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Abstract

We provide necessary and sufficient conditions for the matrix equation X
J
AX “ B to be consistent when B is

a symmetric matrix, for all matrices A with a few exceptions. The matrices A,B, and X (unknown) are matrices
with complex entries. We first see that we can restrict ourselves to the case where A and B are given in canonical
form for congruence and, then, we address the equation with A and B in such form. The characterization strongly
depends on the canonical form for congruence of A. This problem is equivalent to: given a complex bilinear form
(represented by A) find the maximum dimension of a subspace such that the restriction of the bilinear form to this
subspace is a symmetric non-degenerate bilinear form.
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1 Introduction

We are interested in providing necessary and sufficient conditions for the equation

XJAX “ B (1)

to be consistent. Here, A and B are square complex matrices (that is, matrices with entries in the complex field C)

not necessarily of the same size, X is the unknown, and MJ denotes the transpose of the matrix M .
Equation (1) arises in several settings, in particular related to bilinear forms and matrix congruence. These two

concepts are connected, since two square matrices A and B of the same size represent the same bilinear form with
respect to different bases if and only if A and B are congruent. By definition, this is equivalent to say that Eq. (1)
has a nonsingular solution.

In order to determine whether two particular square matrices A and B of the same size are congruent, one should
ask for invariants or intrinsic properties of A and B that characterize this equivalence relation or, moreover, for a
canonical form. Canonical forms for congruence are known since, at least, the 1930s [19, p. 139], but we follow the
one in [17] (and we will refer to it as the CFC). Using the CFC, we can get a characterization for the existence
of a nonsingular solution of Eq. (1), namely, this happens if and only if A and B have the same CFC. Then, this
characterization solves, theoretically, the question on whether or not Eq. (1) has a nonsingular solution.

But, what happens if we remove the constraint on the nonsingularity of the solution? More precisely, we may allow
X to be not only nonsingular, but even rectangular. So, assume that X P Cnˆm is a solution of Eq. (1). In order for
(1) to be well defined, it must be A P Cnˆn and B P Cmˆm, namely, A and B must be square, but not necessarily
of the same size. In this setting, Eq. (1) may have a solution with A and B not being congruent (in particular, this
happens if they are not of the same size). So congruence is just the extreme case, m “ n, of the general equation (1)
(with X nonsingular).

The other extreme case of Eq. (1) is when m “ 1. In this case, Eq. (1) becomes xJAx “ β, with β P C. This
gives a quadratic form (note that, if β ‰ 0, the equation has a solution whenever A is not skew-symmetric). So our
problem is placed in between these two extreme cases, namely, congruence and quadratic forms.

Nonetheless, congruence plays a key role in our general strategy. More precisely, we will see that Eq. (1) is
consistent if and only if the equation obtained after replacing A and B by their respective CFCs is consistent as well.
Since we are interested in characterizing when Eq. (1) is consistent, we will assume most of the time that A and B
are already given in CFC.
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The CFC is a block-diagonal form containing blocks of three different types (see Theorem 1). A natural approach
to solve Eq. (1) when both A and B are in CFC is to partition the solution X into blocks, conformally with the
partitions of A and B, and then try to solve individually all the equations corresponding to each pair of canonical
blocks of A and B in order to get a solution of the whole equation. However, this approach presents a relevant obstacle
when applied to Eq. (1) (see Section 2), and to analyze the solvability of Eq. (1) with A and B in CFC seems to be,
in general, a very hard task.

Nonetheless, we have succeeded in obtaining necessary and sufficient conditions for Eq. (1) to be consistent when
B is symmetric. We want to emphasize that Eq. (1) can be consistent with B being symmetric and A being non-
symmetric. However, when A is symmetric, if Eq. (1) is consistent, then B must be symmetric as well. Then, the case
where A is symmetric is a particular case of the one we are interested in. Moreover, as we will see, the case where
B is symmetric is much richer than the case where A is symmetric, and the characterization for the consistency is
more complex. In particular, the characterization for consistency of Eq. (1) when A is symmetric can be stated in a
very elementary way without explicitly using the CFC of A (see Lemma 3). By contrast, the characterization of the
consistency when B is symmetric requires the knowledge of the CFC of A (see Theorem 17). We want to note that
the characterization in Theorem 17 is not complete, since it does not cover the case where a particular kind of one
type of blocks appear in CFC(A) (namely, blocks of either the form H4p1q or H2p´1q, see Theorem 1). Nevertheless,
this characterization is almost complete, since it covers most instances of CFC(A) or, in other words, is valid for most
matrices A.

Our strategy to get the characterization for the consistency of Eq. (1) when B is symmetric consists in first
obtaining a necessary condition in terms of the canonical blocks of the CFC of A. Then, we show that this condition
is sufficient by analyzing Eq. (1) for A being a single block of each of the different types in the CFC (excluding the
blocks of the form H4p1q and H2p´1q mentioned in the previous paragraph). In other words, we show that, when
the necessary condition is satisfied, then a block diagonal solution exists. We want to note that, in most of the cases
where Eq. (1) is consistent, we have provided an explicit solution. Therefore, our proof for the consistency is, in many
cases, a constructive proof (up to the matrices that take A and B to their CFC).

Something that is important to emphasize is that, despite (1) is a nonlinear (in particular, quadratic) equation, in
this work we have used techniques, tools, and developments from linear algebra.

There are several references in the literature that deal with Eq. (1). In particular, several papers have been devoted,
since the 1960s, to count the number of either general solutions or solutions with some particular property (like having
some fixed rank) and with A and B being either arbitrary or having some specific structure (like “alternate”) for
matrices over finite fields [2–5,15,20]. It has also appeared in [14] to determine which mˆ n matrices over fields with
characteristic 2 have a generalized inverse or pseudoinverse, and also to count the number of such matrices for finite
fields with characteristic 2. More recently, this equation has arisen in connection with several applications, like image
deblurring problems [13] and dynamics generalized equilibrium (DSEG) problems (see [1] and the references therein).
Numerical methods to compute the minimal solution to the more general nonsymmetric J-Riccati equation (with real
matrices) have been proposed in the recent work [1].

Some other related equations to Eq. (1) have been of interest in the recent years. Among them, we cite the so-called
“generalized Yang-Baxter matrix equation”, AXA “ XAX, which is also a nonlinear equation that is analyzed using
linear algebra techniques in several papers, like [12]. The equation XAX “ B, which resembles very much Eq. (1) (it
is the same equation without transposing the second appearance of the unknown X) has been analyzed in [18] for A,B
being symmetric or skew-symmetric, and using also appropriate canonical forms of the coefficient matrices in order
to reduce the equation to a more manageable expression. The previous equations are nonlinear and do not involve
transposition. Some other recent references deal with linear equations close to Eq. (1), and involving transposition.

For instance, the works [6–11], where the solution of Sylvester-like equations XA ` AXJ “ 0, AX ` XJB “ 0, or

AXB ` CXJD “ E has been considered. In all these references, both the coefficients and the unknown are complex
matrices, like in the present work.

The paper is organized as follows. In Section 2, we present the notation and recall the basic notions and tools
that are used throughout the manuscript (like the CFC). We also settle the basic approach that we follow to analyze
the consistency of Eq. (1), and present some elementary technical results. Section 2.1 is devoted to characterize the
consistency of Eq. (1) when A is symmetric. The core of the manuscript are Sections 3–7. In these sections, we study
the consistency of Eq. (1) when B is symmetric. We first present, in Theorem 6, a necessary condition for Eq. (1)
to be consistent. This condition depends on the size of A, the rank of B, and the number of blocks of certain types
appearing in the CFC of A. In Sections 4–6 we analyze the consistency of Eq. (1) for A being a single block of the
CFC. This allows us to present, in Theorem 17 (which is the main result of this paper), a characterization for the
consistency of Eq. (1) when the CFC of A does not contain blocks of either the form H4p1q or H2p´1q, by proving
that the condition of Theorem 6 is sufficient. In Section 8 we summarize the contributions of this paper and indicate
some lines of further research.

We close the Introduction by recovering the idea that A represents a bilinear form over Cn. In this case, if Eq.
(1), with B “ Im, has a solution X, then the rank of X is necessarily m, so the columns of X form the basis of an
m-dimensional linear subspace of Cn. It is noteworthy that the restriction of the bilinear form to this subspace is a
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symmetric and non-degenerate bilinear form. So, from this point of view, the problem that we solve in this work is
the following: given a bilinear form A (with the few exceptions mentioned above), we find the maximum dimension
mA that a subspace of Cn can have so that the restriction of A to this subspace is symmetric and non-degenerate.
Moreover, we provide a basis of such a subspace. Note that this problem is trivial when A is symmetric, since then
mA “ rankA and the basis can be found by means of the Autonne-Takagi factorization [16, Cor. 4.4.4(c)].

2 Basic approach and definitions

Throughout the manuscript, In and 0n denote, respectively, the identity and the null matrix with size nˆn. By 0mˆn
we denote the null matrix of size mˆ n. By i we denote the imaginary unit (namely, i2 “ ´1), and by ej we denote
the jth canonical vector of the appropriate size (namely, the jth column of the identity matrix).

When considering the question on whether Eq. (1) is consistent or not, a useful tool is the canonical form for
congruence (CFC). In order to recall the CFC we first need to introduce the following matrices:

Jkpλq :“

»

—

–

λ 1
. . .

. . .
λ 1

λ

fi

ffi

fl

is a k ˆ k Jordan block associated with λ P C; for each k ě 1, let Γk be the k ˆ k matrix

Γk :“

»

—

—

—

—

—

—

—

–

0 p´1qk`1

. .
.
p´1qk

´1 . .
.

1 1
´1 ´1

1 1 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

pΓ1 “ r1sq;

and, for each λ P C and each k ě 1, H2kpλq is the 2k ˆ 2k matrix

H2kpλq :“

„

0 Ik
Jkpλq 0



,

where Jkpλq is a k ˆ k Jordan block associated with λ.

Theorem 1. (Canonical form for congruence, CFC) [17, Th. 1.1]. Each square complex matrix is congruent to a
direct sum, uniquely determined up to permutation of addends, of canonical matrices of the following three types

Type 0 Jkp0q
Type I Γk

Type II
H2kpµq,

0 ‰ µ ‰ p´1q
k`1

(µ is determined up to replacement by µ
´1

)

The CFC is the basic tool in our strategy to analyze the consistency of Eq. (1). More precisely, let CA and CB be,
respectively, the CFCs of A and B. Then, there are two nonsingular matrices R and S such that

A “ RJCAR and B “ SJCBS.

Now, (1) is equivalent to

XJpRJCARqX “ SJCBS ô pRXS´1
q
JCApRXS

´1
q “ CB .

With the change of variables Y “ RXS´1, the previous equation reads

Y JCAY “ CB , (2)

so (1) is consistent if and only if (2) is consistent. Note that, in (2), the coefficients matrices are given in CFC. As a
consequence, when analyzing the consistency of Eq. (1), we may restrict ourselves to the case where the coefficient
matrices A and B are already given in CFC.

A natural approach to address the solution of Eq. (1), when A and B are given in CFC, is to partition the unknown
X conformally with the block partition of A and B. This is, for instance, the approach followed in [6] for the equation

XA ` AXJ “ 0 using the CFC, in [8] for the equation AX ` XJB “ 0 using the Kronecker canonical form of the
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matrix pencil A ´ λBJ, or in [18] for the equation XAX “ B using canonical forms for the so-called simultaneous
contragredient transformation. However, when trying this approach with Eq. (1), some relevant difficulties arise. Let
us illustrate these obstructions assuming that both A and B consist of exactly two diagonal blocks of any of the types
described in Theorem 1. More precisely, assume that A and B are of the form

A “

„

A1 0
0 A2



, and B “

„

B1 0
0 B2



.

Then, we partition the unknown X conformally with the previous block partitions, as

X “

„

X11 X12

X21 X22



.

Now, multiplying by blocks in Eq. (1) with the previous partitions and equating by blocks, we get the system of matrix
equations

XJ11A1X11 `X
J
21A2X21 “ B1

XJ11A1X12 `X
J
21A2X22 “ 0

XJ12A1X11 `X
J
22A2X21 “ 0

XJ12A1X12 `X
J
22A2X22 “ B2

.

The previous system contains equations which are not of the form (1) and, moreover, the blocks Xij are mixed in these
equations. This happens even if either A or B consists only of just one canonical block. As a consequence, to address
the solution of Eq. (1) using this approach does not seem to be appropriate. Nonetheless, there are some particular
and very elementary cases where this strategy is useful (see, for instance, Lemmas 3 and 4). Also, our approach to
prove that the necessary condition for Eq. (1) to be consistent when B is symmetric is also sufficient (Section 7) uses
the fact that, in order to obtain a solution when A is a direct sum of canonical blocks of different types, it is enough
to get a solution for the direct sum of canonical blocks of the same type, and then the solution for the direct sum of
all blocks is obtained as a block-diagonal matrix by plugging-in every individual solution.

As we have mentioned in the Introduction, our aim is to look for necessary and sufficient conditions for Eq. (1) to
be consistent when B is symmetric. When A is symmetric, B is necessarily so, and the characterization in this case
is elementary (see Section 2.1). However, when B is symmetric, the equation XJAX “ B can be consistent, with A
not being symmetric. Consider, for instance,

XJ
„

0 1
0 0



X “
“

1
‰

,

which has a solution X “ r 11 s . This makes the problem on the consistency of Eq. (1), with B symmetric, a more
interesting problem. We will see that the characterization for the consistency in this case is far from being so simple
as when A is symmetric, and it strongly depends on the CFC of A.

2.1 The case where A is symmetric

If A is symmetric and XJAX “ B is consistent, then B is also symmetric. In this case, the canonical form for
congruence of both A and B consists of Type-0 and Type-I blocks of size 1ˆ 1, that is,

CFCpAq “

„

Ir 0
0 0



, CFCpBq “

„

Is 0
0 0



.

The necessary and sufficient condition for Eq. (1) to be consistent in this case is simply r ě s. It is obviously necessary,
and to see that it is sufficient just take X “

“

Is 0
0 0

‰

as a solution. This is stated in the following result.

Lemma 2. Let A P Cnˆn be symmetric and B P Cmˆm. Then, the equation XJAX “ B has a solution if and only
if B is also symmetric and rankA ě rankB.

Note that Lemma 2 extends [16, Th. 4.5.12] to matrices A and B not necessarily being of the same size and X
not necessarily invertible.

2.2 Some technical results

In this section, we present three elementary results that will be used later.
As we saw in (2), in order to analyze the consistency of Eq. (1), we may restrict ourselves to the case where the

coefficient matrices A and B are already given in CFC. If B is symmetric, its CFC is of the form B “ Im1
‘ 0m2

. The
following result allows us to get rid of the null diagonal blocks.
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Lemma 3. Let A “
”

rA 0
0 0d

ı

and B “
”

rB 0
0 0k

ı

. Then, the equation XJAX “ B is consistent if and only if the equation

XJ rAX “ rB is consistent.

Proof. Let us assume first that XJAX “ B is consistent, with A and B as in the statement. Let us partition

X “

„

X11 X12

X21 X22



,

where X22 has size dˆ k. Then, XJAX “ B can be written as

„

XJ11 XJ21
XJ12 XJ22

 „

rA 0
0 0d

 „

X11 X12

X21 X22



“

«

XJ11 rAX11 XJ11 rAX12

XJ12 rAX11 XJ12 rAX12

ff

“

„

rB 0
0 0k



,

so, in particular, X11 is a solution of XJ rAX “ rB.

Conversely, assume that XJ rAX “ rB has a solution X11. Then, X “

”

X11 0
0 0kˆd

ı

is a solution of XJAX “ B.

The next result deals also with Eq. (1) with B symmetric, already in CFC, and of full rank.

Lemma 4. If XJAX “ Im`1 is consistent, then XJAX “ Im is consistent as well, for all m ě 1.

Proof. If X0 is a solution of XJAX “ Im`1, then X0

„

Im
01ˆm



is a solution of XJAX “ Im.

The last result shows the transitivity of the consistency of Eq. (1).

Lemma 5. If both XJAX “ B and Y JBY “ C are consistent, then ZJAZ “ C is also consistent.

Proof. Let X0 be a solution of XJAX “ B, and let Y0 be a solution of Y JBY “ C. Since pX0Y0q
JApX0Y0q “

Y J0 pX
J
0 AX0qY0 “ Y J0 BY0 “ C, then Z0 “ X0Y0 is a solution of ZJAZ “ C

3 A necessary condition

In this Section, we introduce a necessary condition on A for Eq. (1) to be consistent when B is symmetric.
Lemma 3 guarantees that, when looking for the consistency of (1), there is no loss of generality in assuming that

A and B are given in CFC, that A has no blocks of type J1p0q, and that B “ Im (the CFC of symmetric invertible
m ˆm matrices). In particular, in the next theorem we get a necessary condition for Eq. (1) to be consistent with
such B. In the statement we have included, however, the case where CFC(A) contains blocks of type J1p0q, for the
sake of completeness.

Theorem 6. Let A P Cnˆn be a matrix whose CFC has

(i) exactly d Type-0 blocks with size 1;

(ii) exactly r Type-0 blocks with odd size greater than 1;

(iii) exactly s Type-I blocks with odd size;

(iv) exactly t Type-II blocks of the form H4vp1q, and

(v) an arbitrary number of Type-0, Type-I, and Type-II blocks with other sizes.

Then, in order for
XJAX “ Im (3)

to be consistent, it must be
n´ d ě 2m´ r ´ s´ 2t. (4)

Proof. As mentioned before, we may assume that A is given in CFC.
Assume first that d “ 0. In the conditions of the statement, we can write

A “ J2m1´1p0q ‘ ¨ ¨ ¨ ‘ J2mr´1p0q
À

J2mr`1
p0q ‘ ¨ ¨ ¨ ‘ J2mr`hp0q

À

Γ2xm1´1 ‘ ¨ ¨ ¨ ‘ Γ2xms´1

À

Γ2xms`1
‘ ¨ ¨ ¨ ‘ Γ2xms`g

À

H2|m1
pµ1q ‘ ¨ ¨ ¨ ‘H2|mu

pµuq
À

H4|mu`1´2p´1q ‘ ¨ ¨ ¨ ‘H4|mu`v´2p´1q
À

H4|mu`v`1
p1q ‘ ¨ ¨ ¨ ‘H4|mu`v`t

p1q,
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where mi ą 1, for i “ 1, . . . , r; pmi ě 1, for i “ 1, . . . , s ` g; qmi ě 1, for i “ 1, . . . , u ` v ` t; and µj ‰ 0,˘1, for
j “ 1, . . . , u. Let us set

M :“ m1 ` ¨ ¨ ¨ `mr`h, xM :“ pm1 ` ¨ ¨ ¨ ` pms`g, and
|M :“ qm1 ` ¨ ¨ ¨ ` qmu ` 2qmu`1 ` ¨ ¨ ¨ ` 2qmu`v ` 2qmu`v`1 ` ¨ ¨ ¨ ` 2qmu`v`t.

Then, we have

n “ 2pM ` xM ` |Mq ´ r ´ s´ 2v, (5)

rank pA´AJq “ 2pM ` xM ` |Mq ´ 2r ´ 2s´ 2v ´ 2t. (6)

Equation (5) is immediate. In order to get (6), it suffices to check that the rank of the skew-symmetric part of the
canonical blocks involved in this identity is the following

rank pJnp0q ´ Jnp0q
J
q “

"

n´ 1 if n is odd,
n if n is even,

(7)

rank pΓn ´ ΓJn q “

"

n´ 1 if n is odd,
n if n is even,

(8)

rank pH2npµq ´H2npµq
J
q “ 2n if µ ‰ 0,˘1, (9)

rank pH4n´2p´1q ´H4n´2p´1qJq “ 4n´ 2, (10)

rank pH4np1q ´H4np1q
J
q “ 4n´ 2. (11)

The first identity of (7) (i.e. for n odd) is a consequence of the fact that any skew-symmetric matrix with odd size

is singular, together with the fact that e1, . . . , en´1 belong to the column space of Jnp0q ´ Jnp0q
J. To get the second

identity in Equation (7) (i.e. for n even) we can prove that detpJnp0q´Jnp0q
J
q “ ˘1 when n is even. This can be done

by induction, spanning the determinant across the first row, then across the first column, and then using induction in
the remaining minor, namely detpJn´2p0q ´ Jn´2p0q

J
q.

Equation (8) is a consequence of the identity

Γn ´ ΓJn “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

»

—

—

–

0

. .
.
´2

0 . .
.

0 2

fi

ffi

ffi

fl

if n is odd,

»

—

–

´2

. .
.

´2
2

fi

ffi

fl

if n is even.

Finally, Equations (9)–(11) follow from the identity:

H2npµq ´H2npµq
J
“

»

—

—

—

—

—

—

—

—

—

—

–

1´ µ

´1
. . .

. . . 1´ µ
´1 1´ µ

µ´ 1 1
. . .

. . .

. . . µ´ 1 1
µ´ 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

From (5)–(6) we conclude

n´ rank pA´AJq “ r ` s` 2t. (12)

Now, transposing (3) and subtracting, we get

XJpA´AJqX “ 0. (13)

Since X P Cnˆm is a solution of (3), it must be rankX “ rankXJ “ m. Using this fact, together with the well-know
inequality (see [16, page 13])

rank pPQq ě rankP ` rankQ´ k, for P P Cpˆk and Q P Ckˆq, (14)

6



we obtain
rank pXJpA´AJqq ě m` rank pA´AJq ´ n,

and, then, using this inequality and (12), we get

dimpNul pXJpA´AJqq “ n´ rank pXJpA´AJqq

ď n´ pm` rank pA´AJq ´ nq

“ pn´mq ` pn´ rank pA´AJqq
“ n´m` r ` s` 2t.

Equation (13) implies that the column space of X P Cnˆm is contained in the null space of XJpA ´ AJq. Since
rankX “ m, the column space of X has dimension m, so it must be

m ď n´m` r ` s` 2t

or, in other words,
n ě 2m´ r ´ s´ 2t,

as wanted for the case in which d “ 0.
Assume now that d ą 0. Then A can be written as in the statement of Lemma 3, with rA P Cpn´dqˆpn´dq being

the matrix obtained from A by deleting the d blocks J1p0q. By Lemma 3, XJAX “ Im is consistent if and only if

XJ rAX “ Im is consistent. As we have just seen, the condition

n´ d ě 2m´ r ´ s´ 2t

is necessary for XJ rAX “ Im to be consistent, so it is also necessary for XJAX “ Im to be consistent.

We want to emphasize that Theorem 6 provides a necessary condition for Eq. (1) to be consistent, when B is
symmetric, that covers all possible matrices A. To see this, just note that conditions (i)–(v) in the statement are not
restrictive at all, but just a particular description of the CFC of an arbitrary matrix A.

The main open question after Theorem 6 is whether or not condition (4) is sufficient. We will show that it is
sufficient with very few exceptions (see Theorem 17). The next example shows one of such exceptions.

Example 7. Let

A “ H2p´1q “

„

0 1
´1 0



, B “ I1 “ 1.

Then, we are in the case n “ 2,m “ 1, r “ s “ t “ 0 in the statement of Theorem 6, so (4) is satisfied (recall
that µ “ ´1 is allowed in H2pµq, since, for H2npµq, only µ “ 0, p´1qn`1 are not allowed). However, Eq. (1) is not
consistent, since

XJAX “
“

x1 x2
‰

„

0 1
´1 0

 „

x1
x2



“
“

´x2 x1
‰

„

x1
x2



“ 0.

The other exception for condition (4) to be sufficient is the presence of Type-II blocks of the form H4p1q in the
CFC of A (see Theorem 15).

4 The case where CFC(A) is a Type-0 block

We start with the following result, whose proof is straightforward.

Lemma 8. The equation XJJn`1p0qX “ Jnp0q is consistent for n ě 1. A solution is X “

”

01ˆn
In

ı

.

The following result provides a characterization for the consistency of (3) when A is a single Type-0 block.

Theorem 9. Given m ě 1, the equation
XJJnp0qX “ Im (15)

is consistent if and only if n ě 2m´ 1 and n ą 1.

Proof. First we analyze the case m “ 1. Clearly the equation XJJ1p0qX “ Im is not consistent, since J1p0q “ r 0 s,

whereas XJJnp0qX “ I1, with n ą 1, is consistent, and a solution is given by XJ “
“

1 1 0 ¨ ¨ ¨ 0
‰

1ˆn
.

Let us assume that m ě 2. In Theorem 6, the necessary condition (4) for XJJnp0qX “ Im to be consistent when
n is odd reads n ě 2m ´ 1. When n is even, the condition reads n ě 2m, which is equivalent to n ě 2m ´ 1, since
2m´ 1 is odd. Let us see that n ě 2m´ 1 is also sufficient. The proof is divided in two cases:
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1. Case n “ 2m´ 1. We consider separately the following cases:

(a) If n “ 2m´ 1 with m even, then XJJ2m´1p0qX “ Im is consistent, and a solution is

X “

„

X32

01ˆ2



‘ ¨ ¨ ¨ ‘

„

X32

01ˆ2



looooooooooooooooomooooooooooooooooon

m´2
2 times

‘X32, where X32 “

»

–

1 0
1 ´i
0 i

fi

fl .

(b) If n“2m´ 1 with m ě 3 odd, then XJJ2m´1p0qX “ Im is consistent, and a solution is

X “

„

X32

01ˆ2



‘ ¨ ¨ ¨ ‘

„

X32

01ˆ2



looooooooooooooooomooooooooooooooooon

m´3
2 times

‘X53,

where X32 “

»

–

1 0
1 ´i
0 i

fi

fl and X53 “

»

—

—

—

—

—

–

1 0 0
1 i?

2
0

0 ´ i?
2

0

0 i?
2

1

0 0 1

fi

ffi

ffi

ffi

ffi

ffi

fl

.

2. Case n ą 2m ´ 1. In 1(a) and 1(b) we have seen that the equation XJJ2m´1p0qX “ Im is consistent, and

Lemma 8 implies that XJJnp0qX “ J2m´1p0q is consistent as well. These results, together with Lemma 5, imply

that XJJnp0qX “ Im is consistent.

Note that the proof of Theorem 9 is constructive since, in the case where Eq. (15) is consistent, we provide an
explicit solution of this equation.

5 The case where CFC(A) is a Type-I block

The first result in this section, whose proof is straightforward, will be used later. We denote by

Rn :“

«

1
. .
.

1

ff

nˆn

the nˆ n antidiagonal matrix whose antidiagonal entries are all equal to 1.

Lemma 10. The equation
XJΓn`1X “ Γn

is consistent for n ě 1. In particular:

(i) if n is odd, then X “

”

01ˆn
Rn

ı

is a solution;

(ii) if n is even, then X “

”

01ˆn
iRn

ı

is a solution.

The following result, analogous to Theorem 9, characterizes the consistency of (3) when A is a single Type-I block.

Theorem 11. Given m ě 1, the equation
XJΓnX “ Im (16)

is consistent if and only if n ě 2m´ 1.

Proof. In Theorem 6, the necessary condition (4) for XJΓnX “ Im to be consistent when n is odd reads n ě 2m´ 1.
When n is even, the condition reads n ě 2m instead, but this is equivalent to n ě 2m´ 1, since n is even. Let us see
that n ě 2m´ 1 is also sufficient:
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1. Let n “ 2m ´ 1. We will see that a solution of XJΓ2m´1X “ Im is given by the matrix X defined below. To
understand the pattern it is important to note that (for both the odd and the even cases) the rows alternate
between having a consecutive list of 1’s and a consecutive list of i’s.

XJ “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

»

—

—

—

—

—

–

1 1 1 ¨ ¨ ¨ 1 1 ¨ ¨ ¨ 1 1
0 i i ¨ ¨ ¨ i i ¨ ¨ ¨ i i
0 0 1 ¨ ¨ ¨ 1 1 ¨ ¨ ¨ 1 0
...

...
. . .

. . .
...

... . .
.

. .
. ...

0 0 . . . 0 1 1 0 ¨ ¨ ¨ 0

fi

ffi

ffi

ffi

ffi

ffi

fl

if m is odd,

»

—

—

—

—

—

–

1 1 1 ¨ ¨ ¨ 1 1 ¨ ¨ ¨ 1 1
0 i i ¨ ¨ ¨ i i ¨ ¨ ¨ i i
0 0 1 ¨ ¨ ¨ 1 1 ¨ ¨ ¨ 1 0
...

...
. . .

. . .
...

... . .
.

. .
. ...

0 0 . . . 0 i i 0 ¨ ¨ ¨ 0

fi

ffi

ffi

ffi

ffi

ffi

fl

if m is even.

(17)

We start with the case n “ 2m´ 1 when m is odd.

Let Y1, . . . , Y2m´1 be the columns of the matrix XJ in (17). Then

XJΓ2m´1 “
“

Y1 Y2 ¨ ¨ ¨ Y2m´1

‰

Γ2m´1

“ rY2m´1 Y2m´1 ´ Y2m´2 ¨ ¨ ¨ ´Ym`1 ` Ym ¨ ¨ ¨ Y3 ´ Y2 ´Y2 ` Y1s .

Finally,
pXJΓ2m´1qX “

“

B1 B2 B3 B4 . . . Bm
‰

,

where the columns of the product are computed below, in such a way that almost everything cancels out (note
that Ym´i “ Ym`1`i for i “ 0, . . . ,m´ 1) after reordering the summands:

B1 “ Y2m´1 ` pY2m´1 ´ Y2m´2q ` p´Y2m´2 ` Y2m´3q ` ¨ ¨ ¨ `

pY3 ´ Y2q ` p´Y2 ` Y1q “ 2pY2m´1 ´ Y2q ` 2p´Y2m´2 ` Y3q ` ¨ ¨ ¨ `

2p´Ym`1 ` Ymq ` Y1 “ Y1 “ e1;

B2 “ i
´

pY2m´1 ´ Y2m´2q ` p´Y2m´2 ` Y2m´3q ` ¨ ¨ ¨ ` pY3 ´ Y2q ` p´Y2 ` Y1q
¯

“ i
´

pY2m´1 ´ Y2q ` 2p´Y2m´2 ` Y3q ` ¨ ¨ ¨ ` 2p´Ym`1 ` Ymq ` p´Y2 ` Y1q
¯

“ ipY1 ´ Y2q “ e2;

B3 “ p´Y2m´2 ` Y2m´3q ` pY2m´3 ´ Y2m´4q ` ¨ ¨ ¨ ` pY3 ´ Y2q ` p´Y2 ` Y1q

“ p´Y2m´2 ` Y3q ` 2pY2m´3 ´ Y4q ` ¨ ¨ ¨ ` 2p´Ym`1 ` Ymq ` pY3 ´ Y2q

“ Y3 ´ Y2 “ e3;

...

Bm “ p´Ym`1 ` Ymq ` pYm ´ Ym´1q “ pYm ´ Ym´1q “ em.

The proof for the case n “ 2m´ 1 when m is even is analogous.

2. Let n ą 2m´ 1. We have just seen in (a) that XJΓ2m´1X “ Im is consistent, and, in Lemma 12 we have seen

that XJΓnX “ Γ2m´1 is consistent as well. Using Lemma 5, we conclude that XJΓnX “ Im is consistent as
well.

Note that the proof of Theorem 11 is constructive. More precisely, when Eq. (16) is consistent, we provide an
explicit solution of this equation, like in the proof of Theorem 9 with Eq. (15).

6 The case where CFC(A) is a Type-II block

Recall that H2npµq is a Type-II block if and only if µ ‰ 0, p´1qn`1. The first result in this section, whose proof is
straightforward, is the analogue of Lemmas 8 and 10 for Type-II blocks.
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Lemma 12. For any complex µ and any n ě 1, the equation

XJH2n`2pµqX “ H2npµq

is consistent. A particular solution is the p2n` 2q ˆ p2nq matrix X “

«

In 0n
01ˆn 01ˆn
0n In

01ˆn 01ˆn

ff

.

The following three results are the analogues of Theorems 9 and 11 for a single Type-II block H2kpµq, depending
on whether µ ‰ 0,˘1; µ “ ´1; or µ “ 1.

Theorem 13. The equation
XJH2mpµqX “ Im, µ ‰ 0,˘1 (18)

is consistent.

Proof. Let us first consider the cases m “ 1, 2, and then the case m ě 3.

1. Case m “ 1. Let

XJH2pµqX “
“

a b
‰

„

0 1
µ 0

 „

a
b



“
“

abp1` µq
‰

.

Then a solution is X “
“

1 1
1`µ

‰J
.

2. Case m “ 2. Let X “

”

1 0 1 0
0 1 1

µ´1 0

ıJ

, so

XJH4pµqX “

„

1 0 1 0
0 1 1

µ´1 0



»

—

—

–

0 0 1 0
0 0 0 1
µ 1 0 0
0 µ 0 0

fi

ffi

ffi

fl

»

—

—

–

1 0
0 1
1 1

µ´1

0 0

fi

ffi

ffi

fl

“

„

µ` 1 µ
µ´1

µ
µ´1

1
µ´1



,

and let

detpXJH4pµqXq “
´1

pµ´ 1q2
‰ 0.

Then XJH4pµqX is symmetric and nonsingular, so its CFC is I2. Therefore, XJH4pµqX “ I2 is consistent.

3. Case m ě 3. Consider the following matrices Za of size mˆm and Xa of size 2mˆm:

Za :“

»

—

—

—

—

—

—

—

–

1 1
µ´1 0 ¨ ¨ ¨ 0 0

0 1 1
µ´1 ¨ ¨ ¨ 0 0

0 0 1 ¨ ¨ ¨ 0 0
...

. . .
. . .

. . .
. . .

...
0 0 0 ¨ ¨ ¨ 1 1

µ´1

0 0 0 ¨ ¨ ¨ a

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and Xa :“

„

Im
Za



.

Then

XJa H2mpµqXa “
“

Im ZTa
‰

„

0 Im
Jmpµq 0

 „

Im
Za



“ ZJa Jmpµq ` Za (19)

“
1

µ´ 1

»

—

—

—

—

—

—

—

—

–

µ2
´ 1 µ 0 ¨ ¨ ¨ 0 0

µ µ2 µ ¨ ¨ ¨ 0 0

0 µ µ2
¨ ¨ ¨ 0 0

...
. . .

. . .
. . .

. . .
...

0 ¨ ¨ ¨ 0 µ µ2 µ

0 ¨ ¨ ¨ 0 0 µ apµ2
´ 1q ` 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

This matrix is symmetric. So, if it has rank equal to k, then its CFC is Ik ‘ 0m´k. Clearly the rank is, at least,
m´ 1, since the submatrix of size pm´ 1q ˆ pm´ 1q obtained by deleting the first row and the last column has
determinant equal to p µ

µ´1 q
m´1

‰ 0. If we prove that, for any µ ‰ 0,˘1, there exists some value of a such that

detpXJa H2mpµqXaq ‰ 0, then rank pXJa H2mpµqXaq “ m, which implies that the CFC of XJa H2mpµqXa is Im,
and the proof is finished.

10



For k “ 1, . . . ,m´ 2, consider the matrix Ym´kpµq of size pm´kqˆ pm´kq obtained by deleting the last k rows

and the last k columns of XJa H2mpµqXa, multiplied by µ´ 1, that is,

Ym´kpµq :“

»

—

—

—

—

—

—

—

—

—

–

µ2
´ 1 µ 0 ¨ ¨ ¨ 0 0

µ µ2 µ
. . . 0 0

0 µ µ2 . . . 0 0
...

. . .
. . .

. . .
. . .

...

0 ¨ ¨ ¨ 0 µ µ2 µ

0 ¨ ¨ ¨ 0 0 µ µ2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Note that

detpY2pµqq “ det

„

µ2
´ 1 µ

µ µ2



“ µ4
´ 2µ2

“ 0 ô µ P t0,˘
?

2u (20)

and

detpY3pµqq “ det

»

—

–

µ
2
´ 1 µ 0

µ µ
2

µ

0 µ µ
2

fi

ffi

fl

“ µ
6
´ 3µ

4
` µ

2
“ 0 ô µ P

#

0,˘

c

3˘ 5

2

+

. (21)

The only common root of Y2pµq and Y3pµq is µ “ 0.

Suppose now that, for some µ0 ‰ 0 and some k ě 3, we have

detpYkpµ0qq “ detpYk`1pµ0qq “ 0.

Spanning the determinant of Yk`1pµ0q across the last row we obtain

detpYk`1pµ0qq “ µ2 detpYkpµ0qq ´ µ
2 detpYk´1pµ0qq,

and, equivalently,

detpYk´1pµ0qq “ detpYkpµ0qq ´
detpYk`1pµ0qq

µ2 .

This implies that
detpY2pµ0qq “ detpY3pµ0qq “ ¨ ¨ ¨ “ detpYk`1pµ0qq “ 0,

which contradicts (20) and (21), since there is no µ0 ‰ 0 which makes Y2pµ0q and Y3pµ0q to be singular at the same
time. Therefore, we conclude that, for any k ě 2 and any µ0 ‰ 0, either detpYkpµ0qq ‰ 0 or detpYk`1pµ0qq ‰ 0.

Now we come back to the matrix XJa H2mpµqXa in (19). Spanning its determinant across the last row, we get

detpXJa H2mpµqXaq “
1

pµ´ 1qm

”

`

apµ2
´ 1q ` 1

˘

detpYm´1pµqq ´ µ
2 detpYm´2pµqq

ı

.

Let µ0 R t0, 1,´1u. Then:

(a) If detpYm´2pµ0qq “ s ‰ 0, take a “ 1

1´µ
2 , and so detpXJa H2mpµ0qXaq “ ´

µ
2

pµ´1q
m s ‰ 0.

(b) If detpYm´2pµ0qq “ 0, then detpYm´1pµ0qq ‰ 0. Take a ‰ 1

1´µ
2 , so that detpXJa H2mpµ0qXaq ‰ 0.

Then, for any µ ‰ 0,˘1, there exists some a such that

detpXJa H2mpµqXaq ‰ 0,

and the proof is finished.

Theorem 14. For all m odd, the equation
XJH2mp´1qX “ Im (22)

is consistent if and only if m ‰ 1.
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Proof. When m “ 1, (22) is not consistent (see Example 7).
Assume that m ě 3. Consider the matrix

“

Im Z
‰

of size mˆ 2m with

Z “

»

—

—

—

—

—

—

–

0 0 ¨ ¨ ¨ 0 0 1 1{2
0 0 ¨ ¨ ¨ 0 1 0 0
0 0 ¨ ¨ ¨ 1 0 0 0
...

... . .
. ...

...
...

...
0 1 ¨ ¨ ¨ 0 0 0 0
1 0 ¨ ¨ ¨ 0 0 0 0
0 0 ¨ ¨ ¨ 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Then

“

Im Z
‰

„

0 Im
Jmp´1q 0

 „

Im
ZJ



“ ZJmp´1q ` ZJ “

»

—

—

—

—

—

—

–

0 0 0 ¨ ¨ ¨ 0 0 1
2

0 0 0 ¨ ¨ ¨ 0 1 0
0 0 0 ¨ ¨ ¨ 1 0 0
...

...
... . .

. ...
...

...
0 0 1 ¨ ¨ ¨ 0 0 0
0 1 0 ¨ ¨ ¨ 0 0 0
1
2

0 0 ¨ ¨ ¨ 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

is symmetric and nonsingular, and so its CFC is Im. Therefore (22) is consistent.
We can provide a particular solution of (22). Consider the mˆm matrix:

Y “

»

—

—

—

—

—

—

—

—

—

–

1 0 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0 0 1
0 1 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0 1

2
0...

. . .
. . .

. . .
... . .

.
. .
.

. .
. ...

0 ¨ ¨ ¨ 0 1 0 1
2

0 ¨ ¨ ¨ 0
0 ¨ ¨ ¨ 0 0 1 0 0 ¨ ¨ ¨ 0

0 ¨ ¨ ¨ 0 i 0 ´ i
2

0 ¨ ¨ ¨ 0

0 . .
.

. .
.

. .
. ...

. . .
. . .

. . .
...

0 i 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0 ´ i
2

0
i 0 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0 0 ´i

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Multiplying by blocks, it is straightforward to check that

Y ¨
“

Im Z
‰

H2mp´1q

„

Im
ZJ



¨ Y J “ Im.

The matrix Y
“

Im Z
‰

is equal to

X
J
“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 0 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0 0 1 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨ 0 1 1
2

0 1 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0 1
2

0 1
2

. . .
.
.
.

.

.

.
.
.
. . .

.
1 0 0.

.

.
. . .

. . .
. . .

.

.

. . .
.

. .
.

. .
. .

.

. 0
. . . 0 0 0 . .

.
. .
.

0 0
0 ¨ ¨ ¨ 0 1 0 1

2
0 ¨ ¨ ¨ 0 0

. . . 1
2

0 1 0 ¨ ¨ ¨ 0 0

0 ¨ ¨ ¨ 0 0 1 0 0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0 1 0 0 ¨ ¨ ¨ 0 0

0 ¨ ¨ ¨ 0 i 0 ´ i
2

0 ¨ ¨ ¨ 0 0 . .
.

´ i
2

0 i 0 ¨ ¨ ¨ 0 0

0 . .
.

. .
.

. .
. .

.

.
. . .

. . .
. . .

.

.

. 0 . .
.

0 0 0
. . .

. . .
.
.
.

.

.

.
0 i 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0 ´ i

2
0 ´ i

2
. .
. .

.

.
.
.
.

.

.

.
. . . i 0 0

i 0 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0 0 ´i 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨ 0 i i
2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(23)

and gives a particular solution of (22).

Theorem 15. For all m even, the equation

XJH2mp1qX “ Im`1 (24)

is consistent if and only if m ‰ 2.

Proof. Let us partition XJ “
“

Y Z
‰

, with Y, Z P Cpm`1qˆm. Then

XJH2mp1qX “
“

Y Z
‰

„

0 Im
Jmp1q 0

 „

Y J

ZJ



“ ZJmp1qY
J
` Y ZJ “ ZJmp0qY

J
` ZY J ` Y ZJ.

(25)

The consistency of (24) is equivalent to the matrix (25) being symmetric and nonsingular. If this is the case, the CFC

of the matrix in (25) is Im`1, so the matrix will be congruent to Im`1. As the sum ZY J ` Y ZJ is symmetric, the

matrix in (25) is symmetric if and only if ZJmp0qY
J is symmetric as well. Let us first analyze the case m “ 2, and

then the case m ě 4:
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m “ 2 We will show that the matrix equation XJH4p1qX “ I3 is not consistent. To do this we will show that, if

ZJ2p0qY
J is symmetric, then XJH4p1qX must be singular, so it can not be equal to I3.

Let Y1, Y2 and Z1, Z2 denote the columns of Y and Z, respectively. If ZJ2p0qY
J is symmetric, then ZJ2p0qY

J
“

Y J2p0q
JZJ, which is equivalent to Z1Y

J
2 “ Y2Z

J
1 , and this implies Z1 “ αY2, for some α P C. If rank

“

Y1 Z1 Z2

‰

ă

3, then rankX ă 3, which, in turn, implies rank pXJH4p1qXq ă 3, and we are finished. Otherwise, there is some
nonzero vector v P C3 satisfying

»

–

Y J1
ZJ1
ZJ2

fi

fl v “

»

–

´1
0
α

fi

fl .

Then:
XJH4p1qXv “ ZJ2p0qY

Jv ` pZY Jqv ` pY ZJqv

“ Z1Y
J
2 v ` Z1Y

J
1 v ` Z2Y

J
2 v ` Y1Z

J
1 v ` Y2Z

J
2 v

“ 0´ Z1 ` 0` 0` αY2 “ 0.

This means that there is a nonzero vector in the right null space of XJH4p1qX, so XJH4p1qX is singular, as
claimed.

m ě 4 Let X P C2mˆpm`1q be given by

XJ “
“

Y Z
‰

“

»

—

—

—

—

—

—

–

0 0 0 ¨ ¨ ¨ 0 1 0 0 ¨ ¨ ¨ 0...
...

... . .
.

1 0 1 0 ¨ ¨ ¨ 0

0 0 0 . .
.

0
...

. . .
. . .

. . .
...

0 0 1 . .
.

0 0 ¨ ¨ ¨ 0 1 0
0 0 0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0 0 1
1 0 0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (26)

with Y,Z P Cpm`1qˆm. We analyze independently the three addends in the right-hand side of (25):

• Y ZJ “ Y

„

Im
01ˆm

J

“
“

Y 0mˆ1

‰

“

»

—

—

–

0 0 0 ¨ ¨ ¨ 0 0...
...

... . .
.

1 0
0 0 0 . .

.
0 0

0 0 1 . .
. ...

...
0 0 0 ¨ ¨ ¨ 0 0
1 0 0 ¨ ¨ ¨ 0 0

fi

ffi

ffi

fl

.

• ZY J “ pY ZJqJ “

»

—

—

–

0 ¨ ¨ ¨ 0 0 0 1
0 ¨ ¨ ¨ 0 0 0 0
0 ¨ ¨ ¨ 0 1 0 0... . .

.
. .
.
. .
. ...

...
0 1 0 ¨ ¨ ¨ 0 0
0 0 0 ¨ ¨ ¨ 0 0

fi

ffi

ffi

fl

.

• ZJmp0qY
J
“

„

Im
01ˆm



Jmp0q

»

—

—

—

—

–

0 ¨ ¨ ¨ 0 0 0 1
0 ¨ ¨ ¨ 0 0 0 0
0 ¨ ¨ ¨ 0 1 0 0... . .

.
. .
.
. .
. ...

...
0 1 0 ¨ ¨ ¨ 0 0

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

–

0 ¨ ¨ ¨ 0 0 0 0
0 ¨ ¨ ¨ 0 1 0 0... . .

.
. .
.

. .
. ...

...
0 1 0 ¨ ¨ ¨ 0 0
0 0 0 ¨ ¨ ¨ 0 0
0 0 0 ¨ ¨ ¨ 0 0

fi

ffi

ffi

ffi

fl

.

Adding all together we obtain:

ZJmp0qY
J
` ZY J ` Y ZJ “

»

—

—

—

—

—

–

0 ¨ ¨ ¨ 0 0 0 0 1
0 ¨ ¨ ¨ 0 0 1 1 0
0 ¨ ¨ ¨ 0 1 2 0 0... . .

.
. .
.
. .
.

. .
. ...

...
0 1 2 0 ¨ ¨ ¨ 0 0
0 1 0 0 ¨ ¨ ¨ 0 0
1 0 0 0 ¨ ¨ ¨ 0 0

fi

ffi

ffi

ffi

ffi

ffi

fl

,

which is a symmetric and nonsingular matrix, so we are done.
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The next remark, which summarizes all results of this section, characterizes the consistency of (3) when A is a
single Type-II block.

Remark 16. Given m ě 1, regarding the consistency of

XJH2kpµqX “ Im, with µ ‰ 0, p´1qk`1, (27)

we have the following:

(i) If µ ‰ 0,˘1, then (27) is consistent if and only if k ě m.

(ii) If µ “ ´1, then k is odd, and

(a) if k “ 1, then (27) is not consistent;

(b) if k ě 3 is odd, then (27) is consistent if and only if k ě m.

(iii) If µ “ 1, then k is even, and

(a) if k “ 2, then (27) is only consistent for m “ 1, 2;

(b) if k ě 4 is even, then (27) is consistent if and only if k ě m´ 1.

Let us check the results item by item. For item (i), the necessity is given in (4) of Theorem 6, and the sufficiency
follows from Theorem 13, Lemma 4, and Lemma 5. Item (ii)(a) is part of Theorem 14. For item (ii)(b), the necessity
is given in (4) of Theorem 6, and the sufficiency follows from Theorem 14, Lemma 4, and Lemma 5. Regarding (iii)(a):

for m “ 1, the equation XJH4p1qX “ I1 has solution X “
“

1 1{2 0 1
‰J

; for m “ 2, the equation XJH4p1qX “ I2

has solution X “

”

1 1{2 0 1
i ´i{2 0 i

ıJ

; for m “ 3, the inconsistency of XJH4p1qX “ I3 is part of Theorem 15; and, for m ą 3,

the inconsistency is a consequence of the inconsistency for m “ 3 together with Lemma 4. As for item (iii)(b), the
necessity is given in (4) of Theorem 6, and the sufficiency follows from Theorem 15, Lemma 4, and Lemma 5.

7 A necessary and sufficient condition

In this section, we prove that (4) is a sufficient condition for Eq. (3) to be consistent, provided that the CFC of A
does not contain blocks of either the form H4p1q or the form H2p´1q. This is stated in the following result.

Theorem 17. Let B be a complex symmetric matrix with rankB “ m, and let A P Cnˆn be a matrix whose CFC has

(i) exactly d Type-0 blocks of the form J1p0q,

(ii) exactly r Type-0 blocks with odd size greater than 1,

(iii) exactly s Type-I blocks with odd size,

(iv) exactly t Type-II blocks of the form H4kp1q, with k ě 2,

(v) no Type-II blocks of either the form H2p´1q or H4p1q, and

(vi) an arbitrary number of Type-0, Type-I, and Type-II blocks with other sizes.

Then XJAX “ B is consistent if and only if

n´ d ě 2m´ r ´ s´ 2t. (28)

Proof. First, we may assume both A and B are in CFC. In particular, A has d blocks of type J1p0q and B is of the
form Im ‘ J1p0q ‘ ¨ ¨ ¨ ‘ J1p0q. By Lemma 3, we can get rid of the J1p0q blocks in both A and B, so we can assume
that A has size pn´ dq ˆ pn´ dq and B “ Im.

Now, in the conditions of the statement, we can write

A “ J2m1´1p0q ‘ ¨ ¨ ¨ ‘ J2mr´1p0q
À

J2mr`1
p0q ‘ ¨ ¨ ¨ ‘ J2mr`hp0q

À

Γ2xm1´1 ‘ ¨ ¨ ¨ ‘ Γ2xms´1

À

Γ2xms`1
‘ ¨ ¨ ¨ ‘ Γ2xms`g

À

H2|m1
pµ1q ‘ ¨ ¨ ¨ ‘H2|mu

pµuq
À

H4|mu`1`2p´1q ‘ ¨ ¨ ¨ ‘H4|mu`v`2p´1q
À

H4|mu`v`1
p1q ‘ ¨ ¨ ¨ ‘H4|mu`v`t

p1q,

where mi ą 1 for i “ 1, . . . , r; qmu`v`k ą 1 for k “ 1 . . . , t; and µj ‰ 0,˘1, for j “ 1, . . . , u.
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Note that condition (28) is equivalent to

n´ d “ p2m1 ´ 1q ` ¨ ¨ ¨ ` p2mr ´ 1q ` 2mr`1 ` ¨ ¨ ¨ ` 2mr`h`

p2pm1 ´ 1q ` ¨ ¨ ¨ ` p2pms ´ 1q ` 2pms`1 ` ¨ ¨ ¨ ` 2pms`g`

2qm1 ` ¨ ¨ ¨ ` 2qmu ` p4qmu`1 ` 2q ` ¨ ¨ ¨ ` p4qmu`v ` 2q`
4qmu`v`1 ` ¨ ¨ ¨ ` 4qmu`v`t

ě 2m´ r ´ s´ 2t.

If we set
rm : “ m1 ` ¨ ¨ ¨ `mr `mr`1 ` ¨ ¨ ¨ `mr`h`

pm1 ` ¨ ¨ ¨ ` pms ` pms`1 ` ¨ ¨ ¨ ` pms`g`

qm1 ` ¨ ¨ ¨ ` qmu ` p2qmu`1 ` 1q ` ¨ ¨ ¨ ` p2qmu`v ` 1q`
p2qmu`v`1 ` 1q ` ¨ ¨ ¨ ` p2qmu`v`t ` 1q,

then condition (28) becomes rm ě m. In turn, the statement of the theorem becomes:

XJAX “ Im is consistent if and only if rm ě m.

Theorem 6 proves that (28) is necessary, so rm ě m is necessary. Let us prove that rm ě m is sufficient as well.
Suppose first that rm “ m. According to Theorem 9, there exist X1, . . . , Xr such that

XJi J2mi´1p0qXi “ Imi for i “ 1, . . . , r,

and there also exist Xr`1, . . . , Xr`h such that

XJj J2mj p0qXj “ Imj for j “ r ` 1, . . . , r ` h.

According to Theorem 11, there exist Y1, . . . , Ys such that

Y Ji Γ2xmi´1Yi “ I
xmi

for i “ 1, . . . , s,

and there also exist Ys`1, . . . , Ys`g such that

Y Jj Γ2xmj
Yj “ I

xmj
for j “ s` 1, . . . , s` g.

According to Theorem 13, there exist Z1, . . . , Zu such that

ZJi H2|mi
pµiqZi “ I

|mi
for i “ 1, . . . , u;

according to Theorem 14 there exist Zu`1, . . . , Zu`v such that

ZJj H4|mj`2p´1qZj “ I2|mj`1 for j “ u` 1, . . . , u` v;

and according to Theorem 15 there exist Zu`v`1, . . . , Zu`v`t such that

ZJj H4|mk
p´1qZj “ I2|mk`1 for k “ u` v ` 1, . . . , u` v ` t.

Then XJAX “ Im is consistent, with a solution given by

X “ pX1 ‘ ¨ ¨ ¨ ‘Xr`hq
à

pY1 ‘ ¨ ¨ ¨ ‘ Ys`gq
à

pZ1 ‘ ¨ ¨ ¨ ‘ Zu`v`tq. (29)

Suppose now that rm ą m. As we have just proved, XJAX “ I
Ăm is consistent (with a solution X given in (29)).

Then, the consistency of XJAX “ Im follows from Lemma 4 and Lemma 5. So rm ě m is sufficient.

Remark 18. In the proof of Theorem 17, we show that Eq. (1), with B symmetric and A in the conditions of the
statement, is consistent if and only if, after taking A and B to their CFC, the equation is consistent block-wise, where
the (three) blocks of A are the direct sum of all Type-0, Type-I, and Type-II blocks in the CFC, respectively (and
those of B are identities of the appropriate size).

After Theorem 17, it is natural to ask whether or not allowing the blocks of the form H2p´1q and H4p1q to appear
in the CFC of A one could get a characterization like the one in this theorem for the consistency of Eq. (1) with B

symmetric. We have seen in Example 7 and in Theorem 15 that XJH2p´1qX “ I1 and XJH4p1qX “ I3, respectively,
are not consistent, so their inclusion in the CFC of A has an unknown effect on the increase of the value of m (the
rank/size of B) in the bound (28). Following Remark 18, we should look for a sufficient condition like (4) that allows
one to construct a block-wise solution, looking only at the direct sum of blocks of the same type. However, it may
happen that the combined effect of blocks of either the form H2p´1q or H4p1q, together with some other blocks in
the CFC of A, make Eq. (1) to be consistent, even if the equation is not consistent block-wise. This is indeed what
happens, as the following examples show.
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Example 19. Let

A “ H2p´1q ‘ J2p0q “

»

—

—

–

0 1 0 0
´1 0 0 0
0 0 0 1
0 0 0 0

fi

ffi

ffi

fl

, B “ I2 “

„

1 0
0 1



.

With these A and B, Eq. (1) is consistent. A particular solution is

X “

»

—

—

–

i 0
0 1
1 i
1 ´i

fi

ffi

ffi

fl

.

However, this equation is not consistent block-wise, since XJH2p´1qX “ I1 is not consistent (see Example 7).

Example 20. Let

A “ H4p1q ‘ J2p0q “

»

—

—

—

—

—

—

–

0 0 1 0 0 0
0 0 0 1 0 0
1 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, B “ I4 “

»

—

—

–

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

fi

ffi

ffi

fl

.

With these A and B, Eq. (1) is consistent, and a particular solution is

X “

»

—

—

—

—

—

—

–

1 0 0 i
0 1

2 ´ i
2 0

1
2 0 0 ´ i

2
0 1 i 0
1
2 0 0 ´ i

2

0 ´ 1
2

i
2 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Again, the equation is not consistent block-wise, since XJH4p1qX “ I3 is not consistent (see Theorem 15).

8 Conclusions and open problems

We have provided necessary and sufficient conditions for the matrix equation (1) to be consistent when B is symmetric.
We have also extended the well-known characterization of congruence for two symmetric square matrices of the same
size, to matrices not necessarily having the same size. The characterization for the case when B is symmetric depends
on the CFC of A and B (in particular, CFCpBq “ Im). However, this characterization does not include the case where
CFCpAq contains Type-II blocks of either the form H4p1q or H2p´1q.

As a continuation of this work, the following lines of research arise:

• To obtain necessary and sufficient conditions, like in Theorem 17, for Eq. (1) to be consistent in the case where
B is skew-symmetric.

• To get a characterization for Eq. (1) to be consistent, with B symmetric and A arbitrary (namely, including the
case where its CFC has blocks of the form H4p1q and H2p´1q).

• To obtain necessary and sufficient conditions for Eq. (1) to be consistent when CFC(A) contains only one block,
and B is arbitrary.

• (Quite hard) To get necessary and sufficient conditions for Eq. (1) to be consistent, with A and B arbitrary.

Another natural project that can be addressed consist in analyzing the consistency of Eq. (1) over the real field
(instead of the complex one). That would require to use an appropriate canonical form for congruence over R. Finally,
it also remains as an open problem to address the consistency of the related equation X˚AX “ B, where p¨q˚ denotes
complex conjugation, over the complex field.
Acknowledgments: This work has been partially supported by the Ministerio de Economı́a y Competitividad of Spain
through grant MTM2015-65798-P (F. De Terán), and by the Ministerio de Ciencia, Innovación y Universidades of
Spain through grant MTM2017–90682–REDT.
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