix polynomials are their finite and infinite eigenval-
ues and the corresponding eigenvectors [18], while in applications of singular polynomials their minimal
indices and bases also play an important role [15, 24].

A standard way of dealing, both theoretically and numerically, with a matrix polynomial P (λ) is to
convert it into an equivalent matrix pencil. This process is known as linearization [18], and is explained
in Section 2. The classical approach uses the first and second Frobenius companion forms (4) and (5)
as linearizations. However, these companion forms usually do not share any algebraic structure that
P (λ) might have, and their use in numerical computations, via well-established algorithms for pencils
[3, 7, 8, 19, 33], may destroy important qualitative features of the eigenvalues/eigenvectors and minimal
indices/bases as a consequence of rounding errors. In addition, the condition numbers of the eigenvalues in
the Frobenius companion linearizations may be much larger than in P (λ), and small eigenvalue backward
errors in the linearization do not guarantee small backward errors in the polynomial [21, 22].

These difficulties have motivated intense activity in the last decade towards the development of new
classes of linearizations. At first, only linearizations for regular matrix polynomials were considered [1, 2,
23, 27, 28], while more recently square singular polynomials have also received attention [10, 11, 12, 34].
However, all this recent progress on linearizations has been restricted to square matrix polynomials. The
main goal of this paper is to extend one of the most relevant new classes of linearizations from square to
rectangular matrix polynomials. This is the family of Fiedler pencils, which was originally introduced by
Fiedler for scalar polynomials in [14], generalized to regular matrix polynomials over C in [2], and then
extended and further analyzed in [11] for both regular and singular square matrix polynomials over an
arbitrary field F.

Fiedler pencils of square matrix polynomials P (λ) =
∑k

i=0 λ
iAi enjoy a number of important proper-

ties that make them attractive candidates for generalization to rectangular polynomials. They are strong
linearizations for any square polynomial, regular or singular, over an arbitrary field, and the coefficients
of these pencils are simply constructed as block partitioned matrices whose blocks are either 0, ±I, or
±Ai, i = 0, 1, . . . , k [11]. This means that they are all companion forms in the sense of [12, Definition
1.1]. Fiedler pencils allow us to very easily recover not only the eigenvalues, but also the eigenvectors,
minimal indices, and minimal bases of P (λ) from the corresponding magnitudes of the pencil [11]. These
pencils can also be generalized to preserve structures of polynomials that are important in applications,
like symmetry and palindromicity [2, 12, 34]. No other class of linearizations introduced in recent years
simultaneously satisfy all these properties. In fact, for other important classes of new linearizations [27],
it is very easy to find pencils that cannot be extended to rectangular matrix polynomials as a consequence
of obvious size constraints.

We remark that the extension of Fiedler pencils from square to rectangular matrix polynomials is
not direct, since the original definition cannot be applied to rectangular polynomials. This issue is
discussed in Section 3.2. Therefore we follow an approach completely different than the one considered in
[2, 11, 14] for square polynomials. This approach in based on the construction presented in Algorithm 2,
from which the main Definition 3.8 is established. With this definition in hand, and after considerable
technical effort, we prove in Theorem 4.5 that Fiedler pencils of rectangular matrix polynomials are
always strong linearizations over arbitrary fields, again using new techniques. Finally, simple recovery
procedures for minimal indices and bases are presented in Corollaries 5.4 and 5.7. These recovery rules
are essentially the same as the ones derived for square polynomials in [11]. Although the new proofs and
definitions may seem complicated, we emphasize that the key idea is very simple: we perform the same
operations that we would do in the square case, but proving that the rectangular matrices that appear
are always conformable for multiplication. This requires a substantial amount of care. Another essential
difference between Fiedler pencils for rectangular and square polynomials is that in the rectangular case
there are Fiedler pencils of several different sizes; indeed the two Frobenius companion forms are always
the Fiedler pencils with largest and smallest sizes, while the other Fiedler pencils have intermediate sizes.
This always makes one of the Frobenius companion forms a privileged choice to work with rectangular
matrix polynomials, although the low band-width structure of some other Fiedler pencils might make
them useful in certain situations.

The paper is organized as follows. In Section 2 we introduce the basic definitions and notation
used throughout the paper. In Section 3 we recall first the notion of Fiedler pencils for square matrix
polynomials, then present an algorithm to construct these pencils in a manner that readily generalizes to
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rectangular matrix polynomials. It is thus by means of this algorithm that we are able to extend the notion
of Fiedler pencils to rectangular polynomials. In the last part of Section 3, we establish the relationship
between the reversal of a polynomial and the reversal of any of its Fiedler pencils (Theorem 3.14).
This relationship is needed to prove that Fiedler pencils of rectangular polynomials are always strong
linearizations in Section 4. Section 5 establishes very simple formulae for the recovery of the minimal
indices and bases of a matrix polynomial from the minimal indices and bases of any of its Fiedler pencils.
Finally, Section 6 gives some conclusions and describes possible future work motivated by the results in
this paper.

2. Basic notation and definitions

We present in this section some basic concepts related to rectangular matrix polynomials. The reader
can find more information in [10, Section 2] and [11, Section 2], where these concepts were presented in
more detail for square polynomials. In the rest of the paper we adopt the following notation: 0d and Id
are used to denote the d×d zero and identity matrices, respectively. If there is no risk of confusion, then
the sizes are not indicated and we simply write 0 or I. Two m×n matrix polynomials P (λ) and Q(λ) are
strictly equivalent if there exist two constant nonsingular matrices E and F such that P (λ) = EQ(λ)F .
We emphasize that any equation in this paper involving expressions in λ is to be understood as a formal
algebraic identity, and not just as an equality of functions on the field F. For finite fields F this distinction
is important, and we will always intend the stronger meaning of a formal algebraic identity.

Let F(λ) denote the field of rational functions with coefficients in F, so that F(λ)n×1 is the vector
space of column n-tuples with entries in F(λ). The normal rank of a matrix polynomial P (λ), denoted
nrankP (λ) , is the rank of P (λ) considered as a matrix with entries in F(λ), or equivalently, the size of
the largest non-identically zero minor of P (λ) [16]. A finite eigenvalue of P (λ) is an element λ0 ∈ F such
that

rank P (λ0) < nrankP (λ) .

We say that P (λ) with degree k has an infinite eigenvalue if the reversal polynomial

revP (λ) := λkP (1/λ) =
k∑

i=0

λiAk−i (2)

has zero as an eigenvalue.
An m × n singular matrix polynomial P (λ) may have right (column) and/or left (row)null vectors,

that is, vectors x(λ) ∈ F(λ)n×1 and y(λ)T ∈ F(λ)1×m such that P (λ)x(λ) ≡ 0 and y(λ)TP (λ) ≡ 0,
respectively, where y(λ)T denotes the transpose of y(λ). This leads to the following definition.

Definition 2.1. The right and left nullspaces of the m× n matrix polynomial P (λ), denoted by Nr(P )
and Nℓ(P ), respectively, are the following subspaces:

Nr(P ) :=
{
x(λ) ∈ F(λ)n×1 : P (λ)x(λ) ≡ 0

}
,

Nℓ(P ) :=
{
y(λ)T ∈ F(λ)1×m : y(λ)TP (λ) ≡ 0T

}
.

Note that the identities nrankP (λ) = n− dimNr(P ) = m− dimNℓ(P ) hold.
It is well known that the elementary divisors of P (λ) corresponding to its finite eigenvalues, as well as

the dimensions of Nr(P ) and Nℓ(P ), are invariant under unimodular equivalence [16], i.e., under pre- and
post-multiplication of P (λ) by unimodular matrices (square matrix polynomials with nonzero constant
determinant). The elementary divisors of P (λ) corresponding to the infinite eigenvalue are defined as the
elementary divisors corresponding to the zero eigenvalue of the reversal polynomial [20, Definition 1] and
may change under unimodular equivalence.

Next we define linearizations and strong linearizations of matrix polynomials.

Definition 2.2. A matrix pencil L(λ) = λX +Y is a linearization of an m×n matrix polynomial P (λ),
if for some s ≥ 0 there exist two unimodular matrices U(λ) and V (λ) such that

U(λ)L(λ)V (λ) =

[
Is 0

0 P (λ)

]
, (3)
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i.e., if L(λ) is unimodularly equivalent to diag
[
Is, P (λ)

]
. A linearization L(λ) is called a strong lin-

earization if revL(λ) is also a linearization of revP (λ).

The definition of linearization was introduced in [18], while the notion of strong linearization was
introduced in [17] and later named in [26]. In [17, 18, 26] only regular (square) matrix polynomials
were considered. These definitions were extended to any matrix polynomial in [9], that is, including
rectangular and square (regular or singular) polynomials. The original definition in [18, p. 12] for n× n
regular polynomials considers linearizations with sizes (n+ s)× (n+ s) and s ≥ 0 arbitrary. However, for
n× n matrix polynomials with degree k, the definition of linearization presented in most references fixes
the size of the linearizations to be nk×nk, which corresponds to s = (k− 1)n in Definition 2.2. Perhaps
the reason for this commonly encountered size restriction lies in the fact that all linearizations of a matrix
polynomial with nonsingular leading coefficient have sizes at least nk×nk and that, moreover, all strong
linearizations of regular matrix polynomials have size exactly nk × nk [9]. However, if P (λ) is an n× n
singular polynomial with degree k, then there are strong linearizations with size strictly less than nk×nk
[9] that have interest in applications [6]. For these and other reasons, the size of the matrix pencil L(λ)
in Definition 2.2 is not fixed. In fact, when P (λ) is rectangular there always exist strong linearizations
for P (λ) with different sizes. This is illustrated by the two most common linearizations used in practice,

i.e., the first and second Frobenius companion forms, which for the n× n polynomial P (λ) =
∑k

i=0 λ
iAi

are

C1(λ) := λ

 Ak
In

. . .
In

+


Ak−1 Ak−2 · · · A0

−In 0 · · · 0
...

. . .
. . .

...
0 · · · −In 0

 (4)

and

C2(λ) := λ

 Ak
In

. . .
In

+


Ak−1 −In · · · 0

Ak−2 0
. . .

...
...

...
. . . −In

A0 0 · · · 0

 , (5)

and both have size nk×nk. However, if P (λ) is rectangular with size m×n, then the identity matrices in
C2(λ) must have size m×m. So C1(λ) has size (m+(k−1)n)×kn, and C2(λ) has size km×((k−1)m+n).
These sizes are different when m ̸= n.

It is well known that strong linearizations are relevant in the study of both regular and singular square
matrix polynomials, because they are the only matrix pencils preserving the dimension of the left and
right nullspaces as well as the finite and infinite elementary divisors of P (λ) [10, Lemma 2.3]. For the
rectangular case, the same result is true because the arguments used to prove this fact do not depend
on P (λ) being square or rectangular (see the proof of Lemma 2.3 in [10]). Thus for rectangular matrix
polynomials we have the following analogue of Lemma 2.3 in [10].

Lemma 2.3. Let P (λ) be an m×n matrix polynomial and let L(λ) be an (m+ s)× (n+ s) matrix pencil
for some s ≥ 0, and consider the following conditions on L(λ) and P (λ):

(a) dimNr(L) = dimNr(P ) ,

(b) L(λ) and P (λ) have exactly the same finite elementary divisors,

(c) L(λ) and P (λ) have exactly the same infinite elementary divisors.

Then L(λ) is

• a linearization of P (λ) if and only if conditions (a) and (b) hold,

• a strong linearization of P (λ) if and only if conditions (a), (b) and (c) hold.

Note that condition (a) in Lemma 2.3 is equivalent to dimNℓ(L) = dimNℓ(P ).
A vector polynomial is a vector whose entries are polynomials in the variable λ. For any subspace of

F(λ)n×1, it is always possible to find a basis consisting entirely of vector polynomials. The degree of a
vector polynomial is the greatest degree of its components, and the order of a polynomial basis is defined
as the sum of the degrees of its vectors [15, p. 494]. Then the following definition makes sense.
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Definition 2.4. [15] Let V be a subspace of F(λ)n×1. A minimal basis of V is any polynomial basis of
V with least order among all polynomial bases of V.

It can be shown [15] that for any given subspace V of F(λ)n×1, the ordered list of degrees of the vector
polynomials in any minimal basis of V is always the same. These degrees are then called the minimal
indices of V. Given a matrix polynomial P (λ), the minimal indices and bases of the subspace Nr(P )
are called the right minimal indices and bases of P (λ), while the minimal indices and bases of Nℓ(P )
are called the left minimal indices and bases of P (λ). These magnitudes have important applications in
Linear System Theory [24].

The left (right) minimal indices of a matrix pencil can be read off from the sizes of the left (right)
singular blocks of the Kronecker canonical form of the pencil [16, Chap. XII]. Consequently, the minimal
indices of a pencil can be stably computed via the GUPTRI form [33, 7, 8, 13]. Therefore it is natural to
look for relationships between the minimal indices of a singular matrix polynomial P (λ) and the minimal
indices of a given linearization of P (λ), since this would lead to a numerical method for computing the
minimal indices of P (λ). In the case of square singular matrix polynomials, such relationships were found
in [10] for the pencils introduced in [27], in [11] for Fiedler pencils, and in [5] for generalized Fiedler
pencils. In the case of Fiedler pencils of rectangular polynomials, we will develop analogous relationships
in Section 5.

3. Fiedler pencils: definition and structural properties

In this section we first recall the notion of Fiedler pencils for square matrix polynomials, introduced
in [2] and named later in [11]. In Section 3.1 we will present Algorithm 1 to construct these pencils. In
Section 3.2 we extend the notion of Fiedler pencils to rectangular m×n matrix polynomials by means of
Algorithm 2, which is a slight modification of Algorithm 1. This will motivate the main definition in
this paper, Definition 3.8, which includes the one for the square case by just considering n = m. Also in
Section 3.2 we will present some structural properties of Fiedler pencils that will be used later. Finally
in Section 3.3 we will show the connection between the reversal of a Fiedler pencil and the reversal of the
polynomial.

To introduce the Fiedler pencils of an n × n matrix polynomial P (λ) =
∑k

i=0 λ
iAi, we need the

following block-partitioned matrices:

Mk :=

[
Ak

I(k−1)n

]
, M0 :=

[
I(k−1)n

−A0

]
, (6)

and

Mi :=


I(k−i−1)n

−Ai In
In 0

I(i−1)n

 , i = 1, . . . , k − 1 . (7)

Notice that
MiMj = MjMi for |i− j| ̸= 1. (8)

Now, we introduce Fiedler pencils in the same way as in [11].

Definition 3.1 (Fiedler Pencils for square matrix polynomials). Let P (λ) =
∑k

i=0 λ
iAi be an n × n

matrix polynomial and let Mi, i = 0, 1, . . . , k, be the matrices defined in (6) and (7). Given any bijection
σ : {0, 1, . . . , k − 1} → {1, . . . , k} , the Fiedler pencil of P (λ) associated with σ is the nk × nk matrix
pencil

Fσ(λ) := λMk −Mσ−1(1) · · ·Mσ−1(k) . (9)

Note that σ(i) describes the position of the factor Mi in the product Mσ−1(1) · · ·Mσ−1(k) defining the
zero-degree term in (9): i.e., σ(i) = j means that Mi is the jth factor in the product. For brevity, we
denote this product by

Mσ := Mσ−1(1) · · ·Mσ−1(k) , (10)

so that Fσ(λ) := λMk −Mσ.
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As in [11], sometimes we will write the bijection σ using the array notation
σ = (σ(0), σ(1), . . . , σ(k − 1)). Unless otherwise stated, the matrices Mi, i = 0, . . . , k, Mσ, and the
Fiedler pencil Fσ(λ) refer to the matrix polynomial P (λ) in (1). When necessary, we will explicitly indi-
cate the dependence on a certain polynomial Q(λ) by writingMi(Q), Mσ(Q) and Fσ(Q). In this situation,
the dependence on λ is dropped in the Fiedler pencil Fσ(Q) for simplicity. Since matrix polynomials will
always be denoted by capital letters, there is no risk of confusion between Fσ(λ) and Fσ(Q).

The set of Fiedler pencils includes the first and second companion forms [18, 11]. More precisely, the
first companion form corresponds to the bijection σ1 = (k, k− 1, . . . , 2, 1) and the second to the bijection
σ2 = (1, 2, . . . , k − 1, k). Other relevant Fiedler pencils are the pentadiagonal Fiedler pencils that are
described in detail in [11, Example 3.2].

It is shown in [11] that the relative positions of the matrices Mi and Mi+1, for i = 0, 1, . . . , k − 2, in
the product Mσ determine most of the relevant properties of the Fiedler pencil Fσ(λ). This motivates
Definition 3.2, that was introduced in [11, Definition 3.3].

Definition 3.2. Let σ : {0, 1, . . . , k − 1} → {1, . . . , k} be a bijection.

(a) For i = 0, . . . , k − 2, we say that σ has a consecution at i if σ(i) < σ(i + 1) and that σ has an
inversion at i if σ(i) > σ(i+ 1).

(b) We denote by c(σ) the total number of consecutions in σ, and by i(σ) the total number of inversions
in σ.

(c) For i ≤ j, we denote by c(σ(i : j)) the total number of consecutions that σ has at i, i+1, . . . , j, and
by i(σ(i : j)) the total number of inversions that σ has at i, i+1, . . . , j. Observe that c(σ) = c(σ(0 :
k − 2)) and i(σ) = i(σ(0 : k − 2)).

(d) The consecution-inversion structure sequence of σ, denoted by CISS(σ), is the tuple (c1, i1, c2, i2, . . . ,
cℓ, iℓ), where σ has c1 consecutive consecutions at 0, 1, . . . , c1 − 1; i1 consecutive inversions at
c1, c1 + 1, . . . , c1 + i1 − 1 and so on, up to iℓ inversions at k − 1− iℓ, . . . , k − 2.

We want to point out that, though the notions introduced in Definition 3.2 depend only on the
bijection σ and not on the Fiedler pencil Fσ(λ), they are closely related to the definition of Fσ(λ), as it
is shown in the following remark.

Remark 3.3. The following simple observations on Definition 3.2 will be used freely.

1. σ has a consecution at i if and only if Mi is to the left of Mi+1 in Mσ, while σ has an inversion at
i if and only if Mi is to the right of Mi+1 in Mσ.

2. Either c1 or iℓ in CISS(σ) may be zero (in the first case σ has an inversion at 0, in the second it has
a consecution at k− 2), but i1, c2, i2, . . . , iℓ−1, cℓ are all strictly positive. These conditions uniquely
determine CISS(σ) and, in particular, the parameter ℓ.

3. c(σ) =
∑ℓ

j=1 cj , i(σ) =
∑ℓ

j=1 ij , and c(σ) + i(σ) = k − 1.

The reader may find in [11, Example 3.5] explicit examples of CISS(σ) for some relevant Fiedler
pencils.

3.1. A multiplication free algorithm to construct Fiedler pencils of square matrix polynomials

We focus only on how to construct the zero-degree term Mσ in the Fiedler pencil (9), since the first-
degree term is already known. The obvious option is to perform directly the multiplication of all factors,
but this is not convenient if the degree is large.1 Theorem 3.4 shows how to construct Fiedler pencils
without performing any arithmetic operation. Throughout this paper, we will use MATLAB notation for
submatrices on block indices, that is, if A is a matrix partioned into blocks, then A(i : j, :) indicates the
submatrix of A consisting of block rows i through j and A(:, k : l) indicates the submatrix of A consisting
of block columns k through l.

1Polynomials with large degrees may appear, for instance, in the computation of the roots of scalar polynomials as the
eigenvalues of a Fiedler pencil [14].
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Theorem 3.4. Let P (λ) =
∑k

i=0 λ
i Ai be an n × n matrix polynomial with degree k ≥ 2, let σ :

{0, 1, . . . , k − 1} → {1, . . . , k} be a bijection, and let Mσ be the zero-degree term of the Fiedler pencil
of P (λ) associated with σ. Consider the matrices W0,W1, . . . ,Wk−2 constructed by Algorithm 1 below
partitioned, respectively, into 2 × 2, 3 × 3, . . . , k × k blocks of size n × n. Then Algorithm 1 constructs
Mσ, more precisely, Mσ = Wk−2.

Algorithm 1. Given P (λ) =
∑k

i=0 λ
i Ai with size n × n and a bijection σ, the following algorithm

constructs Mσ.

if σ has a consecution at 0 then

W0 =

[
−A1 In
−A0 0

]
else

W0 =

[
−A1 −A0

In 0

]
endif
for i = 1 : k − 2

if σ has a consecution at i then

Wi =

[
−Ai+1 In 0

Wi−1(:, 1) 0 Wi−1(:, 2 : i+ 1)

]
else

Wi =

−Ai+1 Wi−1(1, :)
In 0
0 Wi−1(2 : i+ 1, :)


endif

endfor
Mσ = Wk−2

Proof. The proof proceeds by induction on the degree k. The result is obvious for k = 2, because in this
case there are only two possible options for Mσ, namely, Mσ = M0M1 if σ has a consecution at 0 or
Mσ = M1M0 if σ has an inversion at 0. A direct computation shows that

M0M1 =

[
−A1 In
−A0 0

]
and M1M0 =

[
−A1 −A0

In 0

]
for k = 2, (11)

and the result follows.
Assume now that the result is valid for matrix polynomials of degree k − 1 ≥ 2, and let us prove it

for the polynomial P (λ) =
∑k

i=0 λ
iAi and the bijection σ : {0, 1, . . . , k− 1} → {1, . . . , k}. Note first that

the matrices Mi(P ) defined in (6-7) for P (λ) satisfy

Mi(P ) = diag(In,Mi(Q)), for i = 0, . . . , k − 2, (12)

where Mi(Q) are the n(k − 1)× n(k − 1) matrices corresponding to the polynomial Q(λ) =
∑k−1

i=0 λiAi.
We need to distinguish two cases in the proof.

Case 1. If σ has a consecution at k − 2, then the commutativity relations (8) of the Mi’s matrices
allow us to write

Mσ(P ) = Mi0(P ) · · ·Mik−2
(P )Mk−1(P ),

where (i0, i1, . . . , ik−2) is a permutation of (0, 1, . . . , k − 2). By using (12), we can write

Mσ(P ) = diag(In,Mσ̃(Q))Mk−1(P ), (13)

where σ̃ : {0, 1, . . . , k−2} → {1, . . . , k−1} is a bijection such that, for i = 0, . . . , k−3, σ̃ has a consecution
(resp. inversion) at i if and only if σ has a consecution (resp. inversion) at i. Therefore, by the induction
hypothesis, Mσ̃(Q) = Wk−3. Finally, we perform the simple block product in (13) as follows

Mσ(P ) =

[
In 0n 0
0 Wk−3(:, 1) Wk−3(:, 2 : k − 1)

]−Ak−1 In
In 0n

I(k−2)n


=

[
−Ak−1 In 0

Wk−3(:, 1) 0 Wk−3(:, 2 : k − 1)

]
,
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which is precisely the matrix Wk−2 constructed by Algorithm 1 when σ has a consecution at k − 2.
Case 2. If σ has an inversion at k − 2 the proof is similar, but with Mk−1(P ) placed on the left, i.e.,

Mσ(P ) = Mk−1(P )Mi0(P ) · · ·Mik−2
(P ) = Mk−1(P ) diag(In,Mσ̃(Q)).

3.2. Fiedler pencils of rectangular matrix polynomials

The extension of equation (9) to a rectangular m× n matrix polynomial P (λ) =
∑k

i=0 λ
iAi presents

difficulties, because it is not clear how to define the sizes of the identity blocks in the main block diagonal
of the factors Mi. A tentative approach is simply to choose the sizes of the diagonal identities in both (6)
and (7) such that all the factors in (10) are conformal for multiplication (notice that the non-diagonal
identities in the central 2× 2 block submatrix of (7) are determined by the size of Ai ∈ Fm×n). This can
be done, but it is not immediate and is cumbersome, because the presence of the block −Ai in the matrix
Mi imposes restrictions on the sizes of the diagonal identities of the factors to both the left and the right
of Mi in the product defining Mσ. Hence, proceeding in this way, the sizes of the matrices Mi should be
carefully determined and, even more, these sizes would depend, for each Fiedler pencil, on the position
of the Mi factor in the product defining Mσ. These questions are better explained with an example.

Example 3.5. Let P (λ) = A0+λA1+λ2A2+λ3A3, with Ai ∈ Fm×n, be a matrix polynomial with degree
3 and σ1 = (1, 3, 2) and σ2 = (2, 3, 1) be bijections of {0, 1, 2} on {1, 2, 3}. Let us try to give a meaning
to the symbolic expressions

Fσ1(λ) = λM3 −M0M2M1 and Fσ2(λ) = λM3 −M ′
2M

′
0M

′
1,

that is, let us try to define the Fiedler pencils for P (λ) associated with the bijections σ1 and σ2. When
P (λ) is square (n = m) the commutativity relations (8) imply that Fσ1(λ) = Fσ2(λ). Assume now that
m ̸= n, then the factors in the zero degree term of Fσ1(λ) are conformal for multiplication if and only if
they are

M0 =

 Im 0 0
0 In 0
0 0 −A0

 , M1 =

 In 0 0
0 −A1 Im
0 In 0

 , M2 =

 −A2 Im 0
In 0 0
0 0 In

 ,

and the factors in the zero degree term of Fσ2(λ) are conformal for multiplication if and only if they are

M ′
0 =

 In 0 0
0 Im 0
0 0 −A0

 , M ′
1 =

 In 0 0
0 −A1 Im
0 In 0

 , M ′
2 =

 −A2 Im 0
In 0 0
0 0 Im

 .

Note that the size of M2 is different than the size of M ′
2. However, the reader is invited to check that

Fσ1(λ) = Fσ2(λ). This example shows that defining Fiedler pencils for rectangular polynomials in a
similar way as in the square case would force the sizes of the Mi matrices to depend on the specific
bijection σ. It is easy to devise examples of rectangular matrix polynomials of degree higher than 3 where
the sizes are different for more than one factor Mi.

A first option to extend Fiedler pencils from square to rectangular polynomials that is not affected
by the difficulties illustrated in Example 3.5 would be the following. Use, in the square case, the com-
mutativity relations (8) to order the factors Mi in Mσ (10) in a certain canonical order that is exactly
the same for all Fiedler pencils with the same CISS(σ) (that are, in fact, the same pencil by Theorem
3.4). One possible order may be found in [2, eq. (2.9)]. Then, use this order and force the conformability
of all Mi factors for multiplication, by choosing properly the sizes of their identity blocks, to extend the
Fiedler pencil to rectangular matrix polynomials. Again, this can be done, but it requires to prove, for
each different CISS(σ), that the sizes of the Mi factors can always be properly chosen and to determine
these sizes. This is not obvious and is tedious. In addition, the reader may easily check that the sizes of
the Mi factors may be different for different CISS(σ), what is still unpleasant.
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Another option to extend Fiedler pencils from square to rectangular polynomials bypassing all dif-
ficulties mentioned above is to avoid the use of the factors Mi. To this purpose, we might start by
performing symbolically in the square case the product defining Mσ in (10), in order to obtain an explicit
expression of the block-entries of Mσ in terms of the coefficients Ai of the polynomial P (λ). This can be
done by using CISS(σ), although is complicated and requires a cumbersome notation. Once this explicit
expression is known, we would replace the square n × n blocks Ai, i = 0, 1, . . . , k − 1, by rectangular
m × n blocks Ai, and we would check that the sizes of the block rows and block columns fit properly
with assigning either a size n × n or m ×m to every identity block that appears in Mσ. This requires
again a tedious proof. Therefore, we will follow a simpler approach based on adapting Algorithm 1 to
rectangular matrix polynomials. This approach is developed in Theorem 3.6 and Definition 3.8 and is,
in fact, equivalent to the process described above of obtaining an explicit expression of the block-entries
of Mσ in terms of the coefficients Ai. Note that in Algorithm 2 we use again MATLAB notation for
submatrices on block indices.

Theorem 3.6. Let P (λ) =
∑k

i=0 λ
iAi be an m × n matrix polynomial with degree k ≥ 2 and let σ :

{0, 1, . . . , k−1} → {1, . . . , k} be a bijection. If in Algorithm 2 below each matrix Wi, for i = 1, 2, . . . , k−
2, is partitioned into blocks in such a way that the blocks of Wi−1 are blocks of Wi, then Algorithm

2 constructs a sequence {W0,W1, . . . ,Wk−2} of matrices partitioned in 2 × 2, 3 × 3, . . . , k × k blocks,
respectively.

Algorithm 2. Given P (λ) =
∑k

i=0 λ
iAi with size m × n and a bijection σ, the following algorithm

constructs a sequence of matrices {W0,W1, . . . ,Wk−2}.

if σ has a consecution at 0 then

W0 =

[
−A1 Im
−A0 0

]
else

W0 =

[
−A1 −A0

In 0

]
endif
for i = 1 : k − 2

if σ has a consecution at i then

Wi =

[
−Ai+1 Im 0

Wi−1(:, 1) 0 Wi−1(:, 2 : i+ 1)

]
else

Wi =

−Ai+1 Wi−1(1, :)
In 0
0 Wi−1(2 : i+ 1, :)


endif

endfor

In addition, the matrices {W0,W1, . . . ,Wk−2} satisfy the following properties:

(a) The size of Wi is

(m+m c(σ(0 : i)) + n i(σ(0 : i)) )× (n+m c(σ(0 : i)) + n i(σ(0 : i)) ) .

(b) The first diagonal block of Wi is −Ai+1 and, so, has size m× n. The rest of diagonal blocks of Wi

are square zero matrices, more precisely

Wi(i+ 2− j, i+ 2− j) =

{
0m if σ has a consecution at j
0n if σ has an inversion at j

, for j = 0, 1, . . . , i.

Proof. The proof is elementary. We simply sketch the main points. First, notice that the matrix W0 is
well defined in Algorithm 2. Therefore, W1 is also well defined both when σ has a consecution at 1 and
has an inversion at 1, because in both cases W1(1, 1) = −A2, W0(:, 1) has n columns, and W0(1, :) has m
rows. The same argument can be applied inductively to show that also W2, . . . ,Wk−2 are well defined.
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The fact that Wi is partitioned into (i+ 2)× (i+ 2) blocks is true by definition for W0, and for the rest
of matrices in the sequence it follows from the fact that one block row and one block column are added
in each step of the “for” loop of Algorithm 2. Part (a) is again true for W0, and for obtaining the result
for the rest of matrices in the sequence note that: (1) if σ has a consecution at i, then Wi has m rows and
m columns more than Wi−1; (2) if σ has an inversion at i, then Wi has n rows and n columns more than
Wi−1. Finally, let us prove part (b). The result is true for W0. For the rest of matrices in the sequence
assume that it is true for Wi−1 and let us prove it for Wi. Note that by construction Wi(1, 1) = −Ai+1

and

Wi(2, 2) =

{
0m if σ has a consecution at i
0n if σ has an inversion at i

,

which is Part (b) for j = i. Observe also that

Wi(3 : i+ 2, 3 : i+ 2) = Wi−1(2 : i+ 1, 2 : i+ 1),

which implies Wi(i+ 2− j, i+ 2− j) = Wi−1((i− 1) + 2− j, (i− 1) + 2− j) for j = 0, 1, . . . , i− 1. This
proves the result since we are assuming that the result is true for Wi−1.

Remark 3.7. In part (b) of Theorem 3.6 we assume, as in the rest of the paper, that the block indices
of Wi run from 1 to i+2. Thus, the diagonal blocks of Wi are Wi(1, 1), . . . ,Wi(i+2, i+2). If we let the
block indices of Wi run from k − i− 1 to k, the result in part (b) is expressed as

Wi(k − j, k − j) =

{
0m if σ has a consecution at j
0n if σ has an inversion at j

, for j = 0, 1, . . . , i,

which shows that the sizes of these blocks only depend on j and not on i, as long as 0 ≤ j ≤ i.

Observe that Algorithm 2 differs from Algorithm 1 only in the sizes of the identity blocks, that are
chosen to fit the size m× n of the polynomial P (λ). This fact and Theorem 3.4 motivate Definition 3.8,
which is the main definition in this paper.

Definition 3.8 (Fiedler Pencils for rectangular matrix polynomials). Let P (λ) =
∑k

i=0 λ
iAi be an m×n

matrix polynomial with degree k ≥ 2, let σ : {0, 1, . . . , k − 1} → {1, . . . , k} be a bijection, and denote by
Mσ the last matrix of the sequence constructed by Algorithm 2, that is,

Mσ := Wk−2 .

The Fiedler pencil of P (λ) associated with σ is the (m+m c(σ)+n i(σ) )× (n+m c(σ)+n i(σ) ) matrix
pencil

Fσ(λ) := λ

[
Ak

Imc(σ)+ni(σ)

]
−Mσ . (14)

Remark 3.9. Some remarks on Definition 3.8 may be useful for the reader.

1. The leading coefficient
[
Ak

I

]
of the Fiedler pencil Fσ(λ) introduced in Definition 3.8 has the same

structure as the matrix Mk in (6), but the size of the block diagonal identity is different when
m ̸= n.

2. If m ̸= n, then there are Fiedler pencils with different sizes, because the sum c(σ) + i(σ) = k− 1 is
fixed for all σ and, so, different pairs of (c(σ), i(σ)) produce different sizes of Fσ(λ). For instance, if
m > n, then the Fiedler pencil with smallest size corresponds to c(σ) = 0, i.e., to the first companion
form, and the one with largest size corresponds to i(σ) = 0, i.e., to the second companion form [11].
If n > m, then the opposite situation holds.

3. We use in Theorem 3.6 and Definition 3.8 a bijection σ for the only purpose of keeping a parallelism
with the standard definition of Fiedler pencils for square polynomials. However, a bijection is not
really needed since we do not use factors Mi in our definition. Observe that Algorithm 2 only
needs a sequence of decisions that we have identified with σ having a consecution or inversion.
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4. A comparison between Algorithms 1 and 2 indicates that, for the same bijection σ, Fiedler pencils
of square and rectangular matrix polynomials look symbolically the same except for the sizes of the
identity blocks. This means that a fundamental consequence of Theorems 3.4 and 3.6 is that the
zero degree term Mσ of every Fiedler pencil of a square n×n matrix polynomial P (λ) =

∑k
i=0 λ

iAi

satisfies that the identity blocks of Mσ are placed in block-entries such that if the polynomial
becomes rectangular, i.e., with size m × n, then the square identity blocks may be transformed
consistently into Im or In matrices. Let us see an specific example. Consider P (λ) =

∑k
i=0 λ

iAi

with degree k = 6 and size n× n, and the bijection τ = (1, 2, 5, 3, 6, 4). In this case

Mτ = M0M1M3M5M2M4 =


−A5 −A4 In 0 0 0
In 0 0 0 0 0
0 −A3 0 −A2 In 0
0 In 0 0 0 0
0 0 0 −A1 0 In
0 0 0 −A0 0 0

 , (15)

which can be constructed by direct multiplication of the factors or via Algorithm 1, since τ has
consecutions at 0, 1, 3 and inversions at 2, 4. If the size becomes m×n, then Algorithm 2 produces

Mτ =


−A5 −A4 Im 0 0 0
In 0 0 0 0 0
0 −A3 0 −A2 Im 0
0 In 0 0 0 0
0 0 0 −A1 0 Im
0 0 0 −A0 0 0

 , (16)

which is nothing else that (15) but modifying the sizes of some identity blocks according to the size
m× n of the coefficients −Ai.

Theorem 3.10 is a direct consequence of Theorem 3.6 and establishes that the zero-degree term Mσ

of any Fiedler pencil of P (λ) has as non-zero blocks −A0,−A1, . . . ,−Ak−1 and (k − 1) identities of size
n× n or m×m. This property is very well known in the case of the first and second companion forms,
that are particular cases of Fiedler pencils. Theorem 3.10 also includes additional information on the
structure of Mσ that will be used later.

Theorem 3.10. Let P (λ) =
∑k

i=0 λ
iAi be an m × n matrix polynomial with degree k ≥ 2 and let

σ : {0, 1, . . . , k− 1} → {1, . . . , k} be a bijection. Suppose that Fσ(λ) = λ
[
Ak

I

]
−Mσ is the Fiedler pencil

of P (λ) associated with σ and consider Mσ partioned into k× k blocks according to Algorithm 2. Then:

(a) Mσ has k blocks equal to −A0,−A1, . . . ,−Ak−1.

(b) Mσ has k − 1 identity blocks: c(σ) blocks equal to Im and i(σ) blocks equal to In.

(c) The rest of the blocks of Mσ are equal to 0 matrices of size n× n, m×m, n×m, or m× n.

(d) The k − 1 identity blocks in part (b) satisfy:

1. None of them is in the main block diagonal of Mσ.

2. Two of these blocks are never in the same block row (or in the same block column) of Mσ.

3. If an identity block is in the (i, j) block-entry of Mσ, then one and only one of the following
two properties holds: (a) the rest of the blocks in the ith block row of Mσ are equal to 0 and
at least one of the matrices −A0,−A1, . . . ,−Ak−1 is in the jth block column of Mσ; (b) the
rest of the blocks in the jth block column of Mσ are equal to 0 and at least one of the matrices
−A0,−A1, . . . ,−Ak−1 is in the ith block row of Mσ.

4. If {i1, i2, . . . , it} (resp. {jt+1, jt+2, . . . , jk−1}) are the block indices of the block rows (resp.
block columns) of Mσ containing one identity block and having the remaining blocks equal to
zero, then the (unordered) set {i1, i2, . . . , it, jt+1, jt+2, . . . , jk−1} is equal to {2, 3, . . . , k}.
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Proof. Parts (a), (b), and (c) are obvious from Algorithm 2. Part (d)-1 follows from Theorem 3.6-(b).
The proofs of Parts (d)-2, (d)-3, and (d)-4 proceed by induction on the matrices W0, . . . ,Wk−2(= Mσ)
constructed by Algorithm 2. A direct inspection shows that Parts (d)-2, (d)-3, and (d)-4 hold for W0

with k = 2. Let us assume that they hold for Wk−3 with k − 1 instead of k. Next partition Wk−3 as
follows

Wk−3 =

[
−Ak−2 Z12

Z21 Z22

]
.

Then Algorithm 2 gives for Wk−2 = Mσ

Wk−2 =

−Ak−1 Im 0
−Ak−2 0 Z12

Z21 0 Z22

 or Wk−2 =

−Ak−1 −Ak−2 Z12

In 0 0
0 Z21 Z22

 , (17)

and observe that the main block diagonal of Z22 is on the main block diagonal of Wk−2. The structure
of Mσ in (17) and the fact that Wk−3 satisfies Parts (d)-2 and (d)-3 make evident that Mσ also satisfies
Parts (d)-2 and (d)-3. The block indices of the identity blocks of Wk−3 in Part (d)-4 are {2, 3, . . . , k− 1}
and observe that the induction hypothesis implies that if an identity block is a block-entry of Z12 (resp.
Z21) then the corresponding block column (resp. block row) in Z22 is zero. This fact and the structure
of Mσ in (17) imply that the block indices in Part (d)-(4) of the identity blocks of Wk−3 as block entries
of Mσ are {3, 4, . . . , k}. Finally, note that the identity block that is added to construct Wk−2 from Wk−3

has always index 2 in the set of indices in Part (d)-4.

3.3. The reversal of a Fiedler pencil

The main result in this section is Theorem 3.14, which establishes that for a rectangular matrix
polynomial P (λ) the reversal of any of its Fiedler pencils is strictly equivalent to a Fiedler pencil of
revP (λ). We think that this result is interesting on its own right and, in addition, it will be used
in Section 4 to prove that every Fiedler pencil of a rectangular matrix polynomial P (λ) is a strong
linearization of P (λ). The proof of Theorem 3.14 is long and can be skipped in a first reading. The proof
is based on the technical Lemmas 3.11, 3.12, and 3.13 that are presented below.

Lemma 3.11. Let P (λ) be an m× n matrix polynomial with degree k ≥ 2 and let Fσ(P ) be the Fiedler
pencil of P (λ) associated with the bijection σ. Then the Fiedler pencil Fσ(−P ) of −P (λ) is strictly
equivalent to Fσ(P ).

Proof. Let P (λ) =
∑k

i=0 λ
iAi. Along this proof, we consider that Fσ(P ) = λdiag(Ak, I) − Mσ(P )

and Fσ(−P ) = λdiag(−Ak, I) −Mσ(−P ) are partitioned into k × k blocks with the sizes of the blocks
determined by the way Algorithm 2 constructs Mσ(P ) and Mσ(−P ). In particular, we consider the
block I in diag(Ak, I) and diag(−Ak, I) as I = diag(Ir2 , Ir3 , . . . , Irk), where ri = m or n by Theorem
3.6-Part (b). Note, in the first place, that Fσ(−P ) is strictly equivalent to −Fσ(−P ). On the other
hand, according to Algorithm 2 and Theorem 3.10, the only difference between the pencils −Fσ(−P ) =
λdiag(Ak,−I) − (−Mσ(−P )) and Fσ(P ) = λdiag(Ak, I) − Mσ(P ) are the signs of the k − 1 identity
blocks of Mσ(P ) and the signs of the k−1 diagonal identity blocks of diag(Ak, I). Let {i1, i2, . . . , it} and
{jt+1, jt+2, . . . , jk−1} be the indices defined in Theorem 3.10-Part (d)-4 and define now the matrices

U := diag(Im, η2Ir2 , η3Ir3 , . . . , ηkIrk), where ηi =

{
−1 if ηi ∈ {i1, i2, . . . , it}
1 otherwise

,

and

V := diag(In, α2Ir2 , α3Ir3 , . . . , αkIrk), where αi =

{
−1 if αi ∈ {jt+1, jt+2, . . . , jk−1}
1 otherwise

.

According to Theorem 3.10-Part (d)-4 and the previous discussion

UFσ(P )V = λUdiag(Ak, I)V − UMσ(P )V = λ diag(Ak,−I)− (−Mσ(−P )) = −Fσ(−P ),

which concludes the proof.

12



Fiedler pencils for revP (λ) can be easily constructed by applying Algorithm 2 to the reversal poly-
nomial. Lemma 3.12 shows us another way to construct Fiedler pencils for revP (λ) that is useful to
prove Theorem 3.14. According to Definition 3.8, we only need to pay attention in Lemma 3.12 to the
construction of the zero-degree term of the pencil. In addition, for technical reasons that will be clear
later, we construct pencils for the polynomial −revP (λ).

Lemma 3.12 (Construction of Fiedler pencils for −revP (λ) via block reverse identities). Let P (λ) =∑k
i=0 λ

iAi be an m×n matrix polynomial with degree k ≥ 2 and let σ : {0, 1, . . . , k−1} → {1, . . . , k} be a
bijection. If in Algorithm 3 below each matrix Yi, for i = 1, 2, . . . , k−2, is partitioned into blocks in such
a way that the blocks of Yi−1 are blocks of Yi, then Algorithm 3 constructs a sequence {Y0, Y1, . . . , Yk−2}
of matrices partitioned in 2× 2, 3× 3, . . . , k × k blocks, respectively.

Algorithm 3. Given P (λ) =
∑k

i=0 λ
iAi with size m × n and a bijection σ, the following algorithm

constructs a sequence of matrices {Y0, Y1, . . . , Yk−2}.

if σ has a consecution at 0 then

Y0 =

[
0 Ak

Im Ak−1

]
else

Y0 =

[
0 In
Ak Ak−1

]
endif
for i = 1 : k − 2

if σ has a consecution at i then

Yi =

[
Yi−1(:, 1 : i) 0 Yi−1(:, i+ 1)

0 Im Ak−i−1

]
else

Yi =

 Yi−1(1 : i, :) 0
0 In

Yi−1(i+ 1, :) Ak−i−1


endif

endfor

In addition, the matrices {Y0, Y1, . . . , Yk−2} satisfy the following properties:

(a) The size of Yi is

(m+m c(σ(0 : i)) + n i(σ(0 : i)) )× (n+m c(σ(0 : i)) + n i(σ(0 : i)) ) .

(b) The last diagonal block of Yi is Ak−i−1 and, so, has size m × n. The rest of diagonal blocks of Yi

are square zero matrices, more precisely

Yi(j, j) =

{
0m if σ has a consecution at j − 1
0n if σ has an inversion at j − 1

, for j = 1, 2, . . . , i+ 1.

(c) Let Yi(j, j) = 0dj
, for j = 1, 2, . . . , i+ 1, and define the (i+ 2)× (i+ 2) block reverse identities

R
(i)
l :=


Im

Idi+1

. .
.

Id1

 and R(i)
r :=


Id1

. .
.

Idi+1

In

 .

Then we have
R

(i)
l Yi R

(i)
r = Wi(−revP ), for i = 0, 1, . . . , k − 2, (18)

where Wi(−revP ) are the matrices constructed by Algorithm 2 for the polynomial −revP (λ) and
the bijection σ. In particular, according to Definition 3.8,

R
(k−2)
l Yk−2 R

(k−2)
r = Mσ(−revP ).
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Proof. The proof of the lemma up to part (b) (included) is analogous to the inductive proof of Theorem
3.6 and is omitted. We only indicate that part (b) for the block Yi(i + 1, i + 1) is a direct consequence
of the way Algorithm 3 constructs Yi, while the expression of the remaining Yi(j, j) blocks follows from
Yi(1 : i, 1 : i) = Yi−1(1 : i, 1 : i) via induction. It is important to note that the size of Yi(j, j) only
depends on j and not on i, whenever 1 ≤ j ≤ i+ 1.

Before proving part (c), it is convenient to pay close attention to the structure of the matrices R
(i)
l

and R
(i)
r . First, note that the upper-right (resp. lower-left) block of R

(i)
l (resp. R

(i)
r ) is special because is

always equal to Im (resp. In) independently of the consecutions/inversions that σ may have. The reason
of the presence of these special blocks is to make the product in (18) conformable since the last diagonal

block of Yi has size m× n. This motivates to define two matrices, R̂
(i)
l and R̂

(i)
r , obtained from R

(i)
l and

R
(i)
r by removing these special blocks and the corresponding rows/columns, that is,

R
(i)
l =:

[
Im

R̂
(i)
l

]
and R(i)

r =:

[
R̂

(i)
r

In

]
. (19)

Observe that the matrices R̂
(i)
l and R̂

(i)
r enjoy the following embedding properties

R̂
(i)
l =

[
Idi+1

R̂
(i−1)
l

]
and R̂(i)

r =

[
R̂

(i−1)
r

Idi+1

]
, (20)

that do not hold for the un-hatted matrices R
(i)
l and R

(i)
r .

We are now in the position of proving (18) by induction on i. The definitions of R
(i)
l and R

(i)
r guarantee

that the three factors in the left-hand side of (18) are conformal for multiplication. The initial step i = 0
is proved directly, because for i = 0, we have:

• If σ has a consecution at 0, then

R
(0)
l Y0R

(0)
r =

[
Im

Im

] [
0 Ak

Im Ak−1

] [
Im

In

]
=

[
Ak−1 Im
Ak 0

]
= W0(−revP ).

• If σ has an inversion at 0, then

R
(0)
l Y0R

(0)
r =

[
Im

In

] [
0 In
Ak Ak−1

] [
In

In

]
=

[
Ak−1 Ak

In 0

]
= W0(−revP ).

Assume now that (18) is true for some i− 1, such that 0 ≤ (i− 1) ≤ k− 3, and we will prove it for i. We
need to distinguish two cases according to whether σ has a consecution or an inversion at i.
Case 1: σ has a consecution at i. In this case di+1 = m. Then (19) and (20) imply

R
(i)
l YiR

(i)
r =

[
Im

R̂
(i)
l

] [
Yi−1(:, 1 : i) 0 Yi−1(:, i+ 1)

0 Im Ak−i−1

] R̂
(i−1)
r

Im
In


=

[
Ak−i−1 Im 0

R̂
(i)
l Yi−1(:, i+ 1) 0 R̂

(i)
l Yi−1(:, 1 : i)R̂

(i−1)
r

]
. (21)

Observe that di+1 = m, together with (19) and (20), imply that R
(i−1)
l = R̂

(i)
l . Now, we use the induction

assumption, that is, that (18) is true for (i− 1).

Wi−1(−revP ) = R
(i−1)
l Yi−1R

(i−1)
r = R̂

(i)
l

[
Yi−1(:, 1 : i) Yi−1(:, i+ 1)

] [ R̂
(i−1)
r

In

]
=

[
R̂

(i)
l Yi−1(:, i+ 1) R̂

(i)
l Yi−1(:, 1 : i)R̂

(i−1)
r

]
. (22)

We substitute equation (22) in (21) to get

R
(i)
l YiR

(i)
r =

[
Ak−i−1 Im 0

[Wi−1(−revP )] (:, 1) 0 [Wi−1(−revP )] (:, 2 : i+ 1)

]
= Wi(−revP ),
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where the last step follows from applying Algorithm 2 to −revP (λ) and σ. This concludes the proof of
Case 1.
Case 2: σ has an inversion at i. In this case di+1 = n. Then (19) and (20) imply

R
(i)
l YiR

(i)
r =

 Im
In

R̂
(i−1)
l

 Yi−1(1 : i, :) 0
0 In

Yi−1(i+ 1, :) Ak−i−1

[
R̂

(i)
r

In

]

=

 Ak−i−1 Yi−1(i+ 1, :)R̂
(i)
r

In 0

0 R̂
(i−1)
l Yi−1(1 : i, :)R̂

(i)
r

 . (23)

Observe that di+1 = n, together with (19) and (20), imply that R
(i−1)
r = R̂

(i)
r . Now, we use the induction

assumption.

Wi−1(−revP ) = R
(i−1)
l Yi−1R

(i−1)
r =

[
Im

R̂
(i−1)
l

] [
Yi−1(1 : i, :)
Yi−1(i+ 1, :)

]
R̂(i)

r

=

[
Yi−1(i+ 1, :)R̂

(i)
r

R̂
(i−1)
l Yi−1(1 : i, :)R̂

(i)
r

]
. (24)

We substitute equation (24) in (23) to get

R
(i)
l YiR

(i)
r =

 Ak−i−1 [Wi−1(−revP )] (1, :)
In 0
0 [Wi−1(−revP )] (2 : i+ 1, :)

 = Wi(−revP ).

This concludes the proof of Case 2.

Lemma 3.13 shows the result of certain matrix multiplications that are used in the proof of Theorem
3.14 to perform strict equivalences on the reversals of Fiedler pencils when the degree k of the polynomial
satisfies k ≥ 3.

Lemma 3.13. Let σ, τ : {0, 1, . . . , k − 1} → {1, . . . , k} be two bijections such that σ has a consecution
(resp. inversion) at i−1 if and only if τ has a consecution (resp. inversion) at k−i−1 for i = 1, . . . , k−1.

Let P (λ) =
∑k

i=0 λ
iAi be an m × n matrix polynomial with degree k ≥ 3, let {Wi}k−2

i=0 be the sequence

of block partitioned matrices constructed by Algorithm 2 for P (λ) and σ, let {Yi}k−2
i=0 be the sequence of

block partitioned matrices constructed by Algorithm 3 for P (λ) and τ , and let us define W−1 := −A0,

Y−1 := Ak. Let us define two sequences, {Ĩi}k−1
i=0 and {

◦
Ii}k−1

i=0 , of partitioned matrices as follows: Ĩ0 and
◦
I0 are 0× 0 empty matrices, and

Ĩi :=


Is1

Is2
. . .

Isi

 and
◦
Ii :=


Itk−i+1

Itk−i+2

. . .

Itk

 , for i = 1, . . . , k − 1,

where {sj}ij=1 are the sizes of the square diagonal blocks {Yi−1(j, j)}ij=1 and {tj}kj=k−i+1 are the sizes of

the square diagonal blocks {Wi−1(j, j)}i+1
j=2. Then the following statements hold.

(a) For each i = 0, 1, . . . , k − 1, the matrices

W̃i−1 :=

[
Ĩk−i−1

Wi−1

]
and Ỹk−i−2 :=

[
Yk−i−2

◦
Ii

]
are partitioned into k× k blocks and the size of the block W̃i−1(p, q) is equal to the size of the block

Ỹk−i−2(p, q) for all 1 ≤ p, q ≤ k. In addition, W̃i−1 and Ỹk−i−2 have both size

(m+m c(σ) + n i(σ) )× (n+m c(σ) + n i(σ) ) ,

that is, the same size as the Fiedler pencil of P (λ) associated with σ.

15



(b) Define a sequence of matrices {Si}k−1
i=1 as follows

S1 :=

 Ĩk−2

0 In
Im A1

 , Si :=



Ĩk−i−1

0 In
Im Ai

Itk−i+2

. . .

Itk


, i = 2, . . . , k − 1.

Then, for each i = 1, . . . , k − 1, the following statements hold:

(b1) If σ has a consecution at i− 1, then Si has size (n+m c(σ) + n i(σ) )× (n+m c(σ) + n i(σ) )
and

W̃i−1Si = W̃i−2 and Ỹk−i−2Si = Ỹk−i−1.

(b2) If σ has an inversion at i− 1, then Si has size (m+m c(σ)+n i(σ) )× (m+m c(σ)+n i(σ) )
and

SiW̃i−1 = W̃i−2 and SiỸk−i−2 = Ỹk−i−1.

Proof. Part (a). Ĩk−i−1 has (k− i− 1)× (k− i− 1) blocks, by definition, and, by Theorem 3.6, Wi−1 has

(i+1)×(i+1) blocks. So W̃i−1 has k×k blocks. Analogously, by Lemma 3.12, Yk−i−2 has (k−i)×(k−i)

blocks and, by definition,
◦
Ii has i× i blocks. So Ỹk−i−2 has k × k blocks.

Next we prove that the sizes of the blocks of W̃i−1 are equal to the sizes of the corresponding blocks of

Ỹk−i−2. Assume first that 1 ≤ i ≤ k−2, and recall that Wi−1(1, 1) = −Ai and Yk−i−2(k−i, k−i) = Ai+1.
Then

W̃i−1 =

Ĩk−i−1

−Ai ∗
∗ Wi−1(2 : i+ 1, 2 : i+ 1)

 , (25)

Ỹk−i−2 =

Yk−i−2(1 : k − i− 1, 1 : k − i− 1) ∗
∗ Ai+1

◦
Ii

 . (26)

By definition, Ĩk−i−1 is partitioned into blocks exactly as Yk−i−2(1 : k − i − 1, 1 : k − i − 1) and
◦
Ii is

partitioned exactly as Wi−1(2 : i + 1, 2 : i + 1). Therefore, W̃i−1 and Ỹk−i−2 have corresponding blocks

with equal sizes. For i = 0 we have W̃−1 = diag(Ĩk−1,−A0), Ỹk−2 = Yk−2, and the definition of Ĩk−1

together with Lemma 3.12-(b) guarantee that the sizes of corresponding blocks are equal. For i = k − 1

we have W̃k−2 = Wk−2, Ỹ−1 = diag(Ak,
◦
Ik−1), and the definition of

◦
Ik−1 together with Theorem 3.6-(b)

imply the result.
We consider now the total size of the matrices W̃i−1 and Ỹk−i−2. Note first that c(σ) = c(τ) and

i(σ) = i(τ). For i = 0, we get from the previous discussion that W̃−1 and Ỹk−2 = Yk−2 have both the
size of Yk−2, that is (m + m c(σ) + n i(σ) ) × (n + m c(σ) + n i(σ) ) according to Lemma 3.12-(a). For

i = k − 1, we get from the previous discussion that W̃k−2 = Wk−2 and Ỹ−1 have both the size of Wk−2,
that is (m+m c(σ) + n i(σ) )× (n+m c(σ) + n i(σ) ) according to Theorem 3.6-(a). For 1 ≤ i ≤ k − 2,

we get again from the previous discussion that W̃i−1 and Ỹk−i−2 have both the same size. This size is
the sum of the sizes of the three diagonal blocks in (25) (or (26)), which according to Theorem 3.6 and
Lemma 3.12 is (m+ r)× (n+ r) with

r = m( c(τ(0 : k − i− 2)) + c(σ(0 : i− 1)) ) + n( i(τ(0 : k − i− 2)) + i(σ(0 : i− 1)) ) .

From the definition of τ , we see that r is equal to

r = m( c(σ(i : k − 2)) + c(σ(0 : i− 1)) ) + n( i(σ(i : k − 2)) + i(σ(0 : i− 1)) )

= mc(σ) + ni(σ).
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This concludes the proof of Part (a).
Part (b). For brevity, we prove only (b1). The proof of (b2) is similar and is omitted. Let us establish
the size of Si that is clearly an square matrix for each i. So, we only pay attention to the number of
rows. Consider first the number of rows of S1. Note that if σ has a consecution at 0, then

W̃0 =

[
Ĩk−2

W0

]
=

Ĩk−2

−A1 Im
−A0 0

 .

This makes evident that number of columns of W̃0 is equal to the number of rows of S1 and therefore this
number is (n +m c(σ) + n i(σ) ) by Part (a). Note that we have proved in addition that the partitions

of W̃0 and S1 are conformal for the product W̃0S1, and, by Part (a), the same happens for the product

Ỹk−3S1. Consider next the number of columns of Si, for i = 2, . . . , k−1. Note that if σ has a consecution
at i− 1, then

W̃i−1 =

[
Ĩk−i−1

Wi−1

]
=

Ĩk−i−1

−Ai Im 0
Wi−2(:, 1) 0 Wi−2(:, 2 : i)

 .

By definition, tk−i+2, . . . , tk are the number of columns of the block columns of Wi−1(:, 3 : i+ 1), which
have the same number of columns as the block columns of Wi−2(:, 2 : i). Therefore, the number of

columns of W̃i−1 is equal to the number of rows of Si and this number is (n+m c(σ) + n i(σ) ) by Part

(a). Observe that we have also proved that the partitions of W̃i−1 and Si are conformal for the product

W̃i−1Si. This implies, by Part (a), that the partitions of Ỹk−i−2 and Si are conformal for the product

Ỹk−i−2Si.

In the proof of W̃i−1Si = W̃i−2 for i = 1, . . . , k − 1, we need to deal separately with the case i = 1,

because W̃−1 has an structure different from W̃i for i > −1. A direct block multiplication shows that

W̃0S1 =

Ĩk−2

−A1 Im
−A0 0

 Ĩk−2

0 In
Im A1

 =

 Ĩk−2

Im 0
0 −A0

 = W̃−1,

where we have used that Ĩk−1 = diag(Ĩk−2, Im), because, according to Lemma 3.12-(b), the sizes of the
blocks {Yk−3(j, j)}k−2

j=1 are equal to the sizes of the blocks {Yk−2(j, j)}k−2
j=1 , and Yk−2(k − 1, k − 1) = 0m

because σ has a consecution at 0, that is, τ has a consecution at k−2. Let us consider now i = 2, . . . , k−1.
Then

W̃i−1Si =

Ĩk−i−1

−Ai Im 0
Wi−2(:, 1) 0 Wi−2(:, 2 : i)




Ĩk−i−1

0 In
Im Ai

Itk−i+2+···+tk


=

 Ĩk−i−1

Im 0 0
0 Wi−2(:, 1) Wi−2(:, 2 : i)

 =

[
Ĩk−i

Wi−2

]
= W̃i−2,

where we have used that Ĩk−i = diag(Ĩk−i−1, Im), because, according to Lemma 3.12-(b), the sizes of the
blocks {Yk−i−2(j, j)}k−i−1

j=1 are equal to the sizes of the blocks {Yk−i−1(j, j)}k−i−1
j=1 , and Yk−i−1(k− i, k−

i) = 0m because σ has a consecution at i− 1, that is, τ has a consecution at k − i− 1.

Next, we proceed with the proof of Ỹk−i−2Si = Ỹk−i−1. Here we need to deal separately with the case

i = k−1 because Ỹ−1 has an structure different from the remaining Ỹi. We consider first i = 1, . . . , k−2.
Since σ has a consecution at i − 1, we have that Wi−1(2, 2) = 0m by Theorem 3.6-(b) and the first

block of
◦
Ii is Itk−i+1

= Im. In addition, note that
◦
Ii = diag(Im,

◦
Ii−1) because the sizes of the blocks

{Wi−1(j, j)}i+1
j=3 are equal to the sizes of the blocks {Wi−2(j, j)}ij=2 by Theorem 3.6-(b) (recall also
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Remark 3.7). Therefore

Ỹk−i−2Si =

Yk−i−2

Im
Itk−i+2+···+tk




Ĩk−i−1

0 In
Im Ai

Itk−i+2+···+tk



=

Yk−i−2(:, 1 : k − i− 1) Yk−i−2(:, k − i)
Im

◦
Ii−1




Ĩk−i−1

0 In
Im Ai

◦
Ii−1


=

Yk−i−2(:, 1 : k − i− 1) Yk−i−2(:, k − i)
Im Ai

◦
Ii−1

 =

[
Yk−i−1

◦
Ii−1

]
= Ỹk−i−1,

where we have used Algorithm 3 taking into account that τ has a consecution at k − i − 1. We finally
cover the case i = k− 1. Since σ has a consecution at k− 2, an argument similar to the one above shows

that
◦
Ik−1 = diag(Im,

◦
Ik−2). Therefore,

Ỹ−1Sk−1 =

[
Ak

◦
Ik−1

] 0 In
Im Ak−1

It3+···+tk

 =

Ak

Im
◦
Ik−2

 0 In
Im Ak−1

◦
Ik−2


=

 0 Ak

Im Ak−1
◦
Ik−2

 =

[
Y0

◦
Ik−2

]
= Ỹ0,

where we have used Algorithm 3 taking into account that τ has a consecution at 0. This concludes the
proof of (b1).

Now we are in the position of proving the main result in this section.

Theorem 3.14. Let P (λ) be an m×n matrix polynomial with degree k ≥ 2 and let Fσ(P ) be the Fiedler
pencil of P (λ) associated with a bijection σ. Then revFσ(P ) is strictly equivalent to a Fiedler pencil
of revP (λ). More precisely, revFσ(P ) is strictly equivalent to Fτ (revP ), where τ : {0, 1, . . . , k − 1} →
{1, . . . , k} is any bijection such that τ has a consecution (resp. inversion) at k−i−1 if σ has a consecution
(resp. inversion) at i− 1, for i = 1, . . . , k − 1.

Proof. Let P (λ) =
∑k

i=0 λ
iAi. If the degree is k = 2, then Algorithm 2 shows that there are only two

different Fiedler pencils. These are the two companion forms

C1(P ) = λ

[
A2 0
0 In

]
+

[
A1 A0

−In 0

]
and C2(P ) = λ

[
A2 0
0 Im

]
+

[
A1 −Im
A0 0

]
.

For k = 2, direct matrix multiplications show that[
Im A1

0 −In

]
( revC1(P ) )

[
0 In
In 0

]
= C1(revP ) and[

0 Im
Im 0

]
( revC2(P ) )

[
In 0
A1 −Im

]
= C2(revP ),

which proves the result because the matrices multiplying revC1(P ) and revC2(P ) are always nonsingular.
Observe that for k = 2 the bijections σ and τ are equal.

For k ≥ 3, the proof relies in Lemma 3.13, so we use in the rest of the proof exactly the same definitions
and notation as in Lemma 3.13. Note that W̃k−2 = Wk−2 = Mσ, where −Mσ is the zero degree term of
Fσ(P ) according to Definition 3.8. Then

Fσ(P ) = λ

[
Ak

Imc(σ)+ni(σ)

]
−Mσ = λ Ỹ−1 − W̃k−2 and revFσ(P ) = Ỹ−1 − λ W̃k−2.
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Next we use the nonsingular matrices Sk−1, Sk−2, . . . , S1 introduced in Lemma 3.13-(b) and multiply
revFσ(P ) first by Sk−1, second by Sk−2, and so on until we multiply by S1. The multiplications are
performed on the right or on the left according to the consecutions or inversions of σ as indicated in
Lemma 3.13-(b1)-(b2). So, we obtain

revFσ(P )=Ỹ−1 − λW̃k−2 ∼s Ỹ0 − λW̃k−3 ∼s Ỹ1 − λW̃k−4 ∼s· · ·∼s Ỹk−2 − λW̃−1,

where the symbols ∼s denote that we are performing strict equivalences, because the matrices Si are
always nonsingular. From Lemma 3.13 we see that Ỹk−2 = Yk−2 and W̃−1 = diag(Ĩk−1,−A0). Therefore

revFσ(P ) ∼s Yk−2 − λ diag(Ĩk−1,−A0).

We apply now Lemma 3.12-(c) to get

revFσ(P ) ∼s R
(k−2)
l Yk−2 R

(k−2)
r − λR

(k−2)
l diag(Ĩk−1,−A0)R

(k−2)
r

= Mτ (−revP )− λ diag(−A0, Ĩk−1) = −Fτ (−revP ).

Finally, by Lemma 3.11, −Fτ (−revP ) is strictly equivalent to −Fτ (revP ), which in turn is strictly
equivalent to Fτ (revP ). Hence, we conclude that revFσ(P ) is strictly equivalent to Fτ (revP ).

4. Fiedler pencils of rectangular matrix polynomials are strong linearizations

We will prove in this section that all Fiedler pencils Fσ(λ) of a rectangular matrix polynomial P (λ) are
strong linearizations for P (λ). This is proved in Theorem 4.5, which generalizes in a nontrivial way The-
orem 4.6 in [11]. The approach we follow is constructive, in the sense that we will show how to construct
appropriate unimodular matrices U(λ) and V (λ) satisfying (3) for every Fσ(λ). The construction of these
matrices is accomplished via the construction of sequences of block partitioned matrices in Algorithms

4 and 5, which follow the spirit of Definition 3.8 of Fiedler pencils for rectangular polynomials, and the
unimodular transformations generated by these sequences are considered in Lemma 4.4. In this section,
we will make a systematic use of the Horner shifts introduced in Definition 4.1.

Definition 4.1. Let P (λ) = A0 +λA1 + · · ·+λkAk be an m×n matrix polynomial of degree k. For d =
0, . . . , k, the degree d Horner shift of P (λ) is the matrix polynomial Pd(λ) := Ak−d+λAk−d+1+· · ·+λdAk .

Observe that the Horner shifts of P (λ) satisfy the following recurrence relation

P0(λ) = Ak, Pd+1(λ) = λPd(λ) +Ak−d−1, for 0 ≤ d ≤ k − 1, and Pk(λ) = P (λ).

Lemma 4.2. Let P (λ) =
∑k

i=0 λ
iAi be an m × n matrix polynomial with degree k ≥ 2 and let σ :

{0, 1, . . . , k − 1} → {1, 2, . . . , k} be a bijection. Then the following two statements hold.

1. If in Algorithm 4 below each matrix Ni, for i = 1, 2, . . . , k − 2, is partitioned into blocks in
such a way that the blocks of Ni−1 are blocks of Ni, then Algorithm 4 constructs a sequence
{N0, N1, . . . , Nk−2} of matrices partitioned into 2× 2, 3× 3, . . . , k × k blocks, respectively.

2. If in Algorithm 5 below each matrix Hi, for i = 1, 2, . . . , k − 2, is partitioned into blocks in
such a way that the blocks of Hi−1 are blocks of Hi, then Algorithm 5 constructs a sequence
{H0,H1, . . . , Hk−2} of matrices partitioned into 2× 2, 3× 3, . . . , k × k blocks, respectively.

Algorithm 4. Given P (λ) =
∑k

i=0 λ
iAi with size m × n and a bijection σ, the following algorithm

constructs a sequence of matrices {N0, N1, . . . , Nk−2}. Note that Pd denotes the degree d Horner shift of
P (λ) and that the dependence on λ is dropped for simplicity both in Pd and in {Ni}k−2

i=0 .

if σ has a consecution at 0 then

N0 =

[
Im 0
λIm Im

]
else
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N0 =

[
0 −In
Im Pk−1

]
endif
for i = 1 : k − 2

if σ has a consecution at i then

Ni =

[
Im 0

λNi−1(:, 1) Ni−1

]
else

Ni =

[
0 −In 0

Ni−1(:, 1) Ni−1(:, 1)Pk−i−1 Ni−1(:, 2 : i+ 1)

]
endif

endfor

Algorithm 5. Given P (λ) =
∑k

i=0 λ
iAi with size m × n and a bijection σ, the following algorithm

constructs a sequence of matrices {H0,H1, . . . ,Hk−2}. Note that Pd denotes the degree d Horner shift of
P (λ) and that the dependence on λ is dropped for simplicity both in Pd and in {Hi}k−2

i=0 .

if σ has a consecution at 0 then

H0 =

[
0 In

−Im Pk−1

]
else

H0 =

[
In λIn
0 In

]
endif
for i = 1 : k − 2

if σ has a consecution at i then

Hi =

 0 Hi−1(1, :)
−Im Pk−i−1Hi−1(1, :)
0 Hi−1(2 : i+ 1, :)


else

Hi =

[
In λHi−1(1, :)
0 Hi−1

]
endif

endfor

Moreover, if {Wi}k−2
i=0 is the sequence of block partitioned matrices constructed by Algorithm 2 for P (λ)

and σ, then the matrices {Ni}k−2
i=0 and {Hi}k−2

i=0 satisfy the following properties.

(a) For 0 ≤ i ≤ k − 2 and 1 ≤ j ≤ i + 2 the number of columns of Ni(:, j) is equal to the number of
rows of Wi(j, :). This means that the matrix product Ni(:, j)Wi(j, :) is well defined.

(b) For 0 ≤ i ≤ k − 2 and 1 ≤ j ≤ i + 2 the number of columns of Wi(:, j) is equal to the number of
rows of Hi(j, :). This means that the matrix product Wi(:, j)Hi(j, :) is well defined.

(c) The size of Ni is (m+m c(σ(0 : i)) + n i(σ(0 : i)) )× (m+m c(σ(0 : i)) + n i(σ(0 : i)) ) .

(d) The size of Hi is (n+m c(σ(0 : i)) + n i(σ(0 : i)) )× (n+m c(σ(0 : i)) + n i(σ(0 : i)) ) .

(e) The matrices Ni and Hi are unimodular. In fact det(Ni) = ±1 and det(Hi) = ±1.

(f) Ni(i+ 2, :) has m rows and Hi(:, i+ 2) has n columns, that is, the last block row of Ni has m rows
and the last block column of Hi has n columns.

Proof. The proof is trivial by induction. We indicate only the main points. Starting with N0 and H0, it
is obvious to see by induction that Ni(:, 1) has m columns and Hi(1, :) has n rows for i = 0, 1, . . . , k − 2.
Therefore, the sequences {Ni}k−2

i=0 and {Hi}k−2
i=0 are well defined. Since, for i ≥ 1, Ni and Hi are obtained

from Ni−1 and Hi−1, respectively, by adding one block row and one block column, then we get that Ni

and Hi are partitioned into (i+ 2)× (i+ 2) blocks.
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To prove part (a), note that the result is true for N0 and W0, and make the induction assumption
that is true for Ni−1 and Wi−1 with (i − 1) ≥ 0. Then the constructions of Ni in Algorithm 4 and
Wi in Algorithm 2 make evident that the result is true for Ni and Wi. Part (b) follows from a similar
inductive argument.

To prove parts (c) and (d), we note first that all matrices in the sequences {Ni}k−2
i=0 and {Hi}k−2

i=0

are square, because, by definition, this is true for N0 and W0 and, for i ≥ 1, Ni is obtained from Ni−1

by adding the same number of rows as columns and Hi is also obtained from Hi−1 by adding the same
number of rows as columns. Then (c) follows from (a), and (d) from (b), by using Theorem 3.6-(a).
Finally Parts (e) and (f) follow again by induction.

Since the matrices Nk−2 and Hk−2 in Lemma 4.2 will play a key role in the rest of the paper, next
we give them an special name.

Definition 4.3. Let P (λ) =
∑k

i=0 λ
iAi be an m × n matrix polynomial with degree k ≥ 2, let σ :

{0, 1, . . . , k−1} → {1, 2, . . . , k} be a bijection, and let Nk−2 and Hk−2 be, respectively, the last matrices of
the sequences constructed by Algorithms 4 and 5 for P (λ) and σ. Then the left unimodular equivalence
matrix associated with P (λ) and σ is the matrix Uσ(λ) := Nk−2 and the right unimodular equivalence
matrix associated with P (λ) and σ is the matrix Vσ(λ) := Hk−2.

Lemma 4.4 studies the unimodular transformations generated by the sequences {Ni}k−2
i=0 and {Hi}k−2

i=0 .

Lemma 4.4. Let P (λ) =
∑k

i=0 λ
iAi be an m×n matrix polynomial with degree k ≥ 2, let σ : {0, . . . , k−1}

→ {1, . . . , k} be a bijection, let {Wi}k−2
i=0 , {Ni}k−2

i=0 , {Hi}k−2
i=0 be the sequences of block partitioned matrices

constructed, respectively, by Algorithms 2, 4 and 5 for P (λ) and σ, and let αi = m c(σ(0 : i))+n i(σ(0 :
i)) and βi = m c(σ(i)) + n i(σ(i)), that is, βi = m if σ has a consecution at i and βi = n if σ has an
inversion at i, for i = 0, 1, . . . , k − 2. Then, the following two identities hold.

(a) For 1 ≤ i ≤ k − 2,

Ni

([
λPk−i−2

λIαi

]
−Wi

)
Hi =

 Iβi

Ni−1

([
λPk−i−1

λIαi−1

]
−Wi−1

)
Hi−1

 ,

(b) and, for i = 0,

N0

([
λPk−2

λIα0

]
−W0

)
H0 =

[
Iβ0

P

]
,

where Pd is the degree d Horner shift of P and the dependences on λ are dropped for simplicity.

Proof. Observe first that, for 0 ≤ i ≤ k− 2, parts (a) and (b) of Lemma 4.2 guarantee that the products
NiWiHi are well defined and that the block partitions of Ni, Wi, and Hi are conformal for this matrix
product. Moreover, from Theorem 3.6, the block Wi(1, 1) has always size m × n and, so, the size
of Wi(2 : i + 2, 2 : i + 2) is αi × αi. Therefore, diag(λPk−i−2, λIαi) has the same size as Wi and
can be partitioned into blocks exactly in the same way as Wi, where recall that the diagonal blocks
Wi(2, 2), . . . ,Wi(i+ 2, i+ 2) are square. As a consequence, also the products Ni diag(λPk−i−2, λIαi)Hi

are well defined.
The rest of the proof consists in performing carefully block matrix products. We start with the proof

of part (a) that has to be split in two cases.
Case Part (a)-(1): σ has a consecution at i. Then

Ni =

[
Im 0

λNi−1(:, 1) Ni−1

]
, Wi =

[
−Ai+1 Im 0

Wi−1(:, 1) 0 Wi−1(:, 2 : i+ 1)

]
, Hi =

 0 Hi−1(1, :)
−Im Pk−i−1Hi−1(1, :)
0 Hi−1(2 : i+ 1, :)

 .

This implies

Ni

[
λPk−i−2

λIαi

]
Hi =

[
0 λPk−i−2Hi−1(1, :)

−λNi−1(:, 1) (Si)22

]
, (27)
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where

(Si)22 = Ni−1(:, 1)(λ
2Pk−i−2 + λPk−i−1)Hi−1(1, :) + λNi−1(:, 2 : i+ 1)Hi−1(2 : i+ 1, :) ,

and

NiWiHi =

[
−Im (−Ai+1 + Pk−i−1)Hi−1(1, :)

−λNi−1(:, 1) (Ti)22

]
, (28)

where

(Ti)22 =Ni−1(:, 1)(−λAi+1 + λPk−i−1)Hi−1(1, :)

+Ni−1(Wi−1(:, 1)Hi−1(1, :) +Wi−1(:, 2 : i+ 1)Hi−1(2 : i+ 1, :)).

Now, we use (27), (28), and −Ai+1 + Pk−i−1 = λPk−i−2 to get

Ni

([
λPk−i−2

λIαi

]
−Wi

)
Hi =

[
Im 0
0 (Zi)22

]
,

where

(Zi)22 =λNi−1(:, 1)Pk−i−1Hi−1(1, :) + λNi−1(:, 2 : i+ 1)Hi−1(2 : i+ 1, :)

−Ni−1(Wi−1(:, 1)Hi−1(1, :) +Wi−1(:, 2 : i+ 1)Hi−1(2 : i+ 1, :))

=Ni−1

[
λPk−i−1

λIαi−1

]
Hi−1 −Ni−1Wi−1Hi−1

=Ni−1

([
λPk−i−1

λIαi−1

]
−Wi−1

)
Hi−1.

Case Part (a)-(2): σ has an inversion at i. In this case

Ni

[
λPk−i−2

λIαi

]
Hi =

[
0 −λHi−1(1, :)

λNi−1(:, 1)Pk−i−2 (Si)22

]
, (29)

where (Si)22 is the same as in case (a)-(1), and

NiWiHi =

[
−In −λHi−1(1, :)

λNi−1(:, 1)Pk−i−2 (T̃i)22

]
, (30)

where now

(T̃i)22 =Ni−1(:, 1)(−λAi+1 + λPk−i−1)Hi−1(1, :)

+ (Ni−1(:, 1)Wi−1(1, :) +Ni−1(:, 2 : i+ 1)Wi−1(2 : i+ 1, :))Hi−1.

Subtracting (30) from (29) and reasoning as in case (a)-(1) we get again the desired identity.
The proof of Part (b) is again a direct block matrix product and is omitted. We only remark that

one has to consider again separately two cases, that is, σ has a consecution at 0 and σ has an inversion
at 0, and to use that λPk−2 = Pk−1 −A1 and P (λ) = λ2Pk−2 + λA1 +A0.

Now we are in the position of proving the main result in this section.

Theorem 4.5. Let P (λ) be an m×n matrix polynomial with degree larger than or equal to 2. Then any
Fiedler companion pencil Fσ(λ) of P (λ) is a strong linearization for P (λ).

Proof. We denote as usual P (λ) =
∑k

i=0 λ
iAi and adopt the notation used in Lemma 4.4. Moreover,

recall from Definition 4.3 that Uσ(λ) = Nk−2 and Vσ(λ) = Hk−2, from Definition 3.8 that Mσ = Wk−2,
that P0 = Ak, and that αk−2 = mc(σ) + ni(σ). Therefore, Part (a) in Lemma 4.4 for i = k − 2 implies

Uσ(λ)Fσ(λ)Vσ(λ) = Nk−2

(
λ

[
P0

Iαk−2

]
−Wk−2

)
Hk−2

=

 Iβk−2

Nk−3

([
λP1

λIαk−3

]
−Wk−3

)
Hk−3

 .
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Now, apply Part (a) in Lemma 4.4 for i = k − 3 to the lower right block in the previous equation to get

Uσ(λ)Fσ(λ)Vσ(λ) =


Iβk−2

Iβk−3

Nk−4

([
λP2

λIαk−4

]
−Wk−4

)
Hk−4

 .

Next, we apply Part (a) in Lemma 4.4 consecutively for i = k − 4, k − 5, . . . , 1 until we get

Uσ(λ)Fσ(λ)Vσ(λ) =

 Iβk−2+βk−3+...+β1

N0

([
λPk−2

λIα0

]
−W0

)
H0

 .

We finally apply Part (b) in Lemma 4.4 and use βk−2 + · · ·+ β1 + β0 = αk−2 to obtain

Uσ(λ)Fσ(λ)Vσ(λ) =

[
Imc(σ)+ni(σ)

P (λ)

]
, (31)

which proves that Fσ(λ) is a linearization of P (λ), since Uσ(λ) and Vσ(λ) are unimodular.
To prove that Fσ(λ) is a strong linearization of P (λ), we invoke Theorem 3.14, which states that

revFσ(P ) is strictly equivalent to Fτ (revP ), where τ is a bijection defined in the statement of Theo-
rem 3.14 and that has the same total number of consecutions and the same total number of inversions
as σ. We can apply (31) to Fτ (revP ) and revP to prove that Fτ (revP ) is unimodularly equivalent to
diag(Imc(σ)+ni(σ), revP ), and, therefore, revFσ(P ) is unimodularly equivalent to diag(Imc(σ)+ni(σ), revP ).
This proves that Fσ(λ) is indeed a strong linearization of P (λ).

From the proof of Theorem 4.5, we get Corollary 4.6, which will be fundamental in Section 5.

Corollary 4.6. Let P (λ) =
∑k

i=0 λ
iAi be an m × n matrix polynomial with degree k ≥ 2, let σ :

{0, . . . , k − 1} → {1, . . . , k} be a bijection, and let Uσ(λ) and Vσ(λ) be, respectively, the left and right
unimodular equivalence matrices associated with P (λ) and σ introduced in Definition 4.3. Then

Uσ(λ)Fσ(λ)Vσ(λ) =

[
Imc(σ)+ni(σ)

P (λ)

]
.

5. Recovery of minimal indices and bases of rectangular polynomials from Fiedler pencils

In this section we show how to recover in a very simple way the minimal indices and bases of a
rectangular matrix polynomial from those of any of its Fiedler pencils. The results and most of the
proofs in this section are very similar to the ones presented for singular square matrix polynomials in
Section 5 of [11]. Therefore, in order to avoid some repetitions, we omit all proofs that the reader can
deduce easily from [11, Section 5] and pay close attention only to those arguments where the fact that the
polynomial is rectangular makes a significative difference. Simultaneously, in order to keep the reading
of the paper self-contained, we present careful statements of the main results and exact pointers to the
results in [11] where the proofs can be found. In this sense, this section has a different character than
Sections 3 and 4, where most proofs have been presented with detail since the approaches followed in
Sections 3 and 4 are new and very different than those in [11].

The main recovery results in this section are Corollaries 5.4 and 5.7, which are consequences of
Theorems 5.3 and 5.6, respectively. These results extend to rectangular matrix polynomials what was
proved only for square singular polynomials in Corollaries 5.8 and 5.11, and Theorems 5.7 and 5.9, in
[11].

Corollaries 5.4 and 5.7 and Theorems 5.3 and 5.6 rely on a series of previous results. The first one is
Lemma 5.1, which is an extension to rectangular matrix polynomials of [11, Lemma 5.1]. The proof is
an obvious modification of the one of [11, Lemma 5.1] and is omitted.
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Lemma 5.1. Let the pencil L(λ) be a linearization of an m× n matrix polynomial P (λ) of degree k ≥ 2
and let U(λ) and V (λ) be two unimodular matrix polynomials such that

U(λ)L(λ)V (λ) =

[
Is 0
0 P (λ)

]
.

Let UL = UL(λ) and V R = V R(λ) be, respectively, the matrices comprising the last m rows of U(λ) and
the last n columns of V (λ). Then

(a) the linear map
L : Nℓ(P ) −→ Nℓ(L)

wT (λ) 7−→ wT (λ) · UL

is an isomorphism of F(λ)-vector spaces;

(b) the linear map
R : Nr(P ) −→ Nr(L)

v(λ) 7−→ V R · v(λ)

is an isomorphism of F(λ)-vector spaces.

A consequence of Lemma 5.1 is that the bases of Nr(P ) and the ones of Nr(L) are in one-to-one
correspondence through the map R. But, for an arbitrary linearization L(λ), the map R does not
necessarily establish a one-to-one correspondence between minimal bases. A key point in our developments
is that we will prove that for each Fiedler pencil Fσ(λ) of an m× n matrix polynomial P (λ), if Vσ(λ) is
the right unimodular equivalence matrix appearing in Corollary 4.6, then the map Rσ associated with
Vσ(λ) provides actually a one-to-one correspondence between the right minimal bases of P (λ) and those
of Fσ(λ). This correspondence is so simple that allows us to obtain very easily the right minimal bases of
P (λ) from the right minimal bases of Fσ(λ). Analogous results hold for left minimal indices and bases.

Lemma 5.1 and Corollary 4.6 indicate that we need to determine the last block column of the matrix
Vσ(λ) = Hk−2 introduced in Definition 4.3, since this last block column has precisely n columns according
to Lemma 4.2-(f). For this purpose, we need to define as in [11] some additional magnitudes and matrices,
which are based on the consecution-inversion structure sequence of σ introduced in Definition 3.2, i.e.,
CISS(σ) = (c1, i1, . . . , cℓ, iℓ). So, we define

s0 := 0, sj :=

j∑
p=1

(cp + ip) for j = 1, . . . , ℓ, (32)

m0 := 0, mj :=

j∑
p=1

ip for j = 1, . . . , ℓ. (33)

Recall that sℓ = k − 1 and mℓ = i(σ). We also need to define some matrices, denoted Λσ,j(P ) for

j = 1, . . . , ℓ and Λ̂σ,j(P ) for j = 1, . . . , ℓ− 1, associated with the m× n matrix polynomial P (λ) and the
bijection σ. These matrices are defined in terms of the Horner shifts of P (λ) as follows:

Λσ,j(P ) :=



λijIn
...

λIn
In

Pk−sj−1−cj
...

Pk−sj−1−2

Pk−sj−1−1


and Λ̂σ,j(P ) :=



λij−1In
...

λIn
In

Pk−sj−1−cj
...

Pk−sj−1−2

Pk−sj−1−1


if c1 ≥ 1, (34)

but if c1 = 0, then Λσ,1(P ) := [λi1In, . . . , λIn, In]
T , Λ̂σ,1(P ) := [λi1−1In, . . . , λIn, In]

T , with Λσ,j(P ),

Λ̂σ,j(P ) as in (34) for j > 1. Here for simplicity we omit λ from the Horner shifts Pd(λ). With all these
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definitions we are in the position of stating and proving Lemma 5.2, which describes explicitly the last
block-column of Vσ(λ). Note that Lemma 5.2 generalizes to rectangular polynomials [11, Lemma 5.3].
However, the proof is completely different than that of [11, Lemma 5.3].

Lemma 5.2. Let P (λ) =
∑k

i=0 λ
iAi be an m× n matrix polynomial with degree k ≥ 2, let Fσ(λ) be the

Fiedler pencil of P (λ) associated with the bijection σ, and let Vσ(λ) be the right unimodular equivalence
matrix associated with P (λ) and σ introduced in Definition 4.3. Consider Vσ(λ) partitioned into k × k
blocks according to Algorithm 5. Then the last block-column V R(λ) of Vσ(λ), i.e., the last n columns of
Vσ(λ), is

ΛR
σ (P ) :=


λmℓ−1Λσ,ℓ(P )

λmℓ−2Λ̂σ,ℓ−1(P )
...

λm1Λ̂σ,2(P )

Λ̂σ,1(P )

 if ℓ > 1, (35)

and V R(λ) = Λσ,1(P ) =: ΛR
σ (P ) if ℓ = 1.

Proof. The last block-column of Vσ(λ) = Hk−2 can be determined by Algorithm 5 just by looking at the
last block-column at each step of the algorithm. Set CISS(σ) = (c1, i1, . . . , cℓ, iℓ). Assume first c1 > 0,
which means that σ has consecutions at 0, 1, . . . , c1 − 1 and, as a consequence, the last block-column of
the matrix Hc1−1 constructed after the steps 0, 1, . . . , c1 − 1 of Algorithm 5 is of the form

Hc1−1(:, c1 + 1) =


In

Pk−c1
...

Pk−1

 .

Now, σ has inversions at c1, c1 + 1, . . . , c1 + i1 − 1 and then the last block-column of Hc1+i1−1 is

Hc1+i1−1(:, c1 + i1 + 1) =



λi1In
...

λIn
In

Pk−c1
...

Pk−1


= Λσ,1(P ).

The reader may check that if c1 = 0, then Hi1−1(:, i1 + 1) = [λi1In, . . . , λIn, In]
T = Λσ,1(P ). The proof

finishes here if ℓ = 1, because in this case c1 + i1 = k − 1 and Hc1+i1−1(:, c1 + i1 + 1) = Hk−2(:, k) is the
last block column of Vσ(λ).

If ℓ > 1, then the following c2 consecutions of σ at c1+ i1, ci+ i1+1, . . . , c1+ i1+c2−1 give, according
to Algorithm 5,

Hc1+i1+c2−1(:, c1 + i1 + c2 + 1) =



λi1In
λi1Pk−s1−c2

...
λi1Pk−s1−1

λi1−1In
...

λIn
In

Pk−c1
...

Pk−1



=


λi1In

λi1Pk−s1−c2
...

λi1Pk−s1−1

Λ̂σ,1(P )

 .
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Notice that this produces the “truncated” block matrix Λ̂σ,1(P ) at the bottom of the last block-column
of Hc1+i1+c2−1. The following i2 inversions of σ produce

Hs2−1(:, s2 + 1) =

[
λm1Λσ,2(P )

Λ̂σ,1(P )

]
.

The rest of the proof follows by induction with arguments similar to the ones above. Assume that for j
such that 2 ≤ j < ℓ we have

Hsj−1(:, sj + 1) =


λmj−1Λσ,j(P )

λmj−2Λ̂σ,j−1(P )
...

λm1Λ̂σ,2(P )

Λ̂σ,1(P )

 ,

and prove via Algorithm 5 that the corresponding result holds for j + 1. Note, to finish the proof, that
Hsℓ−1(:, sℓ + 1) = Hk−2(:, k) is precisely the last block column of Vσ(λ).

A fundamental fact in Lemma 5.2 is that ΛR
σ (P ) always has exactly one block equal to In at block

index k− c1. This is the block that allows us to recover very easily the minimal bases of P (λ) from those
of Fσ(λ). To this purpose we establish first Theorem 5.3, whose proof is omitted since it is essentially
the same as the one of [11, Theorem 5.7].

Theorem 5.3. Let P (λ) =
∑k

i=0 λ
iAi be an m × n matrix polynomial with degree k ≥ 2, let Fσ(λ) be

the Fiedler pencil of P (λ) associated with a bijection σ, let i(σ) be the total number of inversions of σ,
let c(σ) be the total number of consecutions of σ, and let ΛR

σ (P ) be the (n+m c(σ) + n i(σ))× n matrix
defined in (35). Then the linear map

Rσ : Nr(P ) −→ Nr(Fσ)
v 7−→ ΛR

σ (P ) v

is an isomorphism of F(λ)-vector spaces with uniform degree-shift i(σ) on the vector polynomials in
Nr(P ). More precisely, Rσ induces a bijection between the subsets of vector polynomials in Nr(P ) and
Nr(Fσ), with the property that

degRσ(v) = i(σ) + deg v

for every nonzero vector polynomial v ∈ Nr(P ). Furthermore, for any nonzero vector polynomial v,
degRσ(v) is attained only in the topmost n× 1 block of Rσ(v).

An immediate consequence of Theorem 5.3 is Corollary 5.4, that establishes a very simple relationship
between the right minimal indices and bases of P (λ) and Fσ(λ). The proof of Corollary 5.4 is also omitted
since it is almost the same as the one of [11, Corollary 5.8].

Corollary 5.4 (recovery of right minimal indices and bases). Let P (λ) be an m × n matrix
polynomial with degree k ≥ 2, and let Fσ(λ) be the Fiedler pencil of P (λ) associated with a bijection
σ having CISS(σ) = (c1, i1, . . . , cℓ, iℓ) and total number of consecutions and inversions c(σ) and i(σ),
respectively. Suppose that each vector z(λ) ∈ Nr(Fσ) ⊂ F(λ)(n+mc(σ)+ni(σ))×1 is partitioned into k × 1
blocks which are conformal for multiplication with the partition of Fσ(λ) given by Algorithm 2.

(a) If z(λ) ∈ Nr(Fσ), and x(λ) ∈ F(λ)n×1 is the (k − c1)th block of z(λ), then x(λ) ∈ Nr(P ).

(b) If {z1(λ), . . . , zp(λ)} is a right minimal basis of Fσ(λ), and xj(λ) is the (k − c1)th block of zj(λ)
for each j = 1, . . . , p, then {x1(λ), . . . , xp(λ)} is a right minimal basis of P (λ).

(c) If 0 ≤ ε1 ≤ ε2 ≤ · · · ≤ εp are the right minimal indices of P (λ), then

ε1 + i(σ) ≤ ε2 + i(σ) ≤ · · · ≤ εp + i(σ) ,

are the right minimal indices of Fσ(λ).
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Note that these results hold for the first companion form of P (λ) by taking c1 = 0 and i(σ) = k − 1, and
for the second companion form using c1 = k − 1 and i(σ) = 0.

For the recovery of left minimal indices and bases, it is possible to take a similar approach to the one
we have used for right minimal indices and bases, that is, according to Lemma 5.1 and Corollary 4.6,
the last m rows of Uσ(λ) can be determined via Algorithm 4. However, we follow here a different way,
based on the fact that the left minimal indices and bases of a matrix polynomial (and in particular, of a
matrix pencil) coincide with the right minimal indices and bases of its transpose, since y(λ)T ∈ Nℓ(P )
if and only if y(λ) ∈ Nr(P

T ). Then the idea is to relate the right minimal indices and bases of P (λ)T

with the ones of Fσ(λ)
T . The advantage of using this approach relies on the fact that Fσ(λ)

T is again a
Fiedler pencil for P (λ)T as the following lemma shows.

Lemma 5.5. Let P (λ) =
∑k

i=0 λ
iAi be an m× n matrix polynomial of degree k ≥ 2 and σ : {0, . . . , k −

1} → {1, . . . , k} be a bijection. Define the reversal bijection of σ as follows: revσ(i) := k + 1 − σ(i) for
i = 0, 1, . . . , k − 1. Then

[Fσ(P )]
T
= Frevσ(P

T ) .

Proof. This lemma can be easily proved by induction using Algorithm 2. Let {Wi}k−2
i=0 be the sequence

of matrices constructed by Algorithm 2 for P (λ) and σ, and let {W ′
i}

k−2
i=0 be the sequence of matrices

constructed by Algorithm 2 for P (λ)T =
∑k

i=0 λ
iAT

i and revσ. Note also that revσ has a consecution
(resp. inversion) at i if and only if σ has an inversion (resp. consecution) at i. First notice that

WT
0 =

[
−AT

1 −AT
0

Im 0

]
or WT

0 =

[
−AT

1 In
−AT

0 0

]
,

depending on whether σ has a consecution or an inversion at 0. Notice that, in both cases, we get
WT

0 = W ′
0. Now, we proceed by induction: assume WT

i−1 = W ′
i−1 for some 0 ≤ (i− 1) < k− 2, and prove

that WT
i = W ′

i . For this purpose, use Algorithm 2 to see that

WT
i =

 −AT
i+1 Wi−1(:, 1)

T

Im 0
0 Wi−1(:, 2 : i+ 1)T

 or WT
i =

[
−AT

i+1 In 0
Wi−1(1, :)

T 0 Wi−1(2 : i+ 1, :)T

]
,

depending on whether σ has a consecution or an inversion at i. By the induction hypothesis, this is
precisely the matrix W ′

i . The statement of Lemma 5.5 follows from WT
k−2 = W ′

k−2.

Lemma 5.5 allows us to prove Theorem 5.6 essentially in the same way as Theorem 5.9 in [11] was
proved. Therefore, we omit the proof of Theorem 5.6, although we remark that we cannot use here the
block-transpose operation (·)B, see [11, Definition 3.6], because the blocks of ΛR

revσ(P
T ) do not have

all the same sizes when P (λ) is rectangular. This motivates a minor modification2 in the statement
of Theorem 5.6 with respect the statement of [11, Theorem 5.9]. Note also that i(revσ) = c(σ) and
c(revσ) = i(σ).

Theorem 5.6. Let P (λ) =
∑k

i=0 λ
iAi be an m × n matrix polynomial with degree k ≥ 2, let Fσ(λ) be

the Fiedler pencil of P (λ) associated with a bijection σ, let c(σ) be the total number of consecutions of
σ, let i(σ) be the total number of inversions of σ, and let ΛR

revσ(P
T ) be, for the n×m polynomial P (λ)T

and the reversal bijection revσ, the (m+m c(σ) + n i(σ))×m matrix defined in Lemma 5.2 . Then the
linear map

Lσ : Nℓ(P ) −→ Nℓ(Fσ)
uT 7−→ uTΛL

σ (P ) ,

where ΛL
σ (P ) :=

[
ΛR
revσ(P

T )
]T

, is an isomorphism of F(λ)-vector spaces with uniform degree-shift c(σ)
on the vector polynomials in Nℓ(P ). More precisely, Lσ induces a bijection between the subsets of vector
polynomials in Nℓ(P ) and Nℓ(Fσ), with the property that

degLσ(u
T ) = c(σ) + deg(uT ) (36)

2In [11, Theorem 5.9] the matrix
[
ΛR
revσ(P )

]B
was used, while in Theorem 5.6 we use

[
ΛR
revσ(P

T )
]T

. Note that both

expressions coincide for square matrix polynomials, but that
[
ΛR
revσ(P )

]B
is not defined for rectangular polynomials.
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for every nonzero vector polynomial uT ∈ Nℓ(P ). Furthermore, for any nonzero vector polynomial uT ,
degLσ(u

T ) is attained only in the leftmost 1×m block of Lσ(u
T ).

An immediate consequence of Theorem 5.6 is Corollary 5.7, which establishes a very simple relationship
between the left minimal indices and bases of P (λ) and Fσ(λ). The easy proof is also omitted. We only
indicate that the fact “revσ has a consecution (resp. inversion) at i if and only if σ has an inversion
(resp. consecution) at i” implies that ΛR

revσ(P
T ) has exactly one block equal to Im at block index k if

c1 > 0 and at block index k − i1 if c1 = 0.

Corollary 5.7 (recovery of left minimal indices and bases). Let P (λ) be an m×n matrix polynomial
with degree k ≥ 2, and let Fσ(λ) be the Fiedler pencil of P (λ) associated with a bijection σ having
CISS(σ) = (c1, i1, . . . , cℓ, iℓ) and total number of consecutions and inversions c(σ) and i(σ), respectively.
Suppose that each vector z(λ)T ∈ Nℓ(Fσ) ⊂ F(λ)1×(m+mc(σ)+ni(σ)) is partitioned into 1× k blocks which
are conformal for multiplication with the partition of Fσ(λ) given by Algorithm 2.

(a) If z(λ)T ∈ Nℓ(Fσ), and

y(λ)T is the

{
kth block of z(λ)T if c1 > 0,

(k − i1)th block of z(λ)T if c1 = 0,

then y(λ)T ∈ Nℓ(P ).

(b) If {z1(λ)T , . . . , zq(λ)T } is a left minimal basis of Fσ(λ), and

yj(λ)
T is the

{
kth block of zj(λ)

T if c1 > 0,
(k − i1)th block of zj(λ)

T if c1 = 0,

for j = 1, . . . , q, then {y1(λ)T , . . . , yq(λ)T } is a left minimal basis of P (λ).

(c) If 0 ≤ η1 ≤ η2 ≤ · · · ≤ ηq are the left minimal indices of P (λ), then

η1 + c(σ) ≤ η2 + c(σ) ≤ · · · ≤ ηq + c(σ) ,

are the left minimal indices of Fσ(λ).

Note that these results hold for the first companion form of P (λ) using (c1, i1) = (0, k− 1) and c(σ) = 0,
and for the second companion form using (c1, i1) = (k − 1, 0) and c(σ) = k − 1.

Next we include an example that illustrates the results presented in this section. This example
extends to rectangular matrix polynomials what appears in [11, Example 5.12] only for square singular
polynomials, which allows the reader to appreciate the strong similarities and the really minor differences
between square and rectangular polynomials.

Example 5.8. Let us consider an m × n matrix polynomial P (λ) =
∑6

i=0 λ
iAi with degree 6 and the

Fiedler pencil Fτ (λ) of P (λ) associated with the bijection τ = (1, 2, 5, 3, 6, 4). Recall that the zero degree
term Mτ of this pencil was considered in (16) and so

Fτ (λ) = λdiag(A6, In, Im, In, Im, Im)−Mτ .

Observe that CISS(τ) = (2, 1, 1, 1). So, for τ , the parameters in (32)-(33) are ℓ = 2, sℓ−1 = s1 = 3, and
mℓ−1 = m1 = 1. In addition, revτ = (6, 5, 2, 4, 1, 3), hence CISS(revτ) = (0, 2, 1, 1, 1, 0), and, for revτ ,
ℓ = 3, s1 = 2, sℓ−1 = s2 = 4, and m1 = 2, mℓ−1 = m2 = 3. Therefore

ΛL
τ (P ) =

[
ΛR
revτ (P

T )
]T

=
[
λ3Im λ3P1(λ) λ2Im λ2P3(λ) λIm Im

]
and ΛR

τ (P ) =
[
λ2In λIn λP2(λ)

T In P4(λ)
T P5(λ)

T
]T

.

The relationships between the minimal indices and bases of Fτ (λ) and those of P (λ) may now be sum-
marized as follows:
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• Right minimal indices of Fτ (λ) are shifted from those of P (λ) by i(τ) = 2.

• Left minimal indices of Fτ (λ) are shifted from those of P (λ) by c(τ) = 3.

• A right minimal basis of P (λ) is recovered from the 4th = (k − c1)th blocks (of size n× 1) of any
right minimal basis of Fτ (λ).

• A left minimal basis of P (λ) is recovered from the 6th = kth blocks (of size 1 × m) of any left
minimal basis of Fτ (λ). �

6. Conclusions and future work

In the last decade several new classes of linearizations for square matrix polynomials have been in-
troduced by various authors [1, 2, 11, 12, 23, 27, 28, 34]. Among them, the class of Fiedler companion
linearizations, which includes the classical first and second Frobenius companion forms, is a privileged
class as a consequence of possessing the many valuable properties described in the Introduction. In
this paper, we have extended Fiedler linearizations from square to rectangular matrix polynomials. To
achieve this we have followed a completely different approach than the one followed in [2, 11] for regular
and singular square polynomials, which cannot be easily generalized to the rectangular case. This new
approach is based on a constructive definition via Algorithm 2, and has allowed us to prove that Fiedler
pencils of rectangular matrix polynomials satisfy the same properties as Fiedler pencils of square matrix
polynomials. More precisely, we have proved that every Fiedler pencil of a given rectangular polynomial
P (λ) is always a strong linearization for P (λ), and that Fiedler pencils of rectangular matrix polynomials
allow us to recover minimal indices and bases of matrix polynomials with essentially the same extremely
simple rules as for Fiedler pencils of square polynomials. As far as we know, the class of Fiedler lineariza-
tions is the first of the new classes of linearizations introduced in the last decade that has been extended
from square to rectangular polynomials. The most natural open problem in this context is to try to
extend other classes of linearizations from square to rectangular matrix polynomials, e.g., the classes
related to Fiedler pencils considered in [2, 5, 12, 34], or the vector spaces of linearizations introduced in
[27]. Investigating the possibility of such extensions will be the subject of future work.
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