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Abstract. A standard way to solve polynomial eigenvalue probleR(s\)z = 0 is to convert the matrix
polynomial P(\) into a matrix pencil that preserves its elementary divisors and, therefore, its eigenvalues. This
process is known as linearization and is not unique, since there are infinitely many linearizations with widely varying
properties associated witR(\). This freedom has motivated the recent development and analysis of new classes
of linearizations that generalize the classical first and second Frobenius companion forms, with the goals of finding
linearizations that retain whatever structures tRg) might possess and/or of improving numerical properties,
as conditioning or backward errors, with respect the companion forms. In this context, an important new class of
linearizations is what we name generalized Fiedler linearizations, introduced in 2004 by Antoniou and Vologiannidis
as an extension of certain linearizations introduced previously by Fiedler for scalar polynomials. On the other hand,
the mere definition of linearization does not imply the existence of simple relationships between the eigenvectors,
minimal indices, and minimal bases £f\) and those of the linearization. So, given a class of linearizations, to
provide easy recovery procedures for eigenvectors, minimal indices, and minimal ba@2gs)dfom those of the
linearizations is essential for the usefulness of this class. In this paper we develop such recovery procedures for
generalized Fiedler linearizations and pay special attention to structure preserving linearizations inside this class.
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1. Introduction. Throughout this work we consider x n matrix polynomials with
degreek > 2 of the form

(1.1) P(A) =Y XNA;, Ag,... A €F™" A #£0,

whereF is an arbitrary field and is a scalar variable iff. Ann x n polynomial P()\) is
said to besingularif det P()) is identically zero, i.e., if all its coefficients are zero, oth-
erwise it isregular. For regular matrix polynomials, the Polynomial Eigenvalue Problem
(PEP) consists of finding scaladg € F and nonzero vectors andy in F™ satisfying
P(Xo)z = 0 andy”P(\o) = 0. The values\, are known as theigenvaluef P()\)
and the associated nonzero vectorandy” are known agight and left eigenvectors of
P(X), respectively. Along this paper we follow the convention of writing right eigenvec-
tors as column vectors and left eigenvectors as row vectors. A matrix polyndal
may haveinfinite eigenvalues These are the zero eigenvalues of theersalpolynomial
rev P(\) = MP(1/)\) = Zf:o AiAj_;. The PEP problem arises in many applications
[16, 29] and attracts nowadays the attention of many researchers.

In the case of singular matrix polynomials, the above definition of eigenvalue makes no
sense (otherwise, all numberslinwould be eigenvalues aP())), and one has to be more
careful to define eigenvalues [8, Section 2]. In addition, other magnitudes that do not exist for
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regular polynomials are of interest: th@nimal basesandminimal indicesof P(\), which
are relevant in many control problems [13, 25]. A short summary on these concepts can be
found in [8, Section 2].

A standard way to solve the PEP is by using linearizationBndarizationof P(\) is a
matrix pencili’ (\) = AX +Y which isequivalento diag (1,,(x—1), P())) [16]. This means
that there exist twoinimodularmatrix polynomials (that is, matrix polynomials with nonzero
constant determinang) (), V' (\) such that

(1.2) UKV = | e ]

where here and hereafté, denotes then x m identity matrix (,,, wheren x n is the

size of P(\), will be denoted simply by). The linearizationk'(\) is said to bestrongif,
additionally,rev K () is a linearization forev P(\). This notion was introduced in [15] and
named later in [26]. Note that the size of the linearizations in (1.2) is assumed to be exactly
nk x nk. Linearizations with smaller sizes have been considered recently in [3], and their
minimal possible size has been determined in [7]. Some classes of linearizations, among them
the first and second companion forms, are also useful to study singular matrix polynomials,
as has been shown in [8, 9, 31].

The use of linearizations in the PEP is justified by the following two facts. First, all lin-
earizations (resp. strong linearizations)®{f\) have the same finite (resp. finite and infinite)
elementary divisors aB(\), and so the same eigenvalues [14]. Second, since linearizations
transform a PEP into generalized Eigenvalue Proble(GEP), then well established algo-
rithms for the GEP may be used on linearizations both for regular and singular polynomials
[5, 6, 11, 17, 30, 31]. However, note that in the case of a regular polyndn(ig), right and
left eigenvectors of a linearizatioki (A) for a certain eigenvalug, of P(\) have lengtimk,
and they are not eigenvectors®f\), which have length.. As a consequence, it is needed to
know how to recover the eigenvectors®f)) from those ofK'(\) to numerically solve the
whole PEP through the linearizatidi(\). Of course, recovery procedures of eigenvectors
are well known since many years ago for the first and second Frobenius companion forms
[16], which have been the linearizations traditionally used in practice. An analogue discus-
sion to the one for eigenvectors can be made for minimal bases and indices of singular matrix
polynomials.

However, the first and second companion forms are not always satisfactory, and, in par-
ticular, they usually do not share any algebraic structure®a) might have. For example,
if P(\)is symmetric, Hermitian, alternating, or palindromic, then the companion forms will
not retain any of these structures. Consequently, if the companion forms are used to numeri-
cally solve the PEP, then the rounding errors inherent to numerical computations may destroy
qualitative aspects of the spectrum of structured matrix polynomials that appear very often
in applications. This has motivated a recent intense activity towards the development of new
classes of linearizations. Several classes have been introduced for regular matrix polynomials
in [2] and [27], generalizing the Frobenius companion forms in a number of different ways.
Other classes of linearizations were introduced and studied in [1], motivated by the use of
non-monomial bases for the space of polynomials. The extension of all these classes of lin-
earizations to square singular matrix polynomials have been studied in [8, 9]. The numerical
properties of the linearizations in [27] have been analyzed in [18, 19, 21], while the exploita-
tion of these linearizations for the preservation of structure in a variety of contexts has been
developed in [20, 28]. Unfortunately, none of the structure preserving pencils in [20, 27, 28] is
a linearization for singular matrix polynomials [8]. In addition, simple recovery procedures
for the eigenvectors, minimal bases and minimal indice®(X) from the corresponding
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magnitudes of the linearization have been developed for all the classes, except one, of the
linearizations mentioned above [8, 9, 18, 27]. The exception is the class of what we name
generalized Fiedler linearizations, and the development of very easy recovery procedures for
eigenvectors, minimal bases and minimal indice® ©X) from the linearizations in this class

is the main contribution in this workThe interest of generalized Fiedler linearizations is
discussed in the next paragraph.

Two classes of linearizations of matrix polynomials were introduced in [2] and both of
them are extensions of linearizations previously developed by Fiedler for scalar polynomials
in [12]. The first class received the nameFédler linearizationsin [9], and we will refer
to the second class generalized Fiedler linearization®Ve will describe in detail these two
classes in Section 2. The algebraic properties of Fiedler linearizations are well understood [9]
and are excellent: (i) they are constructed, as the classical companion forms, simply by plac-
ing the coefficients of the matrix polynomial together witft — 1) identity blocks in certain
blocks entries and setting the remaining blocks to zero; (ii) they are strong linearizations for
every matrix polynomial, which is in contrast with the pencils introduced in [1, 27] that are
not linearizations for certain regular and singular polynomials; and (iii) eigenvectors, minimal
bases and minimal indices of the polynomial are easily recovered from those of any Fiedler
linearization. However, the class of Fiedler linearizations does not contain pencils that are
symmetric or palindromic wheR () is, respectively, symmetric or palindromic. In contrast,
the wider class of generalized Fiedler linerizations does contain linearizations that preserve
the symmetric structure [2] and the palindromic structure [10], and, moreover, the lineariza-
tions in this class retain the excellent properties of Fiedler linerizations: (i) they are also very
easily constructible from the coefficients of the polynomial, again, in most cases, simply by
placing the coefficients in certain blocks entries (see examples in [2, 10]); and (ii) most of
them are strong linearizations for every matrix polynomial, and for those that do not satisfy
this property, the only polynomials for which they are not linearizations are the ones with
singular leading and/or zero degree coefficients. It should be remarked that for odd degree
matrix polynomials, the structure preserving generalized Fiedler pencils presented in [2, 10]
for symmetric and palindromic polynomials are always strong linearizations, which is again
in contrast with the structured pencils developed in [20, 27, 28] that are not linearizations
for certain regular polynomials and, in fact, are never linearizations for singular polynomials.
All these properties make generalized Fiedler pencils particularly relevant and give, in our
opinion, a strong motivation for obtaining the results presented in this work.

The paper is organized as follows. In Section 2 we revise the families of Fiedler and
generalized Fiedler pencils and establish some of their properties. Section 3 includes the
main results of this work, that is, recovery procedures of the eigenvectors of regular matrix
polynomials from the eigenvectors of any of its generalized Fiedler linearizations. Except
for a few particular pencils, these recovery procedures consist simply in extracting adequate
blocks from the eigenvectors of the linearizations and, therefore, do not require any computa-
tional effort. We consider the recovery of minimal bases and indices of square singular matrix
polynomials in Section 4. Special attention is paid to structure preserving generalized Fiedler
linearizations in Sections 3 and 4. Some conclusions are presented in Section 5.

2. Generalized Fiedler pencils.In this section we recall the families of Fiedler and
generalized Fiedler (GF) pencils of a given matrix polynomial and some of their properties.
These families were introduced in [2] for regular matrix polynomials (without giving them
the names of Fiedler and GF pencils). Fiedler pencils (not GF) of singular polynomials were
studied in [9] together with recovery procedures of eigenvectors, minimal bases and minimal
indices. We also establish in this section the basic Lemma 2.6 that relates both families in
a particular way and is the basis of the recovery results proved in Sections 3 and 4. Finally,
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we briefly recall two types of structure preserving linearizations related to GF pencils: the
symmetric GF pencils introduced in [2] and the palindromic pencils presented in [10].

2.1. The Fiedler pencils. To introduce the Fiedler family of the matrix polynomial
P())in (1.1), we need the following block-partitioned matrices:

(2.1) My, = [ . Loe1pm } , My = { Tty A, ] ;
and

Ih—i—1)n
(2.2) M; = _}4” é L i=1,...k—1.

I(i—l)n

We will often consider these matrices partitioned ihta & blocks of sizen x n, and are the
basic factors used to build the Fiedler pencildgf\). In [2] these pencils are constructed as

)\Mk - MigMil e Mik_17

where(ig, i1 ... ,1x—1) iS any possible permutation of thetuple (0,1,...,k — 1). In order
to better express certain key properties of this permutation, the product bf;tfectors was
indexed in [9] as follows: given any bijection: {0,1,...,k—1} — {1,...,k}, theFiedler
pencil of P(\) associated witly is thenk x nk matrix pencil

(23) Fg()\) = )\Mk - Mo-—l(l) cee Mo-—l(k) .

Note thato (i) describes the position of the factdf; in the productM,—1(yy - - - My—1(1,
i.e.,o(i) = j means thafl/; is the;jth factor in the product.

Fiedler pencils include the first and second companion fornd¥ &, which are, respec-
tiVG'y, AM, — My _1My_o - - MMy andAMk — MoMy -+ My_oM;,_4 [9, P. 2186]

It is obvious to check the commutativity relations

(24) ]\41]\4_7 = MJMl for |7, — j| 7é 1,
which imply that some Fiedler pencils associated with different bijecioase equal.
The M; matrices in (2.2) are always invertible foe= 1,..., k — 1 and the inverses are
I—i—1)n
-1 0 I
(2.5) M, = I A 5
I(i—l)n

which satisfy commutativity relations analogous to (2.4). The same holdﬂfder.

2.2. The generalized Fiedler pencilsWe will use the following notation introduced in
[2,p. 82]: ifE = {i1,...,ip} € {1,...,k — 1} is an ordered set, wheig # i; if j # [,
then we define

(2.6) Mg := My, My, ---M,;, and My := I.

Given four sets of this typ&;, j = 1,2,3,4, such that; N &; = 0 if i # j, andU}_, & =
{1,...,k — 1}, the following pencil was introduced in [2, Corollary 2.4]

(2.7) T(A) =AMz 'MyMg' — Mg, MoMse,.
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We refer to pencils of this type ggoper generalized Fiedler pencits the matrix polynomial
P(X\)in(1.1). Note thaf’(\) is always defined foP(\), even if P(\) is singular. In addition,
T()) is strictly equivalento the Fiedler pencih M, — Mg, Mg, Mo Mg, Mg, (recall that two
pencils K (\) and K5 (\) are strictly equivalent if; (A\) = EKy(\)F, whereE and F'
are nonsingular constant matrices). A particular but interesting family of proper generalized
Fiedler pencils has been presented in [10].

The commutativity relations (2.4) allow us to exprd3s\) in (2.7) in different forms.
In particular, we may shif\/;, to the first position inMglleMgz1 if k—1¢ &, orto
the last one ift — 1 ¢ &,. Analogously, we may shiffi/;, to the first or last position in
Mg, Mo Mg,. To be precise let us assume tigt\) = /\M,cMgllMg;1 — MoMg, Mg,, then,
if Ay and/or A, are nonsingulds we can create the pencile, 'T()\) = AMgllMg; —
M ' Mo Mg, Me,, My 'T(X) = AMy ' MMz Mg — Mg, Mg, and My ' M, ' T(X) =
AMg Mz Mg — M Mg, Mg, (recall thatk > 2 and soM;, and M, commute). All
these pencils are examples of what we galheralized Fiedler pencilsf P(\). Observe that
they are strictly equivalent t&'(\) and to the Fiedler pench M, — Mg, M¢, MoMeg, Mg, .
Some interesting generalized Fiedler pencils have been presented in [2, Theorem 3.1].

In Definition 2.1, we use bijections (as in the case of Fiedler pencils) to make precise the
notion of generalized Fiedler pencils and the subset of proper generalized Fiedler pencils.

DEFINITION 2.1. Let P(\) be the matrix polynomial i{1.1) and let M; for ¢ =
0,1,...,k be the matrices defined {8.1)(2.2). Let{Cy, C;} be a partitiorf of {0, 1, ..., k}
with m; = |C;| for i = 0, 1. Given any pair of bijectiong; : C; — {1,2,...,m;},i = 0,1,
we denotq: = (ug, p1). Then thegeneralized Fiedler (GFencil of P(\) associated withu
is thenk x nk pencilT, (X) := AT}, — T},, with

-M

Bt (ma)

T, —M—l ]\/[—1 1=0,1,

1) @

where the factorﬁA/f are defined, in a different way fér= 0 than fori = 1, as follows
(@) |fz_0andjeCO,thenM M; ' for j = k, andM; = M; for j # k;
(b) if i = 1andj € C, thenM; = Mj, for j = k, and M; = M; 1forg;£k

Note thaty; () describes the position dff; in the producth, _1(1)M Sy MH (ms)*
If 0 € Cy andk € C4, then the pencil’,()) is said to be groper generalized Fiedler

(PGF)pencil of P(\).

It is obvious that any Fiedler pendil, (A) of P()) is a particular case of GF pencil with
Co={0,1,...,k—1},C1 = {k}, po = o andp (k) = 1. We stress the fact that GF pencils
that are not proper are defined only4f, and/orA, are not singular.

It is straightforward to prove that any GF pencil®f)\) is strictly equivalent to a Fiedler
pencil of P(\) by using the commutativity relations (2.4). This fact and Theorem 4.6 in [9]
imply directly the following result.

THEOREM2.2. Let P(\) be ann x n matrix polynomial. Then any generalized Fiedler
pencil of P()\) is a strong linearization foP(\).

Theorem 2.2 holds for singular polynomidk§\), but in this case recall that the only GF
pencils that are defined are the PGF pencils. The fact that they are strong linearizations for
any square matrix polynomial makes PGF pencils the most interesting class of GF pencils.

INote thatd, and Ay are necessarily singular () is singular, and that they can be singular eveR(#) is
regular.
2We admitC; = @, with T,,; = I,,;, in this case.
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2.3. Consecutions and inversionsThe commutativity relations (2.4) and the results
in [9] suggest that the relative positions of factd?é and J\A/fjﬂ in the productsT},, and
T,, defining a GF pencil are of fundamental interest in studying GF pencils. This motivates
Definition 2.3 that is related to Definition 3.3 in [9].

DEFINITION 2.3. Let{Cy, C4 } be a partition of{0, 1, ..., k} withm; = |C;|fori = 0,1,
and lety; : C; — {1,2,...,m;},i = 0,1, be a pair of bijections.

(a) We say thay; has aconsecutiorat j if {j,7+ 1} C C;andp;(j) < (5 +1). We

say thatu; has aninversionat j if {j,7 + 1} C C; andu;(j) > u;(j + 1).

(b) We say thaj; hasc; (resp.i;) consecutiongresp. inversionsat j if ;; has conse-
cutions(resp. inversiongatj,j+1,...,7+¢; —1(resp. atj,j+1,...,7+i; — 1)
and it has not a consecutigresp. inversiopat j + ¢; (resp.j + i;).

(c) We say thatu; hascy (resp. iy) final consecutiongresp. inversiongif p; has
consecutiongresp. inversiongat k — ¢y, k —cy +1,...,k — 2,k — 1 (resp. at
k—ifk—ir+1,...,k— 2,k — 1) and it has not a consecutidresp. inversioh
atk —cy — 1 (resp.k —iy — 1).

REMARK 2.4. The following remarks will be often used in the rest of the paper.

(a) Fori =0, 1, the bijectiony; in Definition 2.1 has a consecution (resp. inversion) at
jifand only |fM and MJH are both factors of the product definifig,, and M
is to the left (resp. right) oM, 41 I TML

(b) Given a GF pencill,,(\) = \T,,, — T, the commutativity relation&.4) may
allow us to change the order of the factd% inT,, andT),,. The new order will
be related to a pair of bijections’ = (u, 1)) such thaty’ # pandT), () =
T,(X\). However, the use of the commutativity relatiq@s4) cannot change the
relative positions oM and MJH, and so, fori = 0, 1, u; has a consecutiofresp.
inversion at 5 if and only if1; has a consecutiofresp. inversiohat j.

(c) In[9, Definition 3.3] the quantities; andi, are defined for the bijection defining
the Fiedler pencilF,, (\). In the case of Fiedler pencils, we know tlat= 1, and
it is obvious to see that if hascy, consecutions af, thencg = ¢;. However, we
stress that ifc hasiy inversions at), theniy # 4, in general, but thaiy = i, if
Cp =C1 = 0.

2.4. Fundamental lemma. There may be more than one Fiedler pencil strictly equiv-
alent to a given GF pencil. Moreover, the Fiedler pencils strictly equivalent to a GF pencil
may have quite different structures. Let us illustrate this fact with an example.

ExAMPLE 2.5. Let the degree of the polynomi&(\) in (1.1)be k = 5. Consider the
PGF pencil ofP(\)

Tu(N) = AMs My "M — MoMyMy = AM; Mz My ' — My My My,

where the last equality follows fro(@.4). Thereforel, (1)) is strictly equivalent to the Fiedler
pencil

Fo(X) =T, (A) M M3 = AMs — MoMoMy M Ms,
and also strictly equivalent to the Fiedler pencil
F,/(\) = M T,,(\) M3 = A\Ms5 — My MMy M4 Ms.

The reader is invited to check by direct multiplication that(\) is quite different than
F,/(\). Observe in addition that, with the notation of Definition 2.4, has0 consecu-
tions at0, o has1 consecution af, ando’ has0 consecutions &. In plain words,F, (\)
preserves the consecutionsbadf 7),,, but F;, () does not.
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Our goal in this section is to prove in Lemma 2.6 below that any PGF p&p¢il) of
P(X) in (1.1) is strictly equivalent to a Fiedler pencil that preserves the consecutioref at
1o, except in the following very particular cases
(2.8) To(A) = AMp Mty - ML — MoM;y -+ M,
wherecy € {0,1, ...,k — 2}. Note that in (2.8) the pair of bijections= (o, 71) is defined
by

(2.9) (751 (1), 757 12), 7o Mo + 1)) = (0,1,..., o),
(2.10) (7 (), N 2), s (E—0)) = (kb —1,...,¢c0 + 1).

LEMMA 2.6. Let P()\) be the matrix polynomial if1.1) and let7),()\) be the PGF
pencil of P(\) associated with the pair of bijections= (1, p1). If uo hascy consecutions
at0 and(uo, 1) # (70, 71), Wherery andr; are defined in(2.9)(2.10) then there exist two
ordered subset§; and&; of {1,...,k — 1} such that

(@) co ¢ & andey + 1 ¢ & and,

(b) Fy(X) = Mg, T,,(\) Mg, is a Fiedler pencil ofP(\) associated with a bijection

that hascy consecutions ai.

Proof. If T),()\) is a Fiedler pencil ofP(\), then the result follows trivially by taking
& = & = 0, becauseVlg, = Mg, = I, by (2.6). Therefore, we will assume in the
rest of the proof thafl),(\) = AT, — T, is not a Fiedler pencil. Recall that the fact
thatuy : Co — {1,2,...,mp} hascy consecutions at implies that{0, 1,...,co} € Cy,
or, equivalently, that\ly, M, ..., M., are among the factors of the product definifig
(moreover in this precise relative order). As a consequeancs, k — 2, because otherwise
the pencil would be a Fiedler pencil. We will separate the proof in three cases.

Case 1l:¢g + 1 € Cy. ThenhM,, 4, is to the left of M, in the product defining’,,,
because otherwisg, would have more thaty consecutions di. Therefore,

Tu(A\) = AMg MMz =Ty,

wherecy ¢ & andcy + 1 ¢ &, and{&;, &y, Cop} is a partition of{0,1,...,k — 1}. Then
Fy(X) = Mg, T,,(\) Mg, = AMy, — Mg, T,,, Mg, is a Fiedler pencil of?(\) ando hasc
consecutions di, because these consecutions are determined only by the facs in

Case 2:cop + 1 € Cy anduy(co + 1) < pi(k). This last condition is equivalent to say
thatMc;}H is to the left of M, in the product defining’,, . Therefore,

(2.11) T, () = AMg MMz —T,,,

whereco+1 € &1, ¢g ¢ E2andeg+1 ¢ &, and{&1, &2, Cy} is a partition of{0, 1, ..., k—1}.
ThenF,(\) = Mg, T),(X\) Mg, = XMy, — Mg, T,,, Mg, is a Fiedler pencil of?(\) ando
hascy consecutions &, because these consecutions are determined only by the factors in
T,, and the fact thad/., 1, is a factor ofM¢, , soo has an inversion at.

Case 3:cp + 1 € Cy andpuq (k) < pi(co + 1). This last condition is equivalent to say
thatMczﬁr1 is to the right ofM}, in the product defining,, . Therefore,

T,(\) = )\MgileMg; — T,
wherecy ¢ &} butcy + 1 € &, and{&7,&5,Co} is a partition of{0,1,...,k — 1}. Our
strategy consists in using the commutativity relations (2.4) to rearrange the order of the factors
definingT},, and shiftMc‘Oﬁrl to the left of M. To this purpose let > 0 be the integer such
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thatu; hasinversionsay+1,¢o+2,...,¢o+s, butnotaty+1+s. Note thatg+1+s < k,
because otherwise the pentj)(\) must be
(2.12) MMMt - ML — MMy - M,

co+1 €0
which is not possible becaus$gg, 111) # (70, 71). The commutativity relations (2.4) allow
us to shiftin7},, the factorsM_ 1 ,, M ,...., M. tothe left and group together

—1._ ar—1 —1 ~1 -1
Mg =My g Mo M oM .

It may happen that in this shifting proce&éjﬂﬁrl moves to the left of\/;, then
(2.13) Tm:"'Mglkam,
or thatMc;}r1 stays to the right of\/, then

(2.14) Ty = My Mgt

M1

In the scenario (2.14), + 1 + s < k — 1 (otherwise the pencil must be (2.12), which is
not possible) and\/[c;}FQJrS is not between/,, andMBT1 (sincep; has not an inversion at

¢ + 1+ s). Therefore, the relations (2.4) allow us to wrig, in (2.14) as in (2.13). Thus,

in any situation;, (\) can be written in turn as in (2.11) and we obtain the result proceeding
asinCase 20

2.5. Symmetric GF pencils.In [2, Theorem 3.1] two particular GF pencils Bf\) in
(1.1) were considered. These GF pencils have the key property of being symmetr) is
symmetric, that is, ifA7 = A, fori = {0, 1, ..., k}. These GF pencils are defined as follows

MMM, Y- My P MY — MMy -+ My_3My—q,  ifkis odd
(215) SN = LMl M M - MMy - My oML, ifki
k—1"k—3"" "3 1 04Vl -+ k—2M, ~, ITKISeven.

Note thatS()) is a PGF pencil if the degréeis odd. In addition, the pencils in (2.15) have
a simple block-tridiagonal structure.

2.6. Palindromic linearizations based on PGF pencilsThe matrix polynomialP()\)
in (1.1) is said to bgalindromic[28] if AT = A;_, fori =0,1,...,k, orin other words if
rev P(\) = P(\)T . Palindromic polynomials arise in a number of application areas and are
receiving considerable attention in the last years [4, 22, 23, 24, 28, 32]. As far as we know,
GF pencils of P()\) that are palindromic whe?(\) is palindromic have not been found.
However, a family of linearizations with this property has been introduced in [10] for odd
degree matrix polynomials. The pencils in this family are obtained by multiplying by two
constant simple matrices the following PGF pencils.

DEFINITION 2.7. [10] (Admissible index set and associated pendis) P()\) be the
matrix polynomial in(1.1) with odd degreek and leth := (k 4+ 1)/2. A subset with
element’y = {j1,...,jn} C {0,1, ...,k — 1} is said to be aradmissible index sef
0€ CoandCy N {k—ji,...,k — ju} = 0. Given any bijectiomy : Cy — {1,2,...,h},
the pencil ofP(\) associated witlCy and 1 is thenk x nk pencil

(2.16) Ly () i= AMy s =+ My o My sy = M1 M,

Moy Moo

(h)’
Whereﬁj are the matrices defined in part (b) of Definition 2.1.

If Cy := {k —j1,...,k — jn} and we define the bijection : C; — {1,2,...,h} as
(7 (), N2), N (R)) = (k=15 MR, k=15 N(2),k — 75 *(1)), then observe
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that (2.16) is the PGF pencil associated with the pair of bijectiegsr). As explained
in [10], admissible index sets are easy to construct: simply take exactly one element from
{j,k—j}foreachj =1,2,...,(k —1)/2, and then add.

We still need another two matrices to construct the linearizations presented in [10]. One
is thek x k block reverse identity matri® € F***"* defined as

-

The other one is & x k block-diagonal matrixs € F"**"¥ whosen x n diagonal blocks are

(2.17) R:=

7o has an inversion at— 1, or
A if 7o has a consecution &t— i, or
(2.18) 5(i,1) = i€Coandi—1¢Cy
I otherwise

It was proved in [10, Theorem 4.7] that the per€il R - L, () is a strong linearization of

P()) which is palindromic wheneveP()) is palindromic. Although the definition of these
pencils seems complicated, they are very easy to construct and some of them have a simple
block anti-tridiagonal structure. See examples in [10].

3. Recovery of eigenvectors of regular matrix polynomials from GF pencils.This
section includes the two main results in this paper: the recovery of eigenvectors correspond-
ing to a finite eigenvalue of a regular matrix polynomial from the eigenvectors of any of
its GF pencils (Theorem 3.2), and the recovery of eigenvectors corresponding to the infinite
eigenvalue (Theorem 3.4). As corollaries of these results we present eigenvector recovery
procedures from the structure preserving linearizations discussed in Sections 2.5 and 2.6.

Instead of dealing with individual eigenvectors, we will consider the general problem of
the recovery of bases of the right and left eigenspaces for an eigenyaddi@ regular matrix
polynomial P(\). These eigenspaces are the right and left null spacs$Xxy), i.e.,

N (P(Xo)) == {z € F*" : P(X\o)z =0},
Ne(P(Xo)) := {y" € F™ : y"P(Xg) =07} .

The key ideas behind the recovery results we present are very simple. First, consider two
nk x nk linearizationsL(\) and K (\) of a regular matrix polynomiaP () that arestrictly
equivalenti.e, L(\) = UK (\)V whereU, V € F*¥*"F gre nonsingular constant matrices.
Assume that\y € F is a finite eigenvalue oP()\) (and so also of.(\) and K ())). Itis
straightforward to prove that the right eigenspace& ©f) and K (\) for )\, are related by
the following isomorphism

Ne(L(Xo)) — Ni(K(M))

T — V.x

(3.1)

Second, recall that almost any PGF pefiGi(A) of P()\) is strictly equivalent to a particular
Fiedler pencilF,(A) of P(\) (see Lemma 2.6) and that it is known how to recover very
easily the eigenvectors dP(\) with eigenvalue), from the eigenvectors of, () with
eigenvalue\, (see [9, Corollary 7.1]). Then, the specific isomorphism betw€gf¥},(\o))
andN,.(F, (o)) will allow us to recover also very easily the eigenvector’¢h) from the
eigenvectors of, (). The recovery results for GF pencils that are not proper will require a
little bit of extra work, and we need to distinguish in Theorem 3.2 if the md?ﬁipds a factor

of the one or the zero degree coefficient of the GF pencil.
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REMARK 3.1. We warn the reader that the situations covered in p&®), (b2), (c2),
(d2), (e2)and (f2) of Theorem 3.2 correspond to very particular pencils that, as far as we
know, are not used in any application. For instance:

(a2) corresponds only to the pencil,,;, — MoM; - - - My, M, *;

(b2) corresponds to the penciDsMig1 e MM = My gy My M for iy =

0,1,...,k—1;and

(c2) corresponds only to the pencilf, M, !, --- M7 My — Iy,
These cases are included in Theorem 3.2 for completeness, and note that for them the recovery
of eigenvectors is more complicated than for the rest of GF pencils.

THEOREM 3.2 (eigenvector recovery from generalized Fiedler pencils Let P(\) =
Zf:o A A; be ann x n regular matrix polynomial with degree > 2, and letT},(\) =
T, — T,, be the GF pencil of?()\) associated with the pair of bijections = (o, 111),
wherey; : C; — {1,...,m;}, i =0, 1. Let), be afinite eigenvalue d?(\).

Right eigenvectors Let {z1,...,2,} C F"**1 be a basis of\,.(T,()\o)), partition the
vectorsz; € F***1 ask x 1 block vectors with: x 1 blocks, denote by](q) € F*x! the gth
block ofz;, and assume that, hasc; consecutions af and; hasi’ inversions ay.

(a) Suppos® € Cy:

@1) If ¢o < k, then{z{*) 201 is a basis of\, (P(\o)).
Note that all PGF pencils are included in part (al).
(@2) If ¢ = k, then{A; 1 2V .. 471 2{V is a basis ofV,.(P(\)).
Part (a) includes all GF pencils that have been used so far in applications.

(b) Supposé® <€ C; andij + 1 € Cy:

(b1) If s =1i5+cy 1 +1 <k, then{z\*= .. 2"} is a basis of\,(P()o)).

(b2) If if+cyp 11 +1 =k, then{A; 12V ..., A7t 257} is a basis ofV;.(P()).

(c) Suppose € 01 andij + 1 ¢ Cy:

(c1) If iy <k, then{z(k”é), z,()kfi(‘)} is a basis of\V;.(P(\o)).

(c2) If iy = k, then{A; " 251)7”_ At zp )} is a basis of\,.(P())).
Left eigenvectors Let {w{,...,w]} C F'*"* be a basis of\;(T,.(\o)), partition the
vectorsw? € F'*"* as1 x k block vectors with x n blocks, denote bjw?)(@ € F1*" the
gth block ofw;fr, and assume that, hasi; inversions aj andp; hasc’; consecutions af.

(d) Suppose € Cy:

(d1) If ig < k, then{(w]) =) . (wI)(F=1)} is a basis of\; (P (o).
Note that all PGF pencils are included in part (d1).
(d2) If ig = k, then{(w])®M A", ..., (wD)D) A; '} is a basis ofVy(P(Ao)).
Part (d) includes all GF pencﬂs that have been used so far in applications.
(e) Suppos® € C; andc| + 1 € Cy:

€ If s =cj+igs1+1 <k then{(w])*=) . (wl)k=*)} is a basis of
Ne(P(Xo)).
€2 If ¢ +ivq +1 =k, then{(wD)M A1 ... (wl)® A1V is a basis of
0 ot 1 k P k
Ne(P(Xo)).-

4] Supposé) e Crandey + 1 ¢ Cp:
(f1) If ¢j <k, then{(w])*=<0) . (wD)*=%)} is a basis ofVy (P(Ao)).
(f2) If ¢ =k, then{(w])™ A,; Lo (wD)® A} is a basis 0fVi(P(Ao)).

Proof. Part (al)for PGF pencils.This is the key result. The rest of the theorem follows
easily from it. Note that PGF pencils have less than 1 factors); in the product defining

T,,, because\l,, is a factor ofT}, , so necessarily, < k. Assume first that: # 7, where
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the pair of bijections- was defined in (2.9)-(2.10), and 1€} (\) = Mg, T,,(\) Mg, be the
Fiedler pencil in part (b) of Lemma 2.6. This means thdtascy consecutions d. Then
x — Mg,z is an isomorphism fromV,.(F, (Ao)) to N, (T,,(Xo)), which means that

(3.2) {#z1,...,2p} = {Mg,v1,..., Mg,vp,},

for some basiqvy,...,v,} C F***! of A,.(F,(\g)). From [9, Corollary 7.1], we know
that{v%k_“"), . ,vz(,k_c‘])} C F»*!is a basis ofV,.(P(\o)). The result follows by noting
that{z\*70) . {70y = fulk=eo) (k=) ‘hecaus@le, = M;, M;, ... M;, with
ij # <o, i # ¢o + 1, which implies that all these factor®/;, havel at block entry(k —
co, k — ¢o) when they are partitioned into x & blocks of sizen x n.

Assume next that = 7 and define in this situatioMg, := M. 11 Mcy12... Mi_1.
Then, according to (2.8),

(3.3) TT()\)Mgz =AM, — Mo My -+ Mp_1 =: FU/(/\),

where the Fiedler pencit, () is such that’ hask — 1 consecutions &l (in fact, Fi,- ()
is the second companion form 8 \)). The same argument as above shows that the relation
(3.2) holds for some basig, . ..,v,} C F***1 of N,.(F,/()\o)). Use again [9, Corollary

7.1], to prove tha{vgl), . ,vz(,l)} C F»*! is a basis of\,.(P(\g)). The result follows from
noting that

Ay I ... 0 0

A 0 . 0 0
(3.4) Mg, = ; ; 0 :

) I

1 0 0
L ICOTL .

which implies that{z\* ) . zF~y = () 4fY}. This completes the proof for
PGF pencils.

Part (al)for GF pencils.It only remains to prove the resultTf, () is not a PGF pencil.
This happens wheh € Cjy. The commutativity relations (2.4) and the fact thgthascg
consecutions dt allow us to shiftMy, M, ... M., to the right and write

Ty = He(MoM; --- M.,),

whereH, is a product of a certain set af/; factors § # 0,5 # k) andM,;l. ThereforeH,
is a nonsingular matrix. Observe th8p (\) := H, * T,,()\) is a PGF pencil such that, has
¢p consecutions at zero and that, according to ()7, (X)) = N, (T.(Ao)). The result
follows from applying (al) to the PGF pendi),s ().

Part (a2) . The conditior, = k determines that

T(\) = My — MoM; My - -+ My M, "

Observe thal,/ (\) = AT}, =T, := T,,(A\) My is a Fiedler pencil (so PGF) such théthas
k — 1 consecutions dt and that, according to (3.19z/ ..., 2} == {M; '21,..., M, ' 2,}
is a basis ofV;.(T}/(\o)). Part (al) applied o,/ () implies that{(z)", ..., (z,)V} =

(A7 20 AT 28D is a basis ofV, (P())) (recall (2.1)).
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Part (b). In this situationMJ1 is a factor in the product definirif,, . The commutativity
relations (2.4) and the fact that hasig inversions a0 allow us to shiftMy *, My", ... M,
to the left and write

Ty, = (MlglMl_lMo_l) :

Then the pencil}, (\) = AT}, =T}, == (MoM --- My, )T,.()) is a GF pencil that satisfies:
(i) My and]\A/fi&H are factors off,, ; (ii) the bijectionu( hass = ig+ci6+1+1 consecutions at
0, becauseVly M, - - - M;, are the first factors df,; ; and (i) NV, (T).r (Mo)) = No(Tp(No))
by (3.1), since(MoM; - -- M;, ) is invertible. The result follows from applying part (a) to
T (V).

' Part (c). We follow the proof of part (b) to construct the GF perigjl (\) = AT, —
Ty = (MoMy - - My, )T, (N), but nowT),, (A) satisfies: ()Mo is a factor of7,, butZ\ZHl
is not; (ii) the bijectiorny, hasif, consecutions at; and (iii) ;. (7,s (Ao)) = N:(T,.(X\o)) by
(3.1). The result follows again from applying part (a)fip (A).

Proof of the recovery of left eigenvectofdote that for any matrix polynomiad () (of

any size) and for any,, the mapping:? +— z establishes an isomorphism froky (Q(\o))
to M- (Q(Xo)™). Then,{w{,...,wl} c F**"* is a basis of\;(T,.(\o)) if and only if
{wy,...,w,} C F***1is a basis of\,.(T,,(A\o)T). In addition,},(A\)T is a GF pencil of
P(\)T, as a consequence of the structure onblﬁfeande‘1 matrices defined in (2.1), (2.2)
and (2.5). Note also that the action of taking transposes reverses the order of the factors of
a product, so ifu’ is the pair of bijections corresponding T, (\)” viewed as a GF pencil
for P(A\)T (symbolically,7,,, (P*)()\) := T,,(\)7), then, fori = 0,1, u} has a consecution
(resp. inversion) aj if and only if 1; has an inversion (resp. consecution)jatFinally,
the result follows from applying the recovery of bases of right eigenspaces to get a basis of
N(P(Xo)T) from the basigwy, ..., w,} C F""*1 of N,(T,,(A\o)T). 0

We illustrate with a couple of examples the utter simplicity of the "recipes" for recovering
eigenvectors given in Theorem 3.2. For brevity, we focus on right eigenvectors.
ExamMPLE 3.3. Consider the following GF pencils @f()) in (1.1) with degreek = 6:

(3.5) T,(\) = AM; ' MgM3 ' — MyMoMoM;,
(3.6) T (N\) =AM " MMyt — MyMsMyMs,

and let\, be a finite eigenvalue d?(\). For dealing with the first pencil, (\), we use part
(a) of Theorem 3.2 and observe thgt= 1 in this case. So, ifz1,...,2,} C FO"*lisa
basis ofN,.(T},(Ao)), then{z\", ... z{"} c F"*1 is a basis of\V,.(P(Ao)).

For dealing with the second pendi},/ (\), we use partb) of Theorem 3.2, sincg = 1
and M is a factor of7),,. Observe that; = 1, soij + ¢y 1 +1 = 3. Therefore, if

{v1,...,v,} CFS"*1is a basis ofV,.(T, (Ao)), then{v{® ... v’} c F**! is a basis of

Next, we consider the recovery of left and right eigenvectors corresponding to the eigen-
valueoo from GF pencils. This is simpler than the recovery for finite eigenvalues, because
if P(\)in (1.1) has the eigenvalu®, then Ay, is singular. This limits the set of GF pencils
for P()\), sinceM;, has to be necessarily a factor of the first degree term of the GF pencil.
To understand whyl,, is singular, recall thaP’(\) has an infinite eigenvalue if and only if
rev P(X) has the eigenvalu@, and that the right and left eigenspacesxabf P(\) are the
right and left eigenspaces ofv P(\) for the eigenvalud), that is, the right and left null
spaces of the matrivev P(0) = Ay.
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THEOREM 3.4 (eigenvector recovery atoo from generalized Fiedler pencilg. Let
P = Zf:o M'A; be ann x n regular matrix polynomial with degreg > 2, and let
T,(\) = AT, — T,, be the GF pencil of?(\) associated with the pair of bijections =
(to, p1). Supposex is an eigenvalue oP()), and assume that; hasc; andi; final
consecutions and inversions, respectively.

Right eigenvectors atoo: Let {z1,...,2,} C F"**! be a basis of the right eigenspace of
T,.(\) at oo, partition the vectors; € F"**! ask x 1 block vectors wit x 1 blocks, and
denote byzj(,‘” € F™*! the gth block ot;.

@) If iy < &, then{z"V "Y1 is a basis of the right eigenspace Bf\) at

oo. Note that all PGF pencils are included in part (a).
(b) If if =k, then{A;"' z¥ .. A5'2{¥}is a basis of the right eigenspace Bf\)
at oco.
Left eigenvectors atoo: Let{w{,...,wl} c F'*"* be a basis of the left eigenspace of
T,.(\) at oo, partition the vectorsy] € F1*7k as1 x k block vectors witd x n blocks, and
denote byw?)(@) € F'*" the gth block ofv? .
(©) If ¢y <k, then{(w])r D . (wl)(s+D} is a basis of the left eigenspace of
P()\) atoo. Note that all PGF pencils are included in part (c).

() If ¢y =k, then{(w])® AF", ... (w])*) A7"} is a basis of the left eigenspace

of P()\) at co.

Proof. Part(a). Note that{z, ..., z,} C F***1isabasis oV, (rev T}, (0)) = N, (T}, ).
The relations (2.4) and the fact that hasi final inversions allow us to write

Ty, = HZMkMk_—ll o 'Mk_—lifv
whereH, is a product of a certain set (Mj‘l factors. Thereford, is a nonsingular matrix
and ;. (rev T,,(0)) = No(T,,) = No (Mg M, --- M, ). Note that ifiy < , then

0 -+ - 0 Ay §
I -+ o 0 Ap
(37) MkM];le];jlf = 0 Ak—if-‘rl
I Ay,
I 0
L 0 - I |

Observe that the first block dfV, M, ", - -~M,;_1if) zj = 01is Akzj(if+1) =0, forj =
i+1)

1,...,p. This means tha{tz§ e ,zz(,ierl)} is contained in the right eigenspaceff))

at oo, i.e., N;.(Ax), but not yet that it is basis. To prove that it is a basis, note first that
dim N, (rev P(0)) = dim N, (revT),(0)), sinceT),()) is a strong linearization faP()), so

we only have to prove tha[tz:(L'f“), e zzgl-f“)} is a linearly independent set. We proceed

by contradiction: assume that it is linearly dependent, then there exists a nonzero vector

z € Frxtsuchthaf 2\ TV) - 1257 | 2 = 0. Thenthe vecton = [z - -- |z Jx € Fkx1
satisfies: (v # 0, since{z,...,z,} are linearly independent; (i) = 0; and (jii)
(MpM* - M,;_lif) v = 0. But (ii), (i) and (3.7) implyv = 0, which is in contradiction

with (i). Therefore{z{¥ " .. 2"} is a linearly independent set.
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Part (b). It is similar to the proof of part (a). Simply note thatiif = &, thenT},,
MM - M7 Myt and

0 o e fAkAal

—1 —1p/-1 —Apa Ay’
MMy M7 M = | | :

0 - I A

Thus, the first block of MM, ", --- MMy ') z; = 0'is Ak(Ao_l)zgk) =0, forj =
1,...,p. This means tha{Agle“), cee Aglz},’“)} is contained in the right eigenspace of
P()\) atoo, i.e., N,.(A4x). The proof that it is a basis is essentially the same as the one in part
(a) and is omitted.

Parts(c) and(d). As in the proof of Theorem 3.2, the recovery of left eigenvectorsat
follows from the recovery of right eigenvectorsaatfrom the GF pencil,(\)”. The idea is
the same as in Theorem 3.2 and we invite the reader to complete the détails.

We illustrate the recovery of right eigenvectorsatwith a couple of examples.

EXAMPLE 3.5. LetT), () be the GF pencil ir(3.5), theniy = 1. So, if{z1,...,2,} C
Fr#*1 is a basis of the right eigenspace Bf()) at oo, then{z{* ... 2{?} c F"*lisa
basis of the right eigenspace Bf\) at co.

Let7,,(\) be the GF pencil ir{3.6), theni; = 0. So, if{21,...,2,} C F"**!is a basis
of the right eigenspace @,/ (\) at oo, then{zﬁ”, e z,(,l)} c F**1 is a basis of the right
eigenspace aP(\) at co.

3.1. Recovery of eigenvectors from structure preserving linearizationsTheorems
3.2 and 3.4 lead to very simple eigenvector recovery “recipes” if they are applied to the
linearizations presented in Subsection 2.5.

COROLLARY 3.6 (eigenvector recovery from symmetric GF linearization3. Let
P(X) be ann x n regular matrix polynomial with degreg > 2 and letS(\) be the GF
linearization of P(\) defined in (2.15). Lek, be an eigenvalue dP()\) that may be finite or
infinite. Observe that iky = co andk is even, therb () is not defined.

Right eigenvectors Let{z1, ..., z,} C F"**! be a basis of the right eigenspace\) for
the eigenvalug\,, partition the vectors; € F"**! ask x 1 block vectors witt x 1 blocks,
and denote byj(.q) € F**! the gth block of;.

(@) If o is finite, then{zi’“), e zf,’“)} is a basis of the right eigenspace®B{)\) for \o.

(b) If Ao = o0, then{z{", ... 2{"} is a basis of the right eigenspaceBf)) at cc.
Left eigenvectors Let{w{,...,wl'} C F**"* be a basis of the left eigenspaceXf\) for
the eigenvalue,, partition the vectorsy] € F'*"* as1 x k block vectors with x n blocks,
and denote byw?)(@) € F**" the gth block ofv!".

() If Xo is finite, then{(w)®), ... (wl)#)} is a basis of the left eigenspacef))

for \o.
(d) If Ao = oo, then{(w])®, ..., (w])V} is a basis of the left eigenspacef)) at
Q.

Proof. The matrixM, is a factor of the zero degree term 8f\). So the recovery of
eigenvectors corresponding to finite eigenvalues is given by parts (a) and (d) of Theorem 3.2.
In addition, the magnitudes andiy in Theorem 3.2 arey = iy = 0 for S(\), which implies
parts (a) and (c). IA; = oo, then the magnitudes andi; in Theorem 3.4 arey =iy =0,
which implies parts (b) and (d)l
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REMARK 3.7. We know that the linearizatiof(\) in (2.15)is symmetric ifP(\) is
symmetric. In addition, left eigenvectors of any symmetric polynomial are the transpose
of the corresponding right eigenvectors. Therefore, for symmetric matrix polynomials, it is
only needed to recover right eigenvectors. Recall, however,Sba} is a linearization for
arbitrary matrix polynomialsP(\). For this reason, we present in Corollary 3.6 recovery
procedures both for left and right eigenvectors.

Theorems 3.2 and 3.4 also lead to simple eigenvector recovery procedures from the lin-
earizations presented in Subsection 2.6.

COROLLARY 3.8 (eigenvector recovery from palindromic linearizations based on
PGF pencilg. Let P(\) be ann x n regular matrix polynomial with odd degrde> 3, let S
and R be the matrices defined (@.18)and(2.17) and letL, (\) be the PGF pencil oP())
defined in(2.16) Suppose that the bijectia hascy andiy consecutions and inversions at
0, respectively. Lek, be an eigenvalue dP()\) that may be finite or infinite.

Right eigenvectors Let{z1, ..., z,} C F"**1 be a basis of the right eigenspace® L, (\)
for the eigenvalue\y, partition the vectors;; € F***1 ask x 1 block vectors with x 1

blocks, and denote b@éq) € F**! the gth block of;.

(@) If \g is finite, fhen{zf““, el z,(,k_“))} is a basis of the right eigenspace Bf\)
for \g.
(b) If Ao = oo, then{z{"™ . 2§} is a basis of the right eigenspace Bf) at
Q.
Lefteigenvectors Let{w{,...,wl} C F*"* be abasis of the left eigenspacesat L, (\)

for the eigenvalue\,, partition the vectorsy] € F!'*"* as1 x k block vectors with. x n
blocks, and denote big?)(@ € F'*™ the qth block ofv?".

() If X is finite, then{ (w]) otV . (wl) (o1} is a basis of the left eigenspace of
P(X) for X.

(d) If Ao = oo, then{(w])*=<0) . (wl')(*=<0)} is a basis of the left eigenspace of
P(\) atoo.

Proof. The right eigenspace &§RL.,(\) corresponding to\, is equal to the right
eigenspace of the PGF penéi}, (A) corresponding td\y. So parts (a) and (b) follow from
applying Theorem 3.1-(al) and Theorem 3.4-(a) to the PGF péngil\). The applica-
tion of Theorem 3.4-(a) is particularly simple in this case, because, as we explained in Sub-
section 2.6,L,, () is the PGF pencil associated with the pair of bijectiéng 1), where
(7 (), N 2), N (R)) = (k=1 MR,k — 15N (2), k — 75 H(1)). Therefore,

71 hascy (resp. if) final consecutions (resp. inversions) if and onlyjfhascy (resp. ip)
consecutions (resp. inversions)(at Before proving this property, we invite the reader to
consider, fork = 5, the example.,, (\) = A\M; * M, " M5 — Mo M, M.

For the left eigenspaces, note thdt — 37 SR establishes an isomorphism from the
left eigenspace o6 RL., () corresponding to\, to the left eigenspace of the PGF pencil
L., () corresponding td,. Therefore{w{ S R,...,w]'S R} C F**"* is a basis of the left
eigenspace of ., (\) for the eigenvalue\,. Equations (2.17) and (2.18) give the following
relationships between blockgw! S R)(@ = +(w!)=at1) for j = 1,...,pandq =
1,...,k. Use these relationships, apply Theorem 3.1-(d1) and Theorem 3.4-[g) (t®),
and get parts (c) and (d) of Corollary 3[8.

REMARK 3.9. We know that the linearizatiofiR L., (\) is palindromic if P(\) is palin-
dromic. In addition, left eigenvectors of an eigenvahgeof any palindromic polynomial are
the transpose of the right eigenvectors for the eigenvajue. Therefore, for palindromic
matrix polynomials, it is only needed to recover right eigenvectors. Recall, however, that
SRL.,()) is a linearization for arbitrary matrix polynomial®(\). For this reason, we
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present in Corollary 3.8 recovery procedures both for left and right eigenvectors.

4. Recovery of minimal bases and minimal indices of singular matrix polynomials
from PGF pencils. In this section we consider squasimgular matrix polynomials, that is,
matrix polynomialsP(\) such that all the coefficients dét P(\) as a scalar polynomial ik
are zero. We focus on the recovery of the minimal bases and indid@s\gfrom those of its
PGF pencils. We explained in Section 2 that PGF are the only GF pencils defined for singular
polynomials, and this fact makes very simple the recovery of minimal bases. Minimal bases
and indices are magnitudes of fundamental importance in different control problems [13].
Next, we briefly recall their definitions. The reader may found a more complete summary in
[8].

LetF(\) denote the field of rational functions with coefficientsfinAn n x n singular
matrix polynomialP(\) hasleft andright nullspaceghat arelf (\)-vector spaces. These are,
respectively,

N(P) == {yN)T e FO)™™ = y(N)TP(N) =0T},
N (P) = {z(X) e F(N)™! : P(A\)z(N) =0} .

A left (resp. right) minimal basis ofP()) is a basis ofNV,(P) (resp. N,.(P)) consisting

of vectors polynomials, i.e., vectors with polynomial entries, and such that the sum of the
degrees of the vectors in this basis is minimal among all polynomial bas¥s(éf) (resp.
N.-(P)) [13]. It can be shown [13] that the ordered list of degrees of the vectors in any left
(resp. right) minimal basis dP()) is always the same. These degrees are then callddfthe
(resp. right) minimal indicesf P(\).

Minimal bases ofP(\) can be recovered from minimal bases of any of its PGF pencils
as explained in Theorem 4.1.

THEOREM4.1 (recovery of minimal bases from PGF pencily. Let P(\) be ann x n
singular matrix polynomial with degreke > 2 and let7,,(\) = AT, — T, be the PGF
pencil of P(\) associated with the pair of bijections = (uo, n1). Assume that hascg
andiy consecutions and inversions@trespectively.

Right minimal bases Let {z1(\),...,z,(A)} C F(A\)"**! be a right minimal basis of
T,.(\), partition the vectorg; (A\) € F(A)"**! ask x 1 block vectors wit x 1 blocks, and
denote byr;(\) € F**! the (k — ¢)th block ofz;(\). Then{z1()),...,z,()\)} is a right
minimal basis ofP(\).

Left minimal bases Let {w;(\)7T,...,w,(A\)T} C F(A\)'*"* be a left minimal basis of
T,,(\), partition the vectorsv;(\)T € F(A)1*"* as1 x k block vectors with x n blocks,
denote byy;(\)T € F*™ the (k — ip)th block ofw; (M), then{y: (M), ..., y,(\)T}is a
left minimal basis ofP(\).

Proof. The proof for right minimal bases is similar to the proof of Theorem 3.2-(al).
We only sketch the main ideas. Assume first that 7, where the pair of bijections was
defined in (2.9)-(2.10), and €%, (\) = Mg, T,,()\) Mg, be the Fiedler pencil in part (b) of
Lemma 2.6. This means thathasc, consecutions d. Thenv(\) — Mg, v(A) is anisomor-
phism fromN,.(F, ) to N,.(T},), that areF(\)-vector spaces. In addition, this isomorphism
induces alegree-preserving bijectiobetween the subsets of vector polynomialsvip( F,,)
and\,.(T,,), becausé/s, is a constant nonsingular matrix. This means that

(4.2) {z1(N), ..., 2p(N)} = {Mg,v1(N), ..., Mg,vp(N)},

for some right minimal basigv;()), ..., v,(\)} of F,(A). From [9, Corollary 5.8], we
know that the(k — ¢)th blocks of{v1(\), ..., v,()A)} form a right minimal basis oP ().
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These(k — ¢y)th blocks are preciselyz, (), ..., z,(N\)}, becauséls, = M;, M;, ... M;,
with i; # co, i; # ¢o + 1, which implies that all these factor®/;; havel at block entry
(k —co,k —¢p). If p =7, then use (3.3) and (3.4) and follow the same argument.

As in the proof of Theorem 3.2, the recovery of left minimal bases follows from the
recovery of right minimal bases fdF,(\)”, which is a PGF pencil fo?(\)”. We only
remark that for any singular matrix polynomi@(\), the mapping,(\)” ~ y()) transforms
left minimal bases of)()\) into right minimal bases af)(\)”, and viceversdl

The recovery of minimal indices from PGF pencils is also very simple. We use for this
purpose the notation introduced in (2.6) and (2.7).

THEOREM 4.2 (recovery of minimal indices from PGF pencilg. Let P(\) be an
n x n singular matrix polynomial with degree > 2 and consider four ordered sety,
j=1,2,3,4,suchthat; N & = 0if i # j,andul_,& = {1,...,k —1}. Let

Tu(N) = AMg MM — Mg, MoMe,
be a PGF pencil of?(\) and consider the related Fiedler pencil
F,(\) = A\ Mj, — Mg, Mg, Mo Mg, M, .

Let0 <m <mp <---<mpand0 < g1 < ey < -+ < g, be, respectively, the left and right
minimal indices ofP(\) and¢(o) andi(o) be, respectively, the total number of consecutions
and inversions of. Then, the left and right minimal indicesBf () are, respectively,

m+clo)<matceo) <---<np+clo) and e1+i(o) <ez+i(o) <--- <g,+i(0).

Proof. It is immediate to see thdi,(\) and F,, () have equal minimal indices because
they are strictly equivalent. The result follows from applying Corollaries 5.8 and 5.11 in [9]
to F,,(A). O

We illustrated in Example 2.5 that there may be more than one Fiedler pencil strictly
equivalent to a given PGF pencil, and that these Fiedler pencils may have quite different
structures. However, Theorem 4.2 implies that all these Fiedler pencils have the same total
number of consecutions and the same total number of inversions. We illustrate this fact with
an example

ExAMPLE 4.3. Let F,(\) and F,.()\) be the Fiedler pencils defined in Example 2.5.
Then,c(o) = ¢(o’) = 2 andi(o) = i(¢’) = 2. Howeverg ando’ do not have neither all the
consecutions nor all the inversions at the same indices.

Theorems 4.1 and 4.2 can be directly applied to the PGF p#&i&il defined in (2.15)
for odd degree, because fSi(\) the magnitudes in these theorems &re= ¢, = 0 and
i(o) = ¢(o) = (k —1)/2. So we can state the following corollary.

COROLLARY 4.4 (recovery of minimal bases and indices from symmetric PGF liner-
izations). Let P(\) be ann x n singular matrix polynomial with odd degrée> 3 and let
S(A) be the PGF linearization aP(\) defined in (2.15). Then the minimal bases and indices
of P(\) can be recovered from the minimal bases and indices(aj by settingiy = ¢g = 0
andi(o) = ¢(o) = (k—1)/2in Theorems 4.1 and 4.2.

The last result in this paper is Corollary 4.5, which establishes the recovery of minimal
indices and bases from the linearizations presented in Subsection 2.6. As in the proof of
Corollary 3.8 for eigenvectors, the main idea is to deal first with the PGF p&ndil\) and
then with the strictly equivalent penciRL,, (). For brevity we omit the straightforward
proof. We only remark that the recovery of minimal indices was already presented in [10,
Theorem 6.1], and that the argument presented in [10] is, in our opinion, simpler than a direct
application of Theorem 4.2.
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COROLLARY 4.5 (recovery of minimal indices and bases from palindromic lineariza-
tions based on PGF pencils Let P(\) be ann x n singular matrix polynomial with odd
degreek > 3, let S and R be the matrices defined {8.18)and (2.17), and letL,, (\) be the
PGF pencil ofP()\) defined in(2.16) Suppose that the bijectiap hascy andiy consecutions
and inversions ab, respectively.

Right minimal bases Let {z1()\),...,z,(\)} < F(A)"**! be a right minimal basis of
SRL,,(\), partition the vectorg; (\) € F(A\)"#*! ask x 1 block vectors witt x 1 blocks,
and denote by ;(\) € F"*! the (k — ¢o)th block ofz;()\). Then{z1(A),...,z,(\)} is a
right minimal basis ofP()\).
Left minimal bases Let {w;(\)7T,...,w,(\)T} c F(A)1*"* be a left minimal basis of
SRL,(\), partition the vectorsu; (A\)T € F(A\)1*"* as1 x k block vectors with x n blocks,
and denote by; (\)? € F1* the (ip + 1)th block ofw;(A\)T. Then{y:(\)7,...,y,(A\)T}
is a left minimal basis oP(\).
Minimal indices: Let0 < 1 < < - < ppand0 < g1 < g9 < oo+ < g, be,
respectively, the left and right minimal indices B{\). Then, the left and right minimal
indices of SRL., () are, respectively,
+ E < + E < . o< E and
M 5 S 5 S STyt
k-1 k—1

k-1
Sty Set o < St o

REMARK 4.6. It was proved in [8, Section 3]: (a) that left minimal indices are equal to
right minimal indices for symmetric and palindromic matrix polynomials; (b) that left mini-
mal bases are transposes of right minimal bases for symmetric matrix polynomials; and, (c)
for palindromic matrix polynomials, if the vectors of a right minimal basis are reversed and
transposed, then a left minimal basis is obtained. Therefore, for symmetric and palindromic
polynomials only right minimal bases and indices need to be recovered.

5. Conclusions. We have developed easy recovery procedures for the eigenvectors of
regular matrix polynomials and for the minimal indices and bases of square singular matrix
polynomials from the corresponding ones of any generalized Fiedler linearization. Except
for a few particular linearizations, these recovery procedures consist simply in extracting
adequate blocks from the eigenvectors or minimal bases of the linearization, and in shifting
left and right minimal indices by certain quantities that can be easily determined. Therefore,
the recovery methods we propose do not represent any computational cost. This is, at a first
glance, surprising because the class of generalized Fiedler pencils is a wide set containing
many pencils with widely varying structures and properties. The results in this work allow
us to use generalized Fiedler pencils to solve numerically polynomial eigenvalue problems,
which can be useful, for instance, to solve symmetric and palindromic polynomial eigenvalue
problems with odd degree arising in control and in algebraic-differential ordinary equations.
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